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Abstract

We discuss the pricing of American spread options on correlated assets when
the marginal distribution of each asset return is a mixture of normal dis-
tributions. Leaning upon the existing pricing models a substantial time is
devoted in extending the Bivariate normal mixture(BNM) model to price
American spread options calibrated to both volatility smiles and the cor-
relation frown. Firstly we calibrate the Univariate normal mixture(UNM)
model and then the Bivariate normal mixture model to the market prices of
European options. Since the Black-Scholes(BS) model over different volatil-
ities is equivalent to the market model we use the BS model instead. These
calibrated models will be used to find the American option price using a 3-D

binomial tree approach.
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Notations

Throughout this report we follow the usual notations given below:

K - strike price
T - time to expiry / residual maturity
S; - price of the stock i
o; - volatility of the stock 7
p - correlation between two stocks
r - risk-free interest rate
q - dividend of the stock
p - option price

f - option price function
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Chapter 1

Introduction

Spread options are very simple in nature, but the difficulty in obtaining a
closed form solution for pricing them forces one to adopt numerical tech-
niques. In simple words, they can defined as a derivative product on several
underlying assets. An exposition of spreads in different markets is presented
in Carmona and Durrleman (2003), along with specific examples from energy
markets and spread option pricing techniques.

Many models that price ordinary single asset options ! assume that the
asset price is log-normally distributed and follows a Geometric Brownian
motion (GBM). This assumption is what leads to an analytic solution (for
the price) although we start with a stochastic process.

In the case of spread options, the assumption no longer helps as a linear
combination of log-normal processes is not log-normal. Moreover, assuming
the spread itself to have dynamics governed by univariate diffusion process
would not take into account the correlation between the underlying assets.

The difficulty in obtaining their price is quite contrary to their simpler nature.

Lalso called vanilla options
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In addition to this, the early-exercise feature of American options makes it
even worse. Although there has been extensive research in this field, no
efficient and accurate pricing model has yet been developed.

Some of the work done so far for pricing American spread options can be
found in Broadie and Detemple (1997), Broadie and Glasserman(1997,2004),
Longstaff and Schwartz(2001) and others. Broadie and Detemple character-
ize the optimal exercise regions and provide valuation formulas for a number
of American option contracts on multiple underlying assets with convex/non-
convex payoff functions. Broadie and Glasserman(1997), and Longstaff and
Schwartz(2001) use simulation methods while Broadie and Glasserman(2004)
discuss a stochastic mesh method for pricing high-dimensional (multiple un-
derlying assets) American options.

In this project, we explore the possibility of extending few of the existing
(tested) vanilla and spread option pricing models to achieve the same. This
new model would be an amalgam of both analytical and numerical models
that are consistent with the market data.

The following chapter introduces the basics of vanilla and spread options
and familiarizes the jargon used in this report. It also discusses two of the
most important parameters, implied volatility and implied correlation, in
pricing spread options.

In chapter 3, we discuss in brief the various types of pricing models avail-
able for pricing vanilla and spread options and detail those used in this
project. The models that we shall see later are Black-Scholes model, Uni-
variate normal mixture model, and Binomial tree model that are used to

price vanilla options and Kirk’s model, Bivariate normal mixture model for
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spread options.

We then move on to price American spread options in chapter 4, by
introducing the 3-D binomial tree model. How these models mentioned so
far are extended to price American spread options, consistent with the market
model 2 is explained in sec. 4.2.

The implementation of these approaches using C++ and the various mod-
ules in the program are explained in chapter. 5.2. The last two chapters deal
with the output and analysis of the program results where we do a compar-

ative study of the performance of the code and the market models.

2A model that is consistent with the market data and behaviour



Chapter 2

Spread Options

2.1 Option basics

An option is a contract that provides the holder the right to buy or sell a
particular stock on or before a specified date. A call/put is an option to
buy /sell an underlying security for a fixed price on or before a certain date.
The fixed price upon the contract is the exercise price/strike price (K) and
enforcing the contract is to exercise the option. The expiration date is the
last date on which the option is still valid.

Options can be broadly classified into Vanilla and Exotic options. Vanilla
options are plain ordinary options with no special features - calls and puts,
whereas exotic options are not ordinary options. They are also classified
based on when they can be exercised. American options are those that can
be exercised on any date up to the expiry date while European options can be
exercised only on the expiry date. This option of American options is what
makes them more expensive than their European counterparts. A payoff is

the value of option at exercise given by maz|0, (St — K)] or max[0, (K — S7)]

4
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for a call or put respectively. Since the payoff depends only on the stock price
for a particular strike, tracking the stock price movement would be a useful
tool in option pricing. Hence we have volatility as a measure of dispersion
in a stochastic process like stock price. The moneyness of an option is the
potential yield (profit or loss) of an option if exercised immediately. An
option may be an in-the-money, at-the-money or out-of-the-money options.
In-the-money options are profitable when exercised, while out-of-the-money
are not. At-the-money options yield neither profit nor loss when exercised.
Calibration is the means of fixing the model parameters like volatility and
correlation to the market prices. Once calibrated the model can be expected

to produce results close to markets expectations.

2.2 Implied Volatility

Implied volatility is the forecast of the average volatility in the underlying
price dynamics over the residual maturity 7" of the option that is implicit in a
market price of an option. estimated volatility of the price of the underlying
asset.

It is specific to an option pricing model because we obtain implied volatil-
ity by equating a model price to an observed market price. It is computed by

solving an inverse linear problem(LP) for a given stock price and parameters.
p:LP(o’) — LP_I(p> =0

When we speak of implied volatility, by default we mean the Black-Scholes
implied volatility. In the Black-Scholes world the option prices are calcu-

lated by assuming that the volatility is constant for different strikes and
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vmatll[ increases as the option becomes
mcre&s giy in-the-money or out-of-the-money.
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Copyright 2003 - investopedia.com

Figure 2.1: Volatility smile (source: www.investopedia.com)

maturity. Although the Black-Scholes(BS) model performs well the assump-
tion is proved to be flawed. When the volatility is computed (implied) by
a model for a set of market prices for different strikes, the volatility is not
observed to be a constant rather it is skewed. In the case of currency option
markets the implied volatility of in-the-money and out-of-the-money options
is greater than the at-the-money options as shown in the figure. Hence the
volatility smiles in this case! This is explained by the fact that traders spec-
ulate a larger price movement than is assumed in the BS model. Since every
other parameter is a constant in the BS model the disparity in the computed

and market prices can be explained only by increasing the volatility.
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2.3 Spread options

Spread options are derivative products on two or more assets. Most often
they are referred to those written on the difference between the values of two
indexes. For example, a European call spread on two underlying assets with
prices S; and Sy will have a pay off function [S;—S;—K|*. The + superscript
denotes that payoff can only be positive, for any negative value it equals zero.
On a broader perspective it includes all forms of options written as a linear
combination of a finite set of indexes. Spread options occur in different
markets, to name a few - currency and fixed income markets, agricultural
futures markets, equity markets and energy markets. They are also classified
on what parameters the price difference of the underlying asset is based
upon. For example, in the commodity markets, spread options are based
on the difference between the prices of the same commodity at two different
location (location spread) or at two different points of time (calendar spread).

Spread options also come as an American, European or Bermudan option.

2.4 Implied Correlation

The most important characteristic of a spread option is the correlation be-
tween the underlying assets. Correlation can be defined as a parameter that
gauges the extent to which a price movement in one asset influences the
other. It serves as a major instrument for trading correlation opening up a
new dimension of trading.

Just like implied volatility, when the correlation is backed out of an spread

option pricing model for a given pair of stock prices and volatility, we obtain
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implied correlation. It is similar to the former in all respects except that it
frowns and does not smile! That is, the implied correlation is lesser for in-
the-money and out-of-the-money options when compared with at-the-money
options. Lower (or more negative) the correlation higher the moneyness of
the spread option.

In general the sum of two normally distributed variates is itself a normal
variate. Since we consider the difference between two stock prices S and S
which are both log-normal stochastic processes, we have log(S1) —log(Ss) =
log(S1/52) a normal variate.

Hence we have, the volatility of the ratio of S; and S,
7y = varlin(S}/SD] = 0%+ a3 — 2puaoia}

The negative sign in front of the correlation component in the above equa-
tion implies that if the volatility of In(S}/S?) were to increase (a smile) the
correlation has to decrease (a frown).

Smile and frown consistency implies that the model captures the market
behaviour and hence the prices computed by the model would be consistent

with the market model.



Chapter 3

Option Pricing

3.1 A brief overview

The three most commonly found techniques to price spread options are Par-
tial differential equation (PDE) solvers, tree methods and Monte Carlo meth-
ods. While the PDE solvers, as their name suggests, are solutions to the PDE;,
the tree and Monte Carlo are Numerical (and probabilistic) approximations
to the price of spread options. In general, no analytic formulae exist for
pricing spread options, with non-zero strikes in particular, until now. This
is mainly due to the fact that a linear combination of correlated log-normals
is not log-normal. The reader is referred to Carmona & Durrleman for a
detailed and informed survey of most of the known methods available for
pricing spread options.

As already mentioned, we will be extending the BNM model using 3-D
tree approach in order to price American spread options. Before we see how
this works it is essential to understand the models that form a part of it.

The next few sections provide a brief overview of these methods. For a more



CHAPTER 3. OPTION PRICING 10

detailed illustration the reader is advised to refer to the works suggested

therein.

3.2 Vanilla Option pricing

3.2.1 Black-Scholes(BS) model

The most earliest and powerful tool to compute the price of European options
was discovered by Black and Scholes(1973). Even thirty years later it remains
to be one of the most preferred model and serves as the basis for many others
in the world of options theory. It states that the price of a call option at a
time t is given by the solution of the backward parabolic partial differential
equation

9po 5°po

e 9P 1 5007p0
= (r q>SO6SO + 20 So 552 Do (3.1)

5po
oT

with terminal conditions

p(T.z) = (z—K)7

lims,—op(So, T) — 0
lims,—oop(So, T) — Spe 9T — Ke T

The stock price is assumed to follow the stochastic process

dsi(t)
0

= widt + o, dWdt, i = 1,2 (3.2)

where dZ is a normally distributed random variable, u and ¢ are functions
of S and t. The Black Scholes formula gives a value for p when S(7') has a

log-normal distribution under no-arbitrage condition. In general,

p= E{(S(T) — K)"}
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where 7 is the short rate of interest. We then have,
p= S(0)®(d)) — Ke " ®(dy) (3.3)

where

1n( O)erT)
d dy=dy —oVT 3.4
Il +2 oV'T an 2 1 — oV (3.4)

Here ®(x) represents the cumulative distribution function of the standard

dy = ——

normal N (0, 1) distribution, i.e.,

O (x) e du (3.5)

- =1

In the case of spread option pricing, according to the Black-Scholes model,

the price of the spread option is given by the risk-neutral expectation?

p= ¢ "E{(S:(T) — Su(T)— K)*} (3.6)

3.2.2 Univariate normal mixture model

The Univariate normal mixture model was introduced by Brigo and Mercu-
rio (2001). It is a no-arbitrage single asset option valuation, consistent with
log-normal mixture asset price dynamics. In this approach the marginal dis-
tributions of each asset return is assumed to be a mixture of normal distri-
butions. The volatility o can be expressed as a weighted sum of two different
volatilities o¢ and or, each representing the core and tail volatilities of the
log-normal distribution of the stock prices. We have, due to the linearity of

the density function,

fie(s1) = MNP(stspa1,01(7))  + (1= A)P(s15 a2, v12(7))

IExpectation when the probability measure @ does not allow for any arbitrage
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The UNM price expressed as a weighted sum of two prices corresponding to

each of the volatilities is given by,

funu(o) = Afps(oc) + (1—=A)fps(or) (3.7)

and

o = Joc + (1=XNor (3.8)

The Bivariate normal mixture model which is a two-dimensional extension of
this approach will be discussed in section 3.3.2 along with the advantages of
adopting this approach. The reader is referred to Brigo and Mercurio(2001)

for a detailed research on this model.

3.2.3 Binomial tree approach

The binomial tree approach works by capturing the randomness of the price
movement of a stock. This model is based on the random walk which is
discussed in detail by James(2002) in his book option theory. The model
converges to the log-normal distribution for stock price movements, when the
number of steps is large, i.e., the computed price converges to the analytic
formulas based on a log-normal assumption for the stock price movements.
The reader is referred to Hull(2000) for further reading.

Consider a random walk with forward and backward step lengths U and
D and respective probabilities p and 1 — p. If x, is the distance travelled

after n steps of the random walk, then
e Elzy] = N{pU - (1-p)D}

e var(zy] = Np(l —pU + D)?
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e The distribution of zy is a binomial distribution which approaches the

normal distribution as N — oo

James(2002) starts by describing a single step binomial process and then
the binomial network. We shall now see how this approach can be used to
price European (vanilla) calls. For the sake of simplicity we assume that
the interest and the dividend terms are in continuous form. Let u and d be
constant multiplicative factors, for an upward or downward movement with
probability p and (1 — p) respectively. Then the price of the stock at the n'
time step is given by

Sy = e pS, + (1 —p)Sa)

and the option price

fo= e pfu+ 1 —p)fa)

It is important to note that the p is the risk-neutral probability measure
satisfying the no-arbitrage principle, given by

Soe_(r_q)& — Sd
= 3.9
p S s, (3.9)

We now construct the binomial tree as described in the following few steps:

e Choose suitable values of u, d, and p.

e (Calculate the value of the stock at every node in the tree until the last
column (N) of nodes corresponding to final time T. We have,
S,gi)l’iﬂ =uSkg; and S,if?ﬂ = dSk,;, wherei € [1,N]and k € [1,1]
Since we are pricing only European options, it would suffice if we com-

pute the stock values at final time T

e At every node corresponding to the final time T we must now have a

stock price S; n.



CHAPTER 3. OPTION PRICING 14

e Assuming that the derivative depends only on the final stock price we

can calculate the derivative payoff f; v = [S;n — K], where j € [1, N]

e We can then calculate the price of the derivative at every node using

fri= e pfiiii+ (1 —p) frivr)

e The price thus obtained at the initial node corresponding to time ¢t = 0,

is our required European option price.

Binomial trees really come into application when pricing American Options,
as there does not exist any accurate closed form analytic solution for pricing
them. The procedure to price American options remains the same excepting
for the early exercise condition that has to be taken into account. This can
be achieved by a small addition in the procedure. Our new procedure looks

like as follows:

e (Calculate the value of the stock at every node in the tree until the last

column (N) of nodes corresponding to final time 7. We have,

S,gi)uﬂ =uSg; and S,gf?ﬂ = dSk,;, wherei € [1,N] and k € [1,1]

e At every node corresponding to the final time T we must have a stock

price S n.

e Assuming that the derivative depends only on the final stock price we

can calculate the derivative payoft f; y = [S; vy — K|*, where j € [1, N]

e We can then calculate the price of the derivative at every node using

fri= e pfiiri+ (1 —p)frivr)

e If the calculated option price is lesser then the value of the pay off

function f;;, = [S;; — K|*, ¢ € [1, N], then we replace the former by
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Figure 3.1: 2-D Binomial tree
the latter and continue calculating the option price in the preceding
level.

e The price thus obtained at the initial node corresponding to time ¢t = 0,

is the required American option price.

Figure 3.1 shows how the American option price is calculated.

3.3 Spread option pricing

3.3.1 Kirk’s formula

The need for a closed form analytic solution for pricing spread options with
non-zero strike was partially fulfilled by Kirk(1995) who recently proposed

a closed form approximation for the same. The derivation of the formula
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was based on the Black-Scholes price for spread options expressed as an

expectation of the payoff function, as in 3.6. The formula is as follows:

2

p o= x2¢<ln<”;f’iﬁ) +”§> — (@ + KerT><I><m<”1*f?’“T) - f)

o

where

2
O'K:\/ % —200102W + U%(W) (310)
Carmona and Durrleman performs a comparative study of how this model

performs against other models. A more refined approach can be found in

Eydeland and Wolyniec(2003).

3.3.2 Bivariate normal mixture model

As mentioned earlier the Bivariate normal mixture model is a generalisation
of the UNM model to two dimensions. A striking feature of this model
is it’s simplicity although analytic. Alexander and Scourse (2004) start by
assuming that each marginal log price density at time 7" is given by a mixture
of two normal components. They start with the Brigo and Mercurio(2001)
closed-form solution for each of the two vanilla option prices, and then extend
this to a smile and frown consistent model for European spread option that
has an analytic approximation that extends that of Kirk(1995). This leads

to,
fis1) = MNP(si;pr,via(1))  + (1= X)P(s1; paz, v12(7))
far(s1) = M®(sypor,va1(7))  + (1= A2)®(s2; praz, vaa(7)) (3.11)

where @ is the bivariate normal density function, yj;s are the mean vectors

and v;; is the 7-period variance of the j; normal component for asset i.
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Hence one can express the bivariate normal mixture joint density at 1" as

fe(s1,82) = MAa®(s1, 825 11 (7), Vi(7T)) + (1 — A1) Aa®(s1, 525 pa(7), Va(T))
FAL(L = A2)D(s51, 525 p3(7), V3(7)) 4+ (L = A)(1 = A2) (1, 825 p1a(7), V(7))
(3.12)

where s1(t) and s3(t) denote the log prices of the two assets at time t and
Vs are the covariance matrices.
The covariance matrices V;'s are defined as follows:

2 2

o%n  cov o%n cov
1C 1 1T 2
Vl = ) V2 =
cov; 03 covy 03
oo covs o%r  covy
i iT
V, = L V.= (3.13)
covs Oip covy O3p

From this relation one can directly express the price of the option as a com-
bination of prices with different correlations and volatilities. Below we shall
see how normal mixture prices of European options are a weighted sum of
BS prices based on different volatilities. Note that the ’overall’ correlation

p between the two price processes is given by the weighted average of four
correlations.

E(p) = )\1)\2PCC+(]—_/\1)>\2pT0+/\1(1_)\2>pCT+(1_/\1)(1_/\2)pTT (314)

The four correlations correspond to the four components of the bivariate
normal mixture that are core, core-tail, tail-core, and tail-tail. Finally, the
bivariate normal mixture (BNM) spread option price is expressed as a linear

combination of these prices:

Po1,00,p) = MAPasm(oic, 020, pec) + (1 — M)A Pogprm(01r, 020, pre)

+M1(1 = X)) Pogpr (010, 0ar, por) + (1 — M) (1 — Xo) Pagare (017, 021, prT)
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o,c, 07 are the volatilities of core and tail normal densities. Pogps is the
price of 2-Geometric Brownian motion model(2GBM). The 2GBM models as-
sume two correlated log-normal diffusions to model European spread options
(Ravindran 1993, Shimko 1994, Kirk 1995, James 2002 and others).

The difference here is that the terminal risk neutral density will be a bi-
variate normal mixture instead of bivariate normal, but the transition prob-
abilities still remains normal. An interesting fact is that although the option
price is a linear combination at time t = 0 and T (bivariate normal mixture),
at time t = v one can uniquely identify the price (Pyp,, — as in A), cor-
responding to a particular probability density that would yield the optimal

price.



Chapter 4

Pricing American Spread

Options

4.1 3-D tree model

The three dimensional binomial tree model for two asset options is shown
in figure 4.1. The space variables used are xy = In St(l) / Sél) and y; =
In St(Q) / 582) instead of the stock prices themselves. This means that the step
sizes are of constant sizes, rather than proportional to the stock prices, hence

making it simpler. The first node in the tree has value zero. If the risk-neutral

drift of Sfl) is 7 — g1, then the drift of , is r — ¢y — 301 = m,, and y; is

r—qs— %0% = m,. The correlation between the two assets makes it difficult

to find the nodal values since the value of ys; will depend on the value of

xs¢. Without loss of generality, we choose the transition probabilities to each

node in the successive level to be i, and allow x5t to have only two values:

x, and x4. Here ys takes different values relative to x4 in different nodes.

19
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Figure 4.1: 3-D tree structure

The Wiener processes for the two space variables can be written as
0y = myot + Jx\/gzl

0yy = mydt + o,5qrtdtzy = myot + Umm{pzl + /1 —p?z3}

where z; and z3 are uncorrelated standard normal variates.

Hence the following equations:

0o = mydt + o, Vot{p + 1 —p?}
dys = myot — o Vot{p — \J1—p*}

oy, = mydt — o Vot{p + /1 — p?}
dys = mydt + o Vot{p — \/1—p?} (4.1)
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For a detailed discussion on 3D tree models see James(2002). A more ad-

vanced 3-D tree approach can be found in Boyle(1988).

4.2 Extension of BNM model

We aim to extend the frown consistent! bivariate normal mixture model
introduced by Alexander and Scourse (2004) for pricing European spread
options to American Spread Options. The need for American option prices
that are consistent with the market prices of European options requires us
to use prices obtained from a smile consistent model?>. We assume that the
marginal distribution of each correlated asset return is a mixture of normal
distributions.

Leaning upon the existing volatility models a substantial time would be
dedicated in extending the Bivariate normal mixture(BNM) model (Alexan-
der and Scourse, 2004) for pricing American spread options calibrated to
both volatility smiles and the correlation frown. Alexander and Scourse as-
sume that each asset return density is a mixture of two normal densities and
that their joint density is a bivariate normal mixture.

Firstly we calibrate the univariate normal mixture(UNM) model and then
the Bivariate normal mixture model to the market prices of European op-
tions. These calibrated models will be used to find the American option
price using a 3-D binomial tree approach as described in James(2002). Since
the BNM model is smile and frown consistent and also the univariate normal

mixture model is smile consistent, the American spread option price obtained

LComputed prices are consistent with the correlation frown
2 A option pricing model that is consistent with the volatility smile
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using these models can be expected to exhibit the same.

Firstly, the univariate normal mixture model will be calibrated to a
volatility smile by equating the model prices to Black Scholes prices. This
is equivalent to calibrating it to the market prices as the Black-Scholes(BS)
model prices are equal to the market prices when the latter is based on dif-
ferent implied volatilities for each option as in 4.2. Calibration was achieved
by minimizing the square of the error between the model and BS prices, by
using an iterative converging algorithm. In this project, the iterative New-
tons method was used, the implementation of which will be discussed in the
following section. We try to minimize the square of the error as its curve is

smoother and the differential exists at the minima.

Jos(0l) = Aifes(on) + (1= A)fes(012)

fos(02) = Aafis(021) + (1= A2) fos(022) (4.2)

The implied volatilities to which ¢;; and ;5 are calibrated should be of the
same maturity as the spread option.

Since BS prices are analytic, so are NM prices of European options. Hence
the calibration of the univariate models can be done analytically. Similarly,
in the bivariate normal mixture model for spread options, the model prices
are a weighted sum of European spread option prices based on two correlated
Brownian motions (2GBM prices). There is an analytic approximation for
these 2GBM prices (Kirk, 1995) and hence also in the bivariate case, the
model prices of European options are analytic (approximately).

A European option price surface for each asset (against strike price and
maturity) could be interpolated and extrapolated using Finite element meth-

ods, from the finite set of values quoted in the market. However, since the
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normal mixture model prices are analytic, we do not actually need to do
this, as we would if prices were computed using numerical methods. Instead
we can calibrate the model parameters based on just the quoted prices of
European options in the market.

Once calibrated the model parameters (volatilities and correlations) are
used to obtain the prices for European options with any combination of
maturity and strike price and - more importantly - the price of American
options.

First the 2GBM American option prices will be obtained using the three
dimensional tree model as in James(2002) where each node is linked to four
other nodes of the successive time step. Each link/branch carries a weight
dictated by the correlation of the two assets and the volatility of each asset
(or equivalently the transition probabilities). That is, given a covariance
matrices V as defined in (3.13), an American spread option price is obtained
using 3-D binomial tree model.

In order to calibrate the correlation (we already know the volatilities
from calibration to univariate options) we follow the same procedure that we
adopted in the univariate normal mixture case. Minimizing the square of the
error between the 2GBM model price and the BNM model price as done while
calibrating volatility would give us the required (calibrated) correlations.

Unlike the volatility the uncertainty in the calibrated values of the correla-
tion to be frown consistent arises due to the fact that the implied correlation
(to which the model parameters are calibrated) is by itself ill-defined. For,
the strikes of the two implied volatilities o1 and o, have a complex rela-

tion with the strike of the spread option. There are finitely many number
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of pairs (S1,S2) for which S; — Sy = K. In order to overcome this it was
assumed that the strike convention used to calculate the implied volatility
was K1 = S; — (K — 51+ 52)/2 and Ky = Sy — (K — 51 + 53)/2. When
the strike is zero they give rise to exchange options, which are more easier to
handle. An analytic pricing formula for exchange options was first derived
by Margrabe(1978).

For the sake of simplicity, we assume that o;; > o; and o, < 0;. One
would expect 0,5 &~ o; as that addresses the core volatility of the normal
mixture. Without loss of generality we assume that 0 < A < 0.5. This
implies that the higher volatility makes lower contribution and the lower
volatility makes higher contribution to the overall volatility.

A similar argument applies for the correlation as well, where poc <
p and p < ppr. We assume that pcr = pre and that ppr takes values
close to twice as that of p.

Then, three dimensional binomial trees are constructed using each of the
above correlations pcc, por, pro, and prr and the corresponding volatilities.
That is, each of the four covariance matrices, V1, Vg, V3, and V, are taken
in turn.

The linear combination of these prices given by 3.15 would give the re-
quired price of an American spread option. As always one would expect this
price to be higher than the European spread option prices.

C++ and MATLAB is used to implement the above.



Chapter 5

Description of Code

The program calculates the value of an American spread option given the
required set of data using Bivariate normal mixture model (sec. 3.3.2) and
the 3-D binomial tree model (sec. 4.1). Calibration forms the heart of the
code which involves finding of optimum values of volatilities and correlation

and takes substantial amount of the entire computational time.

5.1 Modules

The whole program is divided into 4 modules. Each module is independent
to the other with respect to their functionalities but not with data. The list

of functions defined is given in 5.3The different modules are:

5.1.1 Univariate normal mixture module

This module uses the functions blackscholes(), g(), dg() and phi(). The
output is the square of the difference between the Univariate normal mixture

model price and blackscholes price with a specified tolerance for a European

25
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option on a single underlying asset. The tolerance value was assumed to be
0.05% of the Black-Scholes price for a call option.

The module involves a straight-forward implementation of equation (3.7).
The BS function calculates the price as in equation (3.3) by calling the func-
tion phi to calculate the cumulative density. Phi in turn uses Simpson’s rule
to evaluate the line integral. The lower limit of integration is restricted to

-25 instead of —oo without any significant contribution to the error.

5.1.2 Bivariate normal mixture module

This implements the model described by Alexander and Scourse (2004) to
price European spread options. It uses the functions ¢(), dg(), kirk() and
phi(). The calibrated values of the volatilities and lambdas from the UNM
module serve as the input for this module. This module is executed third
chronologically after UNM and calibration module.

This module too involves a straight-forward implementation of equations
3.6 and 3.10. The kirk() function calculates the price using (3.10) by calling
the function phi() given prices of two stocks.

The output of this module is the square of the difference between the

bivariate normal mixture model price and the Kirk’s price.

5.1.3 Calibration module

This is the most important of all the modules. It finds the optimum values
for volatility and correlation for a set of inputs. Moreover, its output can
significantly alter the final output of the program due to the cascading effect

of errors. This module is run twice separately to optimise the volatilities of
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two options and then to optimise the correlation of the spread option. A
snapshot of the flow diagram is shown below:

Let us recall the assumptions that were made in 4.2:
e 0;; > o0; and value of o;; is close to o;

® 0,0 < O0;

A € (0,0.5)

e pcc < p and value of poc is close to p

prT > P
® pcT = PrC

For computational reasons, we further restrict the values of A; to (0,0.1). The
starting value of poc in Newtons method was chosen to be 1.3 times p.
This module is strongly threaded to both the UNM and BNM modules
which are called for every iteration. The process of calibration involves the
minimisation of the UNM/BNM price (output of UNM/BNM module) us-
ing the iterative Newton-Raphson method. The Newton-Raphson method
was applied to a function of one variable by reducing f (that depends on
01,02, and A) to a univariate function. Firstly, we eliminate o9 by expressing
it in terms of o; and A. Since the function f still depends on two variables,
an easy way out would be to fix the value of A to a constant value. We then

have,

g1 = [fos(o1) — Mfos(on) + (L= Xp) fos(er)]?

92 = [fos(02) — Xafos(021) + (1= N2) fos(c2)]?
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h o; — Nioi1
where ¢; = ————
(1=XN)
and \,s are constants. (5.1)

Newtons method is then applied to this univariate function to obtain o;; for
which g is a minimum. In this program we choose the starting value of A
as 0.01 and the above procedure is repeated for successive values with step
size +0.01. The corresponding value pair (o;1, A;) for which g was a global
minimum is chosen. Since we are interested only up to first 2 decimal places
of lambda the choice of the step size for lambda is well justified. Moreover
the iterations were performed only for A\; € [0,0.1] as it is very unlikely that
A > 0.1

0,9 is found by substituting o;; and A; into

0; — )\iail

(1—=N)

02 =

We now have the calibrated values of sigmall, sigmal2, sigma21, sigma22,
lambdal and lambda?2. We are left with the calibrated correlation values be-
fore we can start pricing American spread options using the 3-D binomial
tree approach. In order to calibrate the correlation we apply the same pro-
cedure as earlier but by assuming that rhoct equals rhotc. In this case we fix
the value of rhott and try to find rhocc for which f is a minimum. This is
repeated for successive values of rhott with step size 0.05 with starting value
as + or - 1.

The calibrated volatilities, lambda and correlation values are then fed

into the binomial tree module to find the price of American spread option.
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5.1.4 Binomial tree module

This module calculates the American spread option price using the 3-D bino-
mial tree discussed in 4.1. There is no interaction between this module and
the rest. The calibrated values of correlation and volatilities, initial stock
prices, time-step size and other usual data serve as the input to this module.

This module has an array implementation of a 3-D binomial tree where
an array is logically manipulated as a tree with no physical links similar to a
tree. In a 3-D tree as described in Option theory (James, 2002) the number
of nodes in a particular level k equals k? allows for easy traversal within the
tree. Hence the total number of nodes is given by n(n + 1)(2n + 1)/6. Since
a 1-D array is implemented as a tree the index "I, of the starting node of a
particular level is given by [, = (k — 1)k(2k + 3)/6. The nodes at a higher
level are called parent nodes while their successors (in the successive level)
are called daughter nodes. The terminal nodes are called leaf nodes.

The module is divided into three parts - building the tree, calculating the
terminal option price and back-tracking the tree from leaf nodes to calculate
the required price. Every node has three elements - stock price 1, stock
price 2 and the spread option price. Every node, excepting the leaf nodes,
is linked to four other nodes in the successive level. At any node the stock
price S and Sy can be computed from one of its parent nodes. While back-
tracking the numbering pattern is altered as shown in the figure. In this case
the price at a particular node is given as a weighted sum of the prices of the
four daughter nodes. The nodes are numbered as shown in the diagram 4.1.

The value of stocks at every node is given by the set of equations 4.1.

The probability that a stock price could move up or down was chosen to
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be 0.25. The maximum profit condition for American options is taken into
consideration by including a conditional statement in the backtracking part.
This statement compares the calculated price and the payoff function at that

node and stores the greatest among them.

5.2 Working of code

Having explained the different modules we shall see how these are linked and
executed as a whole. Figure 5.1 shows the flow of control from one module
to the other. Each arrow represents a function call, with the arrow directed
to the called function. The program was written in C++ and MATLAB was
used for plotting the results. All the modules mentioned below function as
discussed in the previous section.

The various functions defined are given in 5.3 along with their input
parameters and functionalities. One would notice that there are few functions
bearing the same name but have different associated functionalities. This
is called as function overloading in C++. Function overloading allows for
defining multiple functions under the same name, but with different set of
input parameters. When a function is called, C++ automatically chooses
the appropriate function by comparing the parameters. In the program the
functions that are overloaded are g(), dg(), and newton(). g() calculates the
value of function g as in (5.1), dg() calculates the first order differential and
newton() performs the Newton’s method for both volatility and correlation.
This enhances the clarity of the code as name is associated more with the
function of the function and not with a block of code!

Going back to figure 5.1 we can see that the function main() forms the
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| blackschaoles | » kark
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main
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OUTPUT

Figure 5.1: Control flow diagram



core, calling all the other modules. Since our aim is to obtain American
spread option price it is imperative to obtain calibrated values of volatil-
ity and correlation at first. Moreover we need to calibrate volatility before
calibrating correlation.

In order to calibrate the volatility we run the newton() routine to find
optimum values of volatility. This inturn calls the UNM module to obtain
the value of function g as in (5.1) and dg. The UNM module is called for
every iteration of calibration for reasons discussed earlier.

The calibrated volatilities are then fed into the overloaded newton() rou-
tine, this time to calibrate correlation. The BNM module is called in this
case for calculating the values of ¢ and dg as in [equation].

The whole process of calibration involves running the newtons() routine
for different values of \;/prr, incremented in successive iterations, to obtain
the final values of volatility and correlation.

These values are then fed into the bintree() function that gives the re-
quired American spread option price. The binomial tree module runs the
bintree() function for different time steps 0t ranging between (0,T/2), where
T is the final time.

We shall look at the results and plots in the following chapter.
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5.3 List of functions

phi(’)

X Calculates the probability density ®. Uses
Simpson’s rule for evaluating the line integral
from 0 to x.

blackscholes( )

r, q, T, K, sigma, s

Gives the Black-Scholes price for a European

option.

kirk( )

r, q, T, K, sigma, s

Gives the Black-Scholes price for a European

option.

9()

r, q, T, K, sigma, x, s,

lambda

Gives the square of the difference between
the Univariate normal mixture price and
Black-Scholes price with a specified tolerance
value that is assumed to be 0.05 % times the

Black-Scholes price.

9()

r, ql, q2, T, K,
sigmal, sigma2,
sigmall, sigma?2l,
sl, s2, lambdal,
lambda2, rho, rhocc,

rhott

Gives the square of the difference between
the Bivariate normal mixture price and

Kirk’s price with zero tolerance value.

33
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dg()

r, q, T, K, sigma, x, s,

lambda

Finds the first order derivative of the func-

tion g with respect to sigma

dg()

r, ql, q2, T, K,
sigmal, sigma2,
sigmall, sigma2l,
sl, s2, lambdal,

lambdaZ2, rho, rhocc,

rhott

Finds the first order derivative of the func-

tion g with respect to rhocc

newton( )

r, q, T, K, sigma, x, s,

Finds the value of sigma for which g is a min-

lambda imum using Newton’s method

newton( )

r, ql, g2, T, K, Finds the value of rho for which g is a mini-
sigmal, sigma2, mum using Newton’s method

sigmall, sigma2l,

sl, s2, lambdal,

lambda2, rho, rho,

rhott

bintree( )

r, ql, g2, T, K, Calculates the value of American Spread Op-

sigmal, sigma2, s1, s2,

rho, dt

tion price using a 3D Binomial tree model for

a specified time step dt.




Chapter 6
Analysis

In this section we shall look at the results of the program discussed in 5.2 and
discuss its performance. We compare the output of the calibrated Univari-
ate normal mixture(UNM) model with Black-Scholes” and that of Bivariate
normal mixture (BNM) model with Kirk’s. The behaviour of the prices ob-
tained from each of these models are shown in the figures that follow. Unless
specified the stock prices of assets 1 and 2 are taken to be 100. The volatility
of stock 1 is 25% and stock 2 is 40%. The correlation between the stocks is
-0.5.

Fig. 6.1 shows the Black-Scholes price (pgs) as a function of strike and
maturity. The Black-Scholes price increases linearly with strike as shown and
tries to imitate the actual pay off function.

When K < S, the Black-Scholes price is comparatively low and when
K > S, the price increases linearly with strike as shown in fig. 6.1. The
change of price with respect to time to maturity (7') is lesser. Fig. 6.2 shows
how the price curve shifts away from the actual payoff as T" increases.

Fig. 6.3 shows how the UNM price function behaves with respect to strike
and maturity for the calibrated values of volatility. As discussed in sec. 4.2,

since the UNM model was calibrated to the BS model (with different volatil-

35
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Figure 6.1: BS price versus strike and maturity
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Figure 6.2: BS price versus strike - different maturities
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Behaviour of price for calibrated values of volatility

0
w0 2
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Maturit 0.5
aturity 100 80
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Figure 6.3: Calibrated UNM price variation with strike and maturity (stockl)

ities) it can be expected to behave in the same way as BS model. This can
be verified in fig. 6.3. The only difference is that the curves slope upward
for different strikes (100 in the former case and 70 in the latter) as the stock

prices were taken to be different.

The higher volatility component has a lower effect on the price while the

lower wvolatility component has a higher effect

A plot of the ‘square of the error’ (g) in the UNM price for stocks 1 and
2 is shown in figs. 6.6 and 6.7. They were plotted for 1 > o; > ¢ and
0 < A< 0.1 (sigma2 varies accordingly).

When lambda is fixed, g decreases first and then increases as sigmal
decreases.

The graph is convex and hence the Newton-Raphson method can be im-
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Figure 6.4: UNM price of stock 1 as a function of sigmal and sigma?2
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Figure 6.5: UNM price of stock 2 as a function of sigmal and sigma?2

plemented to find the minimum. For fixed lambda values the curves spread
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Figure 6.6: Plot of the square of difference between UNM and BS prices
versus sigmal and sigmal - Stock 1

out with increasing price as sigmal increases and sigmaZ2 decreases. Figs. 6.8
and 6.9 shows the contours of 6.6 and 6.7 for a particular lambda value.
The observed pattern of the difference between the calibrated UNM price
and BS price in fig. 6.11 suggests that the UNM prices are always greater
than or equal the Black-Scholes prices. When K = S the difference is a mini-
mum and as the strike moves away from the stock price it increases and then
drops. Since every parameter except for the volatility is the same in both the
models the disparity in the prices can be explained by the BS model only by
increasing the volatility. That is, the BS implied volatility smiles suggesting
that the calibrated UNM model is smile consistent!

Fig. 6.12 shows the implementation of Newtons method for two different
lambda values. The sigmal for which g is a global minimum is the required

value. Below is a plot showing the Kirks price as a function of strike and
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Figure 6.8: Square of difference between UNM and BS prices (lambda =
0.07, stock 1)
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Figure 6.11: Difference between calibrated UNM price and BS price as a
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maturity.

Since the Kirks formula was derived based on the Black-Scholes model
by expressing the option price as an expectation of the payoff function, it
is natural to expect Kirks spread option price to behave on the lines of the
BS price. As in fig. 6.13 we can see that the price increases smoothly as the

strike increases. The plot of the surface of the BNM price against sigmal

80
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15
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Figure 6.13: Kirks price versus strike and maturity

and sigma2 , although similar to its UNM counterpart exhibits a different
behaviour. In this case, the price of the option increases with increase in
sigmal and sigma2 as against the decrease of sigmal and increase of sigma2
in the UNM case.

A two dimensional plot of the square of the error versus the core correla-
tion is shown in fig.6.15. The minimum was found using the same approach

as Fig. 6.15 is similar in all respects to figs. 6.8 and 6.9. The difference
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Figure 6.16: Square of difference between BNM and Kirk’s prices versus
rhoCC - (zoomed near minimum)

between the calibrated BNM price and the Kirks price is plotted as a func-
tion of strike and maturity in 6.17. Unlike fig. 6.11 which dips when the
strike is near the stock price, we see here that the dip occurs at a different
point. This is explained by the complex relation between the stock prices
of the two assets and the strike of the spread option. One might observe a
different pattern if calibration was done using a different strike convention
as explained in Alexander and Scourse(2004).

Alexander and Scourse show that the BNM price is lesser than or equal
to 2GBM/Kirk’s price due to uncertainty over correlation and greater than
or less than 2GBM/Kirk’s price due to uncertainty over volatility. Fig. 6.17
also shows that the BNM prices can be greater than or lesser than the Kirk’s.
Since our calibrated BNM model conforms to this it is frown consistent!

The graph in fig. 6.18 shows the 3-D tree price of an American spread
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Figure 6.17: Difference between calibrated BNM model price and Kirk’s price
as a function of strike and maturity



CHAPTER 6. ANALYSIS

A7

Option price

70 - 1 1 1 1 1 L
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Step size (in years)

Figure 6.18: American Spread option price using 3-D tree
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option as a function of step size. With decreasing step size the resulting

price increases. The price obtained using the BNM approach is

found to be

greater than that of a direct implementation (by substituting o1, o2, and p)

of 3-D tree approach. One can also see that as the step size increases the

gap between the former and latter approaches widen. If the calibrated BNM

approach were to be correct then a direct 3-D tree approach can be said to

underestimate the spread option price.
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Difference in price (BNM approach and direct approach)
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Chapter 7

Summary and Conclusion

This project aims to price American spread options by extending the BNM
approach using a 3-D binomial tree approach. The BNM model is an ex-
tension of the UNM model which assumes that the marginal densities of the
asset returns are a mixture of log-normal densities. In the BNM model case
this assumption is extended to two correlated underlying assets. Calibration
was the foremost where the UNM and BNM models were calibrated to the
market model. This was done for the models to be consistent with the volatil-
ity smiles and correlation frowns. The calibrated values were later used in
the 3-D tree approach to numerically find the price of the American spread
option.

When calibrating the UNM and BNM models, their respective price func-
tions were reduced to a univariate function and the Newtons method was
applied to find the optimum volatility and correlation values for which the
square of the error was a minimum. The 3-D tree model assumes that the
stock prices of the two assets are governed by Geometric Brownian motion
and that the effect of correlation was only on one asset but relative to the
other. Each module of the code was tested for its correctness and the Amer-

ican spread option price was found.
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CHAPTER 7. SUMMARY AND CONCLUSION 50

The values of the American spread options were found to be greater than
that of Europeans’ as expected. But this is by no means an effective tool to
validate the results obtained. A better conclusion can be arrived by compar-
ing the results with the actual market data.

This project has contributed by using an amalgamation of analytic and
numerical approaches to find the American spread option prices. The main
advantage of this method, which has never been implemented so far, is its
simplicity which is mainly borrowed from the BNM and 3-D binomial tree
models. There is a greater scope for further research and one can find innu-
merable ways of pricing American spread options.

The 3-D binomial tree approach used was a basic approach and the results
can be improved if we were to use the model described by Boyle(1988). On
the numerical front, since we were interested in the lambda, sigma and rho
values only up to two decimal places, the choice of the fixing the lambda and
rho values and their step size (see sec. 5.1.3) is justified.

If one were to find more accurate results the univariate approach adopted
would not prove a good choice. In that case we can adopt higher dimen-
sional descent methods, like gradient methods, Krylow subspace method
and others, for optimisation. Proposing the problem as a linear optimisa-
tion problem with a set of constraints would be a more efficient and elegant
approach. In brief, by adopting the extended Kirk’s formula, advanced 3-D
tree approaches and efficient optimisation techniques this new approach can

be refined further; the possibilities being infinite!



Appendix A
Newton-Raphson Method

Let f(x) be a continuous smooth monotonically increasing/decreasing or a
convex function with only one zero. The Newton-Raphson method allows
one to find the zero of the function iteratively considering the function, its
derivative, and an arbitrary initial x-value. The value of the iterate depends
on the value and derivative of the function at the previous point. It is given

by:
flz+ Az) — f(z)

=z /() where f'(x) = s

Tni1 n f/(.T)

where, x,, is the current known x-value, f(z,) represents the value of the

function at x,, and f’(x,) is the derivative (slope) at z,,. x,+1 represents the
new x-value that we are trying to find. This method has a quadratic rate of
convergence.

The first order derivative in the program was calculated using a Az of
0.005 which produced a satisfactory approximation to the actual value. This
makes a good choice as the values of the Kirk’s and Black-Scholes formulas are

not much altered for small changes in correlation and volatility, respectively.
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