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Abstract

Observations used in combination with model predictions for data assimilation can contain

information at smaller scales than the model can resolve. Errors of representativity are

errors that arise when the observations can resolve scales that the model cannot. Little

is known about representativity errors, and consequently they are currently not correctly

included in assimilation schemes. The aim of this thesis is to understand the structure

of representativity error, and investigate if the assimilation can be improved by correctly

accounting for representativity error.

The first approach is to use an existing method that assumes that the model state is a trun-

cation of a high resolution truth. Using the Kuramoto-Sivishinky equation as the model,

it is shown that representativity error is correlated. It is also shown that the correlation

structure depends not on the number of observations but the distance between them. The

representativity error is also affected by the observation type and model resolution. Using

the same method representativity error is calculated for temperature and specific humidity

fields from the Met Office high resolution model. This shows that representativity error is

more significant for specific humidity than temperature and that representativity error is

state and time dependent.

This provides motivation to combine an ensemble filter with a method that uses statistical

averages of background and analysis innovations to provide an estimate of the observation

error covariance matrix. Using this method it is possible to estimate a time varying ob-

servation error covariance matrix that when included in the assimilation scheme improves

the analysis.

With further development of these methods it is possible that representativity errors

could be correctly included in the assimilation in the context of numerical weather predic-

tion.
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Chapter 1

Introduction

Data assimilation is the incorporation of observational data into a numerical model to

produce a model state that accurately describes the observed reality [Kalnay, 2002]. It is

applicable to many situations as it provides a complete set of accurate initial conditions

for input into a numerical model. One situation where data assimilation is used is numer-

ical weather prediction (NWP) [UK Met Office, 2013]. In NWP observations are either

measured in-situ or are remotely sensed. Data can be remotely sensed by a network of

satellites or from ground based instruments such as radar. Whether remotely sensed or

measured in-situ these observations contain errors. The statistics associated with the errors

in the observations are included in the data assimilation scheme in the observation error

covariance matrix. Different types of error contribute to the observation error, including

instrument or measurement error, errors associated with the preprocessing of observational

data, errors in the observation operators that map the model space into observation space

and representativity error. Representativity error [Daley, 1991], also known as represen-

tativeness error [Liu and Rabier, 2002], representation error [Oke and Sakov, 2007] or

representivity error [Swinbank et al., 2003], is the error that arises when the observations

can resolve scales that the model cannot [Daley, 1991]. Representativity error combined

with the errors in the observation operator are known as forward model error or forward

interpolation error [Lorenc, 1986].
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Little is known about forward model and representativity error or how they may affect

the assimilation scheme if accounted for. Previous work [Stewart et al., 2009, 2012b,

Bormann et al., 2002, Bormann and Bauer, 2010, Bormann et al., 2010] has shown that

for certain observation types the observation error covariance matrix contains significant

correlations. It has been suggested that part of the correlation comes from representativity

error rather than the instrument error or errors in the observation operator [Stewart, 2010,

Weston, 2011]. Accounting for these correlated errors in the assimilation scheme may be

computationally costly as the number of observations available is O(107), so to reduce

the cost it is assumed that the observation error covariance matrix is block diagonal,

with each block corresponding to a different observation type. Methods such as variance

inflation [Hilton et al., 2009, Whitaker et al., 2008], observation thinning [Lahoz et al., 2010]

and superobbing [Daley, 1991] are used to account for the unknown and unrepresented

correlation structure. Efforts are being made to find methods of reducing the cost of

using correlated observation error matrices [Stewart et al., 2012a, Stewart, 2010, Healy

and White, 2005]. Once these methods are in place it will be important to have accurate

estimates of the covariance matrices, as these are required to obtain the optimal estimate

from any data assimilation system [Houtekamer and Mitchell, 2005, Stewart et al., 2008].

It is therefore important to understand forward model and representativity error. The

requirement of a better understanding of forward model error, how it can be calculated,

its structure and its effect on a data assimilation system provides the motivation for this

thesis. We now present in the next two sections the main aims and principal results of the

thesis. We then give an overview of each chapter in section 1.3.

1.1 Aims

In this thesis we aim to use existing methods and develop our own schemes to investigate

forward model error and representativity error. In particular we wish to:

• Understand what representativity error is and how it can be calculated and included

in the data assimilation scheme.
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• Understand the structure of representativity error and see if it may be a cause of

correlations in the observation error covariance matrix.

• Understand if representativity error is a significant error.

• Determine if the inclusion of representativity error in the data assimilation scheme

can improve the analysis.

• Determine if it is possible to calculate a time dependent estimate of forward model

error.

1.2 Principal results

The principal new results of this thesis are:

• Representativity error is correlated and case dependent. The representativity error

variance is independent of the number of available observations. The correlation

structure of representativity error is dependent not on the number of observations,

but the distance between them.

• Representativity error can be reduced by increasing the model resolution or increasing

the observation lengthscales.

• Representativity error is more significant for humidity than temperature and varies

throughout the atmosphere.

• Including representativity error in an assimilation scheme may improve the analysis.

• Using a method developed in this thesis it is possible to estimate time varying ob-

servation error covariance matrices within an ensemble transform Kalman filter.

1.3 Outline

In Chapter 2 we introduce the concept of data assimilation and the notation used through-

out this thesis. We give a brief description of both variational and sequential data as-
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similation. We then describe a sequential method known as the best linear unbiased esti-

mate. The concept of ensemble data assimilation is introduced and the ensemble transform

Kalman filter is discussed. We also discuss two techniques that can be used to overcome

problems associated with ensemble filtering. We conclude the chapter by describing two

diagnostics that can be used to assess the performance of assimilation schemes.

We introduce forward model error and representativity error in Chapter 3. We review

previous methods that have been used for calculating the observation error covariance

matrix and consider the results relating to the structure of these matrices. We discuss

existing methods for calculating forward model error and representativity error. One of

these methods developed by Daley [1993] and then by Liu and Rabier [2002] is discussed in

more detail. We also discuss a method used to calculate the observation error covariance

matrix, the Desroziers et al. [2005] diagnostic, in more detail.

In Chapter 4 we describe how the matrices used in the Daley [1993] method can be defined.

We then present some new theoretical results that relate to the Daley [1993] method.

In Chapter 5 we calculate representativity error for the Kuramoto-Sivashinsky (KS) equa-

tion [Kuramoto, 1978, Sivashinsky, 1977]. First the KS equation is introduced. We then

discuss how the KS equation can be solved numerically using the ETDRK4 method and

show convergence of this method. We consider solutions of the KS equation at different

resolutions. Next we use the Daley [1993] method to calculate representativity error and

forward model error for the KS equation. We compare these numerical results to the the-

oretical results presented in Chapter 4 and draw conclusions about forward model and

representativity errors.

In Chapter 6 we calculate representativity error for temperature and specific humidity

using data from the Met Office high resolution model [Tang et al., 2012]. We compare

data from two cases to show how case dependent representativity error is. We also show

how representativity error differs between temperature and specific humidity. We repeat

the experiments in Chapter 5 with the data from the Met Office model and use these

results to support the results of previous chapters. We then consider how representativity

4



error changes at different atmospheric levels.

In Chapter 7 we develop a new approach for calculating the observation error covariance

matrix and forward model error covariance matrix. We present a method that combines the

Desroziers et al. [2005] diagnostic with the Ensemble Transform Kalman Filter (ETKF).

First we show that a correlated observation error covariance matrix can be calculated using

the Desroziers et al. [2005] diagnostic after an ETKF assimilation cycle has finished. We

then introduce a rolling time window that is used to provided the samples that are required

by the Desroziers et al. [2005] diagnostic to calculate the observation error covariance

matrix. We then show that it is possible to calculate an observation error covariance

matrix within the ETKF cycle that can then be fed back into the scheme to improve the

analysis.

We summarise the work in this thesis in Chapter 8. We draw conclusions from the results

seen throughout the thesis and suggest future work that may be carried out.
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Chapter 2

Data Assimilation

In this chapter we describe the mathematics of data assimilation (DA) and the notation

and terminology used in this thesis. We start by considering the Bayesian approach to DA

and how, with some approximations, the Bayesian approach gives the equations for the

variational DA method known as 3D-Var. We then describe a sequential DA system known

as the Kalman filter (KF), and its ensemble version, the ensemble Kalman filter (EnKF).

We then consider the ensemble transform Kalman Filter (ETKF), a deterministic ensemble

Kalman filter. We also consider some of the techniques that can be used to overcome some

of the problems associated with ensemble filtering. We also introduce some diagnostics

that allow us to determine how well an assimilation system is performing.

2.1 Notation

We consider the non-linear dynamical system,

xn+1 = Mn(xn) + ǫ
m
n , (2.1)

where xn is the model state vector of length Nm at time tn, Mn is the non-linear model

operator that evolves the model state at time tn to the model state at time tn+1. The model

error ǫ
m
n at time tn is a random vector of length Nm. Often data assimilation methods
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make a perfect model assumption. Under this assumption it is assumed that the model

error ǫmn is zero.

We assume we have observations yn at time tn. These observations are related to the true

state of the system, xt
n by,

yn = Hn(x
t
n) + ǫ

o
n, (2.2)

where yn is the observation vector of length Np at time tn. Hn is the possibly non-linear

observation operator, a mapping to R
Np

, that maps the true state into observation space.

The observation error ǫon is a random vector of size Np at time tn. The mean value of ǫon is

assumed to be zero. In practice it may be necessary to achieve this by using a preprocessing

step to bias correct the data. The observation error covariance matrix is Rn = E[ǫonǫ
o
n
T ]

where E[·] denotes expected value.

As well as observations, we have available from the numerical model the forecast at the

current time. This model prediction of the state xb
n is known as the background. The back-

ground state is an approximation to the true state of the atmosphere xt
n such that

xb
n = xt

n + ǫ
b
n, (2.3)

where the random vector ǫ
b
n is known as the background error. The expected value of

this background error is assumed to be zero. The covariance of the background error

Bn = E[ǫbnǫ
b
n

T
] is the background error covariance matrix. This matrix can be static and

reflect a climatological error variance. However, in some assimilation schemes it is assumed

that this matrix is flow dependent.

When flow dependence is assumed, the background error variance is often denoted as Pf
n

and known as the forecast error covariance matrix. It is assumed that the background and

observation errors are mutually uncorrelated.

7



2.2 Data assimilation

Data assimilation techniques combine observations yn at time tn with a model prediction

of the state, the background xb
n, weighted by their respective errors, to provide a best

estimate of the state xa
n, known as the analysis.

There are many types of data assimilation but in general they are classified as either se-

quential or variational [Talagrand, 1997]. Sequential methods solve explicitly the equations

that give the best state estimate, whereas variational methods minimise a cost function

to implicitly solve the problem. We shall consider both types of method. However, we

first derive the state estimation problem using Bayes’ theorem [Lorenc, 1986]. Under the

assumption of linearity this can be used to derive a sequential scheme to find the best

analysis.

Theorem 2.2.1. - Bayes Theorem

The probability of A given B is,

p(A|B) =
p(B|A)p(A)

p(B)
. (2.4)

If A is the model state and B the observations then Bayes Theorem [Bolstad, 2007] tells us

that the probability p(.) of the model state given the observations is equal to the probability

of the observations given the model state multiplied by the probability of the model state

divided by the probability of the observation. Here, p(B) is a normalisation factor and is

independent of the model state.

For most DA schemes it is assumed that the probability density functions (pdfs) are Gaus-

sian. Following this assumption allows the prior pdf of the model state to be written

as,

p(xn) ∝ exp {−
1

2
(xn − xb

n)
TB−1

n (xn − xb
n)}, (2.5)
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and the likelihood (the probability of the observation occurring given the model state at

time tn) is written as,

p(yn|xn) ∝ exp {−
1

2
(yn −Hn(xn))

TR−1
n (yn −Hn(xn))}. (2.6)

Now substituting this into Bayes’ Theorem and assuming that errors in observations and

background are independent we obtain an expression for the posterior pdf of the state

given the observations,

p(xn|yn) = exp {−
1

2
(xn − xb

n)
TB−1

n (xn − xb
n)−

1

2
(yn −Hn(xn))

TR−1
n (yn −Hn(xn))}.

(2.7)

The estimate for the analysis is determined by maximising the value of p(xn|yn), known

as the maximum a posteriori (MAP) estimate. This is equivalent to finding the minimum

variance by minimising the cost function

J (xn) =
1

2
(xn − xb

n)
TB−1

n (xn − xb
n) +

1

2
(yn −Hn(xn))

TR−1
n (yn −Hn(xn)). (2.8)

This gives an estimate of the analysis that is based on the distance between the solution

and the background weighted by the error in the background and the distance between the

observations and the solutions weighted by the error in the observations.

2.2.1 The best linear unbiased estimator and 3D-Var

One of the simplest forms of data assimilation aims to solve equation (2.8) explicitly. The

analysis at a given time tn is given by,

xa
n = xb

n +Kn(yn −Hn(x
b
n)), (2.9)

where Kn = BnH
T
n (HnBnH

T
n +Rn)

−1, a matrix of size Nm×Np, is known as the Kalman

gain matrix. Hn is the observation operator linearised about the background state. The

analysis is then forecast using the model given in equation (2.1) to provide a background
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The BLUE Algorithm [Swinbank et al., 2003]

1. Calculate the analysis:

xa
n = xb

n +Kn(yn −Hnx
b
n),

where Kn = BnH
T
n (HnBnH

T
n +Rn)

−1.

2. Forecast the analysis using

xb
n+1 = Mn(x

a
n)

to obtain a background state at the next time.

Table 2.1: A simple BLUE algorithm.

at the new time. These analysis and forecast steps can be applied sequentially to give a

scheme known as the best linear unbiased estimator (BLUE) [Lewis et al., 2006]. If H is

linear the exact minimiser of equation (2.8) is found. However, if the observation operator

H is non-linear it is necessary to define a linear version H and the solution obtained is

only an approximate solution. The BLUE algorithm is summarised in Table 2.1.

For low dimensional systems the BLUE is a useful method to use as a starting point

to help understand data assimilation. Before using more complex assimilation schemes

operational NWP centres used an approximate BLUE in the form of optimal interpolation

(OI) [Lorenc, 1981] and analysis correction (AC) [Lorenc et al., 1991].

Rather than solving equation (2.8) explicitly it is possible to use a numerical approach. The

cost function can be minimised over several iterations using a gradient descent algorithm to

obtain an estimate for the analysis. This analysis approach is known as 3D variational data

assimilation (3D-Var). 3D-Var is a more effective method for large systems and has been

used in operational NWP centres [Lorenc et al., 2000]. However, another assumption in

3D-Var is that all observations are valid at one time, rather than over a time window around

the assimilation time. To take into account the time dependence of the observations the

equations of 3D-Var must be extended. The extended method is known as 4D variational

assimilation (4D-Var) [Sasaki, 1970]. 4D var makes use of the dynamical model to allow

observations to be assimilated at the correct time.
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2.2.2 The Kalman filter

So far we have encountered both variational and sequential methods. All the methods

considered so far assume the the error in the background and observations are fixed in

time. In many cases this is a poor assumption as the background error is related to the

model state and therefore will evolve as the model evolves. We now consider a method

known as the Kalman filter introduced by Kalman [1960] and Kalman and Bucy [1961],

which as well as updating the state also updates the error covariance matrix Pf . The

Kalman filter requires a linear dynamical model Mn and linear observation operator Hn.

The Kalman filter begins with the same analysis update as the BLUE given in equation

(2.9). This is followed by an update to the analysis error covariance,

Pa
n = (I −KnHn)P

f
n. (2.10)

Both the analysis and background covariance are then forecast. The analysis is forecast

using equation (2.1) and the covariance is updated using

Pf
n+1 = MnP

a
nM

T
n +Qn, (2.11)

where Qn is the model error covariance matrix. If the model is assumed perfect the matrix

Q can be omitted. This scheme is also applied sequentially to give analysis and background

error covariances at times when observations are available. We summarise the Kalman filter

algorithm in Table 2.2.

The Kalman filter is a useful data assimilation scheme as it uses observations at the time

they are available. It is the optimal linear filter in terms of minimum variance. It provides

an unbiased estimate of the forecast and analysis as well as estimates of a flow dependent

background matrix [Jazwinski, 1970]. However, it is restricted to use with linear dynamical

systems. The theory of the Kalman filter can be extended to take account of non-linear

models. This leads to methods such as the extended Kalman filter [Gelb, 1974] and the

ensemble Kalman filter [Evensen, 1994], a form of ensemble data assimilation.
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The Kalman Filter Algorithm [Kalman and Bucy, 1961]

1. Calculate the analysis:

xa
n = xb

n +Kn(yn −Hnx
b
n),

where Kn = Pf
nHT

n (HnP
f
nHT

n +Rn)
−1.

2. Update the background error:

Pa
n = (I −KnHn)P

f
n.

3. Forecast the analysis to obtain a background state at the next time:

xb
n+1 = Mnx

a
n + ǫ

m
n .

4. Forecast the background error:

Pf
n+1 = MnP

a
nM

T
n +Qn.

Table 2.2: The Kalman filter algorithm.

2.3 Ensemble data assimilation

The exact state of the atmosphere cannot be accurately determined and therefore it is likely

that initial conditions supplied for a forecast will contain errors. Even small perturbations

in the initial conditions can lead to a large change in the forecast, so it is important that

uncertainty in the initial conditions is represented. One way to represent the uncertainty

in the initial conditions is to represent the prior distribution of the initial state with a

number of different initial conditions. Each of these different states is known as an ensemble

member. Forecasting each of the ensemble members results in an ensemble of forecasts that

must be combined with observations. This has led to the development of ensemble data

assimilation schemes. One ensemble data assimilation scheme is known as the ensemble

Kalman filter (EnKF).

The ensemble Kalman filter is an ensemble data assimilation scheme based on the Kalman

filter summarised in Table 2.2. It was first introduced by Evensen [1994] and many forms of

ensemble Kalman filter have been developed, for example Tippett et al. [2003], Houtekamer

and Mitchell [1998], Evensen [2003], Burgers et al. [1998], Anderson [2001]. These methods

can be split into two categories; deterministic filters and stochastic filters. Stochastic filters

make use of a set of perturbed observations which are required to maintain the correct
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statistics of the filter [Burgers et al., 1998, Lewis et al., 2006]. Deterministic filters do

not require these perturbed observations, therefore no extra errors in the observations are

introduced. One set of deterministic filters are known as square root filters. We now

introduce the general form of square root filters. We then describe the ensemble transform

Kalman filter (ETKF).

2.3.1 Notation

We first define the notation used and then describe the method. At time tn we have an

ensemble, a statistical sample of N state estimates
{

xin
}

for i = 1 . . . N . These ensemble

members can be stored in a state ensemble matrix X ∈ R
Nm×N where each column of the

matrix is a state estimate for an individual ensemble member,

Xn =

(

x1
n x2

n . . . xN
n

)

(2.12)

From this ensemble it is possible to calculate the ensemble mean,

x̄n =
1

N

N
∑

i=1

xi
n, (2.13)

which can be stored in each column of the ensemble mean matrix X̄. Subtracting the

ensemble mean matrix from the state ensemble matrix gives the ensemble perturbation

matrix,

X′
n = Xn − X̄n (2.14)

=

(

x1
n − x̄n x2

n − x̄n . . . xN
n − x̄n

)

(2.15)

This allows us to write the ensemble covariance matrix as

Pn =
1

N − 1
X′

nX
′
n
T
. (2.16)
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Here we divide byN−1 rather thanN to give the unbiased covariance estimate [Reichmann,

1962].

We now consider how these ensembles members are used in the assimilation algorithm.

Given an ensemble at time tn, the first step (Table 2.3, step 1) is to forecast each ensemble

member using the full non-linear model,

xf,i
n = Mn(x

a,i
n ) (2.17)

Using equations (2.13) and (2.16) we can calculate the the ensemble mean and forecast

error covariance matrix, Table 2.3, step 2. We then use these in the update steps, Table

2.3, steps 3 - 6.

We update the ensembles by first updating the ensemble mean. We define the matrix

containing the mapping of the ensemble perturbations into observation space, of size Np×

Nm, as

Y′f
n = HnX

′f
n, (2.18)

if Hn is linear and

Y′f
n = Yf

n − Ȳf
n, (2.19)

where Yf
n = Hn(X

′f
n) if Hn is non-linear. It is also possible to restrict the observation

operator to be linear and deal with the non-linearity using an augmented state [Evensen,

2003]. Using Y′f
n and the invertible matrix Sn = Y′f

nY
′f
n

T
+Rn of size (Np ×Np) we can

update the ensemble mean using,

x̄a
n = x̄f

n +Kn(yn −Hnx̄
f
n), (2.20)

where Kn is the Kalman gain Kn = X′f
nY

′f
n

T
S−1
n of size Nm ×Np.

We now move onto the ensemble perturbation matrix update, which also gives information

on the analysis error covariance matrix. If the observation operator is linear we wish to
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update the covariance matrix as the Kalman filter covariance update. That is

X′a
nX

′a
n
T
= X′f

n(I−Y′f
n

T
S−1
n Y′f

n)X
′f
n

T
. (2.21)

Rather than calculate this explicitly the analysis perturbations are calculated as

X′a
n = X′f

nΥn, (2.22)

where Υn is the square root of (I − Y′f
n

T
S−1
n Y′f

n). The choice of this square root is not

unique. We now consider the ETKF [Bishop et al., 2001] which describes one method of

calculating this square root.

2.3.2 The ensemble transform Kalman filter

The Ensemble transform Kalman filter (ETKF) makes use of the identity

I−Y′f
n

T
S−1
n Y′f

n = (I +Y′f
n

T
R−1

n Y′f
n)

−1, (2.23)

which can be verified by multiplying both sides by I + Y′f
n

T
R−1

n Y′f
n [Tippett et al.,

2003]. The ETKF can be applied by taking the singular value decomposition (SVD) of

Y′f
n

T
R−1

n Y′f
n = UnΛnU

T
n [Livings, 2005], where Un is an orthogonal matrix and Λn is a

diagonal matrix both of size Nm ×Nm. Substituting into (2.23) gives

I−Y′f
n

T
S−1
n Y′f

n = Un(I+Λn)
−1UT

n . (2.24)

This allows us to write the square root matrix as Υn = Un(I + Λn)
−
1
2UT

n . This is the

square root form that gives the unbiased ETKF [Livings et al., 2008]. This calculation of Υ

is used in the analysis perturbation update. Updated ensemble members are obtained by

adding the perturbations onto the ensemble analysis mean as in step 6 in Table 2.3. These

ensemble members are forecast and the steps of the scheme repeated for each observation

time. We summarise the ETKF algorithm in Table 2.3.
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The ETKF Algorithm [Bishop et al., 2001]

1. Forecast the analysis ensemble to obtain a background state at the next time.

xf,i
n+1 = Mnx

a,i
n

2. Calculate the ensemble forecast mean

x̄n = 1
N

∑N
i=1 x

i
n

and covariance

Pf
n = 1

N−1X
′f
nX

′f
n

T
,

where X′f
n is the ensemble forecast perturbation matrix.

3. Update the ensemble mean

x̄a
n = x̄f

n +Kn(yn −Hnx̄
f
n).

4. Calculate the square root matrix

Υn = Un(I +Λn)
−
1
2UT

n .

5. Update the ensemble perturbation matrix,

X′a
n = X′f

nΥn.

6. Add the ensemble perturbations to the ensemble mean,

Xa
n = X′a

n + X̄a
n,

to obtain the analysis ensemble.

Table 2.3: The ETKF algorithm.

2.3.3 Discussion

The main benefit from using any form of ensemble Kalman filter is that the scheme provides

estimates of the pdfs associated with the analysis. When forecast, the ensembles also give

information on the uncertainty in the forecast as they provide a Monte Carlo estimate

of the evolution of the pdf using the forecast model. The ensembles can also be used to

determine the background error covariance Pf
n at each time, and this helps reduce the costly

computations of the error covariance forecast and the error covariance update. However, to

obtain a good estimate for this flow dependent background matrix it is necessary to use a

sufficient number of ensembles otherwise the estimate of Pf is contaminated with sampling
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error. The number of ensemble members required increases as the size of the state increases.

In small dynamical systems it is possible to run the assimilation scheme with enough

ensemble members. However, for high dimensional systems it is too computationally costly

to run the assimilation scheme with all the required ensemble members. If too few samples

are used then it is likely that the ensemble will not be statistically representative of the

background error; this is known as undersampling. Undersampling can introduce a number

of other problems into the ensemble filtering process. To overcome undersampling and the

problems it introduces it is common to use the techniques of covariance inflation [Anderson

and Anderson, 1999] and localisation [Hamill et al., 2001]. Using these techniques allows

the EnKF to be used in large dimensional systems by reducing the number of ensemble

members required. In sections 2.3.4 and 2.3.5 we introduce the ideas of covariance inflation

and localisation.

Until recently most operational centres [Rabier et al., 2000, Rawlins et al., 2007, Gauthier

et al., 2007] have used 4D-Var. With the development of ensemble data assimilation the

potential to use the ensemble Kalman filter in NWP was shown [Lorenc, 2003]. As the

techniques have been developed that allow the EnKF to be used in large dimensional

systems their use operationally has emerged. Some operational centres [Buehner et al.,

2010, Miyoshi et al., 2010] are running both variational and ensemble methods as this allows

the ensemble methods to be developed and compared to current operational methods.

Hybrid ensemble-variational methods combining the best of the variational and ensemble

techniques are also being implemented [Clayton et al., 2012]. The use of ensemble data

assimilation would not have been possible, however, without the techniques of covariance

inflation and localisation, which are introduced in the following sections.

2.3.4 Covariance inflation

Two of the main problems introduced by undersampling are inbreeding and filter diver-

gence. Inbreeding is a term used describe the underestimate of the analysis error covariance

[Furrer and Bengtsson, 2007]. Filter divergence occurs when the analysis error distribution

moves away from the truth and this can be caused by underestimating the forecast error
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covariance. Both inbreeding and filter divergence can be overcome by inflating the vari-

ance of the forecast error covariance matrix. The method was introduced by Anderson and

Anderson [1999] and involves multiplying the forecast error covariance by a factor γ > 1.

Multiplying by this factor should correct for the underestimate of the covariance and as

γPf , rather than Pf , is used in the assimilation scheme there is more chance that the

analysis can be corrected using the observations as less weight is given to the background.

The size of the inflation factor will depend on a number of factors including the type of

filter and dynamical system used [Hamill et al., 2001]. However, covariance inflation does

not overcome all the problems associated with undersampling. We must also consider

covariance localisation.

2.3.5 Covariance localisation

Spurious long range correlations in the forecast error covariance matrix can also be caused

by undersampling. These spurious correlations can be removed using covariance locali-

sation [Hamill et al., 2001, Buehner and Charron, 2007]. Correlation localisation makes

use of the fact that generally the correlation between two points decreases as the distance

between the points increases. It is achieved by taking the Schur product of the correlation

matrix and a localizing function matrix. The localizing function matrix is a symmetric

positive definite correlation matrix with local support. The Schur product [Schur, 1911],

denoted A ◦B, is the element wise multiplication ((A ◦ B)ij = AijBij) of two matrices of

the same dimensions. Before applying covariance localalisation it is necessary to determine

a suitable localisation matrix. The localisation function must be chosen with an appro-

priate lengthscale such that nearby correlations are preserved. As the separation distance

increases the localisation function should decrease until it reaches zero.

The localised covariance matrix is determined by taking the Schur product of the localisa-

tion matrix, L, and general covariance matrix, C,

CL = C ◦ L. (2.25)
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The localised covariance matrix will be a symmetric positive definite matrix and the vari-

ance will remain unchanged. Due to the zero correlation in the localising function at long

range, the localised covariance matrix will contain no spurious long range correlations as

they are eliminated by the application of the Schur product.

Although we have introduced covariance inflation and localisation as techniques to over-

come problems in ensemble filters they can also be used in other areas of data assimilation.

There is also no restriction to applying these techniques only to Pf . It is possible to apply

covariance localisation any time a set of samples are used to generate a covariance matrix,

this is demonstrated later in Chapter 5.

2.4 Data assimilation diagnostics

We have introduced a number of different assimilation schemes. We now present two

diagnostics that an be used to show how well the schemes are performing.

2.4.1 Root mean squared error

To show how well an assimilation scheme is performing we consider the root mean squared

error (RMSE); this is directly linked to the 2-norm. The RMSE measures the average

magnitude of the error, again it requires knowledge of the truth and analysis state at

time t. In general the truth is not known, but it is available when twin experiments are

carried out. In this situation the RMSE is a useful diagnostic. When an ensemble DA

method is used, the ensemble mean is used to calculate the RMSE.

If the true solution is the vector xt of length Nm and the analysis state is the vector xa

then the RMSE is calculated by summing over the differences of the components in xt and

xa. That is

RMSE =

√

∑Nm

j=1(x
a
j − xt

j)
2

Nm

. (2.26)

The RMSE is a good diagnostic that allows us to determine how an assimilation scheme is
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performing. However, for ensemble methods it only gives us information on the ensemble

mean. For ensemble schemes the ensemble spread can be understood by considering the

rank histogram.

2.4.2 Rank histograms

As well as considering the RMSE we use another diagnostic known as the Rank Histogram

[Hamill, 2000]. Rank histograms are useful for diagnosing errors in the mean and spread

of the ensemble members and determining the reliability of the ensemble forecast.

Rank histograms are created by considering where the value of the observation at time tn

falls compared to the values of the forecast ensemble members at the same time. For a par-

ticular component of the model state, the values of ensemble members at time tn are sorted

into ascending order so that if x̃i are the ensemble members we have x̃1 ≤ x̃2 ≤ ... ≤ x̃N .

Using this ordering a set of bins covering the intervals (−∞, x̃1](x̃1, x̃2] . . . (x̃N−1, x̃N ](x̃N ,∞)

are created. The bin, also known as rank, in which the observation at the particular point

at time tn falls is noted. This value is tallied over all times. The resulting tally is plotted

and this is known as the rank histogram.

If the ensemble is statistically representative there is an equal probability that the ob-

servation, y, will fall into any of the N + 1 ranks. This implies that the resulting rank

histogram should have bars of equal height (Figure 2.1 (a)). Histograms that are not

uniform can give us information on the quality of the ensemble. Many of the common

histograms that are produced from ensemble forecasts are discussed in Hamill [2000]. Four

of the most common histograms obtained are shown in Figure 2.1. A U-shaped histogram

(Figure 2.1 (b)) suggests a possible lack of variability in the particle sample, whereas an

excess of variability overpopulates the central ranks (Figure 2.1 (c)). Having the left half of

the histogram overpopulated (Figure 2.1 (d)) suggests that particles are positively biased,

overpopulation in the right half implies the particles are negatively biased. However, these

are not the only possible reasons for these types of behaviour.
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(a) (b) (c) (d)

Figure 2.1: Common rank histograms obtained. The rank histograms show the number of
times the observation falls in each bin. Plots from Hamill [2000]

2.5 Summary

In this chapter we have introduced the concept of data assimilation; a method that com-

bines models and observations to provide a best guess of the true state. The notation for

dynamical systems and data assimilation that will be used throughout this thesis has been

introduced. We have then given a brief overview of some different types of sequential and

variational data assimilation discussing both their benefits and problems. The ensemble

transform Kalman filter has been discussed in greater detail as we use this method in

Chapter 7 in the thesis. Ensemble filters suffer from a number of problems and we have

discussed two methods, covariance inflation and localisation, that can be used to overcome

these. Some diagnostics for data assimilation are also considered. We have seen how to

calculate the RMSE and the rank histogram. How to interpret the rank histogram has

also been discussed. In this chapter we have seen that there are various errors that must

be accounted for in data assimilation. One of these errors is forward model error. We now

discuss this important error in greater detail in Chapter 3.
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Chapter 3

Forward Model and

Representativity Error

In this chapter we give a mathematical definition of forward model error. We consider

how forward model and representativity errors are currently treated in data assimilation

schemes. We then go on to consider existing methods for calculating the observation error

covariance matrix and for estimating representativity error. We describe two of these

methods, which we will use in the thesis, in detail.

3.1 Defining representativity error

For a data assimilation scheme to produce an optimal estimate of the state the error

covariances must be well understood and correctly specified. Although in practice many

assumptions are violated and the analysis provided by the assimilation is far from optimal,

it is still desirable to have good estimates of the covariance matrices. Therefore it is

important that we understand the sources of error that are represented in the observation

error covariance matrix.

One form of error, ǫIn, contains information on the instrument error, one describes the

error in the observation operator, and a third contains information on the representativity
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error, also known as representativeness or representivity error. We follow Daley [1993,

1991] and define the representativity error as the error that arises when the observations

resolve spatial scales that the model cannot. The representativity error and the error in

the observation operator can be combined as a single error known as the forward model or

forward interpolation error [Lorenc, 1986] ǫHn . In more recent literature [Cohn, 1997, Liu

and Rabier, 2002, Janjic and Cohn, 2006], the term representativity error has been used

to describe the forward model error. However, we use the definition given by Daley [1991]

as in this work we focus on the error caused by the misrepresentation of small scales. The

instrument error is determined for specific instruments under a set of test conditions by the

instrument manufacturer or from in-orbit calibration data for satellite measurements. Less

is known about the forward model error; however, it has been suggested that the forward

model error is larger than the instrument error for observations of fields that are highly

variable such as moisture and wind [Mènard et al., 2000]. As it is important to have good

estimates of the covariance matrices, it is important that we understand forward model

error.

Forward model error,

ǫ
H = yt −H(xt), (3.1)

is the difference between the noise free observation vector, yt, of lengthNp and the mapping

of the true state, xt, into observation space using the possibly non-linear observation

operator H. The noise free observation vector is a theoretical construct that represents an

observation measured by a perfect observing instrument, i.e. with no instrument error. It

is related to the actual measurement via the equation

y = yt + ǫ
I , (3.2)

where y is the observation vector and ǫ
I is the instrument error. The forward model error

contains contributions from two error sources. Errors can be introduced due to the mis-

specification of H; these include modeling errors such as the misrepresentation of gaseous

constituents in radiative transfer model, parameter errors caused by preprocessing of the
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data such as cloud clearance for radiances, and errors due to the approximation of a con-

tinuous function as a discrete function. The second contributor to forward model errors are

the errors of representativity, the errors introduced when the observations resolve spatial

scales that the model cannot. These errors can be accounted for in a data assimilation

scheme by considering the covariance of the forward model error E[ǫHǫ
HT

] = RH . We see

that it makes sense to include the statistics of forward model error in the observation error

covariance matrix R = RH +RI , where RI = E[ǫIǫI
T
] is the instrument error covariance

matrix. Not all methods that take account of representativity error assume that this is

where the forward model statistics should be included and we will briefly discuss these

later in this chapter in section 3.3. However, we do assume that forward model errors are

included in R in the work carried out in this thesis. Now we have an understanding of

what representativity errors are, we consider how they are currently treated in assimilation

schemes.

3.2 Current treatment of forward model error

Currently forward model error is rarely treated explicitly within data assimilation systems.

Comparatively little is known about the structure of forward model error, however, work

from Stewart [2010] and Weston [2011] has shown that the forward model errors may be

correlated. Until recently it has been assumed that it is too expensive to include correlated

observation error matrices in assimilation schemes. Due to the cost of using correlated er-

rors and lack of understanding about forward model errors, a diagonal observation error

covariance matrix is often used. Currently with a diagonal matrix R and a correlated

matrix B, all the scale dependent filtering and spreading of the observation information is

accomplished by the matrix B [Seaman, 1977]. However, when using a correlated matrix

R the correlations between the model space and observations are still determined by BHT ,

but the innovation vector will be rescaled and rotated and scaled differently, resulting in

a different analysis. While it has been too costly to use correlated R matrices it has been

necessary to account for the unknown forward model in different ways. Variance inflation

[Hilton et al., 2009, Whitaker et al., 2008] is used to inflate the variance of the instrument
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error in an attempt to account for some of the unknown forward model error and absent

correlation structure. The effect of correlated error is also reduced by using techniques

such as observation thinning [Lahoz et al., 2010] or superobbing [Daley, 1991]. Observa-

tion thinning is a method where the number of observations in a given area is reduced. In

its most basic form observations are thinned by discarding observations until the remain-

ing observations are at a desired density. However, thinning can be more sophisticated so

more observational data is used, one such method is superobbing. Superobbing thins the

data by averaging a group of observations in a given area and using the average of these

observations as a single observation. The idea behind reducing the density of observations

is that observations further apart are less likely to have correlated errors, therefore with

fewer observations the assumption of a diagonal observation error covariance is more valid

[Liu and Rabier, 2002, 2003, Dando et al., 2007]. These methods help reduce the correla-

tions in the observation errors; however, they also reduce the amount of useful information

that can be extracted from the observations. To make the most of the observational data

available the correlated errors must be accounted for in data assimilation. Efforts are being

made to find methods of reducing the cost of using correlated observation error matrices

[Stewart et al., 2009, Stewart, 2010, Healy and White, 2005]. The full observation error

correlation matrix may also be poorly conditioned and this may affect the minimisation

in the assimilation, so the preconditioning of these correlated error matrices is also being

considered [Weston, 2011]. Once these methods are in place it will be important to have

accurate estimates of the covariance matrices, as these are required to obtain the optimal

estimate from any data assimilation system [Houtekamer and Mitchell, 2005]. It is there-

fore important to understand how to estimate forward model error. Once forward model

error can be estimated, it will need to be included in the data assimilation scheme. We

will now consider how forward model error could be accounted for in a data assimilation

scheme.
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3.3 Accounting for representativity error

We showed in section 3.1 that one way to include forward model error in a data assimilation

scheme is in the observation error covariance matrix R, but there are also other suggestions

on how forward model error could be accounted for. We shall now discuss some of the

methods that exist for calculating and accounting for forward model error. Most of the

methods that exist produce time independent estimates of forward model error; however,

methods that produce time dependent estimates do exist. Some of the methods we describe

do not directly calculate the forward model error, but give an estimate of the observation

error covariance matrix R. As R = RH +RI , if the instrument error is known, then an

estimate of the forward model error covariance can be calculated. The instrument error is

often supplied by the instrument manufacturer, or in the case of satellite instruments may

be calibrated by the instrument itself.

Many of the methods that exist for estimating forward model error give a time independent

estimate. The forward model error covariance, RH , or the observation error covariance

matrix R can be calculated outside of the data assimilation scheme. This calculated

observation error covariance matrix R = RH + RI is then used as a fixed matrix in

the assimilation scheme. The statistical samples used in the calculation are taken over a

large period of time. Therefore there is an implicit assumption that the errors are not

changing over time. This assumption is invalid as in theory it has been shown that the

representativity error is time and state dependent [Janjic and Cohn, 2006]. We show later

in Chapter 6 that representativity error is dependent on synoptic situation. It will be larger

when the field contains more smaller scale features, and smaller when the field is dominated

by large scale features. It is likely that samples taken over a period of time will contain

samples where the representativity error is large and some where the representativity error

is small. Using these samples gives a time averaged forward model error which when used

in an assimilation scheme will overestimate the representativity error when there are many

large scale features, therefore not trusting the observations enough. When the field contains

small scale features the time independent forward model error will be an underestimate,

therefore trusting the observations too much. The assumption that representativity error

26



is time independent is invalid; however, these methods have the benefit that they are

calculated outside the data assimilation scheme. This means that no extra computational

cost is added to the assimilation, and as much computation as is required can be used to

calculate the forward model error. We now discuss some of the methods that exist for

estimating time independent forward model error.

We now consider methods that have been used to calculate the observation error covariance

matrix R. One of the first, and most commonly used methods used to calculate R is the

Hollingsworth-Lönnberg method [Hollingsworth and Lönnberg, 1986]. This method was

originally introduced for estimating the background error assuming a known observation

error but has since been used for the estimation of the observation error covariance matrix.

The method makes use of the expected value of the innovation statistics and the assumption

that background errors are correlated while observation errors are not. Given that the

background errors (equation (2.3)) and observation errors (equation (2.2)) are uncorrelated

the expected value of the background innovations, db = y −H(xb), is

E[dbdbT ] = E[(y −H(xb))(y −H(xb))T ],

≈ HBHT +R. (3.3)

The result of this can be plotted and from this the error can be split into the correlated

background error covariance matrix B and the uncorrelated observation error covariance

matrix R [Bormann and Bauer, 2010]. This was an appropriate method to use when

uncorrelated observation error covariances were required. But as efforts are being made

to account for correlated errors a method that produces correlated estimates is required.

Such a method was proposed by Desroziers et al. [2005]. The Desroziers diagnostic, like

the Hollingsworth-Lönnberg method, makes use of the innovation statistics. However,

rather than just using the background innovation, the Desroziers diagnostic also uses the

innovation of the analysis states da = y−H(xa). Under the assumption that the covariance

matrices R and B used to calculate the analysis are correct, taking the the expectation

of the cross product of the analysis and background innovations gives an expression for

calculating the observation error covariance matrix, E[dadbT ] = R. The derivation of
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this is given later in Section 3.3.2. It is suggested that the diagnostic can be used as

a consistency check after the analysis, but more recently it has been used to estimate a

matrix R that is then fed back into a scheme to iteratively improve the analysis. We use

this method in the thesis, so further details are given in section 3.3.2.

As well as estimating the full observation error covariance matrix, R, there are also meth-

ods that have been developed that allow the forward model error covariance RH to be

calculated individually. One of these methods was first defined by Daley [1993] and then

used by Liu and Rabier [2002]. In this method it is assumed that the observations can

be written as the mapping of a high resolution state into observation space, and that the

model state is a spectral truncation of this high resolution state. This method is used

within the thesis and is explained in more detail in section 3.3.1.

Other methods have attempted to calculate just the representativity error using a set of

observations. The work by Oke and Sakov [2007] takes a set of high resolution observations,

and then averages these observations to the resolution of the model. This averaged data

is then interpolated back to the high resolution grid and the difference between the true

observations and this averaged data is taken to be the representativity error. Although

providing promising estimates the method suffers from a number of limitations that make

it impractical as a general method to calculate representativity error. The method requires

high resolution observations that resolve all scales of variability; if not all these are resolved

then the representativity error will be underestimated. The observations must also be

interpolated to the model grid which may lead to an additional source of error.

As well as methods that give time independent estimates, there have also been attempts

to estimate time dependent representativity error. This is important as forward model

error is dependent on the true state. Time dependent estimates must be calculated within

the assimilation scheme, which can cause problems due to the computational cost. Jan-

jic and Cohn [2006] suggested a different approach where the forward model error is not

calculated explicitly, but is accounted for in an augmented Kalman filter. The data as-

similation scheme they developed accounts for the representativity error and allows the

unrepresented scales to influence the scales resolved by the model. However, this method
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is computationally costly and further approximations are needed due to the presence of

unknown correlations between the resolved and unresolved scales.

More recent work by Li et al. [2009] has used the Desroziers diagnostic embedded in a local

ensemble transform Kalman filter to give an estimate of the observation error variances.

At each analysis step the Desroziers diagnostic is applied to a subset of observations to

give a value for the observation error variance. This is iterated until the variance converges

to what is assumed to be the correct static observation error matrix. This method has

returned to the assumption of a diagonal matrix R, and also assumes that each observation

had the same associated error variance and that the true observation error variance is static.

This work was extended in Miyoshi et al. [2013] to include a correlated R matrix. In this

framework it is possible to average over a subset of observations as all observations have

the same variance. However, as forward model error is time and state dependent averaging

over observations may also be a poor assumption. In Chapter 7 we develop a method with

similar ideas as in Li et al. [2009], but remove the assumptions of the diagonal R, as in

Miyoshi et al. [2013], and the need to average over a subset of observations.

In this thesis we consider two methods for calculating representativity error. One is a

method developed by Daley [1993] and then used by Liu and Rabier [2002]. This method

can be used for performing idealised experiments to calculate representativity error on a

periodic 1D domain. We also develop our own method for calculating representativity error

that makes use of the Desroziers et al. [2005] diagnostic. We now present in more detail

the Daley [1993] method and the Desroziers et al. [2005] diagnostic.

3.3.1 The Daley [1993] method

We first present the method defined by Daley [1993] and Liu and Rabier [2002]. In this

method it is assumed that the observations can be written as the mapping of a high reso-

lution state into observation space, and that the model state x is a truncation of this high

resolution state. This method also allows us to correctly specify the observation operator so

our forward model errors consist only of errors of representativity. The assumptions made
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by this method make it more suitable for calculating representativity error in idealised

experiments on a 1D periodic domain.

We restrict our calculations to the 1D domain of length l = 2aπ, where a is a constant

that determines the length of the domain, and assume that the observation operator H is

linear. It is assumed that the truth can be approximated by a high resolution state. The

high resolution state xt(r) at position r can be expressed as a Fourier series truncated at

wave number Kt. At N t points on the physical domain, −aπ ≤ r ≤ aπ, the function values

xt(rj), j = 1 . . . N t, can be expressed in matrix form as

xt = Ftx̂t (3.4)

where x̂t is a vector of length M t = 2Kt + 1 of spectral coefficients and Ft is a Fourier

transform matrix of dimension N t × M t. In this work a number of Fourier matrices are

used to calculate forward model error. A Fourier matrix F of size m×n has elements

Fj,k = exp(2ikjπ
m

), (3.5)

where j = 1 . . . m and k = 1 . . . n.

The model representation of the actual state is a wave number limited filter of the high

resolution state, x̂ = Tx̂t where T is a truncation matrix that truncates the full spectral

vector x̂t to the spectral vector x̂. The model representation of the actual state can be

expressed as

x = Fmx̂, (3.6)

where x̂ is a vector of length Mm = 2Km + 1 of spectral coefficients and Fm is a Fourier

transform matrix of dimension Nm ×Mm with elements defined as in equation (3.5) but

with no terms with wave number higher than Km. The spectral coefficients for the model

representation of the actual state are the Fourier spectral coefficients from −Km to Km,

Km < Kt.
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We define the observations by

y(ro) =

∫ aπ

−aπ

x(r)w(r − ro)dr. (3.7)

Here the observations are defined as if they have been measured at point ro by a remote

sensing instrument. The choice of the weighting function w(r) determines the type of

observing instrument. Writing equation (3.7) in spectral space allows us to write the Np

equally spaced error free observations as

yt = FpWtx̂t, (3.8)

where Fp is a Np ×M t Fourier transform matrix and Wt is a M t ×M t diagonal matrix

with elements ŵk, the spectral coefficients of the weighting function w(r). FpWt is an

exact observation operator in spectral space. The measurement vector y is given by,

y = FpWtx̂t + ǫ
I , (3.9)

where ǫ
I is the instrument error.

The model representation of the observations is given by,

ym = Fp
mWmTx̂t, (3.10)

where Fp
m is the Np×Nm Fourier matrix with elements defined as in equation (3.5). Wm

is a Mm×Mm diagonal matrix with elements ŵk, the spectral coefficients of the weighting

function w(r). This method assumes that the low resolution model is a truncation of the

high resolution model. This allows forward model error to be considered in the perfect

model case.

To obtain an equation for forward model error we substitute the definitions of observations,

equation (3.8), and model representation of the observation, equation (3.10), into equation

(3.1) to give,

ǫ
H = FpWtx̂t − Fp

mWmTx̂t. (3.11)
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The expectation operation is applied to give the forward model error covariance matrix

E[ǫHǫ
H∗

] = RH ,

RH = E[(FpWtx̂t − Fp
mWmTx̂t)(FpWtx̂t − Fp

mWmTx̂t)∗]

= (FpWt − Fp
mWmT)Ŝ(FpWt − Fp

mWmT)∗, (3.12)

where Ŝ = E[x̂tx̂t∗] is the spectral covariance matrix for the high resolution state and

∗ denotes the complex conjugate transpose. The spectral covariance of the high resolu-

tion state, Ŝ, contains information on how different wave numbers are related. It can be

calculated using

Ŝ = Ft∗SFt, (3.13)

where Ft is a Fourier transform matrix and S = E[xtxt∗] is the covariance matrix of the

high resolution state in physical space.

We now have an equation that can be used to calculate the forward model error covariance

matrix. To use the method it is necessary to know the weighting matrices and the spectral

covariance matrix. The spectral covariance matrix depends on the true state and the

weighting matrix on the pseudo-observations. These differ for specific experiments so will

be defined later when required.

This method is useful as it allows the forward model error to be calculated explicitly. It also

has the advantage that the error in the observation operator can be removed, allowing the

representativity error to be understood. However, the method assumes that the observation

operator is linear and gives only a time independent estimate of forward model error. The

other drawback to the method is that it makes the assumption that the low resolution

model data is a truncation of the high resolution model data and that the data is given

on a periodic domain. This assumption is not necessarily valid as the solution to a low

resolution model may evolve differently from the solution of the high resolution model and

the domain may not be periodic.

In Chapter 7 we develop a a more general method that can be used to calculate repre-

sentativity error and forward model error. The method makes use of the Desroziers et al.
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[2005] diagnostic which we now explain in greater detail.

3.3.2 The Desroziers diagnostic

The Desroziers et al. [2005] diagnostic, like the Hollingsworth-Lönnberg method, makes use

of the innovation statistics. However, rather than just using the background innovation

db = y − H(xb), the Desroziers diagnostic also uses the innovation of the analysis states

da = y − H(xa). By making the tangent linear hypothesis on the observation operator

and using equations (2.2) and (2.3) the background innovation can be written in terms of

the background and observation errors,

db = y −H(xb) = y −H(xt) +H(xt)−H(xb),

≈ ǫ
o +H(xt − xb),

≈ ǫ
o +Hǫ

b, (3.14)

whereH is the linearised version of H. By using the analysis equation, equation (2.9), from

the BLUE and again assuming the tangent linear hypothesis on the observation operator

allows the innovations of the analysis to be written as,

da = y −Hxa,

= y −H(xb +K(y −Hxb)),

= y −H(xb +Kdb),

≈ db −HKdb,

= (I−HK)db,

= R(HBHT +R)
−1

db. (3.15)

Taking the cross product of the analysis and background innovations and assuming that

the background and observation errors are uncorrelated results in

dadbT = R(HBHT +R)−1dbdbT . (3.16)
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Then taking the expected value of this cross product gives

E[dadbT ] = R(HBHT +R)−1E[dbdbT ],

= R(HBHT +R)−1(HBHT +R),

= R. (3.17)

This is valid if the observation and background errors used in the gain matrix, K, used

to calculate the analysis, are the exact observation and background errors. However,

Desroziers et al. [2005] has shown that a reasonable estimate of R can be obtained even if

the R and B used in K are not correctly specified. It has also been shown that the method

can be used as an iterative method to estimate R [Mènard et al., 2009, Desroziers et al.,

2009]. The Desroziers diagnostic only provides information on the complete observation

error covariance matrix. Therefore it is necessary to subtract the known instrument error

to calculate the forward model error.

3.4 Summary

In this chapter we have introduced the ideas of forward model error and representativity

error and given a mathematical description of forward model error. We have seen that cur-

rently forward model error is rarely treated explicitly in data assimilation schemes. Instead

the techniques of covariance inflation and superobbing are used so the observation error

covariance matrix can be assumed diagonal. As data assimilation methods evolve it will

be important to have accurate estimates of the covariance matrices. We have considered a

number of methods that have been developed to estimate the observation error covariance

matrix R, as well as those that give both time independent and dependent estimates of

forward model errors. We have described in further detail the methods used in this thesis:

A method proposed by Daley [1993] and then Liu and Rabier [2002], and the Desroziers

diagnostic. We next use the Daley [1993] method to help us understand forward model

error.
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Chapter 4

Using the Daley [1993] Method

In the previous chapter we described a method introduced by Daley [1993] for calculating

forward model and representativity error in idealised experiments on a 1d periodic domain.

The method uses observations defined using weighting matrices, and requires the spectral

covariance for the true state of the system. In this chapter we describe how these weighting

matrices can be calculated for three specific cases. We also consider how in the general

case the spectral covariance matrix can be calculated. We also consider the scheme in more

detail to see if it is possible to obtain any theoretical results that explain the structure of

representativity errors.

4.1 Defining the weighting matrices

To calculate the representativity error using the Daley [1993] method we require high

resolution observations. We expect representativity error to depend on observation type.

Different observation types are defined in equation (3.7), with the choice of weighting

function determining the observation type. The weighting function can be represented

using a weighting matrix. We choose the weighting matrices in (3.12) to correspond to

different types of observing instruments. The elements of the weighting matrix are the

spectral coefficients of the weighting function w(r) which is used to define observations

using equation (3.7). Pseudo-observations are created from high resolution data of the
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true state using three weighting functions. The weighting functions used here are the same

as those used in Liu and Rabier [2002]. Two of the weighting functions represent remotely-

sensed observations. One follows a uniform curve where the weighting function is given

by

w(r) =















0 if |r| > L0

2

1
L0

if |r| ≤ L0

2

(4.1)

and its spectral form is given by,

ŵk =















1 if k = 0

sin(
kL0

2a )

kL0

2a

if k 6= 0

. (4.2)

The other weighting function is calculated using a Gaussian curve where the weighting

function and its corresponding spectral form are given by,

w(r) =
exp(−4r2

L2
o
)

∫ aπ

−aπ
exp(−4r2

L2
o
)dr

, (4.3)

ŵk = exp(
−k2L2

o

16a2
). (4.4)

The lengthscale parameter, Lo, in both the uniform and Gaussian weighting functions must

be chosen to give the desired lengthscale for the observation.

We plot in Figure 4.1 both the uniform and Gaussian weighting functions at different

lengthscales.

The different weighting functions give different ways to average the grid point data. The

lengthscale determines how many grid points are averaged over.

We also consider in-situ measurements. For these direct observations the w(r) term in

equation (3.7) becomes a Dirac delta-function. In this case the diagonal elements ŵ of the

weighting matrix are all unity.
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Figure 4.1: Weighting functions used to define pseudo-observations. Dotted lines, Uni-
form (top hat) function. Solid line, Gaussian function. Red: lengthscale Lo = 4.0 Blue:
lengthscale Lo = 2.0

Now we have defined the weighting matrices we are left to determine the spectral covariance

matrix Ŝ.

4.2 Calculating the true correlation matrix

The spectral covariance of the true state, Ŝ, contains information on how the state at one

location is related to the state at another location.

From equation (3.13) we see that it is possible to calculate the spectral covariance using

the covariance of the truth. This matrix S can be calculated from a number of samples,

xi, of the truth using.

S =
1

n− 1

n
∑

i=1

(xi − x̄)(xi − x̄)T (4.5)

where xi is the ith sample vector and x̄ is a vector of the mean of the samples.

It is also useful to consider S = DCD where D is a diagonal matrix of standard deviations

dii and C is a correlation matrix.
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We can calculate the standard deviations using,

dii =

√

√

√

√

1

n− 1

n
∑

j=1

(xji − x̄j)2 (4.6)

The correlation matrix can be calculated from the covariance matrix using,

Cij =
S(i, j)

√

S(i, i)S(j, j)
. (4.7)

As these matrices are calculated using a number of samples it is likely that they will

contain sampling error. The Daley [1993] method requires the matrix to be isotropic and

homogeneous, as this leads to a diagonal Ŝ matrix, so it is likely that the sampling error will

have to be compensated for. One possibility is to use covariance localisation, as described

in Section 2.3.5.

Now we have shown how the weighting and spectral covariance matrices can be calculated

we next show some theoretical results relating to the Daley [1993] method.

4.3 Theoretical results

We now show new results relating to the correlation structure and variance of representa-

tivity error. We show that the representativity error variance is independent of the number

of available observations. We also show that the correlation structure of representativity

error is dependent not on the number of observations, but the distance between them.

We do this by considering the calculation of the elements of the representativity error

covariance matrix.

Representativity error is calculated using equation (3.12). We summarise the elements of

the matrices below,

• Fp with j = 1 . . . p and k = 1 . . .M . Elements defined as in equation (3.5).

• Fp
m with j = 1 . . . p and k = 1 . . .Mm. Elements defined as in equation (3.5).
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• Wt with j = 1 . . .M and k = 1 . . .M . Nonzero elements defined using a weighting

function such as in equations (4.2) and (4.4) when j = k, 0 otherwise.

• Wm with j = 1 . . .Mm and k = 1 . . .Mm. Elements ŵj when j = k, 0 otherwise.

• Ŝ with j = 1 . . .M and k = 1 . . .M . Elements ŝjj when j = k, 0 otherwise.

• T with j = 1 . . .Mm and k = 1 . . .M . Elements 1 when j = k and k ≤ M , 0

otherwise.

For convenience we define A = FpWt, B = Fp
mWmT and C = A−B. We begin by

calculating the elements of A and B. As many of the elements are zero we find that

Aj,k = F
p
j,kW

t
j,j and Bj,k = F

p
mj,kW

m
j,j when k ≤ Mm, 0 otherwise.

Next we calculate elements of C = A−B.

Cj,k =











exp(2ikjπ
p

)ŵj Mm < k ≤ M

0 Otherwise
(4.8)

Now we calculate RH = CŜC
∗
. Elements of E = CŜ are Ej,k = Cj,kŜk,k. Finally we

calculate RH = EC∗, where ∗ is the complex conjugate transpose and .̄ is the complex

conjugate,

RH
j,k =

M
∑

l=0

Ej,lC
∗
l,k,

=

M
∑

l=1

Cj,lŜl,lC̄k,l,

=

M
∑

l=1

exp(2ijlπ
p

)ŵlŝlŵl exp(
−2iklπ

p
). (4.9)

We now show some theoretical results using (4.9).

We first show that the variance does not change when p changes, which is the case when

j = k.
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Theorem 4.3.1. The variance of representativity error is independent of the number of

observations

Proof. We consider the variance of representativity error, that is the elements when j = k

RH
j,j =

M
∑

l=1

exp(2ijlπ
p

)ŵlŝlŵl exp(
−2ijlπ

p
),

=

M
∑

l=1

ŵlŝlŵl. (4.10)

This does not depend on p and hence we do not expect the variance to change when we

use different numbers of observations to calculate representativity error.

We now show that the correlation structure depends only on the distance between obser-

vations and not the number of observations.

Our model has Nm grid points separated by a spacing ∆x and we have p observations.

The distance between consecutive observations is ∆p = (Nm∆x)
p

.

Theorem 4.3.2. The correlation structure of representativity error depends not on the

number of observations but the distance between them.

Proof. Suppose we have two observations separated by a distance d and assume that these

are observation j and observation k. Then we have

d = (j − k)∆p

=
(j − k)(Nm∆x)

p
, (4.11)

and hence

(j − k)

p
=

d

Nm∆x
(4.12)

Substituting this into equation (4.9) we obtain
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RH
j,k =

M
∑

l=1

ŵlŝlŵl exp(
2ilπ(j−k)

p
),

=

M
∑

l=1

ŵlŝlŵl exp(
2ilπd
Nm∆x

). (4.13)

Hence the correlations depend only on the distance between the observations and not the

number of observations.

4.4 Summary

In this chapter we have described how we calculate the weighting matrices and the spectral

covariance matrix that are required to calculate representativity error using the method

defined by Daley [1993]. We have defined the weighting matrices, identity, uniform and

Gaussian, that correspond to three different types of observations. We have also discussed

how the covariance of the truth can be calculated statistically. We then presented some

new theoretical results related to the Daley [1993] method. We showed that the variance of

representativity error does not change when calculated with different numbers of observa-

tions. We also showed that the correlation structure of the representativity error depends

only on the distance between observations and not the number of observations available.

We now apply this method to calculate representativity and forward model error for the

Kuramoto-Sivashinsky equation.
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Chapter 5

Representativity Error for the

Kuramoto-Sivashinsky Equation

In this chapter we use the Daley [1993] method to calculate forward model error. We hope

to gain an understanding of the structure of forward model error and representativity error

and how it changes under different circumstances. To help us understand representativity

error we consider the Kuramoto-Sivashinsky (KS) equation, a non-linear partial differential

equation (PDE). We start by introducing the KS equation and describing the numerical

scheme we use to solve it. We then calculate the forward model error for the KS equation.

We consider experiments where the error is a combination of errors in the observation

operator and unresolved scales. However, as the Daley [1993] method allows us to specify

a correct observation operator we are also able to consider the case where the forward

model error consists only of representativity error. We analyse these results and use the

theoretical results given in section 4.3 to help us understand the forward model errors and

representativity errors.
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5.1 The Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation,

ut = −uux − uxx − uxxxx, (5.1)

a non-linear, non-dimensional PDE where t is time and x is a space variable, was proposed

by Kuramoto [1978] and independently by Sivashinsky [1977] to model the non-linear evo-

lution of instabilities in flame fronts. The equation produces complex behaviour due to

the presence of the second and fourth order terms. The second order term has a desta-

bilising effect as it injects energy into the system whereas the fourth order hyperviscous

damping term has a stabilising effect. The non-linear term transfers energy from the low

to high wavenumbers. The equation can be solved on both bounded and periodic domains

and when this domain is sufficiently large the solutions exhibit multi-scale and chaotic

behaviour [Gustafsson and Protas, 2010, Egúıluz et al., 1999]. This chaotic and multi-

scale behaviour makes the KS equation a suitable low dimensional model that represents

a complex fluid dynamic system. The KS equation has been used previously for the study

of state estimation problems using both ensemble and variational methods [Protas, 2008,

Jardak et al., 2000] and the multi-scale behaviour makes it particularly suitable model

for the study of representativity error. There is no explicit solution to the KS equation,

therefore it must be solved numerically. We now consider the numerical solution of the KS

equation.

5.1.1 Numerical solution of the KS equation

Kassam and Trefethen [2005] have previously used the KS model to demonstrate how

existing numerical methods can be modified to solve stiff non-linear PDEs. We now describe

the method proposed in Kassam and Trefethen [2005] as we use it to solve the KS equation.

We consider the solution on a periodic domain as it allows us to simplify the solution by

solving in Fourier space.
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We consider a PDE of the form,

ut = Lu+N (u, t), (5.2)

where L is a linear operator and N is a non-linear operator. A system of ODEs can be

obtained by discretising the spatial part of the PDEs,

ut = Lu+N(u, t). (5.3)

In the form of (5.3) we can write the a semi-discreet version of the KS equation in Fourier

space as

ût = (Lû)(k) +N(û, t), (5.4)

where

(Lû)(k) = (k2 − k4)û(k), (5.5)

and

N(û, t) = N(û) =
−ik

2
(F ((F−1(û))2)). (5.6)

In this form the equation can be solved using an exponential time differentiating Runge-

Kutta 4 (ETDRK4) numerical scheme [Cox and Matthews, 2000]. The scheme is given in

equations (5.7) to (5.10).

an = e
Lh
2 un + L−1(e

Lh
2 − I)N(un, tn), (5.7)

bn = e
Lh
2 vn + L−1(e

Lh
2 − I)N(an, tn + h

2 ), (5.8)

cn = e
Lh
2 an + L−1(e

Lh
2 − I)(2N(bn, tn + h

2 )−N(un, tn)), (5.9)
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un+1 = eLhun + h−2L−3{[−4− Lh+ eLh(4− 3Lh+ (Lh)2)]N(un, tn)

+ 2[2 + Lh+ eLh(−2 + Lh)](N(an, tn + h
2 ) +N(bn, tn + h

2 ))

+ [−4− 3Lh− (Lh)2 + eLh(4− Lh)]N(cn, tn + h)}. (5.10)

Kassam and Trefethen [2005] were aware that this scheme suffers from numerical instability.

This numerical instability is due to the terms in square brackets in equation (5.10). These

coefficients are higher order equivalents of the function

g(z) =
ez − 1

z
, (5.11)

which for small values of z sufferers from cancellation error. To help reduce instability

Kassam and Trefethen [2005] introduce a new way to approximate the terms in the form

of (5.11), that makes use of complex analysis.

Their method evaluates (5.11) using a contour integral, the contour being in the complex

plane, enclosing z and being well separated from 0. The contour Γ is chosen to be a circle

of radius one, centred at z. Cauchy’s integral formula [Nevanlinna, 1969],

f(z) =
1

2πi

∫

Γ

f(t)

t− z
dt. (5.12)

is used to integrate over the contour. By first substituting equation (5.11) for f(t) and

then the choice of Γ, t = z + eiθ, into (5.12) we obtain,

f(z) =
1

2πi

∫

Γ

et − 1

t(t− z)
dt

=
1

2πi

∫ 2π

0

(ez+eiθ − 1)ieiθ

(z + eiθ)eiθ
dθ

=
1

2π

∫ 2π

0

(ez+eiθ − 1)

z + eiθ
dθ (5.13)
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This contour integral can now be approximated using the periodic trapezoid rule [Trefethen,

2000]

f(z) ≈ IN =
2π

N

N
∑

j=1

f(θj), (5.14)

where θj =
jπ
N
. The approximation of f(z) is now

f(z) ≈
1

N

N
∑

j=1

(ez+e
iθj

− 1)

z + eiθj
. (5.15)

This is just the mean of the function f(z) evaluated at a number of different points around

the circular contour. It is suggested that 32 points around the circle are sufficient to

approximate this integral well, the number of points required is further reduced due to the

±i symmetry. To approximate f(z) using (5.15) it is sufficient to consider 16 points in

the upper half plane and take the real part of the result. This contour integral method

approximates solutions to equations of the form in (5.11) well and reduces the numerical

instability of the scheme.

The ETDRK4 scheme is fourth order accurate in time and spectrally accurate in space. We

wish to show that the scheme converges as expected when used to solve the KS equation

and we use code provided by Kassam and Trefethen [2005] to do this.

5.1.1.1 Convergence of the ETDRK4 scheme

As there is no analytic solution to the equation we show convergence by taking a high

resolution run of the code to be our truth. We then define the error to be the difference

between this truth and a low resolution run.

To prove convergence in time we first create a truth run. We consider the solution to this

equation on the periodic domain 0 ≤ x ≤ 32π from initial conditions u = cos( x
16 )(1 +

sin( x
16 )), and we use Nm = 256 spatial points and a time step ∆t = 0.015. We then

calculate the error from lower temporal resolution runs. For these lower resolution runs we

fix the number of spatial points to Nm = 256 and vary the time step between ∆t = 0.015

and ∆t = 0.5. For convergence in space we use a truth run where the number of spatial
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points is Nm = 1024 and the time step is ∆t = 0.03. For the low spatial resolution runs we

fix the time step to ∆t = 0.03 and vary the number of spatial points between Nm = 512

and Nm = 64 to show the spectral convergence. We plot the L∞ norm of the error against

the time step and the log of the L∞ norm of the error against the number of spatial points

to show convergence. The time and space convergence plots are shown in figures 5.1(a)

and 5.1(b) respectively.
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Figure 5.1: Spatial (a) and temporal (b) convergence of the ETDRK4 scheme

We see from Figure 5.1(a) that the ETDRK4 scheme is fourth order in time as expected.

The first three points in Figure 5.1(b) show convergence as expected. We then see that

the final point does not reduce the error as much as expected. To check that this was not

due to a violation of the CFL condition, we consider the result when we use a smaller fixed

time step. We find that the convergence is similar to that shown in Figure 5.1(b). From

this we conclude that the smaller reduction in error for Nm = 512 is most likely due to

computational rounding error.

5.1.1.2 Solution existence

While considering convergence it was found that a resolution of Nm = 16 and Nm = 32

spatial points was not sufficient to provide the multi-scale chaotic solution to the KS

equation. To determine why this was the case we considered the solution to the equation

at various points in time. In Figure 5.2 we show why, with a small number of spatial
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Figure 5.2: Different resolution solutions to the KS equations at t = 25. The Nm = 16
plot (blue) shows that this number of spatial points is not sufficient to capture the sharp
gradients in the solution. Note that the Nm = 64 (green) solution lies directly under the
Nm = 256 (red) solution

points, a full solution cannot be obtained.

We see from Figure 5.2 that when a small number of spatial points (Nm = 16) is used there

are not enough points to fully resolve the sharp gradients in the solution. Over time the

point at the top and bottom of the gradient tend to plus and minus infinity to try account

for the steep gradient. As these points tend to infinity the rest of the solution is affected,

and eventually the whole solution blows up so a full solution can not be obtained.

5.2 Understanding the differences between solutions at dif-

ferent resolutions

5.2.1 Solutions at different resolutions

Before we calculate representativity errors we first compare different resolution runs of the

model. We keep the time step fixed, ∆t = 1
4 , and run our model for Nm = 64, 128, 256

spatial points.

The time evolutions of the solutions to the KS equation for Nm = 64, 128, 256 when

∆t = 0.25 are shown in Figures 5.3(a), 5.3(b) and 5.3(c). We see that the solutions for

Nm = 128 and Nm = 256 appear similar. We quantify this in Figure 5.3(f) where we plot
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(a) KS solution with Nm = 64 spatial points (b) KS solution with Nm = 128 spatial points (c) KS solution with Nm = 256 spatial points
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(d) Error between Nm = 64 and Nm = 128 solutions
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(e) Error between Nm = 64 and Nm = 256 solutions
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(f) Error between Nm = 128 and Nm = 256 solutions

Figure 5.3: Solutions to the Kuramoto-Sivashinsky equation at different resolution runs and the differences between them. Note the
change in colourscales for plot d) and e) compared to f)
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the error between these two solutions. We see that the errors are small with the errors

only growing to ±0.08 in the last 50 time steps. The solution for Nm = 64 is significantly

different from the other two solutions as some of the smaller scale features are not captured.

We again plot the error between the Nm = 64 and Nm = 128 solutions, Figure 5.3(d), and

the error between the Nm = 64 and Nm = 256 solutions, Figure 5.3(e) to show how the

solution with Nm = 64 differs from the higher resolution solutions. Both of these plots

show very large errors, often larger than the value of the solution of the KS equation.

5.2.2 Power spectra

We wish to be able to understand the errors shown in Figures 5.3(d), 5.3(e) and 5.3(f).

One way we can compare the solutions from different resolution runs is to consider the

power spectra of the solutions. To obtain the power spectrum we calculate the square of

the modulus of the Fourier transform coefficient and then scale by a factor of 2
Nm . The

power spectrum enables us to determine what portion of a signal’s power falls at each

wave number. In Figure 5.4 we plot the power spectra of the KS equation solutions with

Nm = 64, Nm = 128 and Nm = 256 spatial points at times t = 25, where the solution is

relatively smooth, and at t = 125 when the solution has evolved. In Figure 5.4(a) we see

that the power in the highest wave numbers of the Nm = 64 solution is greater than the

power in these wave numbers for the Nm = 128 and Nm = 256 solutions. We see the same
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(a) Power spectra of the solution of the KS
equation at t = 25
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(b) Power spectra of the solution of the KS
equation at t = 125

Figure 5.4: Power Spectra of the solutions of the KS equation. The power spectra of the
solutions with Nm = 64, Nm = 128 and Nm = 256 spatial points are given by the blue,
black and red lines respectively.

50



behaviour occurring with the power in the highest wave numbers of the Nm = 128 solution

being greater than the power in these wave numbers for the Nm = 256 solution. This

increase in power compensates for the power in higher wave numbers that the low resolution

models cannot capture. This additional power relates to our error of representativity as

it represents the small scales that cannot be resolved. We see similar behaviour in Figure

5.4(b) where power from higher wave numbers that cannot be captured is added to power

in the highest wave numbers of a given resolution. As the solution is more chaotic the

power spectrum is less simple to analyse. We would like to better understand how the

distribution of power over different wave numbers can help us understand the structure of

errors of representativity. We shall now consider these errors of representativity.

5.3 Understanding time independent representativity error

Now we have a numerical model we can use it to help us understand the structure of

representativity error. We use the method described in Chapter 3 Section 3.3.1 to calculate

both forward model and representativity error. We begin by describing the experimental

design.

5.3.1 Experiment design

We first must define our truth. We solve the KS equation on the periodic domain 0 ≤

x ≤ 32π from initial conditions u = cos( x
16 )(1 + sin( x

16)). We use N t = 256 spatial points

and a time step ∆t = 0.015. We calculate forward model error for a varying number

of model points, Nm = 32, 64 and observations p = 16, 32, 64. It is possible to calculate

representativity error for Nm = 32 as it is not necessary to run the forward model, hence it

does not matter that the model is not stable at this resolution. Using the values on Nm and

p the Fourier matrices can be defined as in equation (3.5). The truncation matrix is also

determined by N t and Nm. We use the weighting matrices defined in equations (4.2) and

(4.4) with lengthscales Lo = 2.0 and Lo = 4.0. The spectral covariance matrix is calculated

using equation (3.13) which requires the covariance matrix, S that can be calculated using
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(4.5). For this we require a number of samples. We generate our samples by running our

high resolution model for 80,000 time steps. After removing data from the burn-in period,

the solutions of the equation before t = 50 where the chaotic nature of the solutions has

not developed, we take the solution every 10th time step to be a sample. We then use

the MATLAB cov, corrcoef and std functions to calculate the covariance, correlation

and standard deviation matrices from these samples. We plot five rows of the correlation

matrix in Figure 5.5 to help us understand the structure of the matrix (note that this

figure is plotted on a different scale to Figure 5.3). For each row the diagonal position is

plotted in the centre of the graph and the size of the off-diagonal row elements are plotted

symmetrically. We see that the covariance of the truth has a wave like structure, where the

wave length in the correlation matrix is equal to the wavelength in the KS equation.

When analysing the calculated covariance matrix we find that it is not full rank. This

is because the number of samples used to calculate the matrix is not large enough to

provide all the information required. This problem can be dealt with by reducing the

number of covariance parameters that need to be estimated. One way to do this is to

assume that the covariances are homogeneous and isotropic. This results in a covariance

matrix that is diagonal in spectral space, which is required for the matrix to be used in

the Daley [1993] method. We see from Figure 5.5 that the correlation matrix is neither

isotropic or homogeneous. At small separation distances the rows are similar and appear
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Figure 5.5: Five rows of the true correlation matrix
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symmetric, at larger separation distances the rows appear less similar due to the reduced

number of samples available to calculate the covariance. However, as the rows are similar

and nearly symmetric it suggests that the matrix should be isotropic and homogeneous,

and is prevented from being so by the sampling error. To make our matrix isotropic

and homogeneous we take the first row of the calculated matrix, make it symmetric and

then create a circulant matrix from this. The matrix is circulant as the correlations are

homogeneous.

We now have a homogeneous and isotropic correlation matrix. However, the matrix does

still contain sampling errors. One way to compensate for the sampling error and improve

the correlation matrix is to use the technique of covariance localisation that was described

in Chapter 2, section 2.3.5. As our localisation function we use the fifth order piecewise

polynomial described in Gaspari and Cohn [1999] equation (4.10),

L(x, c) =































−1
4(

|x|
c
)5 + 1

2(
x
c
)4 + 5

8 (
|x|
c
)3 − 5

3(
x
c
)2 + 1 if 0 ≤ |x| ≤ c,

1
12 (

|x|
c
)5 − 1

2(
x
c
)4 + 5

8(
|x|
c
)3 + 5

3(
x
c
)2 − 5( |x|

c
) + 4− 2

3(
c
|x|) if c < |x| ≤ 2c,

0 if 2c < |x|,

(5.16)

where c is the length scale. We choose this to be 16 as it allows the localizing function to

capture the important features from the true correlation. This localisation function reduces

the value of the correlations in Figure 5.5 where the rows do not have the same value (where

the sampling error is more dominant). We plot this localisation function in Figure 5.6 along

with the middle row of the correlation matrix calculated initially and the middle row of

the localized correlation matrix. The effect of the localisation function on the correlation

function is obvious. The localized correlation function is now zero where the localisation

function is zero, but still resembles the true correlation function where the correlations

are large in magnitude. It is clear that the localizing function has removed the sampling

error from our correlation matrix estimate. We are now left with a good estimate of the

correlation matrix. From this a full rank, isotropic and homogeneous covariance matrix

can be calculated. When transformed in to spectral space this covariance matrix is real
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Figure 5.6: Comparison of the middle row of the covariance matrix (blue) and localized
covariance matrix (red). The localizing function (black) is included to show the important
length scale.

and diagonal. We can now use this covariance matrix to calculate the spectral covariance

matrix. In turn this can be used to calculate the errors of representativity.

5.3.2 Numerical results

We now carry out a number of experiments to enable us to understand the structure of

forward model error and representativity error. We calculate the representativity error

using equation (3.12). We begin by considering the case where there is no error in the

observation operator H, and therefore the calculated error consists of only representativity

error. We present the magnitude of the representativity error variances for the experiments

carried out in Table 5.1.

5.3.2.1 Changing the observation type

First we consider the structure of representativity error when different observation types

are used. Initially we consider direct observations. We assume that the model has 32 grid

points, and that each of these grid points has an associated observation. The variance

of the representativity error is given in Table 5.1 Experiment 1, and the correlations are

plotted in Figure 5.7(a).
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Experiment Truncation Number of True Observation Assumed Observation RE

Number Observations (p) type (Length scale) Type (Length scale) variance

1 32 32 Direct Direct 2.81×10−1 (16.3%)

2 32 32 Uniform(2.0) Uniform(2.0) 1.65×10−1 (9.6%)

3 32 32 Gaussian(2.0) Gaussian(2.0) 1.35×10−1 (7.9%)

4 32 32 Gaussian(4.0) Gaussian(4.0) 1.92×10−2 (1.1%)

5 32 16 Direct Direct 2.81×10−1 (16.3%)

6 64 64 Direct Direct 8.17×10−3 (0.5%)

7 32 32 Uniform(2.0) Uniform(4.0) 2.36×10−1 (13.7%)

8 32 32 Gaussian(2.0) Gaussian(4.0) 2.35×10−1 (13.7%)

9 32 32 Gaussian(2.0) Uniform(2.0) 1.36×10−1 (7.9%)

Table 5.1: Representativity error (RE) variance for the KS equation. The values given in brackets with the representativity error variance
are a comparison of the representativity error variance to the variance if the high resolution solution. Experiment details are given in the
text.
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Figure 5.7: Comparison of errors of representativity for observations calculated using dif-
ferent observation operators. The number of model grid points is Nm = 32 and every
gridpoint is observed.

We first consider the correlation structure of the representativity error and we see that

the errors are correlated. The variance of the representativity error is reasonably large,

a little more than 16.0% of the variance of the high resolution state in the case of direct

observations and approximately 10% of the values of the high resolution solution in the

case of uniform observations. This suggests that in the case of direct observations the

representativity error may be significant.

We now consider the representativity error when the observations are defined using a

uniform weighting function with length scale Lo = 2.0. The variance is given in Table 5.1

Experiment 2, and the correlations are plotted in Figure 5.7(b). We see that the error is

correlated, and the structure does not differ significantly from the structure when direct

observations are used. However, we see that the variance has decreased, and that the

representativity error is less significant for the error calculated with uniform observations.

This is as expected as the uniform observations do not capture all the small scales that the

direct observations can. We now consider the results where Gaussian observations, with

Lo = 2.0 are used. We present the results in Table 5.1 Experiment 3, and the correlations

are plotted in Figure 5.7(c). We expect the results to be similar to those where uniform

weighted observations are used as the observations have the same length scale. We see that

the variances are similar, with the variance for the Gaussian observations being slightly

smaller. This is because the Gaussian weighting function averages over a slightly larger

area, which means that the observations resolve fewer scales. We see again that the error
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Figure 5.8: Representativity error correlation when the model resolution is Nm = 32 and
half the gridpoints are observed.

is correlated. However, the structure of the correlations is similar to those found where

direct and uniform observations were used.

We also consider the structure of representativity error when the observations are defined

using a Gaussian, but the length scale is increased to Lo = 4.0. As these observations

are averaged over a larger area of the domain we expect fewer scales to be resolved, and

the representativity error to decrease. We give the results in Table 5.1 Experiment 4. We

see that as expected the variance of the representativity error is much smaller and less

significant.

5.3.2.2 Number of observations

We now consider what happens when we calculate the representativity error where fewer

direct observations are available. Experiment 5 in Table 5.1 shows the error variance

where only half the model grid points are directly observed, the correlations are plotted

in Figure 5.8. We see that having fewer observations available does not alter the variance

of the representativity error. This is expected as we have proved in Chapter 4 Section

4.3 that representativity error applies individually to each observation and is independent

of other observations. From Figure 5.8 we see that the correlation no longer has a wave

like structure, this is a result of the observation resolution. The observation resolution is

such that only the tops of the waves in Figure 5.3 are sampled. By comparing Figures

5.7(a) and 5.8 we see that the correlation structure depends only on the distance between
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observations and not the number of observations available. This supports the theoretical

results given in Chapter 4 Section 4.3.

5.3.2.3 Number of model grid points

We now consider the effect of changing the model resolution. The higher the model reso-

lution, the more scales we expect that the model can resolve. The more scales a model can

resolve, the smaller the representativity error should be. We calculate the representativity

error using direct observations. However, we set our model to have 64 grid points, double

the resolution of the previous experiments. We present the result in Table 5.1 Experiment

6. We see that the variance of the representativity error has reduced significantly, and is

now only 0.5% of the true variance. This supports the conclusion that models with higher

resolution have smaller representativity errors.

5.3.2.4 Forward model error

So far we have calculated forward model error that consisted only of representativity error.

We now calculate forward model error when there are contributions from both representa-

tivity error and error in the observation operator. Due to this error we expect the forward

model error to increase. In Experiments 7 and 8 we introduce error in the observation

operator by assuming the model observations have a different length scale to the high res-

olution observations. In both these cases, uniform and Gaussian observations, the forward

model error is much larger than when the observation error is exact. We also consider the

case when the observations are modelled with the wrong weighting function, but with the

same length scale. In Experiment 9 the true observations are created using a Gaussian

weighting function, but the model observations are calculated with a uniform weighting

function. In this case we find that there is no great increase of the variance of the forward

model error. The introduction of error in the observation operator increases the forward

model error. However, it appears that less error is introduced when the length scale of the

observations is correctly modelled.
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5.4 Summary

In this chapter we have used the Kuramoto-Sivashinsky equation and the method proposed

by Daley [1993] to help us understand the structure of representativity error. We started

by describing the KS equation, which has a solution that exhibits chaotic and multi-

scale behaviour. We then described the ETDRK4 method, a numerical method that we

used to solve the KS equation. We demonstrated convergence of the scheme and showed

that a certain spatial resolution is required for the numerical scheme to be stable. We

considered solutions to the KS equation at different resolutions, and the power spectra of

these solutions. We then calculated representativity error for the KS equation. We found

that representativity error is correlated. We showed that representativity error reduced

as the length scale of the observation increased. This is because observations with larger

length scales resolve fewer scales, and therefore the difference between the resolved scales

in the observation and model is reduced, hence reducing the representativity error. We also

showed that representativity error variance does not depend on the number of observations

available. The correlations are also independent of the number of observations, and only

dependent on the distance between observations. This supported the theoretical results

given in Chapter 4. We also showed that representativity error was reduced when model

resolution was increased. This is because a model at higher resolution resolves more of the

scales that are resolved by the observations. We then calculated forward model error for

the KS equations. We introduced error into the observation operators by either assuming

the wrong observation lengthscale or the incorrect observation type. We found that there

was a large contribution to the forward model error when the wrong observation lengthscale

was assumed. However when the observations were assumed uniform, where they were in

fact Gaussian, the forward model error was not much greater than when the observation

operator was correct. We have calculated representativity error for a simple system. We

now consider if the conclusions found in this chapter hold in the context of NWP.
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Chapter 6

Representativity Error for

Temperature and Humidity Using

the Met Office High Resolution

Model

In this chapter we use the Daley [1993] method described in Section 3.3.1 to calculate

forward model error for data from the Met Office UKV model. The observation operator

is always correctly specified so the forward model errors consist only of errors of repre-

sentativity. We wish to to show that our conclusions about representativity error hold

in the context of NWP. To verify this we carry out a number of experiments similar to

those in the previous chapter. We also investigate the significance of representativity er-

ror for both temperature and specific humidity over the UK. Previous work has shown

that observation error statistics are correlated for certain observation types [Stewart et al.,

2009, 2012b, Bormann et al., 2002, Bormann and Bauer, 2010, Bormann et al., 2010]. We

consider whether these significant correlations in the observation error covariance matrix

could be attributed to representativity error. We note that the work in this chapter has

been submitted for publication and is available as a preprint [Waller , née Pocock].
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6.1 The model and data

We begin by introducing the model and available data. The calculation of representativity

error by the method of Daley [1993] assumes that the actual state can be taken from a

high resolution model. We use data from the Met Office UK variational (UKV) model as

a proxy for our actual state. The UKV model is a variable resolution model that covers

the UK. The model has fixed regular grid on the interior with 1.5km square grid boxes.

The regular grid is surrounded by a variable resolution grid where grid boxes smoothly

increase in size to 4km. For this study we consider two sets of data, previously used in

Pavelin et al. [2009]. The data covers sub-domains, each of 450km × 450km (300×300 grid

points with 1.5km grid boxes), of the UKV model. The lateral boundary conditions for

the 1.5km models are taken from a 4km resolution regional model which is nested in the

12km model that covers the North Atlantic and Europe (NAE). The boundary conditions

blend into the 1.5 km model field over a transition zone of 10km [Pavelin et al., 2009] and

we therefore exclude the data in this region from our study.

Since we are considering representativity error it is also necessary to ensure that the model

spectra have fully adjusted to the higher spatial resolution. This is not fully understood

for this suite of models. However, qualitative measures of the distance it takes convection

to spin up due to features advecting in from the boundaries are given in Lean et al. [2008],

Tang et al. [2012] and Kendon et al. [2012]. We remove further data from the boundary

so that approximately 30km are removed in total. We expect the 1.5km model to be spun

up from the 4km boundary conditions by this distance, although this is would not be

guaranteed for a rapidly changing synoptic situation.

In this work we calculate representativity error using the assumption that the model state

is a truncation of high resolution data. For the majority of our experiments we truncate

the data so the model grid spacing is equivalent to the grid spacing that is used in the

Met Office NAE model. The Met Office NAE model has a grid spacing of 12km (in mid-

latitudes) and covers Europe and the North Atlantic.
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6.1.1 The data available

We use temperature and humidity data over the UK from two cases. The first case consists

of data from 7th August 2007 at times 0830UTC, 0900UTC and 0930UTC on an area over

the southern UK that covers −3.04oW to 3.71oE and 49.18oN to 53.36oN. In this case

there are partly clear skies with convection occurring over the south east [Eden, 2007].

The second set of data is from 6th September 2008 at 1400UTC, 1430UTC and 1500UTC

and covers −5.00oW to 1.20oE and 52.5oN to 56.00oN. In this case a deep depression is

tracking slowly east-northeast across England [Eden, 2008]. The data is available on a

300 × 300 square of a latitude and longitude grid at each of 43 pressure levels. We plot

the temperature and humidity data for the 749hPa pressure level for the first case at time

0900UTC and the second case at time 1430UTC in Figure 6.1.

To calculate representativity error using the Daley [1993] method we require the spectral

covariance matrix for the truth. In Chapter 4 we showed that it is possible to calculate

(a) Temperature for Case 1 at 0900 (b) Specific humidity for Case 1 at 0900

(c) Temperature for Case 2 at 1430 (d) Specific humidity for Case 2 at 1430

Figure 6.1: Temperature (a & c) and humidity fields (b & d) for Case 1 (a & b) at time
0900 and Case 2 (c & d) at time 1430
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the spectral covariance using the covariance of the high resolution data. In equation (4.5)

we showed that it is possible to calculate the covariance of the high resolution data using a

number of samples. We now describe how we create samples from the available data.

6.1.2 Creating samples from the data

There are some limitations to the data. Data near the boundary is contaminated by the

boundary conditions taken from the coarser model. We remove this data by reducing the

grid to a 256×256 mesh centred on the main grid. We need to sample the data to calculate

the covariance matrices for the actual state. The data we have is available on a 2D gridded

domain; however, the Daley [1993] method provides an equation to calculate representa-

tivity error on a 1D domain. To convert our data to 1D we take the individual rows of the

data from the 749hPa pressure level. We use this level as it is outside the lower boundary

layer and therefore not affected by complex processes such as small scale turbulence, but

should still include the small scale features that are relevant when calculating representa-

tivity error. We consider temperature and the natural logarithm of specific humidity data

for each of the two synoptic cases. For each synoptic case we have 256 samples at three

different times and, therefore, we have 768 samples to calculate the covariance matrices.

A covariance calculated with this number of samples is dominated by sampling error and

hence this is not a sufficient number of samples to calculate an accurate representation of

the required covariances. One way to overcome this would be to take data from more times.

However, this will reduce the time dependence of the calculated representativity error. A

further problem is that the samples are not periodic, but the Daley [1993] method assumes

a periodic domain with a circulant S. To overcome this and to increase the number of

samples we detrend and process the data.

6.1.3 Data processing

To create surrogate samples from each of the available samples the data must be detrended.

Detrending gives data on a homogeneous field; this is required by our chosen method for
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calculating representativity error. Data is detrended by removing a best fit line using an

appropriate polynomial of order no greater than 3 [Bendat and Piersol, 2011]. It is justifi-

able to detrend the data as only trends with large length scales are removed. All scales that

contribute to the representativity error still remain. We detrend the 256 latitude samples

at each available time. Different orders of polynomial were considered for detrending and

the lowest order polynomial that resulted in homogeneous data was chosen. A linear trend

was removed from the temperature data, and a cubic trend from the log of the specific hu-

midity data. Removing polynomials of higher order had little effect on the representativity

error results. This detrended data is now used to create new samples from each existing

sample.

The method of Fourier randomization is used to generate surrogate samples from the same

statistical disribution [Theiler et al., 1992, Small and Tse, 2002]. Fourier randomization

consists of perturbing the phase of a set of data to create a new sample with a different

phase, but where each wave number retains the same power. As the power spectrum of the

sample is unchanged the linear covariances are preserved. Therefore any choice of phase

shift should result in data with the same covariance. As the covariance is preserved we

do not expect the choice of phase shift to affect the results when representativity error is

calculated. Here we calculate circulant samples, which corresponds to shifting the phase of

the data. This also gives the data the required periodicity. A circulant sample is created by

shifting each element of the sample one position and taking the final element and making

it the first entry in the sample. Each element can be shifted to each position, which means

a sample with n elements can be used to create n circulant samples. Therefore creating

surrogate samples increases the number of available samples we have for calculating the

covariance of the high resolution data. We have available 256 samples at three different

times. Creating circulant samples gives us 65536 samples at each time, and a total of

196608 samples to estimate each of the covariance matrices, which is a sufficient number

of samples.
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6.2 Experiments

We use equation (4.5) and the circulant samples calculated from the UKV model data to

calculate the covariance matrices for the temperature and humidity fields at the 749hPa

pressure level for both cases. We give the variances in Table 6.1 and plot a row of each of

the true state correlation matrices in Figure 6.2.

Temperature (K2) log(Specific Humidity) (kg2/kg2)

Case 1 0.6638 0.0812

Case 2 0.1934 0.0178

Table 6.1: Variances for the true state at the 749hPa pressure level
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Figure 6.2: Correlation structure for the true temperature and specific humidity fields at
the 749hPa pressure level. Temperature: Case 1 dotted line, Case 2 dot dash line. Specific
Humidity: Case 1 dashed line, Case 2 solid line

From Table 6.1 we see that the variances for Case 2 are smaller than those for Case 1.

When considering the correlations plotted in Figure 6.2, we see that the temperature fields

have larger correlations than humidity. For Case 1 the temperature correlations are very

high; this is expected as, after detrending, this field is fairly constant. We also note that

the correlations for Case 2 are smaller than the correlations for Case 1. This is due to the

synoptic situation. In Case 1 the field is more homogenous with small scale features over

the domain. However, in Case 2 the features are large scale and less homogeneous.
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For the estimates of representativity error to be exact we require the correct covariances

of the actual state. As our truth we are using data from the UKV model, and therefore

our estimates of the covariances will only be as accurate as the spectra of the UKV model.

As the UKV does not resolve all the scales in the truth it is likely that the estimates of

representativity error given by the Daley [1993] method will be an underestimate. However,

as the UKV model gives a reasonable estimate of the truth and we are measuring the loss of

information between the low and high resolution models we can still expect to understand

more about the behaviour and structure of representativity error.

Again we use equations (4.2) and (4.4) to define high resolution pseudo observations. We

use the uniform curve with a width of approximately 5km and a Gaussian curve with a

width of approximately 20km. We also consider in-situ measurements where the diagonal

elements ŵ of the weighting matrix are all unity.

Now we have the appropriate weighting matrices and the covariance matrices for the high

resolution data at the 749hPa pressure level. This allows us to calculate representativity

errors for temperature and log specific humidity. In the next section we present the results

of our experiments.

6.3 Results

We now carry out a number of experiments to enable us to understand the nature of

representativity error. As in Chapter 5 we present initially only the magnitude of the

representativity error variance. The results for experiments carried out with data from

Case 1 are given in Table 6.2, and for Case 2 in Table 6.3.

6.3.1 Temperature and humidity representativity errors

We first consider how the errors of representativity differ between the temperature and

log humidity fields. We consider the representativity error for the case where the model

has 32 points. This relates to a grid spacing of 12km equivalent to the grid spacing that
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Experiment Truncation Number of Observation Temperature Humidity

Number Observations type RE RE

(p) variance ((K)2) variance ((kg/kg)2)

1.1 32 32 Direct 4.81 × 10−3 (0.7%) 1.51 × 10−3 (1.9%)

1.2 32 32 Uniform 2.71 × 10−3 (0.4%) 1.08 × 10−3 (1.3%)

1.3 32 32 Gaussian 8.99 × 10−4 (0.1%) 3.80 × 10−4 (0.5%)

1.4 32 16 Direct 4.81 × 10−3 (0.7%) 1.51 × 10−3 (1.9%)

1.5 32 16 Uniform 2.71 × 10−3 (0.4%) 1.08 × 10−3 (1.3%)

1.6 32 16 Gaussian 8.99 × 10−4 (0.1%) 3.80 × 10−4 (0.5%)

1.7 64 64 Direct 2.13 × 10−3 (0.3%) 4.04 × 10−4 (0.5%)

1.8 64 64 Uniform 5.40 × 10−4 (0.1%) 1.71 × 10−4 (0.2%)

1.9 64 64 Gaussian 2.76 × 10−5 (0.0%) 1.07 × 10−5 (0.0%)

Table 6.2: Representativity error (RE) variances for Case 1 at the 749hPa pressure level. The values given in brackets are a comparison
of the representativity error variance to the high resolution data variance.
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Experiment Truncation Number of Observation Temperature Humidity

Number Observations type RE RE

(p) variance ((K)2) variance ((kg/kg)2)

2.1 32 32 Direct 2.21 × 10−3 (1.1%) 7.14 × 10−4 (4.0%)

2.2 32 32 Uniform 1.30 × 10−3 (0.7%) 4.84 × 10−4 (2.7%)

2.3 32 32 Gaussian 3.96 × 10−4 (0.2%) 1.60 × 10−4 (0.9%)

2.4 32 16 Direct 2.21 × 10−3 (1.1%) 7.14 × 10−4 (4.0%)

2.5 32 16 Uniform 1.30 × 10−3 (0.7%) 4.84 × 10−4 (2.7%)

2.6 32 16 Gaussian 3.96 × 10−4 (0.2%) 1.60 × 10−4 (0.9%)

2.7 64 64 Direct 1.12 × 10−3 (0.6%) 2.50 × 10−4 (1.4%)

2.8 64 64 Uniform 3.14 × 10−4 (0.2%) 8.81 × 10−5 (0.5%)

2.9 64 64 Gaussian 1.86 × 10−5 (0.0%) 5.36 × 10−6 (0.0%)

Table 6.3: Representativity error (RE) variances for Case 2 at the 749hPa pressure level. The values given in brackets are a comparison
of the representativity error variance to the high resolution data variance.
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is used in the Met Office NAE model. This is a truncation of a factor of eight from

the high resolution model, which has 256 points. We start by assuming that we have

direct observations. The values of the representativity error variance are given in Table 6.2

Experiment 1.1. We plot in Figures 6.3(a) and 6.3(b) (black lines) the middle row of the

representativity error correlation matrices for temperature and log specific humidity from

Case 1 respectively.

When we compare the variance of representativity error against the variance of the ac-
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Figure 6.3: Representativity error correlations between observation centre points for Case
1 with truncation to 32 points (12km resolution) with every model grid point observed
using direct (black line), uniform-weighted (red line) and Gaussian-weighted (blue line)
observations
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tual states we see that representativity error is more significant for humidity than it is

for temperature. We find that the representativity error variance for temperature is 0.7%

of the high resolution temperature variance, whereas the humidity representativity error

variance is 1.9% of the high resolution humidity field variance. When comparing the vari-

ance from this experiment to the same experiment carried out with Case 2 data (Table

6.3, Experiment 2.1), we see that the representativity error variances are smaller for Case

2. This is expected as there is less variance in the true fields in Case 2. These experiments

show, however, that the representativity error is more significant in this case. The repre-

sentavity error for temperature is 1.1% of the high resolution temperature variance and

humidity representativity error is 4.0% of the high resolution variance. For Case 1 from

Figures 6.3(a) and 6.3(b) (black line) we see that the correlation structure is similar for

both temperature and specific humidity. The correlations rapidly decrease in magnitude

as the observation separation distance increases. The correlations for specific humidity are

slightly larger, and decay less rapidly than the correlations for temperature.

6.3.2 Changing the observation type

We now consider what happens where the observations are defined with a uniform weighting

matrix. This uniform weighting acts on the temperature and log of specific humidity fields.

The variance of the representativity error is given in Table 6.2 Experiment 1.2. We see

again, as expected, that the representativity error is more significant for humidity than

it is for temperature. We see that the assumption of uniformly weighted observations

has decreased the representativity error for both fields when compared to Experiment 1.1.

This supports the results seen in Chapter 5 that the representativity error decreases as the

observation length scale increases. We see from Figures 6.3(a) and 6.3(b) (red line) that

the correlations are larger than those when direct observations are used. This is because

two consecutive observations have some overlap in physical space. We see from Table 6.3

that Experiment 2.2 supports these results as the representativity error variance is smaller

than those seen in Experiment 2.1.

We now consider what happens where the observations are defined using a Gaussian-
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weighting matrix. The results are given in Table 6.2 Experiment 1.3 and Table 6.3 Ex-

periment 2.3. We plot the middle row of the representativity error correlation matrices

for temperature and log specific humidity from Case 1 in Figures 6.3(a) and 6.3(b) (blue

lines). We find that the error variance is smaller than when either direct or uniform ob-

servations are assumed. In this case Gaussian weighted observations are defined using a

larger length scale and hence capture fewer small scale features than the direct and uni-

form observations. Therefore the representativity error is smaller as the model captures

a larger proportion of the scales captured by the observations. From the figures we see

that the correlations for the representativity error calculated with these Gaussian-weighted

observations are larger than the representativity error correlations present when direct ob-

servations are used. This is due to the overlapping of the weighting functions in physical

space of nearby observations. The overlapping weighting functions result in adjacent ob-

servations sharing information about particular points in state space. Hence the greater

the overlap in weighting function the larger the correlations seen in the representativity

error.

By comparing the experiments with different weighting functions we see that the larger the

weighting function lengthscale used to define the observation the lower the representativity

error variance. Observations defined using weighting functions with larger length-scales

average over the smaller spatial spatial scales. Therefore the difference between a larger

length-scale observation and the model representation of the observation is smaller than

a small lengthscale observation and the model representation of the observation. Hence

observations defined using weighting functions with larger lengthscales result in smaller

representativity error variance.

6.3.3 Number of observations

We now consider what happens when we calculate the representativity error where fewer

direct observations are available. As shown in the theoretical results in Chapter 4 and

the numerical results using the KS equation in Chapter 5 we expect that the variance

of the representativity error should not change. Experiments 1.4 in Table 6.2 and 2.4 in
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Figure 6.4: Representativity error correlations between observation centre points for Case 1
with truncation to 32 points (12km resolution) with every other model grid point observed
using direct observations

Table 6.3 show the error variance where only half the model grid points have associated

direct observations. By comparing with Experiment 1.1 we see, as expected, that hav-

ing fewer observations available does not alter the variance of the representativity error.

Experiments 1.5 and 2.5 with uniform observations and Experiments 1.6 and 2.6 with

Gaussian observations also support this conclusion. We now consider how the structure of

the representativity error correlations. We plot in Figures 6.4(a) and 6.4(a) the correlation

structures of the temperature and specific humidity representativity errors. By comparing

these figures with the direct observation results (black line) shown in Figures 6.3(a) and

6.3(a) we see that the representativity error correlation structure is not dependent on the

number of observations, only the distance between them. This supports the numerical

results seen in the previous chapter and the theoretical results presented in Chapter 4

Section 4.3.

6.3.4 Number of model grid points

We now consider the results when the model has a larger number of grid points, Nm = 64.

This is a smaller truncation, so the model should be able to resolve more small scale

features, and hence we expect the errors of representativity to decrease. We give the

results for experiments with direct observations available every grid point in Table 6.2
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Experiment 1.7 and Table 6.3 Experiment 2.7. In these experiments as well as increasing

the number of model grid points, we have also increased the number of observations.

However, as representativity error variance is not affected by the number of observations

we assume that any differences in the representativity error variance can be attributed to

the change in model resolution. From the results of Experiments 1.7 and 2.7 we see that the

representativity error variances have decreased. For direct observations the representativity

error has been approximately halved. Experiments 1.8 and 2.8 with uniform observations

and Experiments 1.9 and 2.9 with Gaussian observations produce results that also support

this conclusion.

6.3.5 Representativity errors at different model levels

So far we have only considered the representativity error at the 749hPa model level height.

We now calculate a representativity error for each pressure level of the model. This will

allow us to consider the variation of representativity error with height. From this we

can determine if one realisation of representativity error would be suitable at every pres-

sure level, or if it is more appropriate to use the correct representativity error for each

level.

Before calculating the representativity error for each model level, we must first calculate

the covariance matrices for the high resolution data for temperature and specific humidity

for each pressure level. We use the same data, but at the correct pressure level, and the

same preprocessing techniques as described in section 6.1.

We consider the case where we have truncated to 32 grid points and have 32 direct obser-

vations available. We plot the standard deviation of representativity error for Case 1 in

Figure 6.5(a) (temperature) and 6.5(b) (specific humidity) and for Case 2 in Figure 6.6(a)

(temperature) and 6.6(b) (specific humidity).

From the figures we see that representativity error for temperature is more constant with

height than specific humidity. The exception to this is in the boundary layer, where the

temperature representativity error is large. For specific humidity in Case 1 we see a large
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Figure 6.5: Change in representativity error standard deviation with model level height.
Case 1 with 32 direct observations (every model grid point observed)
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Figure 6.6: Change in representativity error standard deviation with model level height.
Case 2 with 32 direct observations (every model grid point observed)

increase in the representativity error standard deviation between 749hPa and 610hPa. For

Case 2 the largest peak in representativity error is seen at 300hPa. These levels are where

cloud is seen and hence it is at these levels where the small scale humidity features exist,

which results in the larger representativity error variances. Finally we consider how the

correlation structure varies with height. We find that for both temperature and specific

humidity at different pressure levels the correlation structures of the representativity errors

are qualitatively similar to those for the 749hPa level, as seen in Figure 6.3. The difference

in variance and minimal difference in correlation structure can be attributed to the different

scales in the true state which are represented in the matrix, Ŝ, used to calculate the

representativity error (Chapter 4, equation 4.9). The results support our conclusions that
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representativity error is strongly case dependent.

6.4 Summary

In this chapter we use a method defined in Daley [1993] and Liu and Rabier [2002] to

calculate representativity error. Previously the method has been used to investigate repre-

sentativity error for a simple system. We adopt a new approach by applying the method to

NWP data. We investigated the significance of representativity error for temperature and

specific humidity. We showed that significant covariances in the observation error covari-

ance matrix [Stewart et al., 2009, Stewart, 2010] could be attributed to representativity

error. To calculate the representativity error using the Daley [1993] method it was neces-

sary to have an estimate of the covariance of the high resolution data. This covariance was

calculated using data from the Met Office UKV model. The accuracy of the representativ-

ity error estimates depends on the accuracy of these covariances and as the UKV model

cannot represent all the scales in the truth it is possible that the representativity error is

underestimated. Experiments using data from the Met Office UKV model showed that

representativity error was more significant for humidity than temperature. We calculated

representativity error using data from two different cases and showed that representativ-

ity error is sensitive to the synoptic situation, which supports claims by Janjic and Cohn

[2006].

We showed that conclusions made in the previous chapter also hold when calculating

representativity error for NWP data. We showed that representativity error decreases as

observation lengthscale increases and model resolution increases. We also showed that the

representativity error variance does not change when calculated with different numbers

of observations. Also the representativity error correlations are dependent only on the

distance between observations, and not the number of observations available. Finally we

considered how the representativity error standard deviation varied at different pressure

levels. We found that representativity does vary at different pressure levels and this means

that assumptions such as those in Dee and Da Silva [1999] where errors at different model
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levels are fixed, may not be suitable when representativity error is taken into account in

data assimilation systems.

So far we have considered a method that provides a time independent estimate of repre-

sentativity error. We have shown that representativity error is state and time dependent.

This provides motive to develop a method to calculate time dependent estimate of the

error. We next introduce and investigate a new method for estimating the representativity

error.
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Chapter 7

Calculating Observation Error

Covariances Using the Ensemble

Transform Kalman Filter

So far we have considered only time independent estimates of forward model and repre-

sentativity error. In the previous chapter we showed that representativity error is case

dependent, and therefore using a time independent estimate for forward model error for all

cases may be inappropriate. Work by Li et al. [2009] used the Desroziers diagnostic embed-

ded in a local ensemble transform Kalman filter to give a estimate of the observation error

covariance matrixR under the assumption thatR is diagonal and that the true observation

error covariance matrix is static. At each analysis step the Desroziers diagnostic is applied

to a subset of observations to give a value for the observation error variance. This work

was extended in Miyoshi et al. [2013] to include a correlated matrix R. In the framework

described by Li et al. [2009] and Miyoshi et al. [2013] it is possible to average over a subset

of observations as all observations have the same variance. However as forward model error

is time and state dependent averaging over observations may be a poor assumption. In

this chapter we introduce a new method, similar to that seen in Miyoshi et al. [2013], that

combines an ensemble filter with the Desroziers diagnostic. Rather than averaging over

77



a set of observations at a given time, our method uses statistics from observations over a

short period of time to produce a slowly time varying estimate of the observation error

covariance matrix R. Subtracting the known instrument error from this estimate gives a

time varying estimate for forward model error. After presenting the new method we carry

out a number of experiments. We first show that it is possible to estimate the observation

error covariance using the Desroziers diagnostic. We then show how we can estimate a

slowly varying time estimate of R. Finally we estimate R and substitute this estimated

error covariance matrix back in to the assimilation scheme. We show that this will improve

both the estimate of R and the analysis. We note that the method and work described in

this chapter were developed before the work of Miyoshi et al. [2013] appeared.

7.1 Including observation error estimation in the ensemble

transform Kalman filter

In Chapter 2 we introduced ensemble Kalman filtering and described in detail the ensemble

transform Kalman filter (Chapter 2 Table 2.3). We use this as the base of our method

introduced here; however any deterministic ensemble Kalman filter should be suitable.

The idea is to estimate the observation error covariance matrix within ETKF. We use the

ETKF to provide the samples of the background and analysis innovations to be used in

the Desroziers diagnostic that was introduced in Chapter 3 Section 3.3.2. The filter is

split into two stages, a static R stage and a ‘varying estimate’ stage. In the initialisation

stage an initial set of samples for use with the Desroziers diagnostics are calculated. In the

second stage at each assimilation step the samples for use with the Desroziers diagnostic

are updated and a new estimate of R is calculated. This estimate of the observation error

covariance matrix is substituted back into the assimilation scheme. This improves further

estimates of R calculated within the scheme, and improves the analysis. We now describe

the method we have developed.

The method is presented in Table 7.1. We start by describing the initialisation phase. We

begin with an initial ensemble, at t = 0, that has an associated initial covariance matrix.
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We also assume an initial estimate of the observation error covariance matrix R0; it is

possible that this could just consist of the instrument error. The first step, Step 1 of

Table 7.1, is to use the full non-linear model to forecast each ensemble member. Then the

ensemble mean and covariances are calculated using equations (2.13) and (2.16). Using

the ensemble mean the background innovations db
n = yn −Hx̄f

n at time tn are calculated

in Step 4 of Table 7.1. We then carry out the update steps. We update the ensemble mean

using equation (2.20), Step 5 of Table 7.1, and the ensemble perturbations using equation

(2.22), Step 6 of Table 7.1. The analysis mean is then used to calculate the analysis

innovations, Step 7 of Table 7.1. These steps, an application of the standard ETKF,

are repeated for a number of assimilation steps N s. This number of assimilation steps

is dependent on the number of samples required to calculate an accurate estimate of the

observation error covariance using the Desroziers diagnostic, and further investigation is

required to determine this number. Once these assimilation steps are completed a new time

averaged estimate of R is calculated using the Desroziers diagnostic from equation (3.17),

R = E[dadbT ]. We do this using the samples of the innovations collected using,

RNs+1 =
1

N s − 1

i=Ns
∑

i=1

da
i d

b
i

T
. (7.1)

Now we have a set of samples we can begin to include and update the estimate of R.

We continue running the ETKF using the updated Rn in place of our initial guess for R.

After the forecast and analysis stages we calculate a new estimate for the observation error

covariance matrix R by removing the oldest samples for db and da and replacing them

with those calculated in the current assimilation step, that is,

Rn+1 =
1

N s − 1

i=n
∑

i=n−Ns+1

da
i d

b
i

T
. (7.2)

This means that at every assimilation step R is updated using the latest information, with

the oldest information being discarded. Although this does not give a completely time

dependent estimate of R it should give a slowly time varying estimate that should take

into account the most recent information relating to the true state. We summarize the
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The Determanistic Ensemble Kalman Filter Algorithm with R estimation

Initilisation

1. Determine the initial ensemble xi
0 for i = 1 . . . N .

2. Set R0 to an initial guess Rint.

Itterations

1. forecast each ensemble member,

xf
n, i = Mnx

a,i
n−1.

2. Determine the ensemble mean,

x̄f
n = 1

N

∑N
i=1 x

f,i
n

3. Determine the ensemble perturbation matrix

X′f
n = (xf

n, 1 − x̄f
n, . . . ,x

f
n, N − x̄f

n)

4. Calculate the background innovations,

df
n = yn −H(x̄f

n)

5. Update the ensemble mean,

x̄a
n = x̄f

n +Knd
f
n,

where Kn = X′f
n(Y

′f
n)

T (Y′f
n(Y

′f
n)

T +Rn)
−1

6. Update the ensemble perturbations,

X′a
n = X′f

n(I−Y′f
n

T
S−1Y′f

n)
− 1

2

7. Calculate the analysis innovations,

da
n = yn −H(x̄a

n)

8. If n > N s update R using

Rn+1 =
1

Ns−1

∑a=n
a=n−Ns da

nd
b
n

T
.

Otherwise keep Rn+1 = Rint

Table 7.1: An algorithm for the EnKF with R estimation

algorithm in Table 7.1.

There is a number of limitations with the method, one of which is that a large number

of samples may be required to calculate the observation error covariance matrix. The

method does allow any number of samples to be generated before the R estimation begins.

However using a larger number of samples means the estimate of the observation error
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covariance matrix is an average over a large period of time. Therefore the larger the

number of samples the less time dependent the estimate becomes. Even if the required

number of samples is small the time dependence may be reduced if the observations are

sparse. Observations that are only available at large time intervals may represent very

different synoptic situations and therefore an average over these innovations will be less

related to the current synoptic situation. This suggests that this method for estimating R

would be most suited to a situation where observations are available frequently.

We now describe the experiments we use to test this algorithm.

7.2 Experiment design

To analyse the method we run a series of twin experiments. We use the Kuramoto-

Sivashinsky equation, as described in Chapter 5 Section 5.1, as our model. We use as

our truth the solution to the KS equation on the periodic domain 0 ≤ x ≤ 32π from initial

conditions u = cos( x
16 )(1 + sin( x

16 )) until time T = 10000, using N = 256 spatial points

and a time step of ∆t = 0.25. To minimise model error and representativity error, we run

our model at the same spatial and temporal resolution as the truth. We use a slightly

perturbed initial condition, created by adding an error from the distribution N (0, 0.1) to

the true initial condition. From this initial condition the N = 1000 ensemble members are

created by adding errors from the initial background error distribution, which is chosen to

also be N (0, 0.1). Hence the background error covariance matrix is B = 0.1I. We choose

the large number of ensemble members to minimise the risk of ensemble collapse and to

help obtain an accurate background error covariance matrix as we wish to avoid using

covariance inflation and localisation. We require the background error covariance matrix

to be as accurate as possible so the Desroziers diagnostic produces the best estimate of R.

We choose to use direct observations with added instrument error, which are calculated by

adding error from N (0, 0.1) to the values of the truth. As we have removed the source of

forward model error, as the model has the same resolution as the truth, we must artificially

add this correlated error to our observations. As the correlation function for our artificial
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representativity error we use the SOAR function where ρ is the correlation between two

points separated by distance r,

ρt(r) =

{

cos(br) +
sin(br)

Ltb

}

e
−r
Lt , (7.3)

where we set constants b = 3.8 and Lt = 15 and 0 ≤ r ≤ aπ. We use this SOAR function

to determine a circulant covariance matrix. Each row of the matrix contains the SOAR

function shifted by one element. To calculate our true representativity error covariance

matrix that we aim to estimate, we multiply the circulant matrix by the representativity

error variance which is chosen to be 0.1. The true observation error covariance matrix is

obtained by adding the instrument and reperesentativity error covariance matrices. The

result is plotted in Figure 7.1. Having a specified observation error covariance matrix allows
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Figure 7.1: True observation error covariance matrix

us to determine how well the method is working as we know the observation error covariance

matrix that we are trying to approximate. 64 equally spaced observations, drawn from the

distribution N (0,Rt), are available at each assimilation step and the frequency varies

between experiments, with the chosen frequencies being observations available every 40

and 100 time steps, that is every 10 and 25 time units respectively.

As well as changing the frequency of the observations we also consider different true R
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matrices. For each different R and observation frequency we run four different types of

experiment.

• Type A: Filter run without estimating the observation error covariance matrix R.

The R used in the assimilation is the true observation error covariance matrix Rint =

Rt. The estimated observation error covariance matrix Rest is calculated after the

final assimilation using all the available background and analysis innovations.

• Type B: Filter run without estimating the observation error covariance matrix R.

The R used in the assimilation consists of the only the instrument error covariance

matrix Rint = RI . The estimated observation error covariance matrix Rest is cal-

culated after the final assimilation using all the available background and analysis

innovations.

• Type C: Filter run without estimating the observation error covariance matrix R.

The R used in the assimilation consists of the the instrument error covariance matrix

inflated by a scaler factor α so Rint = αRI . The inflation factor α is chosen so the

variance of the observation error covariance matrix used in the assimilation is equal

to the true observation error variance. The estimated observation error covariance

matrixRest is calculated after the final assimilation using all the available background

and analysis innovations.

• Type D: Filter run with observation error covariance matrix R estimation. The

initial R used in the assimilation consists of the only the instrument error covariance

matrix Rint = RI . The number of samples used to calculate Rest is N s = 250. The

observation error covariance matrix is first estimated after 250 assimilation steps,

with this estimate being included in the next assimilation step. The observation

error covariance matrix is then updated every assimilation step using step 8 of the

algorithm given in Table 7.1.

Running this set of experiments allows us to determine how well the filter is working. It

also allows us to see if inflating the variance accounts for unknown forward model error.

We also consider if the matrix R, and hence forward model error, can be estimated within
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an assimilation scheme. We now present the results of our experiments.

7.3 Results

We present the results from all our experiments in Table 7.2. We give details of the matrix

used as the true observation error covariance matrix Rt. We also give the type of exper-

iment (A-D) used and the frequency of the observations. We also give two time averaged

analysis RMSEs. The two RMSEs are calculated using different error realisations for the

background and instrument errors as well as the perturbations for the initial conditions

and the initial creation of the ensemble members. The RMSE allows us to compare the

performance of the filter for each experiment. We also provide figures to aid our analysis of

the experiments. We plot rank histograms to give information about the ensemble spread

as consequently this may affect the analysis and the estimation of the observation error co-

variance matrix. We also plot a row of the true and estimated observation error covariance

matrix. To give an idea of the accuracy of the estimated covariance we also include, in the

figure caption, the RMSE of one row of the estimated observation error covariance matrix.

The RMSE of the row of the estimated observation error covariance matrix is calculated

using equation (2.26). The truth is one row of the true observation error covariance matrix

and as our estimated covariance we use the average calculated covariance structure. The

average covariance structure is calculated by averaging the permuted rows of the estimated

observation error matrix.

We begin by describing the experiments where the true matrix R is static and the obser-

vations are available frequently.

7.3.1 Results with a static R and frequent observations

We begin by setting the true matrix Rt, to the matrix shown in Figure 7.1. We run the the

model until a final time of T = 10000, a total of 40000 time steps, and observations are avail-

able every 40 time steps. This allows us to run the filter for 1000 assimilation steps.
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Experiment True R Experiment Obs Freq Background, Time Av Time Av

Number Type (time steps) Instrument and analysis analysis

representativity RMSE Error RMSE Error

error variance realisation 1 realisation 2

1 SOAR + RI A 40 0.1 0.246 0.250

2 SOAR + RI B 40 0.1 0.275 0.276

3 SOAR + RI C 40 0.1 0.273 0.276

4 SOAR + RI D 40 0.1 0.251 0.260

5 SOAR + RI A 100 0.1 0.353 0.350

6 SOAR + RI B 100 0.1 0.380 0.381

7 SOAR + RI C 100 0.1 0.375 0.373

8 SOAR + RI D 100 0.1 0.357 0.372

9 SOAR + RI/RI A 40 0.1 0.270 0.269

10 SOAR + RI/RI B 40 0.1 0.284 0.284

11 SOAR + RI/RI C 40 0.1 0.281 0.284

12 SOAR + RI/RI D 40 0.1 0.279 0.281

13 Time dependent (Lo 3.7 to 4.0) D 40 0.1 0.255 0.248

14 Time dependent (Lo 4.0 to 3.7) D 40 0.1 0.252 0.249

15 Time dependent (Lo 3.7 to 4.0) D 40 0.01 0.060 0.058

16 Time dependent (Lo 3.7 to 4.0) D 40 1.0 0.704 0.704

Table 7.2: Details of experiments executed to investigate the performance of the ETKF with observation error covariance estimation
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Figure 7.2: Experiment 1: Truth (blue), observations (crosses), forecast (black) and anal-
ysis (red) for the final time T = 10000

Experiment Type A

We begin by running the filter without estimatingR. At each assimilation time we calculate

the background and analysis innovations. At the end of the assimilation window we use the

1000 background and analysis innovation statistics to calculate the matrix R. This allows

us to check that the filter is working correctly and that the observation error covariance

matrix can be calculated using the Desrozier diagnostic.

We first run the filter using the correct R. We calculate the innovation statistics at each

assimilation step. However we only use them to estimate R after the final assimilation has

been completed. We run the assimilation using the correct R throughout as this allows

us to show that the assimilation and Desroziers diagnostic perform well. As we are using

the correct R this shows the best performance we can expect from the filter. We show

the final time truth, observations, ensemble mean forecast and analysis state in Figure

7.2. The rank histogram is plotted in Figure 7.3 and the time averaged analysis RMSE

for Experiment 1 is given in Table 7.2. We expect the RMSE to be the lowest of all the

experiments as R is specified correctly and the observations are frequent. We see that the

assimilation is working well with the analysis being a better approximation of the truth

than the background, particularly in the first half of the domain. We see that the rank
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histogram is fairly flat indicating that the ensemble spread is sufficient to capture the

observations and the filter is not divergent. As well as considering the performance of the

filter we also consider how well the Desrozier diagnostic performs in this case. As we are

using the correct R and assuming we have a good estimate for Pf we expect the Desroziers

diagnostic to give a good estimate of the matrix R. We use the innovations from each of the

1000 assimilation steps to calculate the observation error covariance matrix. As the true

observation error covariance matrix is isotropic and homogeneous we plot the correlation

function obtained by averaging the rows of the covariance matrix, which removes some

of the sampling error. It may be possible to reduce this sampling error by increasing the

number of samples. However where we introduce a time varying R, increasing the number

of samples reduces the time dependence of the matrix R we are calculating, as we will

use samples that span a larger amount of time. It may also be possible to overcome the

sampling error with localisation; however we do not consider this here. The middle row

of the true correlation matrix (blue), and the average of the calculated covariance matrix

(red) are plotted in Figure 7.4. We see that the Desroziers diagnostic is working well,

providing a good estimate of the matrix R.
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Figure 7.3: Rank Histogram for Experiment 1 (experiment type A with frequent observa-
tions)
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Figure 7.4: Rows of the true (blue) and estimated (red) covariance matrices for Experiment
1 (experiment type A with frequent observations). Observation error covariance RMSE
0.002

Experiment Type B

We next consider the case where it is assumed that the observation error covariance matrix

used in the assimilation consists only of the instrument error covariance, that is R =

RI . All 1000 analysis and background innovations are used as samples for the Desroziers

diagnostic. The analysis RMSE is given in Table 7.2 Experiment 2, while the true and

calculated matrices are plotted in Figure 7.5(b). The rank histogram is plotted in Figure

7.5(a).

We see that the rank histogram has a definite U shape suggesting that there is not enough

variability in the ensemble members. This suggests that the variance in the matrix Pf

is not as large as it should be, which may affect the estimation of R. As expected the

assimilation does not perform as well as in Experiment 1 and the time averaged RMSE

is larger. From Figure 7.5(b) we see that even where it is assumed that R = RI the

Desroziers diagnostic still gives a reasonable estimate of the true covariance with approx-

imately correct length scales. This suggests that even if forward model error is initially

unknown it should be possible to use the Desroziers diagnostic to produce an estimate of

forward model error.
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(a) Rank Histogram for Experiment 2
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(b) Rows of the true (blue) and estimated (red) covariance matrices for Experiment 2. Observation error
covariance RMSE 0.010

Figure 7.5: Diagnostics for Experiment 2 (experiment type B with frequent observations)

Experiment Type C

In Experiment 3 we use variance inflation to increase the variance of the instrument error

covariance. We choose the inflation factor to be 2, so that R = 2RI , which gives a diagonal

covariance matrix with the same variance as the true matrix R. We see from the rank

histogram in Figure 7.6(a) by comparison with Figure 7.5(a) that inflating the assumed

observation error variance has increased the ensemble spread.
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(a) Rank Histogram for Experiment 3
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(b) Rows of the true (blue) and estimated (red) covariance matrices for Experiment 3. Observation error
covariance RMSE 0.010

Figure 7.6: Diagnostics for Experiment 3 (experiment type C with frequent observations)

Considering the RMSE shows that the assimilation is comparable to Experiment 2. Again

all 1000 background and analysis innovations are used to calculate our estimate of R. We

see from Figures 7.6(b) that using the Desroziers diagnostic has provided a reasonable

estimate of R and it is similar to the estimate from Experiment 2.
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Experiment Type D

We now consider what happens where we estimate R within the assimilation scheme as

described in Table 7.1 with N s = 250. We find that with N s = 250 samples, for the

estimated matrix to be full rank it is necessary to remove the sampling error. To remove

the sampling error we make the matrix isotropic and homogeneous by taking the mean

of the shifted rows of estimated matrix. This averaged row is then used to reconstruct

a circulant matrix. This makes the assumption that all the observations have the same

correlations. Although this may be the case in this experiment, it is not necessarily true

in a NWP scenario. As previously mentioned it may be possible to overcome sampling

error by increasing the number of samples; however this reduces the time dependence of

the estimation. We choose to make the homogeneous assumption to increase the time

dependence of our estimated R. We verify that the method proposed is able to improve

the analysis by including improved estimates of R in the assimilation scheme. We begin

by assuming that the observation error covariance matrix consists of only the instrument

error. We plot in Figure 7.7(a) the rank histogram for Experiment 4. We see that that

the rank histogram is U shaped, but the shape is not as severe as in Experiment 2, which

suggests that there is a lack of variability in the ensembles. As the first 250 time steps

are equivalent to Experiment 2, it is possible that it is these initial assimilation steps that

contribute to the shape of the rank histogram, and that once the estimated R is used

in the assimilation the ensemble spread is increased. To see if this is the case we plot

the rank histogram, Figure 7.7(b), for the last 750 assimilation steps. We see that the

rank histogram for the section of the assimilation that uses the estimated R is flat. This

suggests that using the correct R has helped increase the spread of the ensemble. This

shows that overall the assimilation scheme is performing better than the cases where the

observation error covariance matrix was assumed diagonal. The RMSE is now closer to

the RMSE obtained where the correct R was used. In Figure 7.7(c) we plot the true

covariance (blue) as well as the first estimate of the covariance calculated using the first

250 background and analysis innovations (red) and the last estimate of the covariance

calculated using the last 250 background and analysis innovations (black). We note that
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(a) Rank Histogram for Experiment 4

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Rank

R
ea

lis
at

io
ns

(b) Rank Histogram for the last 750 assimilation steps using estimated R in Experi-
ment 4
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(c) Rows of the true (blue) and estimated covariance matrices for Experiment 4. Covari-
ance calculated using the first 250 background and analysis innovations (red), observa-
tion error covariance RMSE 0.010. Covariance calculated using the last 250 background
and analysis innovations (black), observation error covariance RMSE 0.006.

Figure 7.7: Diagnostics for Experiment 4 (experiment type D with frequent observations)
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as R is estimated using fewer samples than the previous experiments we expect the results

to be more noisy due to the increased sampling error. We see that the first estimate of

the covariance structure is similar to that calculated in Experiment 2. This is because all

the innovations used as samples were calculated assuming that R = RI . We see that the

last estimate of the covariance structure is closer to the true covariance structure. This

suggests that iterating the estimation of R within the ETKF improves the estimation of a

static R. It also suggests that it should be possible to gain a time dependent estimate of

forward model error. So far we have considered the case where observations are available

every 40 time steps. However it is possible that the ETKF with R estimation is sensitive

to the time interval between observations. To test this we now consider the case where

observations are only available every 100 time steps.

7.3.2 Static R, infrequent observations

Again we start by only estimating R after the final assimilation has finished. Observations

are available only every 100 time steps so we have 400 assimilation steps, and hence 400

background and analysis innovations that can be used to estimate R. We consider the cases

where R is correctly specified, set to be the instrument error, and an inflated instrument

error. The RMSE for these experiments are given in Table 7.2 Experiments 5, 6 and

7.

Experiment Type A

We begin by using the correct observation error covariance matrix in the assimilation. As

we expect, the lowest RMSE is for Experiment 5. This is because we are using the correct

observation error covariance matrix Rt in the assimilation scheme. The RMSE is larger

than in Experiment 1 because there is a larger time between observations so there is more

time for the model to move away from the observations and therefore the assimilation has

a larger correction to make. However the flat rank histogram seen in Figure 7.8(a) suggests

that there is enough variance in the ensemble. The estimation of the covariance structure,
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(a) Rank Histogram for Experiment 5
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(b) Rows of the true (blue) and estimated (red) covariance matrices for Experiment 5. Observation error
covariance RMSE 0.002

Figure 7.8: Diagnostics for Experiment 5 (experiment type A with infrequent observations)

plotted in Figure 7.8(b), is again accurate.

Experiment Type B

Where R = RI we see from Figure 7.9(a) that the ensemble is under determined. From

Table 7.2 we see that the RMSE larger than for Experiment 5. From Figure 7.9(b) it

is obvious that the estimate of the covariance function is not as good as Experiment 2,

and this suggests that the larger spacing between observations does affect how well the
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(a) Rank Histogram for Experiment 6
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(b) Rows of the true (blue) and estimated (red) covariance matrices for Experiment 6. Observation error
covariance RMSE 0.020

Figure 7.9: Diagnostics for Experiment 6 (experiment type B with infrequent observations)

Desrozier diagnostic estimates R if the R used for calculating the innovations is incorrect.

We also see that in this case the estimate of the variance is an underestimate of the true

variance, whereas where the observations are more frequent (Experiment 2) the estimated

variance is an overestimate. As well as being linked to the frequency of the observations, it

is likely that the estimation of R is also related to the matrix Pf . With fewer observations

the ensemble has more time to spread; this in turn may lead to a matrix Pf with larger

variances, whereas more frequent observations lead to a Pf with smaller variances. The
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Desroziers diagnostic uses the matrix Pf in the calculation of the observation covariance

matrix. It is possible that with less frequent observations the large variances in Pf are

dominant in the calculation of the observation error covariance matrix, and hence the

observation error variances are underestimated.

Experiment Type C

Assuming an inflated error variance, R = 2RI , again helps keep the ensemble spread

(Figure 7.10(a)) and the RMSE (Experiment 7, Table 7.2) is also slightly lower than

Experiment 6. The variance estimation of R is improved from Experiment 6. It is likely

that the improvement is because the assumed observation error variance is equal to the

true error variance. However we show in Figure 7.10(b) that the covariance structure is

not well estimated.

Experiment Type D

We now estimate R within the scheme and then reuse the estimated R at the next as-

similation step. As our initial error covariance we choose the instrument error covariance,

R = RI . We see from Table 7.2 that the RMSE is lower than both the cases where R

was assumed diagonal, and is close to the RMSE where the correct R was used. The rank

histogram plotted in Figure 7.11(a) again suggests that the ensemble is slightly under de-

termined. Again this may be due to the initial 250 assimilation steps where R is assumed

diagonal. As with Experiment 4 we plot in Figure 7.11(b) the true covariance structure

as well as the first and last estimated correlation structures. The first estimate is the

equivalent of calculating R after the first 250 assimilation steps of Experiment 6. It is for

this reason that we see an under estimate of the correlation structure. We see that the last

estimate of the correlation variance is closer to the truth. The structure is also improved,

but does not closely follow the truth. This is partly because some of the background and

analysis innovations were calculated using the diagonal R. As we are considering a static

observation error matrix we expect the estimated R to improve with every assimilation
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step. If the assimilation is run for longer period of time we would expect the estimated R

to converge to the truth. However if the observations are not frequent enough this method

may not be suitable for producing a time varying estimate of R. We now return to the the

case of more frequent observations, but consider a different true R.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Rank

R
ea

lis
at

io
ns

(a) Rank Histogram for Experiment 7
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(b) Rows of the true (blue) and estimated (red) covariance matrices for Experiment 7. Observation error
covariance RMSE 0.020

Figure 7.10: Diagnostics for Experiment 7 (experiment type C with infrequent observa-
tions)
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(a) Rank Histogram for Experiment 8
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(b) Rows of the true (blue) and estimated covariance matrices for Experiment 8. Covariance calculated using
the first 250 background and analysis innovations (red), observation error covariance RMSE 0.021. Covariance
calculated using the last 250 background and analysis innovations (black), observation error covariance RMSE
0.015.

Figure 7.11: Diagnostics for Experiment 8 (experiment type D with infrequent observa-
tions)

7.3.3 Two different observation error covariance matrices with frequent

observations

We now consider the case where for the first 500 time steps the true R is defined using

the SOAR function as in the previous experiments, Figure 7.1. For time steps 501 to 1000
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Rt is defined to be Rt = 2RI . We show that using our method allows us to obtain good

estimates of the both the matrix R defined by the SOAR function and the diagonal matrix

R.

Experiments Type A, B and C

We run Experiments 9 (Type A), 10 (Type B) and 11 (Type C) using the described R and

observations every 40 time steps. The RMSEs are given in Table 7.2 Experiments 9, 10

and 11 and the rank histograms and estimates of the observation error covariance matrix

are plotted in Figures 7.12, 7.13, and 7.14 respectively. The estimate of the covariance

matrix defined by the SOAR is calculated by using the first 500 background and analysis

innovations. The background and analysis innovations from assimilation steps 501 to 1000

are used to estimate the true diagonal R.

We see that using the correct R in the assimilation gives the lowest RMSE; however the

filter also performs as well using an R with an inflated variance. Using Rint = RI results

in a poorer performance of the filter both in terms of the RMSE and the rank histogram

which suggests that the ensemble is under determined. However all three experiments

result in good estimates of both covariance structures. We now consider if the observation

error covariance matrix can be estimated within the assimilation scheme.

Experiment Type D

We show in Experiment 12 the case where R is estimated within the scheme, we initially

assume R = RI . By considering the rank histogram (Figure 7.15(a)) of the steps where

R has been estimated we see that there is enough spread in the ensemble, and the RMSE

suggests that the analysis had been slightly improved. We plot the estimates of the corre-

lation structure of R every fifty time steps, as well as the two true correlation structures,

in Figure 7.15(b). We see that the estimate of the correlation function at time tn = 300

is already a good approximation of the true correlation function. This approximation is

gradually improved over time. We see that after tn = 500 the approximated correlation
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(a) Rank Histogram for Experiment 9
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(b) Rows of the true (blue) and estimated (red) covariance matrices for the SOAR (solid lines) and diagonal
(dashed lines) covariance functions for Experiment 9. Observation error covariance RMSE using first 500
innovations 0.010. Observation error covariance RMSE using innovations from assimilation time 501 to 1000
0.003

Figure 7.12: Diagnostics for Experiment 9 (experiment type A with two different observa-
tion error covariance matrices with frequent observations)
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(a) Rank Histogram for Experiment 10
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(b) Rows of the true (blue) and estimated (red) covariance matrices for the SOAR (solid lines) and diagonal
(dashed lines) covariance functions for Experiment 10. Observation error covariance RMSE using first 500
innovations 0.010. Observation error covariance RMSE using innovations from assimilation time 501 to 1000
0.003

Figure 7.13: Diagnostics for Experiment 10 (experiment type B with two different obser-
vation error covariance matrices with frequent observations)
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(a) Rank Histogram for Experiment 11
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(b) Rows of the true (blue) and estimated (red) covariance matrices for the SOAR (solid lines) and diagonal
(dashed lines) covariance functions for Experiment 11. Observation error covariance RMSE using first 500
innovations 0.011. Observation error covariance RMSE using innovations from assimilation time 501 to 1000
0.003

Figure 7.14: Diagnostics for Experiment 11 (experiment type C with two different obser-
vation error covariance matrices with frequent observations)
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(a) Rank Histogram for Experiment 12
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True R (t = 0 to 500)
True R (t = 501 to 1000)
Estimated R (t = 300)
Estimated R (t = 400)
Estimated R (t = 500)
Estimated R (t = 600)
Estimated R (t = 700)
Estimated R (t = 800)
Estimated R (t = 900)
Estimated R (t = 1000)

(b) Rows of the true (blue) and estimated covariance matrices for Experiment 12. Observation error covari-
ance RMSE using innovations from assimilation time 1 to 250 0.010. Observation error covariance RMSE
using innovations from assimilation time 251 to 500 0.006. Observation error covariance RMSE using in-
novations from assimilation time 501 to 750 0.006. Observation error covariance RMSE using innovations
from assimilation times 750 to 1000 0.005.

Figure 7.15: Diagnostics for Experiment 12 (experiment type D with two different obser-
vation error covariance matrices with frequent observations)

function moves away from the SOAR function and by tn = 700 the approximation is a

good estimate of the new true covariance. Although the method can estimate the true

covariance in this case once the true covariance structure is R = RI it takes approximately

200 assimilation steps for the estimated R to be a good approximation of the truth. This
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is no surprise as it is the current and previous 249 innovations that are being used for the

estimation of R. Until tn = 750 some of the innovations will have been calculated where

R = RI +SOAR so time is needed before the knowledge of these innovations is forgotten.

The aim of developing this method was to approximate a slowly time varying R in that

could be used to calculate a time dependent estimate of forward model error. In the case

we have just presented the error is not slowly time varying, instead the method is presented

with a discrete jump from one covariance to another, and this is the cause of the delay in

the estimation of R. We show that if the true R is slowly varying then innovations used

in the R estimation will not be so different as in the case just presented, therefore a good

approximation of R can be obtained. We now go on to consider this case.

7.3.4 Time dependent R

For this experiment we set the true R to be time dependent. We choose the correlation

to be the SOAR function as described in equation (7.3) with Lt = 15. To create time

dependence we vary the length scale with time by increasing b. At the initial time we set

b = 3.7 and at each assimilation step b is increased by 3.0×10−4, until the final assimilation

time where b = 4.0. We only consider the case where R is estimated and used within the

assimilation. We show that it is possible to use the ETKF and Desroziers diagnostic to

estimate a time varying observation error covariance matrix. To show how well the filter

is performing we give the analysis RMSE in Table 7.2 Experiment 13 and plot the rank

histogram in Figure 7.16.

We see that the RMSE is low and the histogram is flat suggesting that the assimilation is

working well and the ensemble spread is maintained. We now show how well the Desroziers

diagnostic estimates the true observation error covariance matrix. We plot the estimates

at every fifty time units in Figure 7.17. We see that the first estimate of R captures the

true correlation structure well. Considering the estimates at each of the times plotted we

see that the true correlation structure is well approximated. The ETKF with R estimation

gives good estimates of a slowly time varying observation error covariance matrix. We now

consider what happens when the covariance length scale decreases with time.
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Again we chose the correlation to be the SOAR function as described in equation (7.3)

with Lt = 15. To create time dependence we vary the length scale with time by decreasing

b. At the initial time we set b = 4.0 at each assimilation step b is decreased by 3.0× 10−4,

until the final assimilation time where b = 3.7. To show how well the filter is performing

we give the analysis RMSE in Table 7.2 Experiment 14, plot the rank histogram in Figure

7.18 and we plot the estimates of the covariance matrix at every fifty time units in Figure

7.19. Again we see that the method produces reasonable estimates of the time varying

observation error covariance matrix.

So far we have always considered how the method performs where the instrument, repre-

sentativity and initial background error variances have been set to 0.1. We now consider

how well the method performs where these errors are larger and smaller. We return to

using the time varying observation error covariance matrix used in Experiment 13, but

with the instrument, representativity and initial background error variances set to 0.01.

We give the analysis RMSE in Table 7.2 Experiment 15, plot the rank histogram in Figure

7.20 and we plot the estimates of the covariance matrix at every fifty time units in Figure

7.21. We see that the RMSE is considerably lower than any of the previous experiments

and this is a result of the increased accuracy of the observations. We see from the figure

that the method works well where the error variances are small.

We now consider how the method performs where the instrument, representativity and

initial background error variance are set to 1. We give the analysis RMSE in Table 7.2

Experiment 16, plot the rank histogram in Figure 7.22 and we plot the estimates of the

covariance matrix at every fifty time units in Figure 7.23. The RMSE is large, and this

is the result of the inaccurate observations in the assimilation. We also see that the rank

histogram is U shaped, suggesting a lack of variability in the ensemble. Despite both the

lack of variability and large RMSE we see that the method is still able to provide good

approximations to the observation error covariance matrix. Comparing Experiments 13, 15

and 16, it appears that the size of the instrument and representativity error variance do not

affect the accuracy of the approximation of the observation error covariance matrix.
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Figure 7.16: Rank Histogram for Experiment 13 (experiment type D with a time depen-
dent R, where Lo varies from 3.7 to 4.0, frequent observations and initial background,
instrument and representativity error variances set to 0.1)
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Figure 7.17: Rows of the true (blue) and estimated (red) covariance matrices for Experiment 13 (experiment type D with a time dependent
R, where Lo varies from 3.7 to 4.0, frequent observations and initial background, instrument and representativity error variances set to
0.1). Observation error covariance RMSE for final covariance estimate 0.008.
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Figure 7.18: Rank Histogram for Experiment 14 (experiment type D with a time depen-
dent R, where Lo varies from 4.0 to 3.7, frequent observations and initial background,
instrument and representativity error variances set to 0.1)

108



10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

10 20 30 40 50 60

0

0.1

0.2

t = 250 t = 300 t = 350

t = 450 t = 550

t = 650 t = 750

t = 850 t = 950

t = 500

t = 700 t = 800

t = 900 t = 1000

t = 600

t = 400

Figure 7.19: Rows of the true (blue) and estimated (red) covariance matrices for Experiment 14 (experiment type D with a time dependent
R, where Lo varies from 4.0 to 3.7, frequent observations and initial background, instrument and representativity error variances set to
0.1). Observation error covariance RMSE for final covariance estimate 0.014.
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Figure 7.20: Rank Histogram for Experiment 15 (experiment type D with a time depen-
dent R, where Lo varies from 3.7 to 4.0, frequent observations and initial background,
instrument and representativity error variances set to 0.01)
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Figure 7.21: Rows of the true (blue) and estimated (red) covariance matrices for Experiment 15 (experiment type D with a time dependent
R, where Lo varies from 3.7 to 4.0, frequent observations and initial background, instrument and representativity error variances set to
0.01). Observation error covariance RMSE for final covariance estimate 0.001.
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Figure 7.22: Rank Histogram for Experiment 16 (experiment type D with a time depen-
dent R, where Lo varies from 3.7 to 4.0, frequent observations and initial background,
instrument and representativity error variances set to 1.0)
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Figure 7.23: Rows of the true (blue) and estimated (red) covariance matrices for Experiment 16 (experiment type D with a time dependent
R, where Lo varies from 3.7 to 4.0, frequent observations and initial background, instrument and representativity error variances set to
1.0). Observation error covariance RMSE for final covariance estimate 0.044.
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7.4 Summary

In this chapter we have introduced an ensemble transform Kalman filter with observation

error covariance matrix estimation. This is an ETKF where analysis and background

innovations are calculated at each time step and the most recent set of these innovations

is used to estimate the matrix R using the Desroziers diagnostic. This estimate of R is

then used in the next assimilation step. The method has been developed to allow a slowly

time varying estimate of the observation error covariance matrix, and hence forward model

error, to be calculated. We showed it is possible to obtain a good estimate of R using the

Desroziers diagnostic; the best result is obtained where the correct matrix is used in the

assimilation. However, even if the R used in the assimilation is diagonal it is still possible

to obtain a reasonable estimate of the true correlation structure. We then showed that

estimating R within the ETKF worked well, with good estimates obtained, the ensemble

spread maintained and the analysis RMSE reduced compared to the case where the matrix

R is always assumed diagonal. We also showed that the method does not work as well

where the observations are less frequent. However the method still produces a reasonable

estimate of R, maintains the ensemble variance and the analysis RMSE is lower than

where a diagonal R is used. We also showed that the method worked well where the true

matrix R is defined by the SOAR function for the first 500 time units and then diagonal

for the second half of the assimilation. We showed that in this situation the method

worked well initially; however due to the discrete change in the matrix R the method

took approximately 250 assimilation steps to approximate well the true R defined for the

second half of the assimilation. Finally we considered a case where R varied slowly with

time. It is not known how quickly representativity error will vary, but given the case

dependence seen in the previous chapter it is likely that representativity error will vary

at the same rate as the synoptic situation changes. We showed that the method worked

well where the true R was defined to slowly vary with time. The analysis RMSE was

low and the rank histogram suggested that the ensemble spread was maintained. The

estimates of the correlation structure were good, suggesting that the method is capable

of estimating a slowly time varying observation error covariance matrix. We also showed
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that the ability for the method to approximate the correlation structure was not sensitive

to the background errors or the true magnitude of the observation error variance. This

suggests that the method would be suitable to give a time dependent estimate of forward

model or representativity error. We note that the effectiveness of the method will depend

on how rapidly the synoptic situation and hence representativity error is changing and

how often observations are available. The representativity error will also be dependent on

the NWP model that is being used. For models designed to capture rapidly developing

situations, where representativity error is likely to change rapidly, assimilation cycling and

observation frequency within the assimilation is expected to be more frequent and hence

more data is available for estimating the representativity error.
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Chapter 8

Conclusions

Data assimilation is an important technique that combines observations with a model pre-

diction to find the best estimate of the true state of a dynamical system [Kalnay, 2002].

It is used to provide a complete set of initial conditions as input into a numerical model.

The accuracy of the initial conditions is important as any error will be propagated by the

numerical model. Both the observations and model prediction contain errors and their

statistics are included in the assimilation in the observation and background error covari-

ance matrices. The errors associated with the observations are the instrument and forward

model errors. The instrument error is determined for specific instruments under a set of

test conditions by the instrument manufacturer or from in-orbit calibration data. Forward

model errors consist of the errors due to a misspecified observation operator and errors

of representativity. Errors of representativity are the result of the small scale observation

information being incorrectly represented in the model [Daley, 1993]. Currently little is

known about representativity errors and they are not correctly included in data assimi-

lation schemes. Previous work in the context of atmospheric data assimilation [Stewart

et al., 2009, 2012b, Bormann et al., 2002, Bormann and Bauer, 2010, Bormann et al., 2010]

has shown that the observation error covariance matrix may be correlated, but it is not

known if these correlations are in part caused by the representativity error. In this thesis

we have use existing methods and developed our own schemes to investigate forward model

error and representativity error. A better understanding of these errors would allow them
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to be incorporated into the observation error statistics to provide more accurate observa-

tion error covariance matrix and also would allow us to make better use of the available

observations. In turn this could improve the analysis, which would provide better initial

conditions for forecasting. We now summarise the work in this thesis and highlight the

main conclusions. We then present ideas for further work.

8.1 Summary

In Chapter 1 we set out the main aims that we proposed to answer throughout the thesis.

In particular we wished to:

• Understand what representativity error is and how it can be calculated and included

in the data assimilation scheme.

• Understand the structure of representativity error and see if it may be a cause of

correlations in the observation error covariance matrix.

• Understand if representativity error is significant.

• To see if the inclusion of representativity error in the data assimilation scheme can

improve the analysis.

• To see if it is possible to calculate a time dependent estimate of forward model error.

In Chapter 2 we introduced the concepts of data assimilation. The notation for dynamical

systems and data assimilation used throughout this thesis was also introduced. A brief

overview of some different types of sequential and variational data assimilation was given,

with the best linear unbiased estimate and ensemble transform Kalman filter described

in greater detail. Two methods used to overcome problems with ensemble filtering were

introduced and diagnostics for data assimilation were also considered.

In Chapter 3 the ideas of forward model error and representativity error were introduced

and a mathematical description of forward model error was given. The current treatment

of forward model error was discussed. The methods that have been previously developed
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to estimate R, as well as those that give both time independent and dependent estimates

of forward model errors were also reviewed. A method proposed by Daley [1993] and the

Desroziers diagnostic were discussed in greater detail.

The use of the Daley [1993] method was described in Chapter 4. The method, suitable for

calculating representativity errors in idealised situations, requires pseudo-observations and

other matrices and the details of these were derived in this chapter. Some new theoretical

results related to this method were then presented.

In Chapter 5 we introduced the Kuramoto-Sivashinsky equation and used it along with the

method proposed by Daley [1993] to help us understand the structure of representativity

error. The ETDRK4 numerical method used to solve the KS equation was introduced.

We considered solutions to the KS equation at different resolutions, and the power spectra

of these solutions. We then calculated representativity error for the KS equation. We

considered the effect of altering the number and type of observations as well as altering

the model resolution.

In Chapter 6 we investigated the significance of representativity error for temperature and

specific humidity fields. We also showed that significant correlations in the observation

error covariance matrix [Stewart et al., 2009, Stewart, 2010] could be attributed to repre-

sentativity error. This was achieved by calculating representativity error for temperature

and humidity data from the Met Office UKV model for two different cases. The sensitivity

of representativity error to the synoptic state was also investigated.

Finally in Chapter 7 we introduced a new method that combines an ensemble transform

Kalman filter with observation error covariance matrix estimation. The method combined

an ETKF with the Desroziers diagnostic, which is used to estimate the observation er-

ror covariance matrix R. This method was introduced as it could be used to calculate a

time dependent estimate of representativity error. We used this method to assimilate high

resolution observations with the model solutions of the KS equation. We carried out exper-

iments to show how well the method worked. We showed that this new method could be

used to estimate both static and time varying observation error covariance matrices.
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8.2 Conclusions

In this thesis we have used existing methods and developed our own schemes to investigate

forward model error and representativity error. We have shown that:

• Representativity error is correlated.

In Chapter 5 and 6 the structure of representativity error was investigated. We

calculated representativity error for both idealised and real data using a method first

developed by Daley [1993] and then by Liu and Rabier [2002]. All the results showed

that representativity error is correlated. This suggests that the correlations found in

Stewart [2010] and Weston [2011] are likely to be caused, in part, by representativity

error.

• The representativity error variance is independent of the number of available obser-

vations and the correlation structure of representativity error is dependent not on

the number of observations, but the distance between them.

In Chapter 4 we presented theoretical results relating to the Daley [1993] method.

We proved that when using the Daley [1993] method the variance of representativity

error does not change when calculated with different numbers of observations. We

also showed that the correlation structure of the representativity error depends only

on the distance between observations and not the number of observations available.

The numerical results when using the KS equation, Chapter 5, and the Met Office

data, Chapter 6 supported the theoretical results. Although the theoretical results

are specific to the Daley [1993] method, in general we expect that the representativity

error should not be dependent on the number of available observations, only on the

distance between them.

• Representativity error can be reduced by increasing the model resolution.

We considered the effect that changing the model resolution had on the represen-

tativity error. Results when using the KS equation, Chapter 5, and the Met Office

data, Chapter 6 showed that representativity error decreases as model resolution in-
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creases. This is because a model at higher resolution resolves more of the scales that

are resolved by the observations.

• Representativity error is lower for observations with larger lengthscales

We considered the effect that changing the observation type and lengthscale had

on the representativity error. Results when using the KS equation, Chapter 5, and

the Met Office data, Chapter 6 showed that variance of the representativity error

reduced as the lengthscale of the observation increased. This is because observations

with larger lengthscales average over the smallest scales and therefore the difference

between the resolved scales in the observation and model is reduced, hence reducing

the representativity error. We also showed that for observations with larger length-

scales the correlations were more significant. This increase in significance is related to

the fact that neighbouring observations overlap, hence they share information about

the state.

• Representativity error is case dependent, more significant for humidity than temper-

ature and varies throughout the atmosphere.

In Chapter 6 we used data from the high resolution Met Office model to calculate

representativity error for temperature and specific humidity for two different synoptic

situations. We found that the representativity error was sensitive to the synoptic

situation, which supports claims by Janjic and Cohn [2006] that representativity

error is time and state dependent.

The experiments showed also that representativity error was more significant for

humidity than temperature.

We considered how the representativity error standard deviation varied at different

pressure levels. We found that representativity error does vary at different pressure

levels and this means that assumptions such as those in Dee and Da Silva [1999]

where errors at different model levels are fixed may not be suitable when representa-

tivity error is taken into account in assimilation schemes. We found that the highest

representativity errors for specific humidity occurred at the pressure levels where
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cloud was present.

• It is possible to estimate time varying observation error covariance matrices, and

including these within the assimilation scheme can improve the analysis.

In Chapter 7 we showed it was possible to calculate time dependant representativity

error and improve the analyisis by accounting for representativity error in the assim-

ilation scheme. We developed a new method that provides an online estimation of

the observation error covariance matrix. We showed it was possible to obtain a good

estimate of R using the Desroziers diagnostic. We then showed that estimating R

within the ETKF worked well, with good estimates obtained, the ensemble spread

maintained and the RMSE reduced compared to the case where the matrix R was

always assumed diagonal. We also showed that the method does not work as well

when the observations are less frequent. However the method still produces a reason-

able estimate of R and maintains the ensemble variance. Finally we showed that the

method worked well where the true matrix R was defined to slowly vary with time.

The estimates of the correlation structure were good, suggesting that the method is

capable of estimating a slowly time varying observation error covariance matrix. We

conclude that the method would be suitable to give a time dependent estimate of

forward model or representativity error.

8.3 Future work

In this thesis we have attempted to understand the structure of representativity error and

include it in an assimilation scheme. In Chapter 7 we introduced a method that combined

an ETKF with the Desroziers diagnostic that can be used to give a time dependent estimate

of representativity error. Under the assumptions we made, the method worked well and

provided a good estimate of a time dependent observation error covariance matrix. When

this error covariance matrix was included in the assimilation scheme the analysis was

improved. However the method should be tested with the assumptions removed.

Although not a requirement of the method, all our experiments have assumed that the
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observation error covariance matrix is homogeneous. This has allowed the sampling error

to be reduced. In a true NWP situation the observation error covariance matrix is unlikely

to be homogeneous, so rather than make this assumption it will be necessary to determine

a different way to deal with the sampling error. One way to do this would be to increase

the number of samples, as samples are taken over time increasing the number of samples

will reduce the time dependency of the R estimate. Work needs to be done to understand

how many samples are required for there to be a balance between a good time dependent

estimate of R and a reduction in sampling error. As well as considering increasing the

number of samples, it may also be beneficial to consider covariance localisation to reduce

the sampling error.

For the Desroziers diagnostic to give an accurate estimate of R it is suggested that the

R and Pf used in the analysis should be correctly specified. To ensure that we have

an accurate Pf we have used N = 1000 ensemble members. Using this large number of

ensembles is computationally costly and will not be practical in larger systems. In Chapter

2 we discussed the methods of covariance inflation and localisation that can be used to

increase the effective ensemble size. Further work is required to test the method with a

reduced ensemble size and the inclusion of inflation and localisation to see what effect these

methods would have on the estimates of B, and subsequently the estimate of R.

We have also only considered calculating a time dependent R for direct observations. It

would be interesting to compare how this method works for calculating R for a different

observation type. This could be done by creating pseudo-observations using the weighting

matrices defined in Chapter 4. After considering different observation types it would be

interesting to see if the method is suitable for estimating R that is associated with more

than one observation type.

All these further research ideas, could be carried out using the same technique used in

Chapter 7 where the model used is at the same resolution as the truth and a pseudo-

representativity or forward model error is added to the observations. This allows the

method to be examined without the interaction of any other model errors. Once the

method is better understood it should be used in twin experiments where the model is run
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at a lower resolution than the ‘truth’, and hence real representativity error is present. The

method should be tested in this case to calculate forward model errors and include them

in the scheme to improve the analysis.

In this thesis errors of representativity have been investigated. It has been shown that

these errors are correlated and a method has been developed that allows a time dependent

estimate of these errors to be calculated. With further development of these methods it

is possible that representativity errors could be correctly included in the assimilation in a

context of numerical weather prediction.
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