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Abstract

To forecast the future state of the atmosphere, data assimilation is required in

order to provide a good estimate of the initial conditions, combining observations

and model predictions. To meet current operational limitations the incremental

approach is being implemented to reduce the computational cost of four-dimensional

variational assimilation (4D-Var) which assumes that processes are close to linear.

This dissertation will investigate the behaviour of the incremental formulation as the

system becomes increasingly nonlinear. We want to conduct numerical experiments

when the system becomes highly nonlinear to see whether it needs to be solved with

a greater accuracy. Recent theory indicates that this may be the case in order for the

incremental method to provide an adequate approximation to the nonlinear system.

Indeed the results of this study verify the theory, revealing that the solution to the

problem is improved for increasing accuracy. However, the effect of increasing the

accuracy becomes redundant after the accuracy is increased to a certain limit.



Declaration

I confirm that this is my own work, and the use of all the material from other

sources has been properly and fully acknowledged.

Acknowledgements

I’d like to thank Amos Lawless for his guidance and support during this disser-

tation. Additional thanks to Nancy Nichols and Sarah Dance, for their time and

help.

I wish to express my gratitude to NERC for their funding, without which I could

not have completed the course.

Finally I would like to say thanks to my friends on the course, its been fun and

eventful! Good luck in the future everybody. Thanks Amie for making me laugh

and making me yummy cake.

1



Contents

1 Introduction 6

1.1 The general problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Full 4D-Var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introducing incremental 4D-Var . . . . . . . . . . . . . . . . . . . . . 13

2.3 The steepest descent method . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Using a suitable stopping criterion . . . . . . . . . . . . . . . . . . . . 17

3 Experimental system 22

3.1 The Lorenz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Tangent linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Implementing the tangent linear model 30

4.1 Tangent linear test experiment . . . . . . . . . . . . . . . . . . . . . . 30

2



4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Assimilation experiments 38

5.1 Implementing the assimilation . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Choosing the number of inner and outer iterations . . . . . . . . . . . 40

5.3 Details of the assimilation experiments . . . . . . . . . . . . . . . . . 45

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Imperfect observations 56

6.1 The observational error . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 The impact of observational error on the assimilation experiments . . 58

7 Discussion 63

7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Limitations and future Work . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 69

3



List of Figures

3.1 The relative error plotted over a range of γ to verify TLM . . . . . . 29

4.1 The relative error over time for varying size of time steps. . . . . . . 33

4.2 The relative error plotted over time to investigate the relationship of

the evolved perturbations over time. . . . . . . . . . . . . . . . . . . 34

4.3 The relative error plotted against time for four different sizes of per-

turbation to the nonlinear and linear models. . . . . . . . . . . . . . 36

4.4 The perturbation in x against time for different sizes of perturvation

to the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 The cost function and the gradient plotted investigating the number

of inner iterations to be performed between the outer loops. . . . . . 53

5.2 The solution of x and z to the nonlinear problem for different size of

perturbations to the model. . . . . . . . . . . . . . . . . . . . . . . . 54

4



5.3 The error between the true solution and the incremental approxima-

tion to the nonlinear problem for different size of perturbations to

the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 The error between the true and analytical solution for x and z for

different size perturbation to the model with imperfect observations. 60

5



Chapter 1

Introduction

A weather forecast is based on observations of the atmosphere and models of evolu-

tion of atmospheric flow. To produce a forecast, initial conditions, constructed from

the observations and model, are needed to describe the atmosphere at an initial

time of the forecast.

Data assimilation is a technique required to give a good estimate of the initial

conditions by combining observational and model data to produce an optimal esti-

mate of the state of the system. The method is implemented to fill in data voids

and deal with observational error. Observations cannot be used on their own due

to their irregular distribution in time and space. Data assimilation is also necessary

to exploit the physical laws of the atmosphere and have the ability to use data from

remote sensing techniques that cannot be used directly. An analysis is the updated

forecast of the state of the atmosphere. It is produced from background information
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or forecast of the system from an earlier time step, along with observations made

at the present time step.

The aim of this dissertation is to investigate the benefit gained by increasing the

accuracy for which the nonlinear problem is solved using the incremental method.

To analyze the assimilation, the Lorenz model will be used in the experiments.

1.1 The general problem

Four-dimensional variational data assimilation (4D-Var) is the assimilation method

which we will be concentrating on. In this dissertation we want to conduct nu-

merical experiments for the Lorenz system when it becomes highly nonlinear to see

whether the 4D-Var incremental formultion needs to approximate the solution with

greater accuracy. In the incremental 4D-Var, the tangent linear model (TLM) and

adjoint model are used. The incremental method is a series of minimizations of a

quadratic approximation to the full 4D-Var cost function subject to the linear con-

straint (TLM). Each minimizations is referred to as an inner loop. After the inner

minimization an outer loop is performed which uses the solution from the inner

iterations to update the nonlinear trajectory. The number of inner loops performed

between each outer loop relates to how accurately the inner minimizations is being

solved. The inner minimization is subject to a stopping criterion, so that the num-

ber of iterations performed stops once the inner loop problem has been solved to
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sufficient accuracy. It will be the effect of increasing the tolerance of this stopping

criterion which shall be examined as the problem becomes more nonlinear.

1.2 Outline

The next chapter gives some background, describing 4D-Var data assimilation and

the incremental method. Following this the stopping criterion used for the assimi-

lation experiments will be considered in detail. Chapter 3 will describe the Lorenz

model being used for the assimilation experiments, as well as the tangent linear

model. In chapter 4 we will aim to verify the tangent linear hypothesis and give

results from the tangent linear tests. The assimilation tests will begin in chapter 5

for perfect observations. The result from these tests will give us an insight into the

level of accuracy needed as the nonlinearities increases to approximate the problem

well using the incremental method. Chapter 6 will briefly look at the effect on the

results for the assimilation experiments if error is added to the observations. The

final chapter concludes the dissertation with a summary and discussion of what has

been investigated and the limitations in this study.
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Chapter 2

Background

2.1 Full 4D-Var

There are two main types of assimilation techniques used; sequential and variational.

Examples of the latter are 3D-Var and 4D-Var. The variational technique tries to

find an optimal state that minimizes an objective function called the cost function,

J at the initial time. The 3D relates to the three spatial co-ordinates, whereas a

key feature of 4D-Var is that it also takes into account time. 4D-Var was introduced

by Le Dimet and Talagrand (1986) [13]. The standard 4D-Var is a method of

estimating a set of initial co-ordinates by running the model and finding the best fit

model trajectory through the observations distributed in the time assimilation. The

method used is effectively minimizing the cost function J that measures the weighted

sum of squares of distances to the background state xb and to the observations yj
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distributed over a time interval [t0, tn]. The full nonlinear 4D-Var cost function for

the general state of the system is given by

J(x) = (x0 − xb
0)

TB−1(x0 − xb
0) +

n∑
j=0

(yj − hj[xj])
TRj

−1(yj − hj[xj]) (2.1)

subject to the nonlinear model M

xj+1 = M(tj,xj) (2.2)

and for the true state of the system

yj = hj[xj] + εj (2.3)

The aim is to find the state vector at the initial time x0, which minimises the

variance of the analysis error whilst satisfying the model equations over the assimi-

lation.

For a given time window, [t0, tn], the observations are taken n + 1 times, the

subscript j denotes the quantities at any given observation time tj. The state

vector is xj, the observation vector at time tj is yj with error εj and the background

vector (or first guess) is xb
0. For the main part of this study the observations will

assumed to be perfect, so εj is taken to be zero, see chapter 7 for further details

on imperfect observations. The operator hj is given as the nonlinear observation

operator at time tj which maps the model variables to the observation space and
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time. Realistically there are fewer observations than model variables. So in order for

the observational and model data to be compared, the model needs to be mapped

to the observational space. The two error covariance matrices are B and Rj, which

describes statistically the random errors present. The background error is described

by the matrix B at the initial time, whereas the observational error is represented

by Rj at time tj. In 4D-Var for numerical weather prediction the background error

covariance is far too large to store or invert (about 1012−1014 matrix elements for a

typical 3D-Var system [1]). The observational error covariance is often taken to be a

diagonal matrix, assuming that each of the measured observations are conditionally

independent. Characteristics of 4D-Var include the assumption that the model is

perfect and the assimilation waits for observations over the whole time interval to

be available before the analysis procedure can start. The 4D-Var method is hard

to solve due to the nonlinear operator M . However this can be simplified by using

the tangent linear hypothesis where the cost function can be made quadratic by

assuming that the nonlinear model M can be linearized;

M(tj,xj + δxj) = M(tj,xj) + M(tj,xj)δxj + O(δx2
j) (2.4)

The tangent linear hypothesis neglects terms of order two, giving

M(tj,xj + δxj) ≈ M(tj,xj) + M(tj,xj)δxj (2.5)

M is the nonlinear model and M is called the tangent linear model (TLM) [3]. The

practibility of the tangent linear hypothesis depends on the size of the perturbation,
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how long the time window is and what model is being implemented. In its full non-

linear formulation 4D-Var is unpopular in practice due to its high computational

price. The 4D-Var scheme minimizes the cost function using the nonlinear model

and its adjoint. The background term of the 4D-Var cost function (2.1) is no more

complex than that of the 3D-Var. The observational term, however, is more com-

plicated. For this study we shall only be considering the observational term. When

evaluating 4D-Var, the observational term of (2.1) requires one forward run of the

full nonlinear model and then a further backward run of the adjoint model to find

the gradient of (2.1) on each iteration. This problem is costly to solve [7]. To reduce

this preconditioning methods can be used to speed up the minimization. However,

in practice this is difficult to implement due to the scale of the problem [2].

The incremental approach of 4D-Var, first introduced by Courtier et al. (1994)

[2], allows a simplified version of the full 4D-Var to be used at a lower computational

cost. Inner iterations minimize the the local quadratic approximation to the cost

function which is followed by an outer loop which updates the trajectory using the

full resolution model.

Incremental 4D-Var is more effective, as demonstrated by Courtier et al. (1994).

The computational efficiency is comparable to that of the full 4D-Var using a lower

resolution model (which is a simpler model along with its adjoint). Although a fur-

ther computational cost must be added when each outer loop is done because the

model has to be integrated to update the trajectory. Such a method is currently in
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operational use at the Met Office. In the dissertation, the accuracy of the incremen-

tal method will be investigated in relation to how it alters as the model becomes

more nonlinear.

2.2 Introducing incremental 4D-Var

Rather than a complete minimization of the full nonlinear cost function (2.1), the

incremental method is an approximation of the full cost function by a series of

minimizations of the quadratic cost functions subject to a linear model. In this study

the tangent linear model (TLM) will be used. The TLM allows the cost function

to be approximated by a quadratic cost function by assuming the nonlinear model

is linearized. Further details will be discussed in section 3.2. Using the incremental

method, inner and outer loops are carried out. The inner loops refer to the iterations

which minimize each quadratic cost function. These iterations are followed by an

outer loop, which use the approximations from the inner iterations to update the

trajectory. The outer loops provide a better approximation of the cost function.

The method be can described using an iterative algorithm [8]:

1. For the first outer iteration, k = 0, the background state is equal to the first

iterate.

x
(0)
0 = xb (2.6)

Note that the subscript refers to the time position of the state estimate, and
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the superscript represents the outer iteration count.

2. Run the nonlinear model M forward, keeping k fixed

xj+1 = M(tj,xj) (2.7)

3. For the inner loop, solve the linear approximation of the cost function with

respect to δx
(k)
0 . We are minimizing for all j the following cost function and

then finding the optimal increment δx
(k)
0 that gives the minimum.

J̃
(k)

[δx0
(k)] =

1

2
(δx0

(k) − [xb − x0
(k)])TB0

−1(δx0
(k) − [xb − x0

(k)])︸ ︷︷ ︸
Jb

+
1

2

∑n

j=0
(Hiδxj

(k) − di
(k))TRj

−1(Hjδxj
(k) − dj

(k))︸ ︷︷ ︸
Jo

(2.8)

with

d
(k)
j = yj − hj[x

(k)
j ], (2.9)

δx
(k)
j = M(tj,x

(k)
j )δx

(k)
0 (2.10)

where M is the tangent linear model, Jb the background term, Jo the observa-

tional term of the cost function and Hj is the linearization of the observation

operator hj around the state vector x
(k)
j at time tj. The linearization of the

observation operator is found using the tangent linear hypothesis;

h(x)− h(xb) ≈ H(xb)(x− xb) (2.11)
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4. The outer loop is then carried out by updating the trajectory

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 (2.12)

5. Then set k = k + 1 and repeat the process from step 2 for the total number

of iterations.

The success of the incremental procedure depends upon how well the tangent

linear model approximates the nonlinear model. If the tangent linear model is a

close approximation to the nonlinear model then we expect the incremental method

to be an accurate estimate of the nonlinear 4D-Var problem.

The inner loop is solved using a minimization algorithm. In this study the

steepest gradient method was used. The procedure works by updating the trajectory

by adding a correction that is proportional to the negative value of the gradient of

the cost function. It is essential to implement a stopping criterion to determine

when the inner iterations have converged sufficiently. A more in depth look at this

will be made in the section 2.4.

2.3 The steepest descent method

The steepest descent is an optimization algorithm, which defines the path of the

minimization of the cost function. The method approaches the local minimum by

trying to determine the direction for which the cost function decreases the most. It
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is an iterative procedure starting at an arbitrary point δx(0), steps are then taken

in the direction of the steepest descent until sufficiently close to the minimum. The

subscript in this case refers to the number of steps taken in the descent. The method

is as follows:

1. Calculate

δxk+1 = δxk − λkg(δxk) (2.13)

where g is the gradient vector, evaluated at a point in state space, pointing in

the direction of steepest descent and λk is the chosen step size. If the value

was too large then the method would be inefficient as too many of these ’inner-

inner’ iterations would be required. In contrast, if the step was taken too be

small then a reduction in the cost function was obtained, but you would only

have moved a small way towards the minimum, so many more inner iterations

would be required. Therefore the chosen value for the initial step of λk is 0.5

for this study.

2. If

∇J̃(δxk+1) ≥ ∇J̃(δxk) (2.14)

then we set

λ̃k =
λk

2
(2.15)

3. And insert into

δxk+1 = δxk − λ̃kg(δxk) (2.16)
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4. We repeat this whole process till the minimum in the gradient direction is

found or until the value for λ̃ has reduced to a certain specified value.

Unfortunatley the steepest descent is a slow iterative process. It has the advan-

tage of being simple, but it is extremely inefficient. Furthermore, the method only

uses information from the current sampling point. It fails to consider information

from the previous iterations which may give a more efficient minimization. There

are more complex gradient methods which are quicker and possibly more effective in

searching for the global minimum of the cost functions, for example the conjugate

gradient and quasi-Newton algorithms. However the more complex the gradient

method the more expensive it is to run [15].

2.4 Using a suitable stopping criterion

During the inner loop minimization a stopping criterion is applied to decide how

many inner iterations should be performed so that the solution is solved to a suf-

ficient degree of accuracy. The implementation of the stopping criterion implies

that the inner minimization may be terminated prematurely resulting in a residual

added to account for the fact that the is minimization not being solved exactly. It

was shown by Lawless et al. [8], [9] that for an exact TLM, incremental 4D-Var

is equivalent to the Gauss-Newton method applied to minimize the nonlinear cost

function. To account for the residual which arises from using the stopping criterion
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this method is altered to give the truncated Gauss-Newton method. The algorithm

goes as follows:

We consider a general nonlinear least squares problem

minxJ(x) =
1

2
‖f(x)‖2

2 =
1

2
f(x)T f(x), (2.17)

with x ∈ <n, which we assume has a local minimum. We note that (2.1) can be

written in these terms using:

f(x0) =



B0
− 1

2 (x0 − xb)

R0
− 1

2 (H0[x0]− y0
o)

...

Rn
− 1

2 (Hn[xn]− yn
o)


(2.18)

We define

∇J(x) = JT f(x), (2.19)

∇2J(x) = JTJ + Q(x), (2.20)

where J is the Jacobian operator of the function f(x) and Q(x) are the second order

derivative terms.

The Newton iteration is given as

∇2J(x(k))δx(k) = −∇J(x(k)) (2.21)

and

x(k+1) = x(k) + δx(k) (2.22)

Then the Gauss-Newton iteration for minimizing (2.17) is as follows:
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solve for δx(k):

δx(k) : (J(x(k))TJ(x(k)))δx(k) = −[J(x(k))T f(x(k)) + r(k)], (2.23)

Update:

x(k+1) = x(k) + δx(k), (2.24)

where r(k) is the residual from the inner loop. In practice it may be very difficult to

solve (2.23) as large systems may have to be dealt with. To avoid this computation,

the solution δx(k) can be found from the inner minimization of the function

J̃(δx(k)) =
1

2

∥∥∥J(x(k))δx(k) + f(x(k))
∥∥∥2

2
(2.25)

This residual is needed to compensate for the premature termination of the

minimization of the cost function as we have to take into account that the inner

minimization of the cost function is not found exactly.

The following theorem gives an important result that gives conditions for the

truncated Gauss-Newton (TGN) algorithm to converge [9].

Theorem - Assume that β̂ < 1 and that on each iteration the Gauss-Newton

method is truncated with

∥∥∥r(k)
∥∥∥
2
≤ βk

∥∥∥J(x(k))T f(x(k))
∥∥∥
2
, (2.26)

where

βk ≤
β̂ −

∥∥∥(JT (x(k)J(x(k)))−1Q(x(k))
∥∥∥
2

1 +
∥∥∥(JT (x(k)))−1Q(x(k))

∥∥∥ (2.27)
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Then there exists η > 0 such that, if ‖x0 − x∗‖2 ≤ η, the truncated Gauss-

Newton iteration converges to the solution x∗ of the nonlinear least squares problem

(2.17). [7]

From this result we can derive the stopping criterion used for the inner iterations.

Let P be the total number of inner iterations performed between each outer loop.

The solution to the inner minimization (2.23) is δx
(k)
(P ) with residual r

(k)
(P ). From

theorem 1, (2.26) may be rewritten as∥∥∥r(k)
(P )

∥∥∥
2

‖J(x(k))T f(x(k))‖2

≤ βk (2.28)

If we denote the ratio on the left hand side of the inequality as R, then provided

this is less than a certain bound the truncated Gauss-Newton method (TGN) will

converge. From this a natural stopping criterion arises to stop the inner iterations

when the ratio R becomes less than a given tolerance, provided this tolerance is less

than or equal to βk.

To implement this in practice we have the gradient of (2.25) given as

∇J̃
(k)

(δx
(k)
(P )) = (J(x(k))TJ(x(k)))δx

(k)
(P ) + J(x

(k)
(P ))

T f(x
(k)
(P )) (2.29)

Comparing this to (2.23) shows the residual

r
(k)
(P ) = ∇J̃

(k)
(δx

(k)
(P )) (2.30)

Additionally, J(x(k))T f(x(k)) is equivalent to the gradient of the outer loop cost
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function evaluated at x(k), i.e.

J(x(k))T f(x(k)) = ∇J(x(k)) (2.31)

Taking the norm of both (2.30) and (2.31), we can relate this to the ratio R giving

the stopping criterion ∥∥∥∥∇J̃
(k)

(δx
(k)
(P ))

∥∥∥∥
2

‖∇J(x(k))‖2

< ε (2.32)

where ε is the given tolerance. So the stopping criterion reduces to the relative sizes

of the gradient of the inner and outer cost functions.

This can be simplified further by using the fact that at the start of each inner

loop δx = 0, so ∇J(x(k)) on each outer loop is equal to ∇J̃
(k)

(0) at the start of the

inner minimization.

Therefore the criterion can be written in terms of the relative change in the

gradient: ∥∥∥∥∇J̃
(k)

(P )

∥∥∥∥
2∥∥∥∥∇J̃

(k)

(0)

∥∥∥∥
2

< ε (2.33)

where the subscript denotes the number of inner iterations performed [7].
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Chapter 3

Experimental system

3.1 The Lorenz model

The Lorenz equations were introduced by Edward Lorenz [14] to describe the chaotic

nature of the atmosphere. The equations are known as a system which models the

unpredictable behaviour of weather. In this study the data assimilation experiments

carried out will be using the Lorenz model. This is for simplicity to demonstrate the

results from the numerical experiments. Also a beneficial feature of using the Lorenz

model is its sensitive dependence on the initial conditions. This describes well the

chaotic system in which we live. Summing up that even if we have reasonably

accurate knowledge of the initial conditions, the trajectory of the forecast diverges

from the true trajectory very quickly. The set of Lorenz equations are given by the
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nonlinear system

dx

dt
= −σ(x− y), (3.1)

dy

dt
= ρx− y − xz, (3.2)

dz

dt
= xy − βz, (3.3)

where x = x(t), y = y(t), z = z(t) [14]. It should be noted that x, y and z

are spectral co-ordinates. The σ, ρ, β are parameters, which have been assigned

the values 10, 28 and 8
3

respectively. The Lorenz model is very sensitive to the

value of these parameters. The values assigned in this study are fairly standard,

corresponding to having certain stable or unstable points. For example a linear

stability analysis shows that different types of solutions can be found depending on

the value of these parameters. The Rayleigh number, ρ may vary, if ρ ≈ 24.74 then

the steady convection becomes unstable [4]. Choosing the Rayleigh number equal to

28 means the system exhibits chaotic behaviour. Further details on this behaviour

can be found in Lorenz’s paper [14].
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The system is discretized using the second order Runge-Kutta method,

xk+1 = xk − σ
∆t

2
[2(yk − xk) + ∆t(ρxk − yk − xkyk)− σ∆t(yk − xk)], (3.4)

yk+1 = yk +
∆t

2
[ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk))− yk −

∆t(ρxk − ykxkzk)− (xk + σ∆t(yk − xk))(zk + ∆t(xkyk − βzk))], (3.5)

zk+1 = zk +
∆t

2
[xkyk − βzk + (xk + ∆tσ(yk − xk))(yk +

∆t(ρxk − yk − xkzk))− βzk −∆t(xkyk − βzk)], (3.6)

where ∆t is the time step and k is the time step index [10].

The numerical experiments are carried out with the background term from (2.8)

not included and the inner loop cost function minimization is carried out using the

method of steepest descent. The Runge-Kutta method is a one step method. This

means that the variable at time step n + 1 is given in terms of the variable at

time step n only. A benefit from this is that we don’t have to store past history.

When deciding on a value for the time step in the assimilation, we have to take

into consideration that if the time step is too small then it may lead to excessive

computation time. On the other hand, if we have too large a time step then we

have to consider the stability of the system. Advantages of using a one-step method

in comparison to the multi-step methods are that it is generally faster, due to the

differences in the accuracy and computational complexity [17].
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For the incremental method, the full nonlinear cost function is approximated by

a series of convex minimizations using a linear model. As noted previously, in this

study the TLM will be used. We now describe the TLM and verify the code for it,

before discussing its role in the numerical experiements.

3.2 Tangent linear model

The nonlinear optimization problem is difficult to solve since M is nonlinear. The

tangent linear model (TLM) simplifies the 4D-Var problem. To recall, it uses Tay-

lor’s expansion of the nonlinear model with a perturbation to the state vector, δxj

at time tj, giving

M(tj,xj + δxj) = M(tj,xj) + M(tj,xj)δxj + O(δx2
j) (3.7)

The tangent linear hypothesis neglects terms higher than first order. The more

nonlinear the Lorenz model is, the worse the TLM represents it. This is because the

more nonlinear it is the larger the term O(δx2
j) becomes, which the TLM neglects.

Using the tangent linear hypothesis for the incremental method makes the min-

imization of the cost function easier to solve. The hypothesis states that the for-

ward nonlinear model can be linearized, where it gives the same local behaviour as

the original. This model makes the cost function simpler and so computationally

cheaper. We expect the TLM to be a good estimate of the nonlinear model as long

it is weakly nonlinear.
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The discretization of the TLM using the Runge-Kutta method for the Lorenz

model linearizes (3.4), (3.5) and 3.6) and is given as

δxk+1 = δxk − σ
∆t

2
[2(δyk − δxk) + ∆t(ρδxk − δyk−

(δykxk + δxkyk))− σ∆t(δyk − δxk)], (3.8)

δyk+1 = δyk +
∆t

2
[ρδxk − δyk − δzkxk − δxkzk + ρ(δxk+

σ∆t(δyk − δxk))− δyk −∆t(ρδxk − δyk − δxkzk − δzkxk)], (3.9)

δzk+1 = δzk +
∆t

2
[ykδxk + xkδyk + ∆t(ρxkδxk − xkδyk + xkzkδxk

+ x2kδzk + ykδxk + ∆tρxδxk + xkzkδxk + σ∆t(ykδyk

+ ∆t(ykδxk − ykδyk + xkykzkδxk + xkykδzk) + ykδyk +

∆t(ρxkδyk − xkzkδyk)− xkδyk −∆t(ρxkδxk + xkδyk − xkzkδxk − x2kδzk)−

ykδxk −∆t(ρxkδxk + xkzkδxk)− βδzk −∆t(xkδyk + ykδxk − βδzk)] (3.10)

For this study, in order to investigate the accuracy with the nonlinearity of the

incremental method for 4D-Var, we require a measure for the nonlinearity. The

approach we take involves finding the size of the relative error which compares

how the perturbation for the nonlinear model and TLM have evolved. The more

nonlinear the problem is the larger the difference will be to the TLM, and the relative

error will reflect this.

26



Firstly we find the evolved perturbation in the nonlinear model. This is defined

by taking the difference of two runs of the nonlinear model. Let x0 be the model

state of the assimilation at an initial time t0 and γδx0 a small perturbation to this

state, where γ is a scalar parameter. The nonlinear model is given as M , so the

model state at final time tn is subject to the nonlinear dynamical system

xn = M(tn,xn) (3.11)

At time tn the perturbation evolves as

δxNL = M(tn,xn + γδx0)−M(tn,xn) (3.12)

For the TLM we write the evolved perturbation as δxL = M(tn,xn)γδx0, where M

is the TLM. The purpose of γ is to choose the size of the nonlinearity of the Lorenz

model.

From this we can calculate the relative error [17]. Firstly the error is given as

E = δxNL − δxL (3.13)

Therefore the relative error defined at the final time tn is, given as a percentage

ER = 100
‖δxNL − δxL‖

‖δxL‖
(3.14)

A standard method of validating the TLM is to show that ER tends to zero for

small γ. According to Taylor’s formula the evolved perturbation for the nonlinear

and linear model should behave similarly for small γ, limited by machine precision.
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If M is exactly equal to the first order part of the nonlinear model M (of the discrete

part of the nonlinear model) then

δxNL = δxL + O((γδx0)
2) (3.15)

and so the relative error becomes

ER = 100
‖δxL + O((γx0)

2))− δxL‖
‖δx)L‖

(3.16)

For small γ the term O(γx0)
2) becomes negligible and so ER → 0. In 3.1 we plot the

relative error over a range of γ. It shows that in fact the TLM has been correctly

coded as the size of the relative error tends linearly towards zero, verifying that the

first order part of the discrete nonlinear model is correctly represented by the TLM.
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Figure 3.1: ER plotted against γ to exam the validity of the TLM.
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Chapter 4

Implementing the tangent linear

model

4.1 Tangent linear test experiment

The tangent linear test measures the size of the relative error between the evolved

perturbations of the nonlinear model and TLM. To enable us to investigate the

effect of increasing the level of accuracy for solving the cost function minimization

as the nonlinearity of the model increases, we can exploit the fact that the relative

error is a measure of the nonlinearity. From this we can explore the relationship

between the size of the perturbation with the nonlinearity. We expect the larger the

perturbation the more nonlinear the system will be. Then for the assimilation tests

we can go onto investigate how well the assimilation problem is solved for different
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perturbations as the accuracy of the inner loops are increased.

The tests are seen as a basis for the assimilation tests. The tangent linear test can

be used to decide upon the values of parameters such as the range of perturbations

by examining the stength of the tangent linear hypothesis. Also an appropriate time

length of the assimilation has to be chosen. This shall be done using the tangent

linear test by monitoring the difference between the nonlinear and linear model to

investigate how well the tangent linear hypothesis holds over time.

The model used to test the TLM comes from the DARC website, written by

Amos Lawless, 2004, [12]. Before the algorithm begins, the size of the perturbation

needs to be considered by varying the value of γ. For small perturbations γ needs

to be small, and vice versa for large perturbations. The unscaled perturbation for

all the experiments is chosen as (1,−1, 0.5), we vary this by changing γ which is a

scalar multiple of the perturbation. These values will remain the same throughout

all the numerical experiments. The test is as follows

1. For the initial time step j = 0; find the perturbation for the nonlinear model

first, input xj and xj + γδx0 into the Runge-Kutta discretization (3.4), (3.5)

and (3.6).

Then to find the perturbation for TLM, take γδxj and input this into the

Runge-Kutta discretization (3.8), (3.9) and (3.10).

2. The first step is then repeated for n time steps.
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3. The difference between x and x + γδx0 at the final time step are taken to

give the evolved perturbation for the nonlinear model, giving δxNL. This

along with the evolved perturbation from TLM at the final time step, δxL, are

inputted into equation (3.14) to give the relative error.

The tangent linear test can be used to discover how good an estimate the lin-

earization is. The smaller the relative error the better it is. Before the tests could

begin we needed to consider the length of the time step. Figure 4.1 shows plots of

the relative error against time for a relatively small perturbation to the nonlinear

model. Each graph has a different length of time step. For the longer time step 0.05

and 0.04 the relative error was extremely large, the size of the relative error went

off the scale and peaked at 100%. Generally we can conclude from the results that

the larger the time length the larger the relative error. This is not ideal as we are

using the relative error as a measure of the nonlinearity. To avoid a large relative

error being present for all the experiments regardless of the size of the perturbation

to the nonlinear model we chose the length of time step to be 0.01. A further point

also worth considering is that generally as the length of time increases the relative

error increases.

This is emphasized in figure 4.2 where we look at the behaviour of ER as time

increases. The relative error remains low when not many time steps have been

performed. As the time reaches 1000 steps the relative error has peaked to about

32



150% which would not be ideal for investigating the problem. Even for 700 timesteps

there is about a 50% relative error. However, we would like the length of time for

the experiments to be as long as possible to get a better understanding of what we

are studying. Taking this into consideration the maximum number of time steps for

the future experiments were limited to 500.

Figure 4.1: ER plotted against timesteps of different length, h, with the size of the

initial perturbation given as γ = 0.001 over 500 hundred time steps.

4.2 Results

A key issue with using the tangent linear hypothesis is that it neglects second order

terms and higher. If the nonlinear model is weakly nonlinear then the TLM is a
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Figure 4.2: ER plotted against 1000 time steps with the size of the initial perturba-

tion given as γ = 0.001.

good estimate. A linear model L holds the property that

L(αδx) = αL(δx) (4.1)

where α is a scalar parameter. If the nonlinear model is weakly nonlinear then we

would expect it to hold this relation closely. However the stronger the nonlinearity of

the model the larger the term O(δx2) will be and the less likely it is to demonstrate

this linearity behaviour. Similarily if the perturbation δx is large then neglecting

O(δx2) we would expect the tangent linear hypothesis to fail. From figure 4.3 this is

in fact shown. For small finite perturbations the relative error plotted against time

shows a similar pattern to each other, which seems to differ by an order of magnitude.
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This would suggest the perturbation is evolving linearly for small values. As the

perturbation becomes larger, to values of γ taken to be 10 or more the relative error

peaks at values over 100%. Clearly with such high values for the relative error, the

linear evolution of the perturbation disagrees strongly with the evolved perturbation

for the nonlinear model. Therefore the tangent linear hypothesis breaks down. The

reason for this is reflected in figure 4.4 where the perturbation in x (perturbation

y and z are omitted but similar) for the nonlinear and linear model are plotted

against time. The two plotted on the same graph are almost identical for very

small perturbations. As the perturbation increases, the phase and amplitude error

gradually grow explaining the fluctations present in 4.3. For large perturbations

the plots for the nonlinear and linear differ largely. The nonlinear is very flat

due to the strong nonlinearities coming into play. As mentioned previously the

large perturbation term O(δx2) will become too big to be neglected, and so as a

consequence the tangent linear hypothesis will fail. The hypothesis obviously fails

for γ equal to 100 and 10 as the relative error grows to 100%. In figure 4.3 there is

a large error at the beginning, this rapid error growth displayed in figure 4.3a) for

γ = 100 may be due to genuine nonlinear processes as proposed by Trémolet [18].
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(a) (b)

(c) (d)

Figure 4.3: The relative error calculated using equation (3.14) against time. The

time tn = 5 is after 500 timesteps. The relative error is plotted over a range of

different size of perturbations to the nonlinear and linear model. Graph 1(a) has

the perturbation of size γ = 100, 1(b) has 10, 1(c) has 1 and 1(d) has 0.1.

36



(a) (b)

(c) (d)

Figure 4.4: The perturbation in x plotted against time. The first graph 2(a) rep-

resents the evolution of the perturbation of size 100 for the nonlinear and tangent

linear model. Figure 2(b) has size of perturbation 10, 2(c) has 1 and 2(d) has 0.1.

Note that the y-axis reduces by about a factor of 10 as the size of the perturbation

does.
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Chapter 5

Assimilation experiments

5.1 Implementing the assimilation

For the numerical experiments using the Lorenz model, the time window is chosen

to be 500 timesteps of length 0.01 to link our experiments to the tangent linear tests.

The first 200 timesteps will be the assimilation, then the following 300 timesteps will

be the forecast. Identical twin experiments were carried out for the nonlinear model

allowing the true solution to be found, enabling us to compare the truth with the

analysis of the solution retrieved from the assimilation with a perturbation added

to the nonlinear model.

The incremental method is given by the algorithm in section 2.2, where the

nonlinear model used is the Lorenz model. Steps 1-5 from section 2.2 are followed,

although step 3 is not straightforward and must be considered in further detail.
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Firstly the cost function, (2.8), is slightly different as we are minimizing for the ob-

servation term only, the cost function for this shall be denoted Jo. When minimizing

the observational cost function its gradient needs to be found. We minimise

Jo(δx0) =
1

2

∑n

j=0
(Hjδxj − dj)

TR−1
j (Hjδxj − dj) (5.1)

subject to the linear dynamical system

δxj = Mj−1δxj−1 (5.2)

= Mj−1Mj−2...M0δx0 (5.3)

Therefore the observational cost function can be rewritten as

Jo(δx0) =
1

2

∑n

j=0
(HjMj−1...M0δx0 − dj)

TR−1
j (HjMj−1...M0δx0 − dj) (5.4)

Differentiating with respect to δx0 gives the gradient of the observational cost

function

∇Jo(δx0) =
n∑

j=0

MT
0 MT

1 ...MT
j−2 MT

j−1 R−1
j (Hjδxj − dj)︸ ︷︷ ︸

(1)︸ ︷︷ ︸
(2)︸ ︷︷ ︸

(3)︸ ︷︷ ︸
(...)︸ ︷︷ ︸

(...)

(5.5)

The derivation of the gradient has been omitted here but further details can be

found in [15].

The computation above can not be done all at once, the first term (1) is calcu-

lated, then the second (2) and so on. The adjoint model is used to compute the
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gradient term by term, working backwards from the final time tn to the initial time.

Notice that this has to be done backwards, as MT
j−1 needs to be calculated before

MT
j−2, MT

j−3 etc.

After the adjoint model, the steepest descent as described in section 2.3 is im-

plemented in step 3 to determine the path of the minimization. This is referred to

as the ’inner inner’ minimization which was described previously in detail in section

2.3.

5.2 Choosing the number of inner and outer iter-

ations

When implementing the incremental method, a few factors have to be considered.

For instance, when referring to the impact on the number of inner and outer itera-

tions used, this may not only affect the computational cost, but also the convergence

of the minimizations of the cost function. In fact studies from Laroche and Gauthier

(1998) [6], referring to the barotropic model, show that the number of simulations

(the evaluation of the cost function and its gradient) is proportional to the compu-

tational cost. From experiments carried out by Laroche and Gauthier (1998), it was

found that with too few inner iterations the minimizations have not been approxi-

mated to a sufficient level of accuracy. This would imply that the system would not
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converge very quickly, if at all. A consequence may be that the system diverges from

the true solution so that the final analysis may be further from the truth than the

original background. On the other hand, if too many iterations are performed for

the inner loop problem, then it is being solved to an unnecessary accuracy. Then

after each update, the system does not benefit much from this accuracy, and so

uses extra computational work at no advantage. Taking this into consideration, we

experimented with the assimilation test to decide on the maximum number of inner

iterations.

The model was ran with 10, 20, 30 and 40 inner iterations followed by an update

to the trajectory. The cost function and its gradient at the time of the last inner

iteration accompanied with the relative change in the gradient (2.33) are displayed

in table 5.1. Clearly an advantage of increasing the number of inner iterations

being performed is that the nonlinear problem is solved more accurately, the lowest

value of the cost function occuring for 40 inner loops. However by the end of the

iterations the cost function reduces slowly for 40 inner iterations compared to 10 or

20 iterations as the gradient is lower. Therefore the solution to the problem is being

solved excessively without much improvement to the cost function.

To investigate further how many inner iterations should be chosen between the

outer loops, the convegence of the cost function and its gradient are shown in figure

5.2 for 10, 20, 30 and 40 inner loops. The smoothest convergence of the gradient

occured if there was 10 inner iterations before the update as can be seen in figure
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5.2a). For 30 and 40 inner iterations there was an evident jump in the convergence of

the gradient. The jump in the gradient indicates the outer loop which redefines the

inner loop cost function. Although more inner iterations means the minimization of

the cost function is being solved more accurately, this is not a good approximation

to the nonlinear problem resulting in the jump in convergence of the gradient when

the outer loop is performed.

A compromise has to be made between the computational cost and the degree of

accuracy that the cost function has to be solved. For the assimilation experiments

the maximum number of inner iterations between each update will be 20. This

allows the series of minimizations to be solved accurately enough to give convergence

(depending on the value of the tolerance), without solving it too precisely, wasting

computational effort.

As already discussed performing too many inner iterations may be unnecessary.

The case may be that the current outer iterate x(k) is considerably different to the

true solution, then solving the inner minimization to a high degree of accuracy may

not necessarily give high accuracy in the outer loops. Although 20 iterations for

inner minimization has been chosen between each outer loop, it may not always be

beneficial to carry out the full 20. To decide this a stopping criterion is implemented

which was introduced in section 2.4 depending on the relative change in the gradient.

Therefore the maximum number of 20 simulations are not always carried out before

the trajectory is updated.
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Another important aspect to decide is the termination of the outer loops. If the

outer loops are stopped prematurely then the cost function may still be very high

and result in an inaccurate forecast. However if there are too many outer loops then

this greatly increases the computational cost. In practice, the number of outer loops

is normally no more than 2 or 3. This is a result of the computational cost. For this

study, experimenting with the number of outer loops to be implemented (graphs

not included), it was found stopping the outer loops at 2 may be premature. We

want the assimilation to run for enough outer loops so that the gradient of the cost

function starts to converge. However, too many outer loops will be computationally

expensive. After experimenting with the number outer loops performed we decided

to conform to the idea that 10 seems to be a reasonable choice. Likewise to that of

the inner loops, there is no need to perform outer loops which increase the accuracy

of the solution by a very small amount. A very simple stopping criterion for the

outer loops is implemented; ∥∥∥∇J
(k)
(0)

∥∥∥
2

< εouter (5.6)

where εouter is the tolerance for the outer loop. If the value of the gradient of the

cost function at the first inner iteration for each outer loop is less than a specified

tolerance then the criterion is satisfied and the minimization terminates. The focus

of increasing the accuracy of solving the nonlinear problem in this study is directed

on the inner minimization, so the choice of the outer loop stopping criterion is not
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of great concern. The tolerance for the outer loop is kept constant at εouter = 0.01.

We don’t want this to change so that we avoid getting confused with the effects of

when the tolerance for the inner loop stopping criterion changes.
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no. of inner iterations cost function gradient relative change in gradient

10 5.7035 27.0436 0.6705

20 2.6879 8.1092 0.2480

30 2.4451 5.6929 0.1624

40 2.1901 3.5748 0.0962

Table 5.1: The number of inner iterations performed corresponding to the value of

the cost function and the gradient of the cost function at the time of the last inner

iteration. The table includes the relative change in gradient from equation (2.33).

This compares the value of the gradient of the cost function at start of the inner

iteration on the outer loop and the last inner iteration.

5.3 Details of the assimilation experiments

We begin with observations taken at every time step over the assimilation period

allowing a good solution to the nonlinear problem to be found. The observations

are taken of all 3 spectral coordinates of the Lorenz equations x, y and z. The

tolerance of the stopping criterion for the inner minimization reflects how well the

inner problem is solved. The larger the tolerance the less accurately the inner

minimization is solved. When beginning the assimilation experiments we firstly

want to investigate how well the nonlinear problem is solved for different strengths

of nonlinearities of the model by changing the size of the perturbation to the model.

For this we want to keep the tolerance constant so not to interfere with the results.

Following this, we want to vary the level at which the inner minimization is solved

by altering the value of the tolerance. This will enable us to investigate how well
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the problem can be solved as it becomes more nonlinear.

Recall that the size of the perturbation γ to the nonlinear model is related to the

nonlinearity of the problem. When considering the range of γ we want to include

when the tangent linear hypothesis is a good approximation to the nonlinear model

(small perturbation) and when it breaks down. For comparison we include in the

assimilation experiments γ in the range from 0.1 to 100. Referring to section 4.2,

the tangent linear hypothesis seems to no longer approximate the problem well as

γ reaches 10 and 100 as the relative error reaches 100% in figure 4.3a) and b). For

γ = 0.1 the relative error is very small so that we can infer that the tangent linear

hypothesis holds.

To link the results from the tangent linear test, the initial conditions for the

tangent linear and Lorenz model were the same at (1, 2, 1.5). The perturbation for

all the experiments is chosen as (1,−1, 0.5), we vary this by changing γ which is a

scalar multiple of the perturbation. The first guess for the assimilation is calculated

by adding γ(1,−1, 0.5) to the true initial condition (1, 2, 1.5).

5.4 Results

The solution of the Lorenz model is shown in Figure 5.2 for x and z (y is omitted

as it is symmetrical to x) along with the error in Figure 5.3 between the true

solution and the analysis produced from running the nonlinear with perturbation.
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The first 200 timesteps represents the assimilation. The succeeding 300 timesteps

gives the forecast produced from the analysis and the true solution. The first guess

trajectory comes from the background state which is then run in the model, the

analysis combines the observations and the model to give the trajectory for the

incremental method. Recalling from section 3.2 where γ is given as the size of

the perturbation to the nonlinear model, the figures 5.2 and 5.3 display plots over

a range of perturbations measured using γ. The perturbations differ, the largest

perturbation is γ = 100 going down to γ = 0.1. The results show that when the

perturbation to the nonlinear model is small the analysis and the truth are extremely

close. We notice the change for γ = 50 further still when γ = 100 there is a vast

difference. Referring to the results from the tangent linear test in chapter 3, the

tangent linear hypothesis seems to break down when γ reaches 10 or more as the

relative error between the nonlinear model and tangent linear model grows rapidly.

When γ = 100 there is a large fluctuation in the analysis at the beginning of the

assimilation window. The true solution and the approximation given by the analysis

are very different throughout the whole time window. There seems to barely be any

correspondance between the two where the analysis looks very unstable. As the

perturbation reduces for the nonlinear model, the analysis gradually gets closer to

the truth. At γ = 10 the analysis trajectory seems to have become more stable,

showing wave motion. Although the tangent linear hypothesis seems to have started

to break down for γ = 10 the approximation to the solution given by the analysis in
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figure 5.2c) seems to very close to the true solution for both x and z. Studying closely

figure 5.3c) the analysis trajectory in the solution for x seems to be in phase with the

true trajectory, however, there is a small amplitude error which is demonstrated in

the error plot of x. In the solution for z the analysis trajectory displays a difference

in the amplitude sizes as well as a phase error to the true trajectory near the end of

the forecast. As the perturbation reduces to γ = 1 the analysis becomes very close

to the truth. We would expect this as the nonlinearities of the Lorenz model become

weaker so that the tangent linear hypothesis gains validity. This is evident from 5.3,

the error between the analysis and truth is very large for large perturbation. As

expected the error reduces as the size of the perturbation does, there is a significant

drop in the error from the size of γ = 50 and γ = 10. When the value of γ has fallen

to 0.1 the error is minor, this is reflected diagramtically in the final plot in 5.2d)

where it is hard to tell the difference between the true solution and the analysis.

To concentrate on how accurate the assimilation is for different perturbations,

table 5.2 shows the value of the cost function and the gradient at the last iteration,

for a range of perturbations with the different tolerances. An interesting result

which comes from looking at the values of the cost function explicitly is that when

the tolerance falls to certain value (in the range tested), the final value of the

cost function no longer reduces and stays at a constant value (similarly with the

gradient). It seems that we have reached the point of saturation. It may be the

possibility that we have reached the minimum of the cost function. If this is the
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case then this implies that the cost function can get only so small for each size of

perturbation. So the nonlinear model with a large perturbation can not minimise

the cost function to the same value compared to that of the nonlinear model with

a smaller perturbation no matter how accurate the assimilation is made. However,

this does not seem to be the case. Studying the values of the cost function, for

example when γ = 0.01 the final value of the cost function when the tolerance

is 0.05 is 0.0104 and when the tolerance is reduced to 0.01 the cost function has

increased to the saturation point 0.0192. The cost function may be have reached

a local minimum when the tolerance is 0.05. Therefore the saturation point is not

the global minimum value of the cost function. This is an interesting result and not

good news if we need to produce a forecast for a highly nonlinear model.

We must consider that this result may be a limitation of the minimization algo-

rithm used which we commented on before as being extremely inefficient. Reaching

the minimum may be incredibly slow and thus may need further inner iterations to

be performed to reach the minimum. Using the steepest descent, the inner minimi-

sation may have got ’stuck’ in a local minimum and so not representing the true

global minimum of the cost function. Due to the nonlinearity of the problem, the

whole cost function is non-quadratic. Therefore this may result in the value of the

cost function being larger (locally) than in the previous iterations when entering a

’new valley’ of the cost function. This may explain why the cost function at satura-

tion point might be larger than the cost function before this point. To investigate
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whether this is the case, other minimisation techniques could be used such as a con-

jugate or quasi-Newton methods, as mentioned in section 2.4. However, whether the

inner minimization has reached a local or global minimum, the gradient of the cost

function should reach zero regardless. From table 5.2 notice that the value of the

gradient never reaches zero, therefore the value of the cost function is not the mini-

mum. This is because the gradient becomes saturated after the inner minimization

is solved to a level of accuracy.

The criterion used in the assimilation experiments allow the inner iteration count

to stop once the relative change in gradient (2.33) has fallen below the tolerance.

As the tolerance increases the inner minization is solved less accurately before the

next outer loop is performed. So if the tolerance is too large then not enough inner

iterations are carried out between the outer loops to allow the cost function to

significantly reduce. This is demonstrated in table 5.2, when the tolerance ε = 0.5,

the value of the cost function is larger than when ε is reduced. The outer loops

were noted to take into account whether the outer loop stopping criterion was being

satisfied. The more outer loops performed the higher level of accuracy the problem

is being solved. It seems that for larger perturbation the nonlinear model the more

outer loops are performed, and so demanding a greater accuracy of the outer loop

to approximate the solution.

Studying further table (5.2) from a different perspective by keeping the tolerance

constant we can gain an insight of how the value of the cost function changes for

50



different values of γ. The larger the size of γ the larger the cost function and the

gradient are. As a consequence more outer loops are performed for larger γ. By

analyzing the table the conclusion being drawn is that the more nonlinear the model

(i.e. the larger the perturbation), the higher the level of accuracy needed to solve the

inner minimization problem. We can explain this by referring back to the theory in

section 2.4. If the size of the perturbation gets larger then so does the nonlinearity

of the Lorenz model. Therefore from (2.20), the term Q(x) representing the second

order derivatives, gets larger. As Q(x) is included in the inequality (2.27) then

the bound for βk decreases. From (2.28), since βk is the bound for the inner loop

minimization then this is equivalent to the inner loop tolerance. If βk decreases then

the inner minimization will not be solved as accurately.
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Perturbation with γ = 10

Tolerance Cost function Gradient Number of outer loops performed

0.5 206.2796 33.7436 10

0.1 197.5135 33.028 10

0.05 178.9106 31.457 10

0.01 183.9588 31.914 10

0.00001 183.9588 31.914 10

Perturbation with γ = 1

0.5 1.9396 3.2974 10

0.1 1.8283 3.198 10

0.05 1.7668 3.146 10

0.01 1.7644 3.145 10

0.00001 1.7644 3.145 10

Perturbation with γ = 0.1

0.5 0.0221 0.4286 10

0.1 0.0197 0.332 6

0.05 0.0104 0.246 6

0.01 0.0192 0.328 6

0.00001 0.0192 0.328 6

Perturbation with γ = 0.01

0.5 0.000277 0.09315 6

0.1 0.0002308 0.186 5

0.05 0.0004477 0.266 5

0.01 0.0002217 0.186 5

0.0001 0.0002217 0.186 5

Table 5.2: The level of accuracy for which the inner iteration is solved is varied to

examine the relationship with the nonlinearity of the model. The cost function and

the gradient at the time of the last inner iteration are tabulated with the number

of outer loops performed.
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(a) (b)

(c) (d)

Figure 5.1: The cost function and the gradient plotted against the number of total

number of inner iterations performed, 3(a) 10, 3(b) 20, 3(c) 30 and 3(d) 40. The

tolerance for the inner loop was given as 0.00001, with observations at every time

step. The perturbation to the nonlinear model was size γ = 1.
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(a) (b)

(c) (d)

Figure 5.2: The solution for x and z of the Lorenz equations plotted against time.

4(a) shows the Lorenz model with the size of perturbation γ = 100, 4(b) γ = 50,

4(c) γ = 10 and 4(d) γ = 1. The tolerance for the inner loop stopping criterion was

10−5.
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(a) (b)

(c) (d)

Figure 5.3: The error between the true and analysis trajectories plotted against

time. Figure 5(a) γ = 100, 5(b) γ = 50, 5(c) γ = 10, and 5(d) γ = 1. The tolerance

for the inner loop stooping criterion was 10−4.
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Chapter 6

Imperfect observations

6.1 The observational error

In practice error on all observations occur. The previous experiments were per-

formed using perfect observations. To see whether we gather the same findings

for imperfect obsevations a random unbiased error with a Gaussian distribution is

added to the observations yj with variance 0.01. Referring back to equation (2.3)

the observational error added is denoted as εj.

For perfect observations it is possible to find a state vector x0 such that for all j

xj = M(x0) = yj = hj[xj] (6.1)

This implies that the minimization of the cost function, ∇J , and the cost function

itself are equal to zero.
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However, this is not the case for imperfect observations. Recall from section 2.1

the observation at time tj is given as

yj = hj[xj] + εj (6.2)

where εj is the noise on the observation. If

xj = M(x0) = yj = hj[xj] (6.3)

then the cost function can be minimized so that its gradient will equal zero. How-

ever, there is no such xj that will equal zero for all j. Comparing this to perfect

observations, we must account for the fact that the minimization of the cost func-

tion may need to be solved more accurately. We expect similar results to that of

the previous chapter when considering no observational error, however, the level of

tolerance may be smaller.

Indeed referring to [7], experiments for perfect and imperfect observations were

performed using different value of tolerances for the inner loop minimization. A

comparison between the two indicated that a smaller tolerance may be required

when more noise is added to the observations.
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6.2 The impact of observational error on the as-

similation experiments

For the assimilation experiments, consistent with the experiments carried out for

the perfect observations the parameters remained unchanged along with the number

of inner and outer loops and their respective stopping criteria. The random error

added to the observation was kept constant throughout the experiments. Figure 6.1

shows the errors between the true and analysis trajectories of the solutions to the

Lorenz model. Clearly for imperfect observations, the error through the time window

exhibited a more distinctive wave motion, reflecting a larger phase error than for

the perfect observations. This became clearer when the scale for the vertical axis

got smaller (i.e. for smaller size of perturbations). The difference between the two

trajectories was larger when imperfect observations are used. Therefore we can

conclude that the impact of observational error has a detrimental effect on the value

of the cost function. However, similar to the perfect observations, as the size of

the perturbation reduces the difference between the true and analysis trajectories

decreases, although it is not as small as for the perfect observations, it is still on a

small scale.
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Continuing the comparison of the perfect and imperfect observations, the level of

accuracy at which the inner minimization was solved was investigated. The results

were presented in table 6.1 which compares the convergence of the cost function

for varying tolerances and perturbations to the nonlinear model. The convergence

of the value of the cost function for imperfect observations followed that of the

perfect. Looking in detail however, the inner loop minimization has to be solved

more accurately when noise is added to the observations to give as good a solution

(a)(i) (a)(ii)

(b)(i) (b)(ii)
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(c)(i) (c)(ii)

(d)(i) (d)(ii)

Figure 6.1: The error between the trajectories of the truth and analysis using perfect

and imperfect observations. Part (i) represents the observations with error, whereas

(ii) is absent of observational error. Part a) gives the error plot for γ = 100, b)

γ = 10, c) γ = 1 and d) γ = 0.1.

as when no noise is present, for instance in the table 6.1 looking at the comparison

between the final value of the cost function with and without noise with the size of

the perturbation γ = 0.1 there is a clear margin, the cost function is a lot smaller

when there is no noise on the observations. This only works before the value of
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the cost function reaches saturation point. Generally this result agrees with our

expectations from the previous section, that the minimization of the cost function

has to be solved more accurately the higher nonlinear the problem is. Even the

aspect that the saturation point of the final value of the cost function is not the

global minimum. Like the results from the tests using perfect observations, when

γ = 0.1 the cost function is equal to 3.0043 when the tolerance is 0.05, at the

saturation point with tolerance 0.01 the cost function has increased to 3.0062. We

can apply the same reasoning as the previous chapter to explain this phenomenom.

The number of outer loops performed is noted in 6.1. In some cases inspite of more

outer loops being carried out for imperfect observations used, the cost function

remains higher than for perfect observations as we expected from section 6.1.
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Perturbation with γ = 10

Tolerance J with No. outer loops J without No. of outer loops

noise with noise noise without noise

0.5 206.2796 10 210.2294 10

0.1 197.5135 10 203.9113 10

0.05 178.9106 10 177.1834 10

0.01 183.9588 10 188.9216 10

0.001 183.9588 10 188.9216 10

Perturbation with γ = 1

0.5 1.9396 10 4.9379 10

0.1 1.8283 10 4.7844 10

0.05 1.7668 10 4.7284 10

0.01 1.744 10 4.7476 10

0.001 1.744 10 4.7476 10

Perturbation with γ = 0.1

0.5 0.0221 10 3.0072 8

0.1 0.0197 6 3.0043 6

0.05 0.0104 6 3.0062 7

0.01 0.0192 6 3.0062 7

0.001 0.0192 6 3.0062 7

Perturbation with γ = 0.01

0.5 0.00027 6 2.0854 6

0.1 0.0002308 5 2.9853 5

0.05 0.0004477 5 2.9857 4

0.01 0.0002217 5 2.9853 5

0.001 0.0002217 5 2.9853 5

Table 6.1: Comparing the level of accuracy of the inner minimization solved by varying

the tolerance when error on the observations are present and absent. The cost function, J ,

at the final time is evaluated for different sizes of perturbation, γ, to the nonlinear model.

The number of outer loops is also considered here for perfect and imperfect observations.

This is explained further in the text.
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Chapter 7

Discussion

7.1 Summary and Conclusion

This dissertation has been examining the behaviour of incremental 4D-Var method

for a nonlinear model. Increasing the strength of the nonlinearities of the model,

the level of accuracy at which the problem must be solved was investigated.

The incremental approach was introduced by Courtier et al. (1994) [2] to reduce

computational costs, making it possible to envision its operational implementation.

The method replaces a direct minimization of the full 4D-Var cost function with

a series of minimizations of quadratic cost functions which have been linearized

using the tangent linear model (TLM). Each quadratic approximation to the full

cost function is minimized using an inner iteration, then the trajectory is updated

through an outer loop.
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Firstly in this dissertation a measure of accuracy was introduced for the non-

linearity of the model. This was done using the tangent linear test which gave the

comparison between the evolved perturbations of the nonlinear and linear models.

The output was called the relative error. When evaluating the relative error the size

of the perturbation to the nonlinear model was varied. It was found the larger the

perturbation the larger the relative error. This results allowed us to use the size of

perturbation as a measure of the nonlinearity of the model. This information was

then implemented in the assimilation experiements using the Lorenz model. Ini-

tially the assimilations tests were carried out for perfect observations. A stopping

criterion was set for the number of inner and outer loops performed. When running

the assimilation tests we observed that the trajectories for the truth and the analysis

agreed for small perturbations to the nonlinear model. However, as the size of the

perturbation increased the error between the two trajectories also increased. This

led us to consider increasing the level of accuracy that the inner minimization was

solved for the incremental approach to see whether the analysis trajectory would be-

come closer to the truth for a high nonlinear system. To a certain degree increasing

accuracy did improve the analysis trajectory. However, the potential to exploit this

was limited. When the level of accuracy of the inner loop minimization increased

to a certain value the impact of this property became redundant.

The influence of introducing error to the observations was examined. Generally

the incremental method using imperfect observations had the same qualitive be-
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haviour to the method using perfect observations. Again the increase in accuracy of

the inner loop minimization for the incremental method improved the approximation

of the solution to the nonlinear problem to a certain degree. There was evidence

to conclude that when noise was added to the observations greater accuracy was

needed.

7.2 Limitations and future Work

It would be a good idea to investigate this study using imperfect observations in

further detail, as this is a more realistic representation of real life. With data

assimilation, error on the observations occur. This may be introduced using mea-

surements from the limitation of the instrument’s precision. In this dissertation the

level of variance of error was kept constant. However, allowing this to vary could

be examined. As a results the accuracy of the instrument’s configuration would be

considered. Logically thinking, if the variance of the observational error is larger

then we would expect the observations to deviate further from the true solution to

the nonlinear problem. The 4D-Var method produces a best fit trajectory of the

model and the observations therefore a larger variance would entail that the solution

to the problem would be worse. It may be worth considering whether increasing the

accuracy of the 4D-Var incremental method for this case as the nonlinearity of the

model increases holds the same conclusions.
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The observations that were used for the assimilation experiments were functions

of all three spectral components of the Lorenz model measured at every time step.

In reality this may not be so common. Often it is the case that the observations

measured will only include one or two of the components of the model and will not

be uniformly distributed in time as frequently. To allow our conclusions to be viewed

in a more operational context further tests should be done with fewer observations

which do not depend on terms of the three components.

For the assimilation increasing the accuracy of the incremental method was only

considered for the inner loop minimization. This was prioritzed due to the vital

importantance when concerned with the convergence of the cost function to try to

optimize the solution to the problem.

A noticeable limitation of this study was the of the minimization algorithm used

for the inner loop. Here the method of steepest descent was implemented. It was

used for its simplicity. However, a major drawback is that it is extremely inefficient

[1]. Continuing this study in future, it would be beneficial to use a more accurate

minimization algorithm such as the conjugate gradient which works along the same

lines as the steepest descent but is more efficient.

Another interesting prospect for research would be to look at the time evolution

of the incremental method as the linear approximation breaks down. This was briefly

disussed in section 4.2 where the behaviour of the relative error was studied over

time. The realization was that the relative error generally grew as time went on.
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This implies that the nonlinearities of the model started to play an ever increasing

role meaning the approximation of the TLM to the nonlinear model got worse.

From our findings that the larger the nonlinearity of the Lorenz model the worse

the solution to the problem was. We would expect that it may not be possible to

provide a valid solution for a long time window. Indeed a more in depth look was

considered by Trémolet [18] studied the aspect of extending the time window of the

assimilation. The incremental approximation exhibited a potential limitation after

12 hour as the relative error came close to 100 %. The stronger the nonlinearity of

the model the larger the relative error was. There have been several studies which

consider the linear assumption for small perturbations such as Gilmour et al. (2001)

[5]. The general conclusion seems to be that the linear approximation is valid for

two to three days [16]. Highlighting the fact that the Lorenz system can produce

a decent forecast for a limited time only before diverging [4], one property of the

Lorenz model in particular is its sensitivity dependence on the initial conditions.

This may indicate that if the time window was extended, the forecast produced

from the assimilation would be inaccurate. Considering larger perturbations, from

our studies we have concluded the relative error is larger. Therefore with a large

perturbation to the nonlinear model we would expect by taking into account the

findings from Pires at al.(1996), the effect of extending the time window would

exaggerate the inaccuracy of the analysis compared to the true forecast. It may be

interesting to see whether the effect of increasing the level of accuracy of the inner
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minimization for the incremental method only has effect for a short time, after which

there is no impact, or would benefit the whole assimilation.

The linear approximation used in this study was the tangent linear model (TLM).

However, the Met Office has designed the perturbation forecast model (PFM). The

TLM works by linearzing the discrete form of the nonlinear model. Alternatively

the PFM linearizes the continuous equations of the nonlinear model first, then dis-

cretizes these equations. This approach as referred to as semi-continous which avoids

problems that occur when linearizing complex schemes. The validity of the TLM is

restricted to inifintesimal sized perturabtions to the nonlinear model. An additional

advantage of the PFM is its ability to model finite perturbations of the size of un-

certanties in the initial conditions accurately. It was found that the PFM can be as

accurate as the TLM for finite perturbations [11]. It would be interesting to look

further into how well the incremental method using the PFM approximates the solu-

tion of the nonlinear system for the size of γ at which the tangent linear hypothesis

breaks down, as the accuracy of the inner loop minimization was increased.
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