
Non-oscillatory interpolation for the
Semi-Lagrangian scheme

Tomos Wyn Roberts

Abstract

In this dissertation we are concerned with the study of various interpolation
methods for use with the semi-lagrangian scheme. In particular we are inter-
ested in the limited form of the divided difference interpolation method as
suggested by M.Berzins [1], because of its parallels with ENO type numerical
schemes in reducing the oscillations in a solution.

It is found that this new interpolation compares favourably with standard
polynomial interpolation when approximating Runge’s function on a stan-
dard mesh. Moving on to semi-lagrangian schemes we see how the new
divided difference interpolation method offers no improvement over existing
methods when modelling a square wave with passive advection in 1-D.

In the final chapter we examine two methods of departure point calculation
for the semi-lagrangian scheme. When modelling a non-linear equation with
a smooth initial condition we see that Berzins’ interpolation performs rather
poorly if used in conjunction with these methods and the semi-lagrangian
scheme. If we change the initial condition for a function that has disconti-
nuities we see that it performs rather better.

Finally we provide a summary and offer some suggestions for further work.

Acknowledgements

Many thanks to my supervisor Mike Baines for all his patience and help
along the way. Thanks also to Amos Lawless for sharing his knowledge on
semi-lagrangian schemes. I would also like to thank NERC for their financial
support while completing my masters.

3

4 Introduction

Declaration

I confirm that this is my own work and the use of all material from other
sources has been properly and fully acknowledged.

Signed

Contents

Abstract 3

1 Introduction 7

1.1 The Semi-Lagrangian method 7

1.1.1 1-D Advection Equation 8

2 Interpolation Methods 11

2.1 Linear Interpolation . 11

2.2 Polynomial Interpolation . 12

2.3 Piecewise Linear Interpolation 14

2.4 Cubic Hermite Interpolation 15

2.5 Shape-Preserving Piecewise Cubic (pchip) 16

2.6 Divided Difference Polynomial Interpolation 18

2.6.1 Limited Form of the Divided Difference Interpolating
Polynomial . 20

3 Results 23

3.1 Results for Runge’s function 23

3.1.1 Runge’s function with polynomial interpolation 23

3.1.2 Runge’s function with standard divided difference in-
terpolation . 24

5

6 CONTENTS

3.1.3 Runge’s function with the limited form of divided dif-
ference interpolation 26

3.2 Results for the Semi-Lagrangian scheme 27

4 A non-linear equation 33

4.1 The inviscid form of Burgers’ equation 33

4.1.1 Exact Solution . 33

4.1.2 The semi-lagrangian scheme with the inviscid form of
Burgers’ equation . 35

4.1.3 Results using the midpoint method 36

4.1.4 The Shu-Osher Runge-Kutta method 37

4.1.5 Changing the initial condition 39

Bibliography 45

Chapter 1

Introduction

In this dissertation we compare different interpolation methods for use with
the semi-lagrangian scheme, a type of numerical advection scheme used ex-
tensively in weather forecasting. In particular we look for an interpolation
method that will successfully reduce oscillations in our solution. We are
mainly concerned with a certain interpolation method put forward by Berzins
[1] and how it behaves in relation to other well-known interpolation schemes
when modelling simple advection problems.

1.1 The Semi-Lagrangian method

The semi-lagrangian scheme is a type of numerical advection scheme that
is often used in weather forecasting. Suppose we wish to model the flow of
some arbitrary fluid. We can choose to simulate the flow using a variety of
numerical methods.

Schemes that treat the flow from an Eulerian viewpoint would use a fixed
computational grid, where each gridpoint has associated values for certain
variables. We would solve the problem from a fixed frame of reference, observ-
ing the flow. These schemes are unstable and inaccurate for large timesteps.

For Lagrangian schemes on the other hand, the frame of reference moves
with the flow and maps the trajectory of each individual particle. Lagrangian

7

8 CHAPTER 1. INTRODUCTION

schemes are stable for large timesteps, but the particles may spread out over
a large area, or become ‘tangled’ in a small area, making it difficult to esti-
mate gradients etc. which results in a less accurate model.

Semi-Lagrangian schemes are a combination of the above schemes, where
we try to take the best properties from the two. We keep the fixed com-
putational grid from the Eulerian frame of reference schemes but still have
stability for large timesteps, as for Lagrangian schemes. The basic principle
involves using a different set of particles for each timestep, and using values
at the gridpoints from the previous timestep to approximate the gridpoint
values for each new timestep.

We can use the semi-lagrangian scheme to solve a variety of advection equa-
tions.

1.1.1 1-D Advection Equation

The 1-D advection equation with constant velocity a is given by

∂u

∂t
+ a

∂u

∂x
= 0 with u(0) = u0 (1.1)

where u = u(x, t).

We can solve this equation using the method of characteristics, which gives
two further equations:

dx

dt
= a ⇒ x = x0 + at (these are the characteristic curves)

du

dt
= 0 ⇒ u(x(t), t) = constant along the characteristics.

The second equation shows that u is constant along the characteristics found
by solving the first equation.

Suppose we know the solution u to equation (1.1) at time t = tn, and we
wish to find the solution at the next timestep t = tn + ∆t = tn+1 at some
x = xa (known as the arrival point.) We draw a characteristic line back to
t = tn, where x = xd (known as the departure point). We can visualise this
by looking at the diagram found in [4], see figure(1.1).

1.1. THE SEMI-LAGRANGIAN METHOD 9

Figure 1.1: Diagram showing a brief outline of the semi-lagrangian scheme.

Since u is constant along the characteristic, the solution u(xa, tn+1) will be
the same as u(xd, tn). So all we need to solve the equation (1.1) at x = xa is
the value of u at x = xd.

If u(xd, tn) happens to lie on a gridpoint, then since we know the solution
at the gridpoints at t = tn then we have our answer to u(xa, tn+1), as it is
simply equal to u(xd, tn).

If u(xd, tn) does not lie on a gridpoint (as is mostly the case) we must estimate
its value by using the values that we already know.
Thus we interpolate the value of u at x = xd at time tn by using the values
of u at neighbouring gridpoints. The better our interpolation method, the
more accurate our solution will be to the advection equation.
This then motivates us to study different types of interpolation methods to

10 CHAPTER 1. INTRODUCTION

see which one can give us the best results for this scheme.

In chapter two we look various types of well known interpolation methods and
introduce an interpolation scheme suggested by Berzins [1]. In chapter three
we compare results for the various interpolation methods when approximat-
ing a function on a standard mesh and also when modelling a 1-D advection
problem with the semi-lagrangian scheme. Chapter four will be concerned
with the modelling of a non-linear equation using the semi-lagrangian scheme
along with various interpolation methods. We introduce two different meth-
ods for departure point calculation, the midpoint method and the Shu-Osher
Runge-Kutta method. We finish with a summary of the work undertaken.

Chapter 2

Interpolation Methods

Interpolation is a process where given a set of function values at unique data
points, we estimate the values of the function at a new set of data points.
The new data points must be within the range of the original set.

2.1 Linear Interpolation

One of the simplest methods of interpolating a given data set is by linear
interpolation. Given two points in the x− y plane, (x1, y1) and (x2, y2), with
x1 6= x2 then we can form a first order polynomial (a straight line) between
the two points. We call this polynomial the interpolant. Our approximation
to the function at any intervening point (x, y) is then given by

y = y1 + (x− x1)
(y2 − y1)

(x2 − x1)

For example if we know that a function has values of 1 and 6 at x = 0, 2 then
our linear interpolation estimation to the value of the function at x = 1 is

y = 1 + (1− 0)
(6− 1)

(2− 0)
= 3.5.

The disadvantages of linear interpolation are that it is not very accurate,
and we cannot differentiate the interpolant at the data points. Nevertheless
it is easy to use and can provide a quick solution to a problem.

11

12 CHAPTER 2. INTERPOLATION METHODS

Figure 2.1: Linear interpolation between the points (0, 1) and (2, 6)

2.2 Polynomial Interpolation

We can extend linear interpolation to more than two data points. Given a
set of n data points where function values are defined, (xk, yk) k = 1, . . . , n,
there exists a unique polynomial, P (x) (again called the interpolant), of order
less than n that passes exactly through each point, i.e.

P (x) = yk, k = 1, . . . n (2.1)

At any point (x, y) that is within the range of the original data points P (x)
is given by the Lagrangian interpolating polynomial

P (x) =

(
x− x2

x1 − x2

)(
x− x3

x1 − x3

)
× . . .×

(
x− xn
x1 − xn

)
× y1

+

(
x− x1

x2 − x1

)(
x− x3

x2 − x3

)
× . . .×

(
x− xn
x2 − xn

)
× y2 + . . .

. . . +

(
x− x1

xn − x1

)(
x− x2

xn − x2

)
× . . .×

(
x− xn−1

xn − xn−1

)
× yn

or

P (x) =
∑
k

(∏
j 6=k

x− xj
xk − xj

)
yk.

2.2. POLYNOMIAL INTERPOLATION 13

Figure 2.2: Polynomial interpolation using the data set x = (0, 1, 2, 3), y =
(6,−11,−8, 5)

As an example consider the following data set:

x = (0, 1, 2, 3), y = (6,−11,−8, 5)

Using these points the interpolating polynomial is given by

P (x) =
(x− 1)(x− 2)(x− 3)

(−6)
(6) +

x(x− 2)(x− 3)

(2)
(−11)

+
x(x− 1)(x− 3)

(−2)
(−8) +

x(x− 1)(x− 2)

(6)
(5)

or, written in power form (see below)

P (x) = −5

3
x3 + 15x2 − 91

3
x+ 6

The power form of an n− 1th degree polynomial takes the form

P (x) = anx
n−1 + an−1x

n−2 + an−2x
n−3 + . . .+ a2x+ a1

Substituting this into (2.1) we get a system of simultaneous linear equations,
which we can write in matrix form as

xn−1
1 xn−2

1 . . . x1 1
xn−1

2 xn−2
2 . . . x2 1

...
...

...
...

xn−1
n xn−2

n . . . xn 1

a1

a2
...
an

 =

y1

y2
...
yn

14 CHAPTER 2. INTERPOLATION METHODS

The matrix on the left is known as the Vandermonde Matrix. This matrix
may be very badly conditioned leading to very large errors when we try to
solve the above system using standard methods such as Gaussian elimination.
We might use polynomial interpolation to solve a problem given a handful
of evenly spaced data points, but we will experience difficulties if we try to
use it as a general method.

2.3 Piecewise Linear Interpolation

Piecewise linear interpolation is an extension of linear interpolation to n
points, where n > 2. Given a data set (xk, yk) k = 1, . . . , n we perform linear
interpolation between each point within the set. To interpolate the value of
y at any intervening point x, we must firstly locate it within our data set,
i.e. find k where

xk ≤ x < xk+1.

k is referred to as the interval index. We then proceed to find the distance s
from x to the data point directly to the left of it

s = x− xk

and then the first divided difference

δk =
yk+1 − yk
xk+1 − xk

Note that s and δk are unique to every interval within the data set. They
are thus referred to as local variables

Once these three quantities are known, the interpolating value at x is given
by

P (x) = yk + (x− xk)
yk+1 − yk
xk+1 − xk

= yk + sδk

which gives a straight line that passes through (xk, yk) and (xk+1, yk+1), with

P (xk) = yk P (xk+1) = yk+1

P is a continuous function but its derivative P ′ is discontinuous at the data
points.

2.4. CUBIC HERMITE INTERPOLATION 15

Figure 2.3: Piecewise linear interpolation using the data set x =
(0, 1, 2, 3, 4), y = (15, 6, 3, 10, 7)

2.4 Cubic Hermite Interpolation

As we can see from the graph at the end of the previous section, piecewise
linear interpolation does not give a ‘smooth’ graph; it has jagged corners at
the data points. We would prefer it if our interpolant was ’smoother’, i.e.
had a continuous first derivative.

Let us consider piecewise cubic Hermite interpolation. For a set of data
points (xk, yk) k = 1, . . . , n piecewise linear interpolation satisfies

P (xk) = yk P (xk+1) = yk+1

at every point. As well as satisfying the above, Hermite cubics also satisfy
conditions on the derivative of the interpolant at the data points.

P ′(xk) = y′k P ′(xk+1) = y′k+1

Whereas with piecewise linear interpolation two conditions led to a linear
interpolant, we now have four interpolating conditions which gives a cubic
interpolant.

Interpolating using three nodes would give six interpolation conditions, re-
sulting in a quintic interpolant. As we can see the more points that are used
the higher the order of the interpolating polynomial.

16 CHAPTER 2. INTERPOLATION METHODS

We will concentrate on piecewise cubic Hermite interpolation, and so will
only be concerned with two neighbouring data points at a time, xk and xk+1.

The cubic Hermite interpolant at any point x, with xk < x < xk+1, takes the
form

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk +

s2(s− h)

h2
dk+1 +

s(s− h)2

h2
dk

where

h = xk+1 − xk
δk =

yk+1 − yk
hk

dk = P ′(xk)

s = x− xk

Piecewise cubic Hermite interpolation can prove very useful if we are given
known function values and the first derivatives at a set of data points. If we
are not provided with derivative values at these points and still wish to use
piecewise cubic Hermite interpolation, then we need a way of defining the
first derivatives ourselves.

2.5 Shape-Preserving Piecewise Cubic (pchip)

Shape-preserving piecewise cubic interpolation (called in Matlab using the
pchip command) takes the same form as piecewise cubic Hermite interpola-
tion, but differs in that the first derivatives dk at the nodes (xk, yk) k = 1, . . . n
are defined in a special way. This new method ensures that the value of the
interpolant stays within the range of the local data points, i.e. the new func-
tion values do not overshoot the function values at the ends of each interval.

Again we form the first divided difference

δk =
yk+1 − yk
xk+1 − xk

.

If the intervals between the data points are all of the same length, then for
the inner points (xk, yk), k = 2, . . . n − 1, the derivative is given by the

2.5. SHAPE-PRESERVING PIECEWISE CUBIC (PCHIP) 17

‘harmonic mean’ of the two differences δk and δk−1

1

dk
=

1

2

(
1

δk+1

+
1

δk

)
If δk and δk−1 have different signs or if one is zero, then we set dk = 0, since
this means that (xk, yk) will be a stationary point.

If δk and δk−1 have the same sign but the intervals are not of the same
lengths, then dk is given by the ‘weighted harmonic mean’

w1 + w2

dk
=

w1

δk−1

+
w2

δk

with weights
w1 = 2kk + hk−1, w2 = kk + 2hk−1

where
hk = xk+1 − xk, hk−1 = xk − xk−1.

A different non-centred shape preserving 3-point formula is used to define
the derivatives at the endpoints (x1, y1) and (xn, yn).

Figure 2.4: pchip (blue) and piecewise linear interpolation (green) using the
data set x = (0, 1, 2, 3, 4), y = (15, 6, 3, 10, 7)

Figure (2.4) shows how pchip (blue line) compares with piecewise linear in-
terpolation (green line). pchip produces a smooth interpolant that has a

18 CHAPTER 2. INTERPOLATION METHODS

continuous first derivative at the data points, as compared to the ’jagged’
linear interpolant. We can also see that the the pchip interpolant does not
overshoot the data points at the ends of each interval.

2.6 Divided Difference Polynomial Interpola-

tion

We now proceed to look the interpolation method described by M.Berzins
in his paper on Adaptive Polynomial Interpolation in SIAM Review, vol. 49
[1].

These methods are motivated by the ENO (Essentially non-Oscillatory) schemes
for the numerical solution solution of hyperbolic conservation laws.

Consider a set of n+ 1 data points (xi, yi), i = 0, . . . n, where yi = U(xi)
on the interval [−1, 1]. Let UL(x) be an approximating polynomial to the
data set.
For this interpolation method we will use the standard notation for divided
differences:

U [xi] = U(xi) and U [xi, xi+1] =
U [xi+1]− U [xi]

xi+1 − xi

with higher order differences given by

U [xi, xi+1, . . . , xi+k] =
U [xi+1, xi+2, . . . , xi+k]− U [xi, xi+1, . . . , xi+k−1]

xi+k − xi

For example for i = 0 the first few divided differences are

U [x0] = U(x0)

U [x0, x1] =
U [x1]− U [x0]

x1 − x0

U [x0, x1, x2] =
U [x1, x2]− U [x0, x1]

x2 − x0

=

U [x2]−U [x1]
x2−x1

− U [x1]−U [x0]
x1−x0

x2 − x0

etc.

2.6. DIVIDED DIFFERENCE POLYNOMIAL INTERPOLATION 19

It is often easier to picture divided differences if we form a difference table

x0 U [x0]
U [x0, x1]

x1 U [x1] U [x0, x1, x2]
U [x1, x2] U [x0, x1, x2, x3]

x2 U [x2] U [x1, x2, x3]
U [x2, x3]

x3 U [x3]

For meshpoints xi, xi+1, . . . , xi+n with corresponding solution values U [xi], . . . , U [xi+n]
the standard divided difference interpolating polynomial (also known as the
Newton polynomial) is given by

UL(x) = U [xi]+π1,i(x) U [xi, xi+1]+π2,i(x) U [xi, xi+1, xi+2]+. . .+πn,i(x) U [xi, . . . , xi+n]
(2.2)

where the π-functions are defined as

π1,i(x) = (x− xi)
π2,i(x) = (x− xi)(x− xi+1)

π3,i(x) = (x− xi)(x− xi+1)(x− xi+2)
...

Note that for each extra term we use the next mesh point to the right. There
is no need to adhere to this rule, in fact we may use successive meshpoints
to the left or right of xi as we please.

For example, suppose i > 1 and we want a quadratic interpolant on the
interval [xi, xi+1]. One way of constructing the interpolant is by using the
first three terms of (2.2)

UL(x) = U [xi] + π1,i U [xi, xi+1] + π2,i U [xi, xi+1, xi+2] (2.3)

where for each successive term we use the next meshpoint to the right.

Alternatively an equally valid interpolant is given by

UL(x) = U [xi] + π1,i U [xi, xi+1] + π2,i U [xi−1, xi, xi+1] (2.4)

Note that the π-functions are the same for both interpolants since divided
differences are invariant if we change the order in which the xi’s are written,
i.e.

U [xi−1, xi, xi+1] = U [xi, xi+1, xi−1].

20 CHAPTER 2. INTERPOLATION METHODS

So using the definitions above we use the same π-function for U [xi−1, xi, xi+1]
(rewritten as U [xi, xi+1, xi−1]) as we did for U [xi, xi+1, xi+2], since the π-
function only depends on the first two gridpoints written in the difference.

To try to reduce the oscillations in our answer (as seen with polynomial
interpolation) we choose the interpolant with the smallest divided difference,
i.e. if

|U [xi−1, xi, xi+1]| < |U [xi, xi+1, xi+2]|
then we use (3.3), and vice-versa.

Unfortunately, when using evenly spaced meshpoints this type of interpola-
tion does not guarantee a data bounded interpolant.

Definition 2.1 An interpolating polynomial UL(x) is data bounded on the
interval [xi, xi+1] if:

UL(xi) = U(xi)

UL(xi+1) = U(xi+1)

min(U(xi), U(xi+1)) ≤ UL(x) ≤ max(U(xi), U(xi+1)) x ∈ [xi, xi+1]

We would prefer a data bounded interpolant since a motivation for this work
comes from fluid dynamics, where positive and data bounded solutions are
required for physical quantities. We would also prefer an interpolant that is
monotonic on each local interval, since this would eliminate the oscillations
in our semi-lagrangian solution.

2.6.1 Limited Form of the Divided Difference Interpo-
lating Polynomial

So far we have seen how we can choose the smallest divided difference at each
stage to reduce the oscillations in our solution. Alas this method can lead to
higher order differences being much larger than differences used in previous
stages. Berzins [1] refers to a paper by Harten (1995) [2] who said that large
jumps in the size of consecutive differences can lead to a poor approximation
when using the above method.

The problem arises when forming divided differences using two lower order
differences of opposite sign.

2.6. DIVIDED DIFFERENCE POLYNOMIAL INTERPOLATION 21

Consider the divided difference

U [xi−1, xi, xi+1] =
U [xi, xi+1]− U [xi−1, xi]

(xi+1 − xi−1)

and suppose that U [xi−1, xi] = −εU [xi, xi+1] where ε is some positive con-
stant.

Rewriting the above we get

U [xi−1, xi, xi+1] = (1 + ε)
U [xi, xi+1]

xi+1 − xi−1

and if (xi+1 − xi−1) < 1 then

1 + ε

xi+1 − xi−1

is an amplification factor and so we have

U [xi−1, xi, xi+1] > U [xi, xi+1].

This shows how using a higher order interpolating polynomial can produce
jumps in the sizes of the differences used which in turn gives a poorer ap-
proximation.

To solve this problem Berzins suggests that we form an interpolant on each
interval within the data set and set any divided differences formed using dif-
ferences of opposite signs to zero.

For example suppose we decided to use equation (2.3) to form a quadratic
interpolant on the interval [xi, xi+1]

UL(x) = U [xi] + π1,i U [xi, xi+1] + π2,i U [xi, xi+1, xi+2].

We know that U [xi, xi+1, xi+2] is formed using U [xi, xi+1] and U [xi+1, xi+2]

U [xi, xi+1, xi+2] =
U [xi, xi+1]− U [xi+1, xi+2]

xi − xi+2

and so if U [xi, xi+1] and U [xi+1, xi+2] are of opposite sign we set U [xi, xi+1, xi+2]
to zero.

22 CHAPTER 2. INTERPOLATION METHODS

This leaves us with the linear interpolant

UL(x) = U [xi] + π1,i(x) U [xi, xi+1].

Note how we have locally altered the degree of the interpolating polynomial
in order to reduce the error in our solution.
The new interpolant is referred to as the limited form of the divided dif-
ference interpolating polynomial.
This new approach gives a data bounded monotone interpolant for the cases
which we shall consider.

Chapter 3

Results

3.1 Results for Runge’s function

3.1.1 Runge’s function with polynomial interpolation

A famous example from numerical analysis involves Runge’s function

f(x) =
1

1 + 25x2
. x ∈ [−1, 1]

In 1901 Carl David Tolm Runge found that accuracy is lost when approxi-
mating this function using high-order polynomial interpolation with evenly
spaced data points (see section 2.2). In fact convergence is never observed
as the order of the polynomial is increased.

This is shown in figure(3.1), which confirms Runge’s findings.

In the first plot (n = 4 or 3rd order polynomial) we have a smooth, albeit
inaccurate interpolant. Doubling the number of data points to 8 produces
some oscillation in the solution and by the time we have increased the order
of the interpolating polynomial to 15 (n = 16) in the final plot we see marked
oscillations in the solutions, reaching roughly twice the height of the original
function.
So the approximating polynomial does not actually converge as the degree
tends to infinity.

23

24 CHAPTER 3. RESULTS

Figure 3.1: Polynomial interpolation (blue) plotted against Runge’s function
(green) and data points (red) with increasing order. n indicates the number
of data-points used.

3.1.2 Runge’s function with standard divided differ-
ence interpolation

We now investigate how the standard form of the divided difference interpo-
lation (section 2.6) behaves when we use it to interpolate Runge’s function.
We can write a Matlab program to emulate the results on the standard form
found in Berzin’s paper [1].
We use 7 evenly spaced data points on the interval [−1, 1]. The graph is
shown in figure(3.2).

As we can see from the oscillations in the graph the standard form of the
divided difference interpolant does not provide an accurate approximation to
Runge’s function when using 7 data points.

To show how the standard form behaves as the number of data points used

3.1. RESULTS FOR RUNGE’S FUNCTION 25

Figure 3.2: Standard divided difference interpolation using 7 evenly spaced
data points (green) plotted with Runge’s function (blue) and data points
(red).

is increased, we recreate the above plot using 3,5,7 and 9 data points. The
four graphs are shown in figure(3.3).

We can see that the standard form of the divided difference interpolant gives
wilder oscillations (and thus a poorer approximation) when the number of
data points used is increased, as we saw was the case for polynomial inter-
polation (see previous subsection). These results confirm the theory on the
standard form seen in section (2.6), where we saw how using higher order
divided differences (i.e. more data points) can produce large errors in the so-
lution, due to divided differences being formed using lower order differences
of opposite sign.

26 CHAPTER 3. RESULTS

Figure 3.3: Runge’s function (blue) plotted with the standard divided differ-
ence interpolant (green) for increasing number of data points (red).

3.1.3 Runge’s function with the limited form of di-
vided difference interpolation

We can now show that the limited form of the divided difference interpolant
can produce a better approximation to Runge’s function than the methods
discussed so far in this chapter. The graphs in figure(3.4) show Runge’s
function plotted against the limited form of the divided difference interpolant
using an increasing number of data points.

From the graphs we see that using the limited form of the divided difference
interpolant gives a drastic improvement in our approximation to Runge’s
function when compared to the methods seen previously in the chapter. We
no longer see large oscillations in our solution, and increasing the number
of data points seems to improve the accuracy of the interpolant as opposed
to increasing the error. We can see that the interpolants are data bounded
(definition 2.1), i.e. the value of each interpolant does not overshoot the
data points on each local interval. Also each interpolant is monotonic on
each interval.

3.2. RESULTS FOR THE SEMI-LAGRANGIAN SCHEME 27

Figure 3.4: Runge’s function (blue) plotted with the limited form interpolant
(green) and data points (red) with increasing n (number of data points).

The results show that using Harten’s approach (subsection (2.6.1)) and throw-
ing away any divided differences formed using differences of opposite signs in
the interpolating polynomial reduces the oscillations and thus improves the
accuracy of our approximation.

3.2 Results for the Semi-Lagrangian scheme

We now compare the limited form of divided difference interpolation with
two other interpolation methods, standard piecewise cubic and pchip (Her-
mite cubic interpolation with nodal slopes calculated by harmonic means),
when used with a semi-lagrangian scheme.

We shall use the 1-d Advection Equation

∂u

∂t
+ a

∂u

∂x
= 0 with u(0) = u0

28 CHAPTER 3. RESULTS

(see subsection (1.1.1)) to model a square wave travelling to the right in the
region x = [−10, 10] with periodic boundary conditions.

We choose u0 to be a square wave with height 10 and width 2, centred
at the origin. So our initial condition is

u =

{
10 −1 ≤ x ≤ 1
0 otherwise.

A square wave is notoriously difficult to interpolate because of the disconti-
nuities that occur, in our case at x = −1, 1.

To begin we choose a time step dt = 1, spatial step dx = 0.2 and veloc-
ity a = 0.7, and run the scheme for 999 time steps. The initial plot and final
plot for the three types of interpolation are shown in figures (3.5),(3.6) and
(3.7).

Figure (3.5) shows how standard piecewise cubic interpolation behaves in
this instance. On the final plot we see oscillations either side of the wave
where the interpolant ’undershoots’ the x-axis. Also the wave has a rounded
peak (it is no longer square) that reaches above 10. Despite this, the width
of the wave at the final time is well-preserved.

Figure (3.6) shows pchip interpolation. Again, the wave has become ’smoothed’
at the final time. The pchip interpolant has no oscillations at the final time,
but the peak of the wave has fallen from 10 to roughly 8.

In figure (3.7) we see the limited form of the divided difference interpolant
at the initial and final times. Again, the interpolant has failed to capture
the discontinuities in the wave. We have no oscillations, but the peak of the
interpolant has fallen well below 10 to less than than half its original height.
The wave has also become spread out over an area roughly five times larger
than for the initial square wave. This is due to the fact that we are using high
order divided differences from an area wider than the wave profile to form
the interpolant, and since the function is zero at points outside the profile
we get a ‘damping’ effect in our solution.

We can conclude that the best type of non-oscillatory interpolation to use
for the set of parameters chosen is pchip interpolation, since it has no oscilla-
tions and captures the square wave more accurately than the limited form of

3.2. RESULTS FOR THE SEMI-LAGRANGIAN SCHEME 29

the the divided difference interpolant. The worst type interpolation from a
non-oscillatory point of view in this instance is piecewise cubic interpolation
because of the oscillations that arise at the final time.

We now increase the number of iterations to 9999 and observe the effect
this has on the interpolants. The graphs are shown in figures (3.8),(3.9) and
(3.10).

Running the scheme for ten times longer confirms what we saw above. Al-
though each interpolant has lost height and spread out over a wider area
after 9999 time steps, we still see that pchip gives the best non-oscillatory
approximation to the square wave. Piecewise cubic interpolation still pro-
duces worse oscillations at the final time. The pchip interpolant has lost
considerable height at the the final time, but not as much as the limited
form divided difference interpolant which has spread out most and whose
peak does not rise above 2.

30 CHAPTER 3. RESULTS

Figure 3.5: Standard piecewise cubic piecewise interpolation (dt=1, a=0.7,
run for 999 time steps).

Figure 3.6: pchip interpolation (dt=1, a=0.7, run for 999 time steps).

3.2. RESULTS FOR THE SEMI-LAGRANGIAN SCHEME 31

Figure 3.7: Limited form of divided difference interpolation (dt=1, a=0.7,
run for 999 time steps).

Figure 3.8: Standard piecewise cubic piecewise interpolation (dt=1, a=0.7,
run for 9999 time steps).

32 CHAPTER 3. RESULTS

Figure 3.9: pchip interpolation (dt=1, a=0.7, run for 9999 time steps).

Figure 3.10: Limited form of divided difference interpolation (dt=1, a=0.7,
run for 9999 time steps).

Chapter 4

A non-linear equation

4.1 The inviscid form of Burgers’ equation

4.1.1 Exact Solution

ENO (Essentially non-Oscillatory) schemes were originally developed for use
with non-linear equations. One such equation is the inviscid form of Burgers’
equation

∂u

∂t
+ u

∂u

∂x
= 0 u(x, 0) = u0(x). (4.1)

We shall use the initial condition found on page 77 of Smith [4]

u0 =

{
cos2

[
π
2

(
x−3

2

)]
|x− 3| ≤ 2

0 otherwise.
(4.2)

The characteristic curves of 4.1 are given by

dx

dt
= u(x(t), t) (4.3)

along which we know that the solution u is constant.

Hence the solution u(x(t), t) will be the same as the solution at x0, where x0

is the point where the characteristic that passes through u(x(t), t) arrives at
t = 0. So we may rewrite 4.3 as

dx

dt
= u(x0, 0) = u0(x0).

33

34 CHAPTER 4. A NON-LINEAR EQUATION

Integrating we get
x = u0(x0)t+ x0 (4.4)

So given any point (tn+1, xa) in (t, x) space we can obtain the solution u at
this point by solving 4.4 for x0.

To do this we rewrite 4.4 as

F (x0) = x− u0(x0)t− x0

and use the Newton-Rhaphson method:

xnew0 = xold0 −
F (x0)

F ′(x0)

with initial guess x0=xa.
This method should converge fairly quickly to give us the original value of
x0.

Figure(4.1) shows the exact solution to the above problem at times t = 0
and t = 1.

Figure 4.1: The exact solution to equation 4.1 at times t = 0 and t = 1

Notice the parallels between the above method the the semi-lagrangian scheme
seen in previous chapters. In both cases, we travel back along the charac-
teristic curves (in the above case to the start time t = 0 as opposed to the

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 35

previous timestep as with the semi-lagrangian scheme) and use the fact that
the solution u is constant along these characteristics to obtain a solution at
the new time.

The method we have used in this subsection for finding the exact solution
is very useful for simple problems such as the inviscid Burgers’ equation,
but we will run into difficulties if we attempt to use it for more complicated
equations. We would then have to use the numerical semi-lagrangian scheme.

4.1.2 The semi-lagrangian scheme with the inviscid form
of Burgers’ equation

We now solve the inviscid form of Burgers’ equation (4.1) with initial condi-
tion (4.2) using the semi-lagrangian scheme.

As with the 1-D advection equation where u = a (1.1.1) we assume that we
know the solution u at time t = tn.

Suppose we want the solution at some point (xa, tn+1), which we shall call
the arrival point. We follow the characteristic curve that passes through
(xa, tn+1) back to time t = tn and call this point xd (the departure point).
Using the fact that the solution is constant along the characteristic curves
we conclude that the solution at the two points must be equal, i.e.

u(xa, tn+1) = u(xd, tn).

So all we need to find u(xa, tn+1) is xd.

We now run into difficulties. Since our velocity a = u(x, t) is a function of x
and t we do not know the exact form of the characteristic curve that passes
through (xa, tn+1). The usual procedure is to approximate the characteristic
curve with a straight line by extrapolating the solution at time t = tn+ 1

2

using the solutions at times t = tn and t = tn−1.
This is done by means of the iterative midpoint method.

We wish to find α where α = xa − xd. The midpoint method proceeds as
follows.

α(0) = 0 initial guess

36 CHAPTER 4. A NON-LINEAR EQUATION

α(k+1) = ∆tu∗(xa −
α(k)

2
, tn +

∆t

2
)

with u∗(xi, tn +
∆t

2
) =

3

2
u(xi, tn)− 1

2
u(xi, tn −∆t)

We use two to three iterations of the midpoint method to give us a value for
α, from which we can find xd (since xd = xa − α).

If xd lies on a grid point we have the solution immediately since u(xa, tn+1) =
u(xd, tn) . If xd does not coincide with a gridpoint, then we use an interpola-
tion method to approximate u(xd, tn) using local nodal values at time t = tn
which gives us u(xa, tn+1).

4.1.3 Results using the midpoint method

We use the semi-lagrangian scheme with the midpoint method to solve the
inviscid form of Burgers’ equation (4.1) using initial condition (4.2) and pa-
rameters ∆t = 0.005, ∆x = 1

15
. We run the scheme for 120 timesteps, ensur-

ing that the profile does not form a shock before our final time (t = 0.6).

Figure (4.2) shows the exact solution plotted at the final time along with
the results for the semi-lagrangian scheme using three different interpolation
methods. Limited Form denotes the limited form of the divided difference
interpolant (see (2.6.1)), pchip denotes piecewise cubic Hermite interpolation
with derivatives at the nodes approximated by harmonic means (see (2.5))
and Polyinterp denotes a piecewise cubic polynomial interpolation (see (2.2)).

In figure (4.2) we see that the plots for the semi-lagrangian solution lie slightly
to the right of the exact solution. This means that the semi-lagrangian solu-
tion is slightly ‘ahead’ of the true solution i.e. it approximates the wave to be
travelling slightly faster than it actually is. The plots show no ‘undershoots’,
indeed we have no oscillations using any of the interpolation methods. This
is probably due to the fact that the function which we are modelling is much
‘smoother’ than the square wave profile seen in previous chapters. The only
difference between the interpolation methods seems to be that the limited
form of the divided difference interpolant produces a much steeper slope at
the edges of the wave, and that the pchip interpolant forms a slight ‘hump’
at the peak of the wave. We can therefore conclude that the best inter-
polation method to use in this case is standard piecewise cubic polynomial
interpolation.

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 37

Figure 4.2: The exact solution to (4.1) at t = 0.6 plotted with the semi-
lagrangian solution using the midpoint method and three different interpo-
lation methods

4.1.4 The Shu-Osher Runge-Kutta method

As well as using polynomials with least variation to interpolate given data
values, ENO schemes make extensive use of the 3rd order Shu-Osher Runge-
Kutta method to increase their order of accuracy.

We can adopt this ENO approach for use with our semi-lagrangian scheme
when solving the inviscid form of Burgers’ equation (4.1) with initial condi-
tion 4.2. As usual we suppose we know the solution u at time t = tn, and
that we wish to find u at a certain point xa at time t = tn+1.

As opposed to using the midpoint method (see (4.1.2) and (4.1.3) for calcu-
lation of our departure point xd at time t = tn, we can use a slightly modified
version of the Shu-Osher method.

38 CHAPTER 4. A NON-LINEAR EQUATION

Suppose, as an initial guess, we take our departure point xd to be the x-
coordinate of the arrival point xa. The Shu-Osher method then proceeds as
follows.

x
(1)
d = xa −∆t u(xa, tn)

x
(2)
d =

3

4
xa +

1

4
x

(1)
d −

1

4
∆t u(x

(1)
d , tn)

x
(3)
d =

1

3
xa +

2

3
x

(2)
d −

2

3
∆t u(x

(2)
d , tn)

xd = x
(3)
d

Note that since x
(1)
d and x

(2)
d will not necessarily lie on gridpoints we will have

to use an interpolation method to approximate the values of u(x
(1)
d , tn) and

u(x
(2)
d , tn). In our case we shall use cubic polynomial interpolation.

Figure (4.3) shows the exact solution plotted at the final time along with
our results for the semi-lagrangian scheme using three different interpolation
methods (limited form of the divided difference interpolant, pchip and cubic
polynomial interpolation). We have used the same parameters as when using
the midpoint method for calculating the departure point, namely ∆t = 0.005,
∆x = 1

15
and a final time of 0.6.

We can see a marked difference between the results for the midpoint method
and the Shu-Osher Runge-Kutta method. When using the midpoint method
the semi-lagrangian solutions seemed to be travelling faster than the exact so-
lution. With the Shu-Osher method the semi-lagrangian solutions are closer
to the exact solution at the final time, and as they lie slightly to the left of
the exact solution it seems that they are travelling slower than the exact so-
lution. Since these solutions are closer to the exact solution than when using
the midpoint method we conclude that, in this case, using the Shu-Osher
Runge-Kutta method as opposed to the midpoint method for the calculation
of the departure point xd improves our solution.

As with the midpoint method, the limited form of the divided difference
interpolant forms very steep gradients at the edges of the wave profile. These
might be to do with the fact that we are throwing away divided differences
formed using differences of opposite signs. Near an extremal point (such as
the one in the function which we are approximating) this might cause many
differences to be thrown away, resulting in a linear interpolant. More is said
on this point in the section on further work.

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 39

Figure 4.3: The exact solution to (4.1) at t = 0.6 plotted with the semi-
lagrangian solution using the Shu-Osher Runge-Kutta method and three dif-
ferent interpolation methods

Again we see that pchip produces a slight ‘hump’ near the peak of the wave
at the final time. Therefore we must again conclude that of the three inter-
polation methods used, standard piecewise cubic polynomial interpolation
seems best in this instance.

4.1.5 Changing the initial condition

So far in this chapter, we have been solving equation (4.1) using initial condi-
tion (4.2) given by Smith [4]. Since this initial condition has a fairly smooth
profile, we saw no oscillations in the semi-lagrangian solutions at the final
time using our various interpolation methods.

Changing the initial condition to a function that has discontinuities might

40 CHAPTER 4. A NON-LINEAR EQUATION

give some oscillations in the semi-lagrangian solutions, and may give us a
better way to distinguish which interpolation method and which method for
finding the departure point works best in our case.

We therefore change our initial condition to a simple ‘step function’

u0 =

{
1 x < 0
2 x ≥ 0

(4.5)

Figure 4.4: Plot of the step function used as initial condition (4.5)

We shall examine how each interpolation method fares when solving the
inviscid form of Burgers’ equation (4.1) with this new initial condition along
with the two different methods for obtaining the departure point at each
gridpoint, the midpoint method and the Shu-Osher Runge-Kutta method.

Figure (4.5) shows the exact solution at the final time t = 0.5 along with the
semi-lagrangian solutions for the three interpolation methods using the mid-
point method for calculation of the departure point. Figure (4.6) shows the
same plots when we use the Shu-Osher Runge-Kutta methods for calculating
the midpoint. The parameters used are ∆t = 0.005, ∆x = 1

15
. Limited Form

denotes the limited form of the divided difference interpolant (see (2.6.1)),

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 41

Figure 4.5: Solving equation (4.1) with initial condition (4.5) using the semi-
lagrangian scheme with various interpolation methods using the midpoint
method for calculation of the departure point.

pchip denotes piecewise cubic Hermite interpolation with derivatives at the
nodes approximated by harmonic means (see (2.5)) and Polyinterp denotes
a piecewise cubic polynomial interpolation (see (2.2)).

From the figures we that for both methods of departure point calculation,
piecewise cubic polynomial interpolation produces ‘undershoots’ in the semi-
lagrangian solution. These oscillations are not present when using pchip or
the limited form of the divided difference interpolation due to the various
techniques that these interpolation methods use to eliminate variations in
the solution. From a non-oscillatory perspective this discredits piecewise
cubic polynomial interpolation, even though it performed best when used to
model a smooth function (see subsections (4.1.3) and (4.1.4)). There is no
discernible difference between the divided difference interpolation and pchip
in the first figure, although in figure (4.6) the divided difference interpolant
seems closer to the exact solution at the final time.

As seen when modelling the smooth function in the previous two subsections,
when we use the midpoint method for calculation of the departure point the

42 CHAPTER 4. A NON-LINEAR EQUATION

Figure 4.6: Solving equation (4.1) with initial condition (4.5) using the semi-
lagrangian scheme with various interpolation methods using the Shu-Osher
Runge-Kutta method for calculation of the departure point.

semi-lagrangian solutions appear to be travelling ahead of the exact solution,
while when the Shu-Osher Runge-Kutta method is used the semi-lagrangian
solutions are seen to be trailing the exact solution. Again the solutions for
the Shu-Osher method appear much closer to the exact solution at the final
time than those for the midpoint method, from which we conclude that the
Shu-Osher method is better for this purpose.

Summary and further work

Summary

In this dissertation we have compared various interpolation methods for use
with the semi-lagrangian scheme.

Chapter one gave a brief introduction to the semi-lagrangian scheme and
some motivation for the work.

Chapter two introduced some well known interpolation methods, along with
a new interpolation method suggested by Berzins [1], namely the limited form
of divided difference interpolation. We also explained how the motivation for
this work comes from problems in the physical world, demanding solutions
that are positive and data-bounded. This meant that that we would require
little or no oscillations in our results, and from that point would compare
interpolation methods from a non-oscillatory viewpoint.

In chapter three we saw how Berzins’ interpolation outperformed standard
piecewise cubic interpolation when approximating Runge’s function on a
standard mesh. We also looked at some results for the semi-lagrangian
scheme. Again Berzins’ interpolation proved to be more useful for our pur-
pose than standard piecewise cubic polynomial interpolation because of its
non-oscillatory nature, but it did not seem to be as good as pchip, a special
form of piecewise cubic Hermite interpolation.

Chapter four introduced a non-linear equation, the inviscid form of Burgers’
equation. We saw how we would run into difficulties when using the semi-
lagrangian scheme to model this equation since we would no longer know the
departure points for each gridpoint. Therefore we looked at two methods for
calculating the departure point and found that the Shu-Osher Runge-Kutta

43

44 CHAPTER 4. A NON-LINEAR EQUATION

method proved to be more useful for our case than the traditionally used
midpoint method.
Finally we used the semi-lagrangian scheme in conjunction with the depar-
ture point calculation methods to model the non-linear equation. At first we
used a smooth initial condition and found, rather surprisingly, that standard
piecewise cubic polynomial interpolation behaved better than both Berzins’
interpolation and pchip. We than changed the initial condition to a func-
tion that contained a discontinuity and found that standard piecewise cubic
polynomial interpolation produced oscillations in the final solution and that
Berzins’ interpolation performed slightly better of the three.

Further work

An option for further work would be to investigate a more recent paper by
Berzins [8], where he goes on to introduce a technique for dealing with ex-
trema. He states that the limiting technique of keeping the divided difference
interpolant bounded between the values at the endpoints of an interval could
prove to be poor when the function has an extremal value in that interval.
Berzins suggests a way of detecting these extrema and states that the lim-
iting property should be turned off for an interval if an extrema is found to
exist in that interval. It would be interesting from our perspective to see
whether introducing this technique would improve the results for Berzins’
interpolation, especially when modelling wave like functions such as Runge’s
function, since these functions have extremal points at their centres.

Bibliography

[1] M.Berzins: Adaptive Polynomial Interpolation on Evenly Spaced
Meshes, SIAM Review, 49, 2007, 604–627.

[2] A.Harten: Multiresolutional algorithms for the numerical solution of
hyperbolic conservation laws, Comm. Pure Appl. Math., 48, 1995, 1304–
1342.

[3] Andrew Staniforth and Jean Cote: Semi-Lagrangian Integration
Schemes For Atmospheric Models - A Review, Monthly Weather Review,
119, 1990, 2206–2223.

[4] Chris Smith: The Semi-Lagrangian Method in Atmospheric Mod-
elling, PhD Thesis, University of Reading, 2000

[5] Amos S Lawless: Development of Linear Models for Data Assimi-
lation in Numerical Weather Prediction, PhD Thesis, University of
Reading, 2001

[6] Cleve Moler: Numerical Computing with Matlab, Society for Indus-
trial and Applied Mathematics, 2004.

[7] Jan Hesthaven, David Gottlieb and Sigal Gottlieb: Spec-
tral methods for time-dependent problems, Cambridge Monographs on
Applied and Computational Mathematics, 2007.

[8] M.Berzins: Data Bounded Polynomials and Preserving Positivity in
High Order ENO and WENO Methods, SCI Report UUSCI, 2009

45

	Abstract
	Introduction
	The Semi-Lagrangian method
	1-D Advection Equation

	Interpolation Methods
	Linear Interpolation
	Polynomial Interpolation
	Piecewise Linear Interpolation
	Cubic Hermite Interpolation
	Shape-Preserving Piecewise Cubic (pchip)
	Divided Difference Polynomial Interpolation
	Limited Form of the Divided Difference Interpolating Polynomial

	Results
	Results for Runge's function
	Runge's function with polynomial interpolation
	Runge's function with standard divided difference interpolation
	Runge's function with the limited form of divided difference interpolation

	Results for the Semi-Lagrangian scheme

	A non-linear equation
	The inviscid form of Burgers' equation
	Exact Solution
	The semi-lagrangian scheme with the inviscid form of Burgers' equation
	Results using the midpoint method
	The Shu-Osher Runge-Kutta method
	Changing the initial condition

	Bibliography

