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Abstract

Data assimilation is often used to provide initial conditions for state estimation; combin-

ing model predictions with observational data to produce an updated model state that

most accurately characterises the true system state whilst keeping the model parame-

ters fixed. This updated model state is then used to initiate the next model forecast.

However, even with perfect initial data, inaccurate model parameters will lead to the

growth of prediction errors. A fundamental question in model development is how to

estimate parameters a priori.

In this thesis we investigate the application of data assimilation to model parameter

estimation. By employing the technique of state augmentation we develop a novel

framework for estimating uncertain model parameters concurrently with the model state.

A key difficulty in data assimilation is specification of the background error covari-

ances. For combined state-parameter estimation, it is important that the cross covari-

ances between the parameters and the state are given a good a priori specification. We

find that in order to yield reliable estimates of the true parameters, a flow dependent

representation of the state-parameter cross covariances is required. By combining ideas

from 3D-Var and the extended Kalman filter we develop a new hybrid assimilation algo-

rithm that captures the flow dependent nature of the state-parameter cross covariances

without the complexity and computational expense of explicitly propagating the full

system covariance matrix.

We demonstrate the applicability of the method to a range of simple models. Ideas

are developed in the context of morphodynamic modelling but the scheme is also shown

to be effective in both linear and nonlinear general dynamical system models, recovering

the true model parameter values to a good level of accuracy.
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Chapter 1

Introduction

Numerical models are used for forecasting across a wide range of environmental appli-

cations. The aim is to have a model that characterises the behaviour of the system

of interest as accurately as possible, whilst satisfying known physical properties. Un-

fortunately, a mathematical model can never completely describe the complex physical

processes underlying a real world dynamical system. Advances in knowledge and com-

puting technology mean that environmental forecasting models are becoming increas-

ingly sophisticated, but in practice these models suffer from uncertainty in their initial

conditions and parameters. Even with perfect initial data, inaccurate representation of

model parameters will lead to the growth of model error and therefore affect the ability

of a model to accurately predict the true system state.

Parameters are intrinsic to environmental modelling. Parameterisations are typically

used in applications where the underlying physics of a process are not fully known or

understood, or to model subgrid scale effects that cannot be captured within a par-

ticular model resolution. Coastal morphodynamic modelling is one such field. Coastal

morphodynamics is the study of sediment transport processes occuring in coastal regions.

Morphodynamic change can have a great many consequences, both environmental and

economic [68]. Knowledge of coastal morphology is fundamental to the effective manage-

ment of coastal regions; for example, managing coastal erosion, assessing the potential

impact of human use of coastal land, monitoring wildlife habitats and the mitigation of

flood hazard. It is a complex and challenging subject but one which is of great practical
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importance.

Many of the processes governing sediment transport are not fully understood or measur-

able. This lack of detail in knowledge means that sediment transport models are often

based on a mixture of theory and empirical results. As a consequence of this, models

contain parameters that are not directly measurable and which must be ‘tuned’ in order

to calibrate the model to a specific field site. Poorly known input parameters are a

key source of uncertainty in sediment transport models [94]. A fundamental question in

model development is how to estimate these parameters a priori. One option is to use

data assimilation.

Data assimilation is a sophisticated mathematical technique for combining observational

data with model predictions. Whilst data assimilation has been in use in the context

of atmospheric and oceanic prediction for some years, it has rarely been employed for

morphodynamic modelling. Data assimilation is most commonly used to produce initial

conditions for state estimation; estimating model variables whilst keeping the model

parameters fixed. However, by employing the method of state augmentation, it is also

possible to use data assimilation to estimate uncertain model parameters concurrently

with the model state.

State augmentation is a conceptually simple technique that offers a framework for esti-

mating uncertain model parameters jointly with the model state variables as part of the

assimilation process [45]. The parameters are appended to the model state vector, the

model prediction equations are combined with evolution equations for the parameters

and the chosen assimilation algorithm is simply applied to this new augmented system

in the usual way [72]. The same approach has previously been successfully used in the

treatment of systematic model error or bias (see, for example, [5], [16], [34], [64]).

In theory, state augmentation can be applied with any of the standard data assimilation

methods. For the work in this thesis we use a three dimensional variational (3D-Var)

data assimilation scheme (e.g. [13], [58]). Variational methods are commonly used for

large scale problems. 3D-Var is an established method that has many advantages over

other assimilation techniques, such as ease of implementation, computational efficiency

and robustness.
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As we show here, a key difficulty in the construction of a data assimilation algorithm is

specification of the statistics of the background errors. These statistics, in the form of

error covariances, play an important role in the filtering and spreading of observational

data. For parameter estimation, it is the joint state-parameter cross-covariances that

transfer information from the observations to the parameter estimates and therefore

play a crucial role in the parameter updating. A good a priori specification of these

covariances is vital for accurate parameter updating.

The main aims and principal results of this thesis are summarised in the next two

sections. This is followed by an overview of each chapter in section 1.3. Much of the

material in this thesis has previously been presented in the departmental reports [88],

[89], [91], [92] and also published in the journal paper [90].

1.1 Main aims

The objectives of this thesis are:

• To consider the problem of model parameter estimation in environmental mod-

elling with specific reference to coastal engineering applications.

• To evaluate the potential of state augmentation as an approach to concurrent

model state-parameter estimation using sequential 3D-Var data assimilation.

• To examine some of the issues associated with the development of an augmented

data assimilation system. In particular, the role of the background error covari-

ances in the assimilation and how these should be defined for joint estimation.

• To present a new method for treatment of the state-parameter cross covariances

and to demonstrate the utility of this new algorithm using a range of simple

dynamical system models.

1.2 Summary of new results

The main results of this thesis are:
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1. By employing the technique of state augmentation we have developed a novel

hybrid method for concurrent state-parameter estimation using sequential data

assimilation.

2. The success of the state augmentation approach relies heavily on the relation-

ship between the state and parameters (as described by the state-parameter cross

covariances) being well defined. The assumption of stationary background error

statistics made by standard 3D-Var algorithms for basic state estimation is in-

sufficient for joint state-parameter estimation. Here, we have shown that a flow

dependent description of the state-parameter cross covariances is required. How-

ever it is not necessary to evolve the full background error covariance matrix.

3. Our unique hybrid assimilation algorithm captures the flow dependence of the

state-parameter errors without the computational expense of explicitly propagat-

ing the full system covariance matrix. This is achieved by combining a static

representation of the state background error covariances with a time varying ap-

proximation of the state-parameter cross covariances.

4. For models with more than one parameter, consideration must also be given to

the relationship between individual parameters. Where model parameters exhibit

strong interdependence it is important that the elements of the parameter back-

ground error covariance matrix reflect the degree and direction of correlation.

5. Our new scheme has proved effective in a range of simple linear and nonlinear

dynamical system models. We are able to recover the true parameter values to a

good level of accuracy, even when observational data are noisy and this can lead

to significantly improved forecasts of the state.

1.3 Outline of thesis

We begin chapter 2 by describing the data assimilation problem for state estimation in

a general system model. We then discuss the data assimilation methods relevant to the

work in this thesis in more detail.

In chapter 3 we discuss the problem of model parameter estimation and review examples
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of some of the different approaches to model calibration in coastal modelling applica-

tions. We then introduce the technique of state augmentation and explain how data

assimilation can be used to estimate poorly known model parameters jointly with the

model state.

We give a general introduction to morphodynamic modelling in chapter 4 and explain

some of the difficulties associated with the development of an effective coastal morpho-

dynamic model. We describe some of the various sources of observations available for

morphodynamic data assimilation and review examples of previous applications of data

assimilation to coastal modelling.

The development of our joint state-parameter estimation system is described in chapter

5. This chapter brings together various elements of the work originally reported in

[88], [89] and [90]. We use a simple 1D linear advection model to help demonstrate the

theory and highlight some of the issues associated with practical implementation of the

3D-Var and state augmentation techniques. We use a series of simple experiments to

illustrate the role of the background error covariances and examine ways of defining the

state-parameter cross covarinces required for concurrent state-parameter estimation.

We consider the question of how to specify the augmented background error covariance

matrix for a general system model in chapter 6. We use the results of chapter 5 to

establish a novel hybrid algorithm that is applicable to a range of dynamical system

models.

In chapter 7 we assess the potential transferrability of this proposed new approach

via a series of identical twin experiments with three simple dynamical system models.

Additional results from a similar set of experiments can be found in [92].

In chapter 8 we evaluate our new hybrid algorithm in the context of morphodynamic

modelling using the 1D nonlinear sediment transport model introduced in chapter 4 and

also discussed in [91]. This model has two uncertain, but highly correlated parameters

which causes difficulties relating to identifiability and non-uniqueness of solutions.

Finally, in chapter 9 we summarise the conclusions from this work and discuss possible

future developments.
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Chapter 2

Data assimilation

In this chapter we lay the foundations for understanding the methods we present in

subsequent chapters. Since the data assimilation methods we use are relevant in a

wide range of contexts we begin by describing the data assimilation problem for state

estimation in a general system model. The specific models that we have been using to

develop and test our ideas will be introduced in later chapters. In the next section we

introduce the general nonlinear model system equations and explain the terminology and

notation that we will use throughout this thesis. Equations for a linear model system

are given in section 2.2. Then, in section 2.3, we give a brief overview of the main data

assimilation methods before discussing the schemes relevant to this work in more detail.

In section 2.3.4 we outline some of the issues associated with practical implementation

of these schemes. We limit our discussion to discrete, finite dimensional, systems as this

is most useful for application to the numerical models in which we are interested. Our

notation is similar to that of [44].

2.1 Nonlinear model system equations

We consider the discrete nonlinear time invariant dynamical system model

zk+1 = f(zk,p) k = 0, 1, . . . (2.1)

The column vector zk ∈ R
m is known as the state vector; it contains the model variables

at each grid cell in the model domain and represents the model state at time tk. The
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operator f : Rm −→ R
m is a nonlinear function describing the evolution of the state

from time tk to tk+1 and p ∈ R
q is a vector of q (uncertain) model parameters.

We assume that specification of the model state and parameters at time tk uniquely

determines the model state at all future times. We also assume that f(z,p) is differ-

entiable with respect to z and p for all z ∈ R
m and p ∈ R

q. Later in this thesis we

consider the case where the model state vector z is a 1D vector representing bathymetry

or bed height and the operator f(z,p) represents the equations describing the evolution

of the bed-form over time.

We suppose that, at time tk, we have a set of rk observations to assimilate and that

these are related to the model state by the equations

yk = hk(zk) + δk, k = 0, 1, . . . (2.2)

Here yk ∈ R
rk is a vector of rk observations at time tk. Note that the number of

available observations rk may vary with time. The vector δk ∈ R
rk represents the

observation errors. These errors are commonly assumed to be unbiased, serially uncor-

related, stochastic variables, with a given probability distribution [54]. The operator

hk : Rm −→ R
rk is a nonlinear observation operator that maps from model to obser-

vation space, converting the model variables to model values of the observed variable.

If, for example, we have direct measurements of bed height but at points that do not

coincide with the model grid, h is simply an interpolation operator that interpolates the

model bathymetry from the model grid to the observation locations. Often, the model

variables we wish to analyse cannot be observed directly and instead we have observa-

tions of another measurable quantity. In this case h will also include transformations

based on physical relationships that convert the model variables to the observations.

We also suppose that we have a background state zbk ∈ R
m, with error εbzk ∈ R

m, that

represents an a priori estimate of the true system state ztk at time tk. This is a best

guess estimate of the current system state obtained (for example) from a previous model

forecast.

The true system state is denoted by the vector ztk ∈ R
m. We can write the evolution of

the true state in terms of the model (2.1) as

ztk+1 = f(ztk,p
t) + εk k = 0, 1, . . . (2.3)
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where the vector εk represents the model error. For the work in this thesis we set εk = 0.

This is known as the ‘perfect model’ assumption [75]. In other words, we assume that

for any given initial state the model equations (2.1), with true parameters pt, give a

‘perfect’ representation of the true dynamical system state on the model grid.

For state estimation, the aim of data assimilation is to combine the measured obser-

vations yk with the model predictions zbk in order to derive an updated model state

that most accurately describes the true system state ztk at time tk. This optimal esti-

mate is called the analysis and is denoted zak. The model parameters p are assumed

to be known constant values. We describe the data assimilation problem for combined

state-parameter estimation later in chapter 3, section 3.4.

2.2 Linear model system equations

We will also consider examples in which the forecast model and/ or observations are

linear functions of the model state. In this case the model equations (2.1) and (2.2) can

be written as

zk+1 = Mk(p) zk k = 0, 1, . . . (2.4)

and

yk = Hk zk + δk, k = 0, 1, . . . (2.5)

where the matrix Mk ∈ R
m×m is a non-singular matrix that depends nonlinearly on the

parameters p, and Hk ∈ R
r×m.

2.3 Data assimilation methods

There are many different types of data assimilation algorithm, each varying in formula-

tion, complexity, computational burden, optimality and suitability for practical appli-

cation. A popular distinction is between three and four dimensional schemes. Three

dimensional algorithms consider only the spatial estimation problem, that is, observa-

tions are distributed in space but treated at a single point in time. Four dimensional

techniques incorporate the time dependancy of observations, using the model dynamics
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to produce an analysis state that gives the best fit to observations taken over a given

time window.

Here we focus our attention on the particular schemes upon which the work presented in

this thesis is based. These are: three dimensional variational data assimilation (3D-Var),

the Kalman filter (KF) and the extended Kalman filter (EKF). For further details of the

various other data assimilation schemes we refer the reader to the literature. A useful

overview of some of the most common data assimilation methods used in meteorology

and oceanography are given the review articles by Ghil and Malanotte-Rizzoli [27] and

Lorenc [57]. More more detailed mathematical formulations can be found in texts such

as [14], [49] and [54].

We start by formally introducing the 3D-Var method as this is the primary technique

used for the work presented in this thesis. Later in the thesis we will take ideas from

the Kalman and extended Kalman filters and so we also give details of the formulation

and implementation of these schemes.

2.3.1 3D-Var and Optimal Interpolation

The 3D-Var method [13], [58], [74], is based on a maximum a posteriori estimate ap-

proach and derives the analysis by seeking a state that minimises a cost function mea-

suring the misfit between the model state zk and the background state zbk and the

observations yk,

J(zk) =
1

2
(zk − zbk)

TB−1
k (zk − zbk) +

1

2
(yk − hk(zk))

TR−1
k (yk − hk(zk)). (2.6)

The matrices Bk ∈ R
m×m and Rk ∈ R

rk×rk are symmetric, postive definite covariance

matrices associated with the background and observation errors.

We assume that the background and observation errors are unbiased and uncorrelated

with Gaussian probability distribution functions. Their covariance matrices are then

defined as

Bk = E
[
εbzk ε

b
zk

T
]

and Rk = E
[
δk δ

T
k

]
, (2.7)

where E[ · ] denotes expected value, εbzk = zbk − ztk and δk = yk − hk(z
t
k).
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These matrices represent the uncertainties of the background and observations and de-

termine the relative weighting of zb and yk in the analysis. If it is assumed that the

background errors are small relative to the observation errors then the analysis will be

close to the background state. Conversely, if it is assumed that the background errors

are relatively large the analysis will lie closer to the observations. If the error statistics

are correctly specified then the analysis is a Bayesian maximum a posteriori estimate.

To determine the minimizing state at time tk we use the gradient of the cost function

with respect to zk. The analysis zak satisfies the equation

∇J(zak) = B−1
k (zak − zbk)−HT

kR
−1
k (yk − hk(z

a
k)) = 0, (2.8)

where ∇J is the gradient of the cost function (2.6) with respect to zk, and the matrix

Hk ∈ R
rk×m represents the linearisation (or Jacobian) of the observation operator hk

evaluated at the background state zbk.

There are various ways of minimising the cost function, each of which leads to a different

data assimilation scheme. When the observation operator, hk, is linear the minimum of

(2.6) can be found exactly and the solution for the analysis can be written explicitly as

zak = zbk +Kk(yk −Hkz
b
k). (2.9)

The operator Kk ∈ R
m×rk is known as the gain matrix [74] and is given by

Kk = BkH
T
k (HkBkH

T
k +Rk)

−1. (2.10)

Equation (2.9) is known as the best linear unbiased estimate or BLUE formula [54]. This

equation forms the basis of one of the earliest and most simple data assimilation methods

known as Optimal Interpolation (OI) or Statistical Interpolation [14], [27], [75]. The OI

method uses (2.10) to calculate the gain matrix K explicitly and solve (2.9) directly. An

approximate version of the method was widely used for operational numerical weather

forecasting throughout the 1970s and 80s before variational approaches became more

common.

For problems where the dimension of the system and number of observations is large,

such as global atmospheric and ocean forecasting, the matrices required in the calcu-

lation of K are very large and therefore difficult and expensive to compute, store and

invert. This means that the OI method is generally impractical for operational use in
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environmental systems. It is, however, a valuable tool for low cost applications and offers

a useful starting point for understanding data assimilation in simple systems. We adopt

an OI approach in some of the simple numerical experiments we present later in the

thesis. The 3D-Var method solves the nonlinear optimisation problem (2.6) numerically

using a gradient descent algorithm to iterate to the minimising solution [28] and so is

more efficient for large systems.

The prefix ‘3D’ refers to the fact that the 3D-Var method resolves the three spatial

dimensions; it does not account for the time distribution of observations. Instead 3D-

Var schemes are designed to produce an analysis at a single time point. Typically, in

applications such as numerical weather prediction (NWP), observations are not taken

simultaneously but are collected across a given time window. The convention in 3D-Var

schemes is to assume that the state does not evolve significantly within this period and

treats all observations as if they had been taken at the same time and assimilates them

simultaneously. The analysis time is usually taken as the midpoint of the observation

time window [59].

If a 3D-Var scheme is applied cyclically it can be regarded as a sequential data assim-

ilation method. With sequential algorithms the model is evolved one step at a time,

assimilating the observations in order. Each time a new set of observations becomes

available they are combined with the current model forecast to produce an updated es-

timate of the current system state (the analysis). This analysis is then used to forecast

the background for the next analysis time; the model is propagated forward to the time

of the next observations, using the analysis as the initial state, and the assimilation

process is repeated. We will use a sequential approach throughout this thesis. The steps

of the forecast-assimilation cycle are summarised in algorithm 2.1.

Algorithm 2.1 The 3D-Var forecast-assimilation cycle

1. Starting from an initial estimate of the state zb0 at time t0, integrate the model

(2.1) forward to the time tk when a set of observations yk first become available.

2. Minimise the 3D-Var cost function (2.6) to obtain an updated estimate of the

current model state zak.

3. Using the analysis zak as the initial state, evolve the model (2.1) forward to time
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tk+1. This then becomes the model background estimate zbk+1 at time tk+1, i.e.

zbk+1 = f(zak,p).

4. If no observational data are available at time tk+1 set zak+1 = zbk+1.

5. Repeat steps 3. and 4. until a new set of observations are made and then return

to step 2.

The crucial difference between standard 3D-Var and four dimensional data assimilation

schemes such as four dimensional variational data assimilation (4D-Var) and the Kalman

filter is that the error covariance matrices are not evolved (implicitly or explicitly) by the

3D-Var algorithm. The background error covariance matrix has a fundamental impact

on the quality of the analysis. Its prescription is therefore generally considered to be

one of the most difficult and important parts in the construction of a data assimilation

scheme [2], [3]. Rather than update Bk at each new assimilation time, the 3D-Var

method approximates this matrix once at the start of the assimilation and then holds it

fixed throughout, as if the forecast errors were statistically stationary (i.e. Bk = B for

all k). It is therefore vital that it is given a good a priori specification. A large amount of

research has been dedicated to developing methods for estimating the matrix B. Useful

reviews of current NWP techniques are given in [2], [3] and [24]. A full discussion of

the structure and function of the background error covariance statistics in the context

of variational data assimilation is given in [2]. Techniques for estimating B are given in

the companion paper [3]. The significance of the choice of background error covariance

model in 3D-Var assimilation has prompted much of the work in this thesis. We discuss

the role of the matrix B in more detail in chapter 5.

2.3.2 The Kalman filter

The Kalman filter (KF) is a four dimensional sequential method. It was developed by

Kalman [47] and Kalman and Bucy [48] and initially used in engineering applications.

For a linear system, the KF algorithm produces an analysis that is (given the available

observations and under certain statistical assumptions) statistically optimal in the sense

that it is the minimum mean square error, or minimum variance, estimate [4], [45].
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The main distinctions between the KF and 3D-Var are that the error covariances are

evolved explicitly according to the model dynamics and the analysis is calculated di-

rectly. Instead of assuming that the background error covariance matrix is fixed, the

KF forecasts Bk forward, using knowledge of the quality of the current analysis to

specify the covariances for the next assimilation step. This allows information from

all previously assimilated observations to be taken into account, giving much greater

observational impact.

In this section we present the KF algorithm for a discrete linear time-invariant model.

We are assuming a perfect model (i.e. zero model error) but note that this is not a nec-

essary assumption since the KF does allow for the inclusion of random model error (see

for example [64]). The KF notation differs slightly from 3D-Var: the background state

vector zb is replaced by the forecast vector zf to denote the fact that the background is

now a forecast; the constant background error covariance matrix B is replaced by the

time-varying forecast error covariance matrix Pf
k ; and we introduce a new matrix Pa

k

representing the analysis error covariance.

The Kalman filter predict and update equations

For a perfect, discrete linear time invariant dynamical system model

zk+1 = Mkzk k = 0, 1, . . . (2.11)

with observations linearly related to the state by the equations

yk = Hkzk + δk, (2.12)

where Mk ∈ R
m×m is a non-singular matrix describing the dynamic evolution of the

state from time tk to time tk+1 and Hk ∈ R
rk×m is a linear observation operator, the

KF consists of the following steps:

Algorithm 2.2 The KF algorithm

1. State forecast

zfk+1 = Mk z
a
k (2.13)
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2. Error covariance forecast

Pf
k+1 = Mk P

a
k M

T
k (2.14)

3. Kalman gain computation

Kk+1 = Pf
k+1H

T
k+1(Hk+1P

f
k+1H

T
k+1 +Rk+1)

−1 (2.15)

4. Analysis

zak+1 = zfk+1 +Kk+1(yk+1 −Hk+1z
f
k+1) (2.16)

5. Analysis error covariance

Pa
k+1 = (I−Kk+1Hk+1)P

f
k+1(I−Kk+1Hk+1)

T +Kk+1Rk+1K
T
k+1. (2.17)

If the Kalman gain K (2.15) has been computed exactly the error covariance of the

analysis (2.17) reduces to [26]

Pa
k+1 = (I−Kk+1Hk+1)P

f
k+1. (2.18)

The optimality of the KF solution depends on the assumptions underlying these equa-

tions being accurate. Note that the analysis equation (2.16) and the definition of K

(2.15) are the same as equations (2.9) and (2.10) for the BLUE with Bk = Pf
k .

2.3.3 The Extended Kalman Filter

The Kalman filter theory can be generalised for the case where the system model and/

or observation operator are nonlinear by linearising around a background state. This

gives the extended Kalman filter (EKF) [26], [45]. The steps of the EKF algorithm are

the same as for the standard KF except:

The state forecast (cf. 2.13) is made using the full nonlinear model,

zfk+1 = f(zak). (2.19)

The matrix Hk in equations (2.15) to (2.18) is replaced with the tangent linear of the

nonlinear observation operator hk evaluated at the background state zfk ,

Hk =
∂ h(zk)

∂z

∣∣∣∣
z
f
k

(2.20)
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and the forecast error covariance matrix at time tk+1, P
f
k+1, is determined by propagat-

ing the analysis covariance forward in time from tk using a linearisation of the nonlinear

forecast model f(z),

Pf
k+1 = MkP

a
kM

T
k , (2.21)

where

Mk =
∂ f(zk)

∂z

∣∣∣∣
zak

(2.22)

is the Jacobian of the nonlinear forecast model evaluated at the current analysis state

zak.

Although the approximations made by the EKF make the optimisation problem easier to

solve they do so at the expense of the optimality of the solution. Due to the linearisations

of the observation and model operators, the optimal analysis property of the standard

linear KF no longer holds and the actual analysis error may differ considerably from

that implied by equation (2.17) [75].

2.3.4 Practical implementation

The KF and EKF methods are computationally much costlier than 3D-Var; the updating

of the error covariance matrices requires the equivalent of O(m) model integrations,

where m is dimension of the model state, plus adjoint and tangent linear models must

be developed. The EKF works well for small, simple models but linearising complex

models can be difficult, and if m is large the scheme becomes prohibitively expensive.

Implementation of the full Kalman filter equations is therefore impractical for systems of

high dimension. In practice the forecast errror covariance matrix Pf
k is kept constant or

a much simpler updating is performed. However, the equations provide a useful starting

point for the design and development of approximate algorithms, examples of which

include the Ensemble Kalman filter (EnKF) [20], [40] and the reduced rank Kalman

filter [23].

3D-Var is a robust and well established method that has many advantages, such as ease

of implementation (no model adjoints required); computational robustness (given rea-

sonably specified covariances) and computational efficiency. Consequently, the method
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is a popular choice for state estimation in large problems. Although standard 3D-Var is

designed to produce an analysis at a single time, by applying the method sequentially

as part of an forecast-assimilation system we can utilise time series of observations. We

use a sequential 3D-Var algorithm as a basis for the design of our joint state-parameter

estimation scheme.

2.4 Summary

We have introduced the general dynamical model equations and described the general

data assimilation problem for this system. We have given a brief overview of some

of the different types of data assimilation before explaining the 3D-Var and Kalman

filter data assimilation techniques in detail. These are the methods that we will utilze

in subsequent chapters and so we also discussed some of the issues associated with

their practical implementation. In the next chapter we discuss the problem of model

parameter estimation and review examples of some of the different approaches to model

calibration in coastal modelling applications.
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Chapter 3

Parameter estimation

A mathematical model can only approximate reality; even the most advanced model will

not be able to perfectly reproduce the true behaviour of a complex dynamical system.

Parameters are intrinsic to environmental modelling. They are used as a way of repre-

senting processes that are not completely known or understood, or where limitations to

computer power constrain the model resolution and therefore the level of detail that can

be described. Sediment transport models, for example, are typically based on empirical

formulae that use various parameterisations to characterise the physical properties of

the sediment flux [81].

Poorly known parameters are a key source of uncertainty in model predictions [85].

Models often contain empirical or heuristic elements derived from practical experience

rather than physical laws. A consequence of this is that model parameters often do not

represent directly measurable quantities; their values therefore have to be assigned in

other ways. A key question in model development is how to estimate these parameters

a priori.

In section 3.1 we outline concepts essential to reliable parameter estimation. Then, in

section 3.2, we decribe some of the different methods used for the calibration of model

parameters. For the purpose of reviewing the literature, we focus on coastal modelling

applications. In section 3.3 we discuss a method for parallel state and parameter esti-

mation known as dual estimation. In section 3.4 we introduce the technique of state

augmentation and explain how data assimilation can be used to estimate uncertain
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model parameters concurrently with the model state.

3.1 Ill-posedness, identifiability and uniqueness

The parameter estimation problem is often ill-posed. Problems occur due to instability

of the parameter estimates to errors in the observational data and lack of uniqueness of

the unknown parameter.

The stability of the parameter estimation solution is related to the continuity of de-

pendence of the parameters on the observations. Instability arises when the values of

the parameter estimates are sensitive to noise in the observed data meaning that small

errors in the observations cause large errors in the estimated parameter value.

Non-uniqueness is linked to the concept of identifiability. Identifiability refers to whether

there exists a unique solution to the parameter estimation problem. It is closely tied to

the concept of observability [4], [12]; whether, for a given model structure, the available

observations contain sufficient information for us to be able to determine the unknown

parameters of interest. More precisely, the notion of identifiability addresses whether,

given observations of the state variables and knowledge of the model dynamics, it is

possible to obtain a unique deterministic set of model parameter values. If a parameter

is not observable it will not be identifiable. A parameter estimation method can only

be expected to work reliably when both these properties hold.

The review paper [22] gives a useful general introduction the problem of parameter

estimation in dynamical models. The authors show that in order to have a well-posed

problem with a unique solution it is essential that the inverse problem is formulated in a

consistent manner. This is done by penalising the errors in the observations, parameters,

initial conditions and model equations and incorporating regularisation constraints to

ensure parameter stability.

In [72] Navon gives descriptions of the issues of identifiability, ill-posedness and reg-

ularisation of the parameter estimation problem and stresses the importance of these

concepts to robust parameter estimation through illustrative examples. He makes simi-

lar assertions to [22] and shows how regularisation of an ill-posed problem can result in
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a well-posed problem with a physically meaningful solution.

Another important issue is parameter sensitivity [72], [93]; whether variations in model

parameters result in detectable variations in model response. We cannot expect to be

able to correct parameters that cause errors in the model solution that are on smaller

scales than can be observed. It is therefore important to establish the sensitivity of the

model state estimation errors to changes in the given parameters. In some instances, pa-

rameter observability and identifiability may be precluded by parameter interdependence

or model structural weaknesses [93]. This can sometimes be resolved by an appropriate

reparameterisation or restructuring of the model. Parameter sensitivity analysis can be

a useful tool for identifying such problems. [72] also addresses this issue, advocating the

use of adjoint relative sensitivity analysis as an efficient means for assessing the impact

of a given parameter on the model forecasts, and thus as a guide for choosing the most

important parameters for estimation.

3.2 Model calibration

Parameterisations are used across a wide range of applications. In most cases, parameter

estimation is addressed as a separate issue to state estimation and model calibration is

performed offline in a separate calculation. A useful introduction to model calibration

is given in [93] in the context of hydrological modelling. The classic approach is manual

calibration or ‘tuning’ of the model against observational data. Manual calibration can

yield good results, but is a computationally and labour intensive and time-consuming

process, requiring numerous repeated model runs. The results are also somewhat subjec-

tive with parameters often fitted via a visual comparison between the model output and

observational data, without accounting for measurement error. This makes to difficult

to assign any measure of uncertainty to the model predictions.

There are other approaches; the increase in computational capabilities in recent years

has seen the development of many new, often complex, automated parameter optimi-

sation algorithms. Generally, these methods involve the minimisation of an objective

function that measures the misfit between modelled and observed quantities. The main

distinctions between the different methods are how the minimum is located, how the
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observational data are processed and the assumptions made about the statistics. A

useful inter-comparison of several optimisation techniques for parameter estimation in

terrestrial biogeochemical models is given in [101], including genetic algorithm, adjoint,

Markov Chain Monte Carlo, Levenberg-Marquardt and the Kalman filter. In this study,

it was found that, overall, each of the different methods were equally successful at esti-

mating the optimum value of four parameters in a highly simplified terrestrial biosphere

model. The choice of objective function appeared to have a more significant impact on

the results than the choice of optimisation method.

3.2.1 Model calibration in coastal modelling

There are a variety of parameter estimation methods presented in the coastal modelling

literature; the downhill simplex optimisation [38] and genetic algorithm [50], and hybrid

genetic algorithm [84] techniques are based on determining a single ‘best’ parameter set

through minimisation of a least squares cost function. Probabilistic approaches, such

as classical Bayesian [107] and Bayesian Generalised Likelihood Uncertainty Estimation

(GLUE) [85], [86] approaches are based on the principle that there is no single best

parameter set and instead, the parameters are treated as probabilistic variables.

In [38], Hill et al. use a downhill simplex optimisation method to calibrate a 1D La-

grangian particle tracking model developed for modelling sediment resuspension rates in

coastal waters. The simplex method is a local, direct search method. The termination

point of a local search will depend on the point that it is started and so the method is

not generally suited to practical problems for which there are likely to be multiple min-

ima. The method was chosen for its robustness and to avoid the heavy computational

burden associated with global search methods.

The approach was found to give significant results in all but one of the experiments

presented; there was one test case for which no results were obtained due to the optimi-

sation method failing to converge. In their discussion, the authors concede that further

gain in performance might be made by employing a global optimisation technique.

A genetic algorithm is an example of a global search method. It is based on the ideas of

evolution and natural selection and involves a population of individual parameter sets
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that reproduce, mutate and die. In [50], the approach is used to calibrate an idealised

model of bedform dynamics to bathymetric data. Here the optimal parameter combina-

tion is taken to be the individual set that gives the lowest root-mean-square difference

between the model predicted and observed bathymetry. The method is found to im-

prove predictions of sand bar migration when compared to experiments using theoretical

parameter values. Only a short calibration period was required to get a long predic-

tion window. The authors do not comment on the computational efficiency of their

scheme. Because a genetic algorithm explores the entire parameter domain convergence

to the global minimum can be slow. If the initial population size is large the number of

iterations and cost function evaluations may require excessive computing time.

Generalised Likelihood Uncertainty Estimation (GLUE) [85], [86] is a Bayesian Monte

Carlo simulation based technique that can be used to compute the posterior likelihood

distributions of a model’s parameters and to assess the predictive uncertainity associated

with the parameter uncertainity. The idea that a single ‘best’ set of parameter values

exists is cast aside. The method involves making multiple model runs with different

parameter sets sampled from the feasible parameter space. A measure of goodness of

fit is used to assign each parameter set a likelihood value; all those parameter sets that

give model performance better than some user specified skill threshold are considered

as acceptable whilst those below are discarded. These likelihoods are then used to

derive uncertainity bounds for the model predictions. In [85], Ruessink applies the

method to a model of nearshore bed evolution. It is found that acceptable results

could be obtained with a relatively large range of parameter sets. The cause of this

is identified as parameter interdependence and insensitivity caused by model structural

errors. Ruessink argues that use of commonly favoured methods that search for a single

set of parameter values would be inappropriate in this situation, and illustrates his

assertion by applying a Levenberg-Marquardt local gradient based search algorithm to

the same model. This problem is also discussed in [84].

The key advantages of the GLUE approach are that it allows for the assumption of non-

Gaussian error statistics and provides an effective means for the quantitive assessment

of the uncertainities inherent in numerical modelling. The main disadvantage is the

ineffciency of the technique, arising from the repeated model calls to compute the likeli-

hood value for each parameter set. Depending on the model complexity and parameter
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sample size, this can be computationally very expensive and take a considerable amount

of time. The experiments presented involved sampling 4100 parameter sets of which

only around 1000 were found to meet the threshold for acceptance, therefore resulting

in a large amount of spent computations. Another criticism is that the skill threshold is

determined by the user. Its choice is therefore subjective and the subsequent uncertainty

assessment will vary depending on the value chosen.

3.2.2 Discussion

There are examples demonstrating the effectiveness of each of the many different ap-

proaches to model parameter estimation. In terms of computational cost, set-up cost,

adaptability, ease of implementation, etc. each methodology has different strengths and

weaknesses. Often it will be the chosen application that will make certain methods more

appropriate than others; the suitability of a particular approach will depend on factors

such as model complexity, availabilty of observational data, computational resources

and user expertise.

One distinction that is important in the context of this work is the way in which the ob-

servational data are used. Batch methods, such as genetic algorithm and Markov Chain

Monte Carlo, process all observations at once. They essentially train the model against

historical data and so become infeasible when there is a lack of sufficient observational

information prior to the model forecast period. Sequential methods have the advantage

that observations can be used as they arrive in real time. They allow the inclusion of

new observations that become available after earlier observations have been assimilated

thus enabling real-time state-parmeter estimation. The inclusion of new observations

when using batch methods would involve having to reprocess the earlier observations

and therefore require the storage and processing of large amounts of data. Sequential

methods also have the potential of being able to estimate parameters that are expected

to vary over time. Sequential data assimilation techniques have the further advantage

that they offer a framework for explicitly accounting for all sources of uncertainty.
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3.3 Dual state-parameter estimation

Efforts in improving models tend to concentrate on either improving methods for pa-

rameter estimation (without explicitly accounting for uncertainity in the model state

estimate) or improving methods for state estimation (estimating model variables whilst

keeping the model parameters fixed).

A popular approach to state and parameter estimation is dual (as opposed to joint)

state-parameter estimation. Here, the model state variables and model parameters are

estimated in parallel using two separate calculations. In [104], Vrugt et al. present a hy-

brid sequential data assimilation and parameter optimisation framework for hydrologic

modelling. The method, named SODA (simultaneous optimisation and data assimila-

tion), uses an EnKF algorithm to recursively update the state variables in an inner loop

whilst estimating the model parameters and their uncertainity in an outer global opti-

misation loop. The peformance of the scheme is illustrated using the Lorenz 63 model

and a classical, five parameter, conceptual watershed model (HYMOD). It performs

well in both cases, producing improved estimates of the parameters and model predic-

tion uncertainty. The state and parameter estimates produced by the SODA method

for the HYMOD model experiments are shown to be consistently better than those

obtained using a classic Bayesian model batch calibration method without state adjust-

ments. The SODA method results in a considerable increase in computational burden

but the authors argue that this is not an issue given current computing capacities. It

could, however, limit the applicability of the method to more complex models. Notably,

the authors mention that recursive parameter estimation via the state augmentation

approach is being investigated as a possible method of improvement to the scheme.

Moradkhani et al. [70] use a dual EnKF approach in which the state and parameters

are estimated by simultaneously running two mutually interactive filters. They use the

same hydrologic model as [104] to demonstrate the algorithm, comparing results against

three other common hydrologic model calibration algorithms. Their method performs

equally well, with all parameter estimates converging smoothly. The main drawback of

this scheme is that it involves running a separate filter for the parameters which then

feeds into model state ensemble. The parameters are evolved artifically by assuming

that they follow a random walk; this then requires implementation of a modified kernel
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smoothing method to prevent the over dispersion of the parameter samples and the loss

of information and introduces further computational complexity into the scheme.

Dual estimation methods offer an improvement on traditional model calibration meth-

ods in that they allow time series data to be utilised and enable information on the

state adjustments to be fedback and incorporated into the parameter estimates. The

downside is the inefficiency of the approach; arising from simultaneously running two

algorithms in parallel rather than as a single process and having the potential to be-

come prohibitively expensive in larger models. For the state-parameter interaction to

be effective the feedback mechanism must be well defined; this may prove difficult in

more complex models.

3.4 State augmentation

Data assimilation is most commonly used for state estimation. However, by employing

the technique of state augmentation (also referred to as joint estimation), it is possible

to use data assimilation to estimate uncertain model parameters concurrently with the

model state. State augmentation is a conceptually straightforward technique that allows

us to estimate and update uncertain model parameters jointly with the model state

variables [45] as part of the assimilation process.

In theory, state augmentation can be applied with any of the standard data assimilation

methods. The model state vector is augmented with a vector containing the parameters

we wish to estimate, the equations governing the evolution of the model state are com-

bined with the equations describing the evolution of these parameters and the chosen

assimilation algorithm is simply applied to this new augmented system in the usual way.

This enables us to estimate the model parameters and update the predicted model state

simultaneously, rather than treating as two individual processes. This also means that

observational data is used much more efficiently.
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3.4.1 Applications of state augmentation

The state augmentation technique has previously been successfully employed in the

context of model error or forecast bias estimation. Examples of application of the

approach in simplified numerical models are given in [32], [33], [34], [62], [64]. In [17] the

problem of forecast bias in atmospheric data assimilation is addressed using a sequential

scheme with further discussion in [16]. In [5], [63] the technique is successfully used to

estimate systematic errors in an operational equatorial ocean model.

The review article [72] discusses state augmentation for parameter estimation in relation

to 4D-Var data assimilation techniques and surveys the literature relating to parameter

estimation in meteorology and oceanography. State augmentation has also been used for

parameter estimation with the Kalman filter; [100] investigated application of the tech-

nique with the EKF and EnKF for sequential assimilation of noisy pseudo-observations

into a simplified two variable, four parameter terrestrial biosphere model. Both methods

were successful at estimating the true parameters. Results were shown to be sensitive

to choices of model and observation error covariance; the most stable parameter esti-

mates were obtained when inflated estimates of the observation errors were used but this

reduced the rate of convergence to the solution. The EnKF also showed a significant

variation in results for different ensemble sizes. Even though the augmented state vector

had only six components the EnKF required an ensemble of at least 50 members; this

is similar to that used in much larger scale applications.

In [108] the state augmentation approach is combined with the maximum likelihood

ensemble filter (MLEF) for model error estimation in the Korteweg-de Vries-Burgers

(KdVB) model. The authors consider two approaches: parameter estimation and model

bias estimation. Their results show that estimation of model error, either in the form

of a parameter error or model bias, has a benefical effect on the model; even in the

cases where few observations and a small number of ensemble members are used, an

improvement in filter performance was seen. Neglecting model error had an adverse

effect on the MLEF, and in some cases resulted in filter divergence.
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3.4.2 Mathematical formulation of the augmented system

In this work we consider application of the state augmentation technique to the problem

of model parameter estimation using a sequential 3D-Var data assimilation scheme. In

this section we reformulate the data assimilation problem for an augmented system.

Although we present the technique within the framework of model parameter estimation,

the procedure for model error or bias estimation is identical.

We use the vector p ∈ R
q to represent the model parameters whose values are poorly

known, where q is the number of parameters. We assume that these parameters are

constants, that is, they are not altered by the forecast model from one time step to

the next. The parameter estimates will only change when they are updated by the data

assimilation at each new analysis time. The equation for the evolution of the parameters

therefore takes the simple form

pk+1 = pk k = 0, 1, . . . (3.1)

We define a new vector w by extending the model state vector z with the parameter

vector p, this gives us the augmented state vector

w =


 z

p


 ∈ R

m+q. (3.2)

Combining (3.1) with the model for the evolution of the state (2.1) we can write the

equivalent augmented system model as

wk+1 = f̃(wk), k = 0, 1, . . . (3.3)

where

f̃(wk) =


 f(zk,pk)

pk


 ∈ R

m+q. (3.4)

In most cases the parameters will enter the model equations nonlinearly so that even

if the original dynamical model is a linear function of the state variable the resulting

augmented system model will be nonlinear. However, since the number of parameters

is generally small relative to the dimension of the state vector and the dynamics of the
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parameters are simple this does not have a significant impact on the compuational cost

of the data assimilation scheme.

The observations are related to the model states by the equations (2.2), as before. We

can rewrite (2.2) in terms of the augmented state vector as

yk = h̃k(wk) + δk, (3.5)

where h̃k : Rm+q −→ R
rk , and

h̃(w) = h̃


 z

p


 = h(z). (3.6)

The analysis at time tk, w
a
k, is generated by combining the augmented model predictions

with the observations using the chosen data assimilation algorithm. In addition to the

updated state estimate, zak, the analysis will now also include updated estimates of the

model parameters pa
k at each k.

The 3D-Var cost function for the augmented system takes the same form as (2.6) but is

rewritten in terms of the new variables

J(wk) =
1

2
(wk −wb

k)
TB−1

k (wk −wb
k) +

1

2
(yk − h̃k(wk))

TR−1
k (yk − h̃(wk)), (3.7)

where

wb
k =


 zbk

pb
k


 ∈ R

m+q. (3.8)

is our background estimate of the augmented state wk at time tk. Note that the initial

background state at t0, wb
0, must include prior estimates of both the initial system

state zo and parameters p0. The analysis wa
k is then obtained by minimising (3.7) with

respect to the augmented state vector wk.

The background error covariance matrix Bk is redefined as

B = E
[
εbwk

(εbwk
)T
]
∈ R

(m+q)×(m+q), (3.9)

where

εbwk
= wb

k −wt
k

=


 εbzk

εbpk


 (3.10)
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with εbzk = zbk − ztk and εbpk
= pb

k − pt
k.

We stated in section 2.3.1 that the form of the matrixBk is very important. Constructing

a realistic representation of the background error covariances is one of the key challenges

of data assimilation. In basic state estimation the background error covariances govern

how information is spread throughout the model domain, passing information from ob-

served to unobserved regions and smoothing data if there is a mismatch between the

resolution of the model and the density of the observations. Since it is not possible

to observe the parameters themselves, the parameter updates will depend on the ob-

servations of the state variables. Practical implementation of the state augmentation

approach therefore relies strongly on the relationships between the parameters and state

components being well defined and assumes that we have sufficient knowledge to reliably

describe them.

The augmented background error covariance matrix can be written as

Bk =


 Bzzk Bzpk

(Bzpk
)T Bppk


 . (3.11)

Here Bzzk ∈ R
m×m is the background error covariance matrix for the state vector zk

at time tk, Bppk
∈ R

q×q is the background error covariance matrix for the parameter

vector pk and Bzpk
∈ R

m×q is the covariance matrix for the cross correlations between

the background errors in the state and parameters.

For joint state-parameter estimation, it is the cross covariances between the parameters

and the state, given by the off diagonal blocks of the augmented background error covari-

ance matrix (3.11), that transfer information from the observed variables to update the

estimates of the unobserved parameters. This is most easily illustrated by considering

the BLUE equation (2.9) for the augmented system [62]

wa
k = wb

k +Kk(yk − H̃kw
b
k), (3.12)

where

h̃k = H̃k
def
≡

(
Hk 0

)
∈ R

rk×(m+q). (3.13)
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By writing the gain matrix Kk as

Kk = BkH̃
T
k (H̃kBkH̃

T
k +Rk)

−1

def
=


 Kzk

Kpk


 , (3.14)

we can deconstruct (3.12) into state and parameter parts as follows

zak = zbk +Kzk(yk −Hkz
b
k) (3.15)

pa
k = pb

k +Kpk
(yk −Hkz

b
k). (3.16)

The gain matrices (3.14) are given by

Kzk = BzzkH
T
k (HkBzzkH

T
k +Rk)

−1 (3.17)

Kpk
= BT

zpk
HT

k (HkBzzkH
T
k +Rk)

−1. (3.18)

Equation (3.15) is identical to the OI analysis equation (2.9) for state estimation. The

equation for pa
k takes a similar form. The innovation vector (yk − Hkz

b
k) is exactly

the same in equations (3.15) and (3.16), as is the expression inside the inverse for

the state and parameter gain matrices (3.17) and (3.18). The key difference is the

presence of the cross covariance term Bzpk
in the gain matrix Kpk

. Both the state and

parameters are updated according to the discrepancies between the observations and

the model predicted state, the difference lies in exactly how this information is used.

For the parameters, this is determined by the matrix Bzp. This is a crucial point; the

state-parameter cross covariances play a vital role in the parameter updating, if they

are inappropriately modelled the quality of the parameter estimates will be affected and

this will in turn affect the predictive ability of the model. A good a priori specification of

these covariances is fundamental to reliable joint state and parameter estimation. Since

the correct error statistics of the system are generally unknown we have to approximate

them in some manner.

In this thesis we explore different ways of approximating the matrix Bk for concurrent

state and parameter estimation using sequential data assimilation in simplified models.

Ultimately, we hope to use the experience gained from work with these simple models

to help guide the application of data assimilation based state and parameter estimation

in operational forecasting systems.
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3.5 Summary

In this chapter we have introduced the problem of model parameter estimation, high-

lighting the issues of ill-posedness, identifiability and uniqueness. We reviewed examples

of some of the various approaches to model calibration in the context of coastal mod-

elling. Finally, we introduced the technique of state augmentation and described how

it can be used to estimate uncertain model parameters concurrently with the model

state. In the next chapter we give an introduction to morphodynamic modelling and ex-

plain why joint state-parameter estimation would be a valuable aid to morphodynamic

prediction.
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Chapter 4

Morphodynamic modelling and

data assimilation

This chapter is intended as a general introduction to coastal morphodynamic modelling.

In section 4.1 we give the motivation for our choice of application; we explain why

reliable, accurate morphodynamic models are important and highlight some of the dif-

ficulties associated with the development of an effective coastal morphodynamic model.

In section 4.2 we present the sediment conservation equation and discuss parameterisa-

tion of the sediment transport flux. We summarise the various sources of observation

data for morphodynamic data assimilation in section 4.3 before reviewing some recent

applications of the approach to coastal modelling in section 4.4.

4.1 Morphodynamic modelling

Changes in coastal morphology can have wide reaching environmental and human social

and economic impacts. Knowledge of how the coastline is evolving is essential for shore-

line management and protection; informing planners and decision makers and ensuring

coastal regions are monitored and developed appropriately. Unfortunately, knowledge

of evolving near-shore bathymetry is limited; determination of the bathymetric changes

occurring in the coastal zone is a key challenge in coastal modelling. State of the art

computational models are becoming increasingly sophisticated (e.g. [51]) but in prac-
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tice these models suffer from uncertainty in their initial conditions and parameters.

Improved accuracy of morphodynamic models would allow better prediction of future

bathymetry, enabling the development of more effective forecasting systems and thus

allowing us to better prepare for, or even prevent, the effects of morphodynamic change.

An increase in extreme and hazardous weather events in recent years, has led to growing

concern over the effects of climate change. Expected sea level rise combined with an

increase in the frequency and intensity of storms has profound implications for coastal

flooding and further highlights the need for better knowledge and understanding of how

the morphology of the coast is changing [73]; bottom topography is a large source of

uncertainty in coastal inundation modelling and can strongly influence the quality of

model predictions [10], [37]. Accurate bathymetry immediately prior to a storm event

would be a valuable aid to the advancement of inundation forecasting and the mitigation

of flood hazard.

Coastal morphodynamic modelling is challenging; an effective coastal morphodynamic

model must be able to represent the continual interaction between water flow and

bathymetry in the coastal zone. Modelling is difficult because longer term morphologi-

cal changes are driven by shorter term processes such as waves, tides and river outflows

[68]. The bathymetry of the coastline changes as sediment is eroded, transported and

deposited by water action. The change in bathymetry alters the water flow, which fur-

ther changes the bathymetry, which in turn alters the motion of the water, and so on

[68], [76]. Ideally, these processes should be treated simultaneously, but it is common to

split models into hydrodynamic and bathymetric components; the water flow is updated

while the bathymetry is held constant, and vice versa [15], [83]. In this thesis we focus

on modelling the bathymetric changes in a simplifed one dimensional system. A deriva-

tion of the full equations governing morphodynamic change can be found for example

in [42], [103], [94].

4.2 Modelling the sediment transport flux

Changes in bathymetry due to flow induced sediment transport processes, can be de-

scribed using the sediment conservation equation [94]. In one dimension this is written
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as
∂z

∂t
= −

(
1

1− ǫ

)
∂q

∂x
, (4.1)

where z(x, t) is the bathymetry or bed height, t is time, q is the total (suspended and

bedload) sediment transport rate in the x direction and ǫ is the sediment porosity.

The sediment porosity ǫ is a non-dimensional value, expressed as a fraction between 0

and 1, that depends on the degree of sediment sorting and compaction. Its value can

be obtained using the measurement techniques described in [94]. In this thesis, we set

ǫ = 0.4 which corresponds to a natural sand bed with average sorting and packing. This

is the recommended default value to be used in the absence of any other information

[94].

The transport rate q is a complex function of the water properties such as currents,

waves and water depth plus characteristics of the sediment such as density and grain

size [55]. In order to solve (4.1) q needs to be estimated.

We wish to construct a model that satisfies the physical properties of the system as

closely as possible. Unfortunately, modelling is limited by our inability to fully discern

the various processes governing sediment transport. The lack of detail in our knowledge

means that parameterisations must be used.

There is no universally agreed formulation for q; numerous different formulae have been

proposed, many of which are presented in [94] and [103]. These are typically based on a

mixture of theory and empirical results and are often only valid under certain assump-

tions, such as, the sediment grain size lies within a given range. The choice of formula is

generally dependent on the particular situation being modelled, with parameter values

being calibrated to fit the physical characteristics of the study site. The level of com-

putational resources available is also a relevant factor. In [81] the strengths, weaknesses

and applicability of four popular sediment transport formulae are assessed and references

to other comparision studies are also given. The authors state that all four formulae

have limitations. However, it is found that the accuracy of the sediment flux evaluation

is dominated by errors in the values assigned to physical input parameters, rather than

by the limitations of the formulae themselves. The key physical properties being the

current velocity and the sediment median grain size. Despite often being regarded as
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one of the best formulae available, the combined bedload and suspended-load transport

formulae of Van Rijn [103] is found to be the most sensitive to errors in basic physical

properties.

For the work presented in this thesis, we use one of the most basic sediment transport

flux formulae. Here, the various processes driving sediment transport are combined in

a single equation. Originally proposed by [30], the flux is assumed to follow the simple

power law equation,

q = Au|u|n−1, (4.2)

where u = u(x, t) is the depth-averaged current in the x direction and A and n are

parameters whose values need to be set. The parameter A is a dimensional constant

whose value depends on various properties of the sediment and water, such as flow depth

and velocity range, sediment grain size and kinematic viscosity. [103] gives a formula

that can be used to obtain an approximation to A for a given set of sediment and water

properties. The derivation of the parameter n is less clear. It is usually set by fitting to

field data and generally takes a value in the range 1 ≤ n ≤ 4.

Equation (4.2) provides a estimate of the combined bedload and suspended-load sed-

iment transport rate. It has been chosen for its relative simplicity and is more than

adequate for the purposes of this research. This allows us to focus on the application of

data assimilation techniques and avoids unecessary model complexity.

In order to generate reliable forecasts of long-term morphodynamic evolution we need

to have good estimates of both the model parameters and the current bathymetry.

Parameter uncertainty is a major source of error in morphodynamic modelling; even if

the initial bathymetry is well known, errors in the parameters will affect the accuracy

of the sediment transport flux calculation, leading to the growth of model error and

in turn the accuracy of the predicted bed level changes [85]. Despite its disadvantages,

manual calibration is still the most popular model calibration method within the coastal

modelling community [86].
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4.3 Observation sources

Data assimilation requires observational data. For the work in this thesis we use pseudo

observations. However, in principle there are a number of potential sources of obser-

vational data that could be used for operational coastal morphodynamic prediction.

For completeness we give a brief summary of some of these sources. More detailed

descriptions can be found in the references given.

An important benefit of data assimilation is that observations do not need to provide

complete coverage of the model domain. Observations of bathymetry are available from

a variety of sources. Mason et al. [67] provide a comprehensive comparison of several

mapping techniques including ground surveys e.g. GPS (Global Positioning System)

and beach transects, aerial surveys e.g. airborne LiDAR (Light Detection and Ranging),

satellite inferometry e.g. SAR (Synthetic Aperture Radar) imaging, and the waterline

method (see also [65] and [87]). Other examples include ship based echo soundings

(swath bathymetry), X-band radar [6] and Argus video systems [39], [102].

Obviously, not all types of observations will be available in all cases. The suitability

of an observation method for a given application will depend on a number of factors

such as the geographical properties of the site under study, whether we are interested in

modelling short term or long term behaviour and the scale of changes being predicted,

i.e. whether the scales observed are compatible with the desired model resolution. Cost

is also often a necessary consideration.

For example, ground surveys (e.g. [29]) can provide observations to a high level of

accuracy but are not really suitable for large regions and, depending on the field site,

may not even be logistically possible. Airborne surveys can cover large areas in short

times and areas inaccessible from the ground but generally require reasonably good

weather conditions.

LiDAR (e.g. [36]) is a newer airborne mapping technology that can provide rapid,

accurate elevation data with a high coverage rate. The method uses laser pulses to

measure the distance between the survey aircraft and the ground surface. It was once

considered expensive but the technology is now becoming much more affordable and

surveys are being carried out on a far more frequent basis.
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For areas inaccessible to both humans and aircraft, the waterline method is a useful

technique [65], [67]. A waterline is essentially a contour of bathymetry representing the

land-sea boundary at a particular instant in time. They are derived using a remotely

sensed image of the region, such as a SAR satellite image; these are radar images that

simply show which parts of the coastal zone are under water. The waterline is extracted

using image processing techniques and assigned a height using a hydrodynamic model

of the region. Although this is manually intensive work it is worthwhile because SAR

images provide a relatively cheap source of partial bathymetry, thus making them ideal

for data assimilation [87]. The main disadvantage of this method is that it is only

suitable for inter-tidal areas.

In order to specify the observation error variance and covariances, data assimilation

requires information about the accuracy of the observations being assimilated. Knowl-

edge of the various possible sources and estimated size of the errors associated with an

observation type is therefore important. Direct measurements of bathymetry are obvi-

ously much easier to use than indirect observations which require the design of a more

complex (nonlinear) observation operator and may introduce further errors. The use of

remotely sensed observations such as SAR satellite images and radar images will also

involve an additional pre-processing stage.

4.4 Morphodynamics and data assimilation

While data assimilation has been used for state estimation in atmospheric and oceanic

prediction for some years, it has rarely been employed for morphodynamic modelling,

despite the availability of a variety of suitable observations. In a precursor to the

current work, Scott and Mason [87] explored the use of data assimilation for state

estimation in estuarine morphodynamic modelling using Morecambe Bay as a study

site. A 2D horizontal (2DH) decoupled morphodynamic model of the bay was enhanced

by integrating waterline observations derived from SAR satellite images [66] using a

simple OI assimilation scheme. Despite the known deficiencies of the OI algorithm (see

e.g. [56]), the method was shown to improve the ability of the model to predict large

scale changes in bathymetry over a three year period. In an unrelated study, [102] used a

least squares estimator to assimilate observations from multiple, remotely sensed sources
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(video and radar) into the Delft 3D modelling system. This system did not take account

of spatial correlations between model variables and thus only updated model variables

where there were co-located observations. Nevertheless, the system showed good skill in

estimating the nearshore subtidal bathymetry when applied to two data-rich test sites

at Duck, NC, USA and Egmond, The Netherlands.

In this thesis, we address state and parameter estimation as a single issue. To the

best of our knowledge data assimilation has not been used for joint state-parameter

estimation in morphodynamic modelling before. The hypothesis is that this approach

will enable more efficient state and parameter estimation, thereby saving on calibration

time, making better use of the available observational data and giving more accurate

forecasts.

4.5 Summary

We have given an introduction to morphodynamic modelling and discussed some of

the difficulties associated with the development of an effective coastal morphodynamic

model. We described some the different observation sources available for morphody-

namic data assimilation and reviewed examples of previous applications of data as-

similation to coastal modelling. In the next chapter we begin to develop our joint

state-parameter estimation system.
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Chapter 5

System development

In this chapter we start to build our joint state-parameter estimation system. We

use a series of experiments to help demonstrate the theory and highlight some of the

issues associated with practical implementation of the 3D-Var and state augmentation

techniques.

We begin by using a simple 1D linear framework. The model we employ is idealised

and has been chosen as a first-step model that allows ideas to be developed, tested and

understood without the obfuscating features of a more complex system.

We start this chapter by describing the model and its discretisation. In section 5.2 we

introduce and test the algorithm used to minimise the 3D-Var cost function. In section

5.3 we discuss the roles of the background and observation error covariance matrices

B and R. We pay particular attention to the background error correlations and the

way in which they govern the spatial spreading and smoothing of information from

the observations. We illustrate the importance of an appropriate choice of background

error covariance model via a series of simple state estimation assimilation experiments

using four alternative forms for the state background error covariance matrix Bzz. In

section 5.4 we move on to the augmented data assimilation problem and consider ways

of defining the state-parameter cross covariance matrix Bzp required for joint state-

parameter estimation. Sections 5.5 and 5.6 describe experiments using two different

approaches. We note that some of the work in sections 5.4 to 5.6 has been previously

published in the journal article [90].
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5.1 Linear advection

As we discussed in chapter 4, section 4.1, the physics underlying morphodynamic change

are extremely nonlinear and difficult to model. Here, rather than focus on the devel-

opment of an accurate model, we wish simply to demonstrate the data assimilation

technique and assess the potential of the state augmentation approach for concurrent

state-parameter estimation. For this purpose, we consider a highly simplified scenario

in which the morphodynamic evolution of our system is described by the 1D linear

advection equation [53], [71], [88].

Re-writing the sediment conservation equation (4.1) in quasi-linear form gives

∂z

∂t
+ c(z, q)

∂z

∂x
= 0, (5.1)

where

c(z, q) =

(
1

1− ǫ

)
∂q

∂z
. (5.2)

The coefficient c(z, q) is the advection velocity or bed celerity. It is a nonlinear function,

depending on the bathymetry z both directly and through the sediment transport rate

q.

To simplify, we assume that the advection velocity is constant and replace the coefficient

c(z, q) with a single constant parameter c, equation (4.1) then reduces to

∂z

∂t
+ c

∂z

∂x
= 0. (5.3)

The model (5.3) has the benefit of an analytical solution; this can be used both to

provide observations for the assimilation and also to verify the results of our scheme.

For known, non-zero, constant c and given initial data

z(x, 0) = z0(x) , −∞ < x < ∞ , (5.4)

the solution at time t ≥ 0 is simply [53]

z(x, t) = z0(x− ct). (5.5)
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Figure 5.1: Schematic: solutions to the linear advection equation (5.3) for Gaussian initial data at times
t0 (solid line), t1 (dashed line), t2 (dot-dash line) and t3 (dotted line), t0 < t1 < t2 < t3.

For the purpose of the experiments in this chapter, we assume that the true initial

bathymetry can be described by the Gaussian function

z0(x) = αe−(x−β)2/2γ2
. (5.6)

This gives a smooth, isolated, bell-shaped bedform where the constants α, β and γ

determine the height, initial position and width respectively.

The solution (5.5) has the property that it preserves its initial shape z0(x). As figure

5.1 illustrates, as time evolves, the initial data propagates undistorted at constant speed

c to the right (if c > 0).

5.1.1 Discretisation

For our assimilation scheme we require z(x, t) at discrete points (xj , tk). We wish to

solve (5.3) on a uniform mesh with spatial grid spacing ∆x and model time step ∆t.

Let z(xj , tk) denote the value of the solution at the point (xj , tk), where xj = j∆x

and tk = k∆t. A common approach to the numerical modelling of advection is the

semi-Lagrangian technique [97].

Consider the total (or Lagrangian) time derivative of z,

dz

dt
=

∂z

∂t
+

dx

dt

∂z

∂x
= 0. (5.7)

From (5.3) we have
dx

dt
= c. (5.8)
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In other words, the bed height z(x, t) remains constant along the the trajectory (5.8).

We suppose that we know z(x, t) at all points on the model grid at time tk and that we

want to find values on the same regular grid at time tk+1. The general principle behind

the semi-Lagrangian method is that at each new time step tk+1 we can trace back the

trajectory of the particle arriving at the grid point xj to its position at the previous

time tk and hence find the value z(xj , tk+1). We refer to the point xj at time level tk+1

as the arrival point. The position of the particle at the previous step tk is known as the

departure point and is denoted xd.

We approximate (5.7) with the discretization

z(xj , tk+1)− z(xd, tk)

∆t
= 0 (5.9)

Hence the value of z at the arrival point xj at time tk+1 is equal to the value of z at the

departure point xd at time tk, i.e.

z(xj , tk+1) = z(xd, tk). (5.10)

Generally, the point xd will not lie on the model grid. However we can easily obtain the

value z(xd, tk) by interpolation from neighbouring grid points.

The departure points xd are calculated as

xd = xj − αj , (5.11)

where αj is the displacement of the particle in the x direction between tk and tk+1.

In the case of linear advection, the advection speed c is constant and we can compute

αj exactly

αj = α = c∆t, for all j (5.12)

giving

xd = xj − c∆t. (5.13)

We summarise the steps of the algorithm as follows:
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Figure 5.2: Comparison of analytic and numerical solutions to the linear advection equation (5.3) with
Gaussian initial data at times t = 6, 12 & 24 hours. The solid red line represents the analytic solution, the
dashed blue line is the solution computed using a semi-Lagrangian scheme with grid spacing ∆x = 1.0m
and time step ∆t = 1 hour.

Algorithm 5.1 The semi-Lagrangian algorithm

(i) Calculate the departure points xd using (5.13).

(ii) Given z(xj , tk), evaluate z at departure points xd at time tk using an interpolation

formula.

(iii) Evaluate z at arrival points xj at time tk+1 using equation (5.10).

The model was validated by comparing its output with the analytic solution (5.5). Figure

5.2 compares the numerical (dashed blue line) and analytic (solid red line) solutions

at times t = 6, 12 and 24 hours for Gaussian initial data with c = 0.002 ms−1 and

spatial resolution ∆x = 1.0m. In this example, the semi-Langrangian algorithm is run

with time step ∆t = 1 hour. It is almost impossible to distinguish between the two

solutions. The advantage of semi-Lagrangian methods is that they are unconditionally

stable; this allows us to use larger time steps and achieve a higher order of accuracy at

a low computational cost. In chapter 8 we use the same approach to solve the nonlinear

sediment conservation equation (5.1). Details of the method are given in section 8.2.

5.1.2 Parameter model

We assume that advection velocity is constant over time, but that its true value is not

known with certainty and is not directly measurable. The evolution model for c is given

42



by
dc

dt
= 0. (5.14)

We can write (5.14) in discrete form as

ck+1 = ck, k = 0, 1, . . . (5.15)

Equation (5.15) together with the model equation (5.9) constitutes our augmented state

system model (3.3).

5.2 The minimisation algorithm

As described in section 2.3.1, the 3D-Var analysis at time tk is generated by minimising

the cost function (2.6)

J(z) =
1

2
(zk − zbk)

TB−1
k (zk − zbk) +

1

2
(yk − hk(zk))

TR−1
k (yk − hk(zk)). (5.16)

Implementation of the 3D-Var method requires a suitable numerical descent (minimi-

sation) algorithm. For the work described in this this thesis we use a quasi-Newton

method. We employ the Matlab function quasi newton.m written by Hans Bruun

Nielsen of DTU (Technical University of Denmark). A full description of the quasi-

Newton algorithm can be found in the documentation [25] along with references and

details of other iterative methods including steepest descent, conjugate gradient, and

damped Newton.

The quasi-Newton algorithm takes value of the cost function J and its gradient ∇J

as input arguments and uses the current background state as a starting point for the

iteration. The inverse Hessian (J ′′)−1 is approximated using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) formula [77] and this is combined with a soft line search [78].

The minimisation is terminated by one of: a sufficiently small gradient ||f ′(xk)||∞ ≤ ε1,

a sufficiently small step length ||xk −xk−1||2 ≤ ε2(ε2+ ||xk||2), the number of iterations

exceeding a user specified maximum kmax or a zero step. For the work presented in this

thesis, the tolerances on these stopping criteria are set at ε1 = 10−12, ε2 = 10−12 and

kmax = 500.
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Figure 5.3: The quasi-Newton method applied to Rosenbrock’s function: (a) contours (dotted black
lines) and iterates xk (solid red line), (b) values of f(xk) (circles) and ||f ′(xk)||∞ (triangles). Note the
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5.2.1 Verification

The algorithm was verifed using several different test functions with known minimisers,

examples of which are given in [25]. Figure 5.3 gives the iterates and the values of f(xk)

and ||f ′(xk)||∞ when applying the method to Rosenbrock’s function

f(x) = (1− x1)
2 + 100(x2 − x21)

2. (5.17)

with initial guess x0 = [−1.2, 1]T . This is a standard nonlinear test function used in

optimisation theory. The function (5.17) has a unique global minimum at x∗ = [1, 1]T

with f(x∗) = 0.

5.3 Error covariances

Error covariances play an important role in variational data assimilation. Before we can

implement our 3D-Var algorithm we need to specify the background and observation

error covariance matrices B and R.

We are assuming that our model structure is perfect, i.e. with the correct choice of

parameter the model equations provide an exact representation of the dynamical system.

Obviously, this assumption is unrealistic. In practice, it is impossible to describe the true

system behaviour completely, and model predictions will also contain errors as a result
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of uncertain parameters and inaccurate initial and boundary conditions. In addition, the

observations we wish to assimilate are likely to incorporate some kind of error, however

small. Our assimilation scheme needs to take account of the errors that arise as a result

of these imperfections. The precision of the analysis is dependent on the precision of

the background and observations: correct specification of the error covariance matrices

B and R is therefore crucial to the success of the scheme.

Since prescription of the background error covariance matrix B is generally considered

to be one of the most difficult parts in the construction of a data assimilation scheme,

the majority of this section is devoted to discussion of this matrix. We begin, however,

with a brief outline of the role of the observation error covariance matrix R.

5.3.1 Observation error covariance

The observation error covariance matrix R gives a statistical description of the errors in

y. Observation errors originate from instrumental error, errors in the forward model h

and representativeness errors (observing scales that cannot be represented in the model

[9]). Generally, it is reasonable to assume that errors in measurements taken at different

locations are independent. In this case the observation error correlations are zero and

the matrix R is a diagonal with error variance σ2
o

Rk = σ2
oIk , I ∈ R

rk×rk . (5.18)

5.3.2 State background error covariance

Specification of the background error covariance matrix is one of the key parts of the

assimilation problem. Background errors arise from errors in both the initial conditions

and model errors. Since, by the nature of the problem, these errors are not known

exactly, they have to be approximated in some manner.

For state estimation, the state background error covariance matrix (which we will denote

Bzz = {bij}) represents the estimation errors of the background state vector zb. Element

bij of Bzz defines the covariance between components i and j of the state background
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state error vector εbz, where εbz = zb − zt is the difference between the background state

vector zb and the true state vector zt.

The correlations in Bzz govern the spreading and smoothing of the observational infor-

mation, determining how an observation at one point influences the analysis at nearby

points [9]. They are therefore fundamental in determining the nature of the resulting

analysis. In noisy, observation dense regions, the background error correlations are used

to ensure that the analysis is smooth and contains scales that are statistically compati-

ble with the smoothness properties of the physical fields. In data sparse regions, where

there are few observations, correlations are needed to spread the information contained

in the available observations to the surrounding domain [2], [14]. If the background error

correlations are poorly specified the quality of the analysis can be considerably reduced.

Formulation of the background error covariance can be made considerably easier by

specifying the error correlations as analytic functions. A number of correlation models

have been proposed (see [14] for further discussion on this). An approach commonly

used by the NWP community is the National Meteorological Center method (NMC) [79],

which uses the difference between forecasts that verify at the same time. The literature

gives various other methods, including using innovation (observation minus background)

statistics and studying differences in background fields using ensemble techniques. The

seminar paper by Fisher [24] and more recent review papers by Bannister [2], [3] pro-

vide a useful overview of current NWP techniques. A standard approach used in state

estimation is to assume that the background error covariances are homogeneous and

isotropic. The matrix Bzz is then equal to the product of the estimated error variance

and a correlation matrix defined using a pre-specified correlation function. Although this

method is somewhat crude it makes the data assimilation problem far more tractable.

5.3.3 Experiments

We illustrate the effect the choice of state background error covariance model can have

on the analysis by comparing the results produced by four different Bzz matrices in a

simple state estimation experiment.
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We start with a simple diagonal matrix

Bzz = σ2
b I I ∈ R

m×m, (5.19)

where σ2
b is the background error variance.

Next we add entries above and below the main diagonal by setting

bi−1, i = bi,i−1 =
σ2
b

2
, i = 2, . . . ,m. (5.20)

This gives the tri-diagonal matrix

Bzz =




σ2
b

σ2
b
2 0 · · · · · · 0

σ2
b
2 σ2

b
σ2
b
2 0 · · ·

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

0 · · · · · · 0
σ2
b
2 σ2

b




. (5.21)

Finally, we consider two examples of state background error covariance matrices that

have full off diagonal entries. We use two analytical models of the form Bzz = σ2
bρ

where ρ = {ρij} is a correlation matrix.

The first has elements given by the Gaussian exponential function [14]

ρij = e−r2ij/2L
2

, i, j = 1, . . .m. (5.22)

The second is the Markov matrix [82]

ρij = e−|rij |/L i, j = 1, . . .m. (5.23)

The element ρij defines the correlation between components i and j of the state back-

ground error vector εbz = zb − zt. Here rij = (xi − xj) is the distance between the grid

points xi and xj , and L is the background correlation length scale.

These models give a full symmetric error covariance matrix with variance σ2
b on the

diagonal and non-zero off-diagonal elements. The matrices (5.22) and (5.23) assume

that the correlation between the background errors at two grid points depends only

on the spatial distance between them and that correlations decrease with separation

distance.
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5.3.4 Results

At this stage we do not consider the time evolution of the state; we perform the assim-

ilation at a single time point with each of the different Bzz matrices (5.19) - (5.23).

The true bathymetry is given by the Gaussian function

zt(x) = 0.5e−50(x−0.4)2 . (5.24)

The background guess is also taken to be Gaussian but with slightly different scaling

factors

zb(x) = 0.25e−10(x−0.45)2 . (5.25)

We use a uniform model grid with observations taken from the truth at equally spaced

intervals. These observations are assumed to be perfect and without any added noise.

The background and observation error variances σ2
b and σ2

o should reflect our uncertainty

in the background and the observations. Since the observations are taken from the truth

and assumed to be perfect we weight in their favour, setting σ2
b = 1.0 and σ2

o = 0.1.

Figure 5.4 shows the analyses produced for each of the background covariance matrices

on the domain x ∈ [0, 1] with grid spacing ∆x = 0.02, and observations every 10∆x, so

that the dimension of the state vector m = 51 and r = 6. The red dot-dash line repre-

sents the true bathymetry zt. The observations y are given by circles, the background

zb by the blue dashed line and the analysis za by the solid green line. Alternative obser-

vation combinations were also investigated but for brevity we do not show the results of

these experiments here. The interested reader is referred to [88] for further examples.

Discussion

For this example, the form (5.19) is a poor approximation to make. It assumes that the

background errors are spatially uncorrelated and means that observations will have no

effect on the analysis at surrounding grid points. When both Bzz and R are diagonal

the expression for the gain matrix K simplifies and the analysis equation (2.9) reduces

to

zak = zbk +
σ2
b

σ2
b + σ2

o

(yk −Hkz
b
k). (5.26)
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Figure 5.4: Comparison of background error covariance matrices Bzz: (a) Diagonal matrix (5.19), (b)
Tri-diagonal matrix (5.21), (c) Gaussian matrix (5.22), (d) Markov matrix (5.23). The red dot-dash
line represents the true bathymetry zt, observations y are given by circles, the background zb by the
blue dashed line and the analysis za by the solid green line.

The gain matrix K now acts like a scalar; this means that each observation only effects

the value of the analysis at the grid point at which it is taken. At points where there are

observations the analysis is given by a weighted average of the value of the background

and observation at that point. Since we have taken σ2
o << σ2

b , a relatively small weight

is given to the background state and the analysis lies close to the observed value. At

grid points where no observation is taken the analysis is set equal to the background,

resulting in a jagged analysis curve.

With the tri-diagonal matrix (5.21) observational information is now spread to the two

neighbouring grid points and so also effects the analysis at points directly adjacent to

the observation location. However, unless observations are taken at at least every other

grid point, this still leaves regions where the available observations have no effect on the

analysis and therefore generates oscillations as above.
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The full covariance matrices (5.22) and (5.23) give much better results. The presence

of non-zero cross covariances mean that the matrix Bzz now has a much larger radius

of influence and the information contained in the observations is spread further into

the domain. Each observation now affects more of the surrounding grid points enabling

the shape of the true solution to be more accurately captured, even with relatively few

observations.

However, the quality of the analysis is sensitive to changes in the value of the correlation

length scale L. It is important to ensure that the background error correlations are

defined on sensible scales. By varying the size of L in (5.22) and (5.23) we can vary the

size of the correlations ρij and in turn the cross covariance elements of the matrix Bzz.

When there is a mismatch between the spatiotemporal resolution of the model and the

density of the observations the correlation length scale L allows us to determine how

the observed information is used by controlling the amount of information smoothing.

In figures 5.4 (c) and (d), L is set equal to 0.05. Figures 5.5 and 5.6 show how the analysis

changes as L is varied from 0.025 to 0.2, for matrices (5.22) and (5.23) respectively. We

use the same observation combination as in the previous experiment. For the Gaussian

matrix (5.22), the shape of the true solution is captured most accurately with L = 0.1.

If L is increased to 0.2 the analysis becomes over-smoothed; the sediment hump is too

wide and its peak is too low. Conversely, if L is set too small the analysis is ‘lumpy’.

The Markov matrix (5.23) is less sensitive to the value of L. As with the Gaussian

matrix, we see an improvement in the analysis when L is increased to 0.1 but the effect

of a further increase to L = 0.2 is less marked.

Choosing L is a balancing act; we want to extract the maximum amount of information

from the observations but we need to limit the amount of smoothing so that the analysis

produced is physically accurate. When L is large the covariance (correlation) between

the background errors at any pair of grid points is greater. Small scale structures are

suppressed and this generates an analysis that is comparatively smooth. When L is

small the background error correlations are reduced. There is less filtering of small

scale structures, but the filtering of the large scale structures increases so that away

from the observation points the analysis reverts to the background field. In this case

each observation has a much narrower region of effect, and therefore less influence on
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Figure 5.5: Effect of varying the correlation length scale L in the Gaussian state background error
covariance matrix Bzz (5.22). The red dot-dash line represents the true bathymetry zt, observations y
are given by circles, the background zb by the blue dashed line and the analysis za by the solid green
line.

the analysis. In order to be able to accurately reconstruct the model state we must

ensure that sufficient weight is given to the background state. The results of further

experiments demonstrating how the choice of L can effect the analysis for different

observation frequencies and densities are given in [88]. For a more in depth discussion

of the filtering properties of the background error correlations the interested reader is

referred to section 4.5 of [14].

Overall, the Gaussian matrix (5.22) with an appropriate choice of L was most effective,

producing an analysis whose shape is much smoother and closer to the true solution

than the other matrices. Although the analyses it produced were less smooth than the

Gaussian matrix, the form (5.23) also worked well at capturing the general shape of

the solution. This matrix has the additional benefit that its inverse can be calculated

explicitly and has a particularly simple tri-diagonal form [89]. This is advantageous
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Figure 5.6: Effect of varying the correlation length scale L in the Markov state background error
covariance matrix Bzz (5.23). The red dot-dash line represents the true bathymetry zt, observations y
are given by circles, the background zb by the blue dashed line and the analysis za by the solid green
line.

when the dimension of the system is large. For this reason, we use this matrix in the

experiments presented in sections 5.5 and 5.6, section 7.1 of chapter 7 and chapter 8.

Having verified our minimisation algorithm and determined a suitable form for the state

background error covariance matrix Bzz we now move on to consider the joint state-

parameter estimation problem.

5.4 Joint state-parameter estimation

We saw in the previous section the impact that the choice of the background error

covariance matrix can have on the assimilation results. For the joint state-parameter

estimation problem we have the additional challenge of specifying the background error
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covariance matrices for the parameter vector, Bpp, and for the cross correlations between

the state and parameter errors, Bzp.

5.4.1 Parameter error covariance

For our simple linear advection model (5.3), we only have a single unknown parameter,

the bed celerity c ; in this case the parameter vector p is a scalar. We approximate the

true celerity c with c̃, where c̃ = c + εc is the estimated value at a particular time tk.

Setting εpk
= εc and using definition (3.9), we have

Bppk = E
[
ε2c
]
= σ2

c (5.27)

where σ2
c is the parameter error variance.

We assume that parameter errors are statistically stationary and set

Bppk = Bpp = σ2
c for all k, (5.28)

i.e. the parameter error covariance matrix remains fixed for all tk. The parameter

error variance σ2
c is prescribed a value that represents our uncertainty in the estimated

parameter.

5.4.2 Modelling the state-parameter cross covariances

To define the matrix Bzpk, we need to consider the relationship between the errors in

the parameter estimates εbpk
and the errors in the state background εbzk . As they depend

on the same data, we expect them to be correlated.

One possible method for calculating these covariances is by averaging the statistics

over the assimilation window, using our knowledge of the truth and background states.

However, since in reality the true solution is not known, this is difficult to do in practice.

For simplicity we would like this matrix to be of a functional form similar to that used

for the state background error covariance matrix (5.23). As we explained in chapter 3,

section 3.4, successful parameter estimation relies upon these correlations being suitably

specified, so it is important to ensure that the choice of function is appropriate to the

particular model application.
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5.4.3 State background errors

To determine a suitable form for Bzpk, we first seek an approximation to the state

background error εbzk . We begin by considering a single realisation at a particular point

x and time t. The state background error at this point, which we denote εz(x, t), will be

a combination of error in the initial condition and error in the parameter estimate. There

are four possibilities: (1) known initial bathymetry and known advection velocity, (2)

unknown initial bathymetry and known advection velocity, (3) known initial bathymetry

and unknown advection velocity and (4) unknown initial bathymetry and unknown

advection velocity. Here, we consider case 4 but note that solutions for the other three

cases can be derived in a similar manner as described in [89].

We define

z̃(x, t) = z(x, t) + εz(x, t), (5.29)

and

f̃(x) = f(x) + εz(x, 0), (5.30)

where z̃(x, t) is our approximation to the true bathymetry z(x, t) at time t and f̃(x) is

our estimate of the true initial state f(x) = z(x, 0).

From (5.5), we have the solution

z̃(x, t) = f̃(x− c̃t), t ≥ 0. (5.31)

Using (5.29)

εz(x, t) = z̃(x, t)− z(x, t)

= f̃(x− c̃t)− f(x− ct)

= f̃(x− ct− εct)− f(x− ct). (5.32)

Assuming that εc t is small and that f(x) is a continuous, differentiable function, we can

expand (5.32) in a Taylor series about f̃(x− ct), yielding

εz(x, t) = f̃(x− ct− εct)− f(x− ct)

=

[
f̃(x− ct)− εctf̃

′(x− ct) +
ε2c
2!
t2f̃ ′′(x− ct)− . . .

]
− f(x− ct)

= εz(x− ct, 0)− εctf̃
′(x− ct) +O

(
(εct)

2
)
. (5.33)
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Figure 5.7: Linear advection model: unknown initial bathymetry and unknown advection velocity. Top:
true bathymetry z(x, t) (dot-dash red line) and predicted model bathymetry z̃(x, t) (dashed blue line).
Bottom: background error εz(x, t) = z̃(x, t)− z(x, t).

If we further assume that the errors εz(x, 0) are smooth, we can use (5.30) to rewrite

(5.33) as

εz(x, t) = εz(x− ct, 0)− εctf
′(x− ct) + . . . (5.34)

The solution (5.31) and its error (5.34) are illustrated in figure 5.7. As time increases the

higher order terms in (5.34) dominate. Incorrect specification of the advection velocity

causes a phase error that grows with time, overshadowing the error in the initial bed

profile. We note that the error is similar in character to the derivative of the initial state

f ′(x) but becomes amplified as time increases.

5.4.4 State-parameter cross covariance

Since the parameter error εbp = εc is scalar, the cross covariance matrix Bzpk will be a

vector of length m. Using the definition (3.9), we have

Bzpk = E

[
εbzk

(
εbpk

)T
]
= E

[
εc ε

b
zk

]
=




E(εc εzk,1)

E(εc εzk,2)
...

E(εc εzk,m)



. (5.35)
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Here, εzk,j is the j th component of the error vector εbzk , representing the background

error associated with the state background estimate zbk at the grid point xj at time tk.

Element bzpk,j = E
(
εc εzk,j

)
defines the covariance between εc and εzk,j .

Ideally, we would like to apply the same principle as was done for the state and pa-

rameter background error covariance matrices Bzz and Bpp, and assume that the cross

covariances are stationary and define Bzpk = Bzp using a function that has a fixed

structure for all tk. The error analysis in section (5.4.3) showed that for sufficiently

small t, the background error at the point x at time t will be linearly related to the

value of the derivative of the initial state at the starting point x0 = x − ct. Guided by

this result we propose the following time independent approximation for the background

error

εzj = −εcf
′(xj), j = 1, . . . ,m. (5.36)

To obtain an expression for the cross covariances (5.35), we multiply (5.36) by εc and

take the expected value over many realisations, to give

bzpj = −E
(
ε2cf

′(xj)
)

= −E
(
ε2c
)
f ′(xj)

= −σ2
cf

′(xj). (5.37)

Since by the nature of the problem the true bathymetry is unknown, we cannot compute

the derivative f ′(x). In order to evaluate the expression (5.37), we approximate using

the derivative of the background bathymetry f̃(x) at initial time t0. The matrix Bzp

entries then become

bzpj = −σ2
c f̃

′(xj), j = 1, . . . ,m. (5.38)

5.5 Assimilation experiments

Given an approximate velocity c̃ and starting from a perturbed initial state, we wish to

investigate whether our augmented data assimilation scheme is able to deliver both an

accurate model bathymetry and an accurate estimate of the true advection velocity c.

The analytic solution (5.5) is used to evaluate the performance of the method.
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The augmented state vector takes the form

wk =


 zk

ck


 . (5.39)

The assimilation process is carried out sequentially as described in section 2.3.1, algo-

rithm 2.1, with a new set of observations being assimilated at regular intervals. At the

end of each assimilation cycle, the analysis is integrated forward using the model to

obtain the background state for the next analysis time.

5.5.1 True model state

We generate a reference solution for z by solving (5.3) for c > 0 with initial data given

by the Gaussian function (5.6) with α = 1.0, β = 200 and γ = 30. For these experiments

we fix the true advection velocity at a physically realistic value of c = 0.002 ms−1. The

model was sampled on a regular grid with spacing ∆x = 1.0 m and time step ∆t = 15

minutes.

5.5.2 Observations

We assume that we have perfect, direct observations of z at r evenly spaced points along

the model domain. These are generated using the analytic solution (5.5) and chosen so

that they coincide with the model grid. The location and temporal frequency of the

observations is specifed at the start of each experiment and remains fixed throughout

the assimilation. The augmented observation operator h̃ is therefore linear and takes

the form of a constant r × (m + 1) matrix of zeros and ones. Hence, the observation

vector at time tk is given by

yk = H̃wt
k = Hztk. (5.40)

The observation error covariance matrix is given by (5.18) with σ2
o = 0.1. The use of

perfect observations is common practice in the preliminary testing of data assimilation

schemes with synthetic data. Specifying a non-zero observation error variance allows the

impact of the accuracy of the observations to be investigated without actually adding

noise [46], [64].
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Figure 5.8: Schematic showing (a) a Gaussian function f(x) = αe−(x−β)2/2γ2

and (b) its derivative
f ′(x).

5.5.3 Background error covariance

The initial model bathymetry is also taken to be a Gaussian but is rescaled so that it is

slightly shorter and wider and offset from the true initial state. In this example, we over-

estimate the true advection velocity, setting c̃ = 0.004 ms−1. The state and parameter

background error covariance matrices Bzz and Bpp are defined by (5.23) and (5.28) with

σ2
b = 1.0 and σ2

c = 0.001 respectively. The matrix Bzp is calculated at the start of the

assimilation using (5.38) and remains constant throughout. Since we are assuming that

the initial background bathymetry has a Gaussian structure, its derivative will be of the

form shown in figure 5.8.

5.5.4 Results

Figure 5.9 shows the state analysis produced with initial parameter estimate c̃ = 0.004 ms−1.

Observations were taken at 25∆x intervals and assimilated every hour. We found that

although qualitatively the state analysis is close to the truth (c.f. figure 5.7 in which

the model is run without data assimilation) the scheme was unable to recover the value

of the true advection velocity c = 0.002 ms−1. The corresponding parameter updates

are shown in figure 5.10 along with those for a second test case in which the velocity

is initially under estimated (c̃ = 0.001 ms−1). The estimates do eventually appear to
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converge but towards incorrect values. Because the error in the estimated advection

velocity is relatively small and the time between successive observations is relatively

short, the state estimation alone is sufficient enough to keep the model bathymetry on

track. When the error in the estimate of the advection velocity c is large, the model

diverges from the true state and the quality of the analysis is poor as in illustrated in

figure 5.11 for the case c̃ = 0.02 ms−1.

We know that the measurements of the bed height z provide information for refining the

estimate of c via the covariance matrix Bzp. The results of these experiments indicate

that the fixed approximation (5.38) does not provide an adequate enough representation

of these cross covariances to enable reliable parameter updating.

5.6 An alternative approach

The expression for the state background error (5.34) derived above is based on a scenario

where there is no data assimilation, and therefore assumes that the form of the model
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approximation of the state, z̃(x, t) = f̃(x − c̃t), and estimated advection velocity, c̃,

remain the same for all time. With data assimilation, the bed profile and speed change

as the background z̃(x, t) and parameter estimate c̃ are updated by the assimilation of

observations at each new analysis time. Thus we will have a different f̃ and c̃ at the

start of each new model integration. As f̃(x) and c̃ change so too will the background

errors εzk and εc and the correlation between them.

To take account of the fact that the background-parameter error cross covariances will

change with each new analysis we consider using a time varying approximation for the

matrix Bzp. Although the exact structure of the errors will vary as the data assimilation

updates f̃(x) and c̃, our practical experiments show that the background errors can

still broadly be described by the derivative function f ′(x − ct). Re-introducing time

dependence into the approximation (5.36), we have

εzk,j = −εcf
′(xj − ctk), j = 1, . . . ,m. (5.41)

Since f ′(x) and c are unknown we cannot evaluate the expression (5.41). Instead, we

substitute f ′ with the derivative of the background f̃ ′ and replace (x− ct) with (x− ŝk),

where ŝk is a time dependent value that represents the distance travelled from the

starting point x0 at time tk. This yields the approximation

εzk,j = −εcf̃
′(xj − ŝk), j = 1, . . . ,m. (5.42)

The shape of the function f̃ ′ will change each time the background state f̃ is updated

by the assimilation. For ease of computation, rather than recalculate f̃ ′ each time the

matrix Bzp needs updating (i.e. at each new assimilation time) we use a fixed structure

given by the derivative of the initial background bathymetry f̃ ′(x) at t0, as was done

for the static covariances. However, rather than keeping the spatial location of the

derivative fixed, it is now translated across the domain as the model steps forward. Its

position at time tk is determined by the value ŝk. To ensure that the error covariances

remain in phase with the model state, ŝk is chosen such that f̃ ′(x− ŝk) is centred at the

maximum of the current model predicted bathymetry z̃(x, t).

Proceeding as above, we multiply (5.42) by εc and take the expected value over many

realisations. This gives the time dependent matrix Bzpk elements

bzpk,j = −σ2
c f̃

′(xj − ŝk), j = 1, . . . ,m. (5.43)
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5.6.1 Results

We repeat the experiments of section 5.5, using our new approximation for Bzp. The

submatrices Bzz and Bpp remain fixed but the cross covariances are now updated at

each new analysis time using the approximation (5.43).

Figure 5.12 shows the parameter updates for initial parameter estimates (a) c̃ = 0.004 ms−1

and (b) c̃ = 0.001 ms−1. The state analysis for case (a) is shown in figure 5.13, the state

analysis for (b) is not shown as it is qualitatively similar. In both cases, the scheme

converges after around 24 hours, managing to successfully recover the true value of c to

a high level of accuracy. We found that the rate of convergence of the estimates could

be increased by increasing the parameter error variance. Figure 5.14 shows the effect of

doubling the error variance from σ2
c = 0.001 to σ2

c = 0.002.

Figure 5.15 (a) and (b) show two further test cases in which we assume a much greater

error in the initial value of c. Here, we set (a) c̃ = 0.02 ms−1 and (b) c̃ = 0.0002 ms−1.

The parameter error variance σ2
c is increased to σ2

c = 0.005 to reflect the larger uncer-

tainty in c. Again, the scheme manages to successfully recover the true value of c. As

a result, the model becomes a much better approximation and, thus, produces more

accurate estimates of the true bathymetry. The impact on the state analysis is parti-

cluarly noticable for the case c̃ = 0.02 ms−1, and can be seen by comparing figure 5.16

with figure 5.11 showing the analysis produced with the static matrix Bzp for the same

example.

The experiments were repeated for a range of both over and under estimated c values,

investigating the sensitivity of the parameter estimates to varying background guesses,

observation combinations and observation noise. The quality of the analysis is highly

dependent on the accuracy of the information fed into the assimilation algorithm. The

speed of convergence and accuracy of the parameter estimates varies depending on the

quality of the background state, the location and spatial frequency of the observations,

the level of observational noise and the time between successive assimilations. We do

not present the results of these experiments here but refer the reader to [89] and [90] for

further details and discussion.
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Figure 5.12: Assimilation with time varying state-parameter cross covariance matrix Bzp (5.43): up-
dating of parameter c for initial estimates (a) c̃ = 0.004 ms−1 (b) c̃ = 0.001 ms−1. The dotted black
line indicates the true parameter value c = 0.002 ms−1.
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black line indicates the true parameter value c = 0.002 ms−1.
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Figure 5.16: Assimilation with time varying state-parameter cross covariance matrix Bzp (5.43): state
analysis at times t = 0, 12, 24 & 48 hours, for initial parameter estimate c̃ = 0.02ms−1. The red dot-dash
line represents the true bathymetry zt, observations y are given by circles, the background zb is given
by the dashed blue line and the analysis za is given by the solid green line.

5.7 Summary

In this chapter we used a simple 1D linear advection model to investigate some of the

issues associated the design of a new assimilation scheme. We gave particular con-

sideration to the role of the background error covariances and used a series of simple

experiments to illustrate the effect that the choice of background error covariance matrix

can have on the analysis in state estimation. We then examined ways of specifying the

state-parameter cross covariances needed for joint state-parameter estimation. It was

found that in order to recover the true parameter values it was necessary to use a flow

dependent approximation. However, it does not appear to be necessary to explicitly

propagate the full system covariance matrix. We were able to get accurate estimates of

both the parameters and state variables by combining a time varying approximation of

the state-parameter cross covariance matrix Bzpk with an empirical, static representa-

tion of the state background error covariance Bzz. In the next chapter, we consider this

result further. We seek to develop a method for approximating the augmented matrix

Bk that can be applied to a range of general dynamical system models.
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Chapter 6

A hybrid approach

In chapter 5 we highlighted the role of the background error covariance matrix Bk.

For concurrent state-parameter estimation, it is particlarly important that the state-

parameter cross covariances are given a good a priori specification. The results of our

experiments with a simple 1D linear advection model showed that in order to be able to

reliably update the model parameters the cross covariance matrix Bzp needed to have a

time varying structure. Here, we were able to use our a priori knowledge of the parameter

and of the behaviour of the solution to derive a suitable form for this matrix, but in

practice this type of information is likely to be unavailable or at best limited. Ideally, the

full augmented background error covariance matrix Bk should be flow-dependent and

propagated forward from the previous assimilation time. However such an approach is

expensive and impractical for large environmental systems. In general, a much simpler

method of matrix updating will be required. A key part of our findings from chapter

5 was that, provided the state-parameter cross covariances were well defined, it was

not necessary to propagate the state background error covariance matrix Bzz. We now

wish to formalise these results and establish a generalised method for approximating the

augmented background error covariance matrix Bk that is applicable across a range of

dynamical system models.

In section 6.1 we consider how to prescribe the state-parameter cross covariance matrix

Bzpk for a general model. Using the results of the previous chapter we propose a hybrid

approach to approximating the matrix Bk; combining a flow dependent approximation
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of the state-parameter cross covariance matrix Bzpk with a static representation of the

state background error covariance Bzz and parameter error covariance Bpp. In section

6.2 we discuss aspects relating to practical implementation of this new method and in

section 6.3 we outline some of its advantages in comparison to existing techniques. We

finish by describing how this new approach can be incorporated into a sequential 3D-Var

data assimilation algorithm in section 6.4.

6.1 Formulation

From chapter 3, section 3.4.2, we have the discrete nonlinear time invariant augmented

system forecast model

wf
k+1 = f̃(wa

k) k = 0, 1, . . . (6.1)

where

wk =


 zk

pk


 ∈ R

m+q and f̃(wk) =


 f(zk,pk)

pk


 , (6.2)

with f̃ : Rm+q −→ R
m+q and f : Rm −→ R

m.

One option for evolving the background error covariances would be to use the EKF error

covariance forecast equation (2.21). We can rewrite (2.21) in terms of our augmented

system as

Pf
k+1 = FkP

a
kF

T
k , (6.3)

where now Pf
k+1 ∈ R

(m+q)×(m+q) and

Fk =
∂ f̃

∂w

∣∣∣∣∣
wa

k

=




∂f(z,p)
∂z

∂f(z,p)
∂p

∂p
∂z

∂p
∂p



∣∣∣∣∣∣
zak,p

a
k

=




∂f(z,p)
∂z

∂f(z,p)
∂p

0 I



∣∣∣∣∣∣
zak,p

a
k

(6.4)

is the Jacobian of the augmented system forecast model evaluated at the current analysis

state wa
k (see appendix A).
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The augmented forecast error covariance matrix (6.3) can be partitioned as follows

Pf
k+1 =


 Pf

zzk+1 Pf
zpk+1

(Pf
zpk+1)

T Pf
ppk+1


 (6.5)

where Pf
zzk+1 ∈ R

m×m is the forecast error covariance matrix for the state vector zfk+1 at

time tk+1, P
f
ppk+1 ∈ R

q×q is the covariance matrix describing the errors in the parameter

vector pf
k+1 and Pf

zpk+1 ∈ R
m×q is the covariance matrix for the cross correlations

between the the forecast errors in the state and parameter vectors.

Using the EKF forecast equation (6.3), we consider the form of the forecast error co-

variance matrix for a single step of the filter. Suppose we start at time tk with the

augmented analysis error covariance matrix

Pa
k =


 Pa

zzk
Pa

zpk

(Pa
zpk

)T Pa
ppk


 ∈ R

(m+q)×(m+q), (6.6)

where Pa
zz ∈ R

m×m, Pa
zp ∈ R

m×q and Pa
pp ∈ R

q×q.

If we denote

Mk =
∂f(z,p)

∂z

∣∣∣∣
zak,p

a
k

and Nk =
∂f(z,p)

∂p

∣∣∣∣
zak,p

a
k

, (6.7)

where Mk ∈ R
m×m and Nk ∈ R

m×q, we can re-write (6.4) as

Fk =


 Mk Nk

0 I


 . (6.8)

The forecast error covariance matrix (6.3) at time tk+1 is then given by

Pf
k+1 =


 Mk Nk

0 I





 Pa

zzk
Pa

zpk

(Pa
zpk

)T Pa
ppk





 MT

k 0

NT
k I


 , (6.9)

68



which yields

Pf
zzk+1

= MkP
a
zzk

MT
k +Nk(P

a
zpk

)TMT
k +MkP

a
zpk

NT
k +NkP

a
ppk

NT
k ,

Pf
zpk+1

= MkP
a
zpk

+NkP
a
ppk

,

Pf
ppk+1

= Pa
ppk

. (6.10)

We do not want to recalculate the full matrix (6.9) at every time step. The results

of chapter 5 suggest that it is not necessary to propagate the state background error

covariance matrix Bzz. We therefore substitute the EKF state forecast error covariance

matrix Pf
zzk+1 with a conventional 3D-Var static approximation

Pf
zzk

= Bzz for all k. (6.11)

We make the same assumption for the parameter error covariances and set

Pf
ppk

= Bpp for all k. (6.12)

To determine a method for the evolution of the state-parameter background error co-

variances we focus on the off diagonal blocks of (6.9). The EKF forecast state-parameter

cross covariance at time tk+1 is given by

Pf
zpk+1

= MkP
a
zpk

+NkP
a
ppk

. (6.13)

Evaluating (6.13) at every time step would introduce unwanted complexity into our

scheme. We want to simplify as far as possible; we want a method for approximating the

matrixBzpk that provides a suitable description of the state-parameter cross covariances

but that is also straightforward to compute. We take equation (6.13) as a guide but

propose a much simpler updating.

It is not unreasonable to assume that the initial background state and parameter errors

are uncorrelated. Setting Pa
zpk

= 0 in (6.13), using (6.12) and returning to our 3D-Var

notation, gives us the following approximation for the state-parameter cross covariance

matrix

Bzpk+1 = NkBpp. (6.14)

The augmented background error covariance matrix now takes the following hybrid form

Bk+1 =


 Bzz NkBpp

BppN
T
k Bpp


 . (6.15)
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In other words, all elements of the background error covariance matrix (6.15) are kept

fixed except the off-diagonal blocks which are updated by recalculating the matrix Nk,

where Nk is the Jacobian of the state forecast model with respect to the parameters,

as defined in (6.7). This enables us to capture the flow dependent nature of the state-

parameter cross covariances without having to explicitly evolve the full system matrix.

6.2 Practical implementation

Before we can apply our new method in practice we need to prescribe the matrices Bzz

and Bpp. We also need to establish a method for computing Nk. For a simple model,

it may be possible to derive an analytic expression for the Jacobian matrix Nk, or an

explicit computational form may be available as is the case in chapter 7. In larger,

more complex models Nk could be computed using finite differences or an automatic

differentiation tool [31], [78].

The appropriate choice for Bzz will depend on the particular model application. As we

discussed in chapter 5, section 5.3, the simplest approach is to define Bzz using an ana-

lytic correlation function. Alternatively, a more sophisticated covariance representation

for Bzz can be obtained using one of the emprical techniques discussed in [2], [24].

Specification of the parameter background error covariance matrix Bpp requires some

level of a priori knowledge of the parameter error statistics. The individual parameter

error variances should reflect our uncertainty in the model paramters but must also

be chosen so as to ensure that the parameter updates are realistic and consistent with

the scales of the model. For models with more than one uncertain parameter, we will

also need to consider the correlations between parameters. The easiest approach is to

assume that the parameters errors are independent and set the covariance between pairs

of parameters equal to zero; Bpp is then simply a diagonal matrix. Unfortunately, as

we see in chapter 8, this assumption will not always hold. In situations where a model’s

parameters exhibit strong interdependence closer consideration will need to be given to

the relationship between the parameters and non-zero cross covariances will need to be

specified. In some situations it may be practical to transform the parameters to a new
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set of uncorrelated variables.

6.3 Discussion

Advantages of the approximation (6.14) are that the matrix Bk only needs to be updated

at each new analysis time rather than at every time step and it does not require the

previous cross covariance matrices to be stored. Since the number of parameters q

is typically quite small, the computation of NkBpp does not add significantly to the

overall cost of the assimilation scheme. The block diagonal structure of (6.15) also makes

computation of the matrix inverse B−1
k in the 3D-Var cost function more manageable.

The reader is referred to appendix B for details of this inversion.

An increasingly popular approach to producing flow dependent forecast error covariances

is to employ an Ensemble Kalman filter (EnKF) [40]. Although the EnKF method is

cheaper and avoids many of the issues associated with the practical implementation of

the traditional EKF it is still more expensive and less well established than 3D-Var.

A notable problem with fully flow dependent methods such as the EKF and EnKF is

filter divergence. This is where the filter becomes over confident in the accuracy of the

analysis; the computed forecast error covariances become too small and consequently

the analysis diverges from the true state. For the EnKF, this is likely to occur when the

ensemble size is too small. Increasing the ensemble size can alleviate this problem but

this will obviously have an impact on computational cost.

Assuming the prescribed state and parameter error variances do not underestimate the

true error variances, we do not expect filter divergence to be an issue for our hybrid

method. The matrices Bzz and Bpp are fixed and always non-zero; since Bpp is fixed,

the state-parameter cross covariances Bzpk+1 = NkBpp will only be zero when Nk is

zero. The Jacobian Nk is essentially a measure of the sensitivity of the forecast model

to the parameters; Nk = 0 would imply that the model is insensitive to the parameters.

In such a case the parameters will not be identifiable and any estimation process would

be ineffectual.

There are a number of additional drawbacks to the EnKF, particularly when the dimen-
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sion of the system is large compared to the number of ensemble members. The estimated

covariance matrix is not full rank; the analysis increments are therefore restricted to the

space spanned by the ensemble members. If the number of observations is considerably

greater than the number of ensemble members this will lead to a signifcant loss of in-

formation as the background can only be corrected in a limited number of directions.

This is known as the ‘rank problem’ and is discussed further in [40].

Another problem associated with using a relatively small ensemble to estimate a large

covariance matrix is that spurious correlations can occur and the forecast error covari-

ances will be non-smooth resulting in noisy updates. This can be treated by covariance

localisation but this again introduces additional computational complexity to the scheme

and can potentially lead to imbalance [41].

In our hybrid method, these problems are avoided simply by choosing an appropriate

model for the state background error covariance matrix Bzz. Depending on the method

used to approximate Nk, the cross covariances Bzp could potentially become noisy but

this will not directly affect the smoothness of the state updates.

6.4 Hybrid sequential data assimilation

For completeness we conclude this chapter with a summary of the hybrid matrix updat-

ing procedure for concurrent state-parameter estimation in the context of augmented

sequential 3D-Var data assimilation.

Algorithm 6.1 The hybrid 3D-Var forecast-assimilation cycle

1. Starting from an initial augmented background state wb
0 = (zb0,p

b
0)

T containing

estimates of the model state and parameters at t0, integrate the augmented system

model (3.3) forward to the time tk when a set of observations yk = h(zk)+δk first

become available.

2. Update the state-parameter cross covariance matrix Bzpk by computing the Ja-

cobian matrix Nk−1 (6.7). Combine with the fixed matrices Bzz and Bpp to form

the augmented background error covariance matrix Bk (6.15).
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3. Minimise the augmented 3D-Var cost function (3.7) to obtain an augmented anal-

ysis vector wa
k = (zak,p

a
k)

T .

4. Using the augmented model (3.3), evolve the augmented analysis forward to be-

come the background estimate wb
k+1 at time tk+1. Note that the updated param-

eter values should be used in the state evolution model, i.e. zbk+1 = f(zak,p
a
k).

5. If no observational data are available at time tk+1 set wa
k+1 = wb

k+1.

6. Repeat steps 4. and 5. until a new set of observations are made then return to

step 2.

6.5 Summary

In this chapter, we have proposed a new hybrid approach to modelling the augmented

system background error covariances. By combining ideas from 3D-Var and the EKF we

have developed a unique method that captures the flow dependent nature of the state-

parameter cross covariances without the computational expense of explicitly propagating

the full augmented covariance matrix Bk. In the next chapter we explore the potential

of the approach using a range of simple dynamical system models.
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Chapter 7

Hybrid assimilation experiments

In this chapter we investigate the efficacy of our proposed new hybrid approach via a

series of identical twin experiments with three simple general dynamical system models.

We start, in section 7.1, with the single parameter 1D linear advection equation in-

troduced in chapter 5. In sections 7.2 and 7.3 we consider two simple general ODE

models: a two parameter nonlinear damped oscillating system, and the three parameter

nonlinear chaotic Lorenz 63 equations [60], [95]. In each section we give details of the

specific model and its discretisation before using the method formulated in the previous

chapter to derive estimates for the state-parameter cross covariances. A brief descrip-

tion of the experimental design is then given, followed by the results. We summarise

our conclusions in section 7.4.

7.1 Linear advection

We first consider the single parameter one-dimensional linear advection equation intro-

duced in section 5.1 [105],
∂z

∂t
+ c

∂z

∂x
= 0. (7.1)

We assume that z(x, t) is continuous and differentiable and choose to solve for c > 0

on a finite spatial domain with periodic boundary conditions. In chapter 5 we solved
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(7.1) using a semi-Lagrangian method. For the experiments presented in this section we

rescale our model and discretise using the upwind scheme (e.g. [53], [71])

zk+1,j = zk,j − c
∆t

∆x
(zk,j − zk,j−1), j = 1, 2, . . . , J k = 0, 1, . . . , T (7.2)

with boundary conditions

zk,0 = zk,J (7.3)

where zk,j ≈ z(xj , tk) and xj = j∆x, tk = k∆t, and ∆x is the spatial grid spacing and

∆t is the model time step.

Denoting µ = ∆t
∆x , we can rewrite (7.2) as

zk+1,j = (1− c µ)zk,j + c µzk,j−1. (7.4)

The upwind scheme is first order accurate in space and time and stable provided that the

CFL condition c µ ≤ 1 is satisfied. To ensure that the model remains stable during the

assimilation we set µ = 1 and assume that c is known to be somewhere on the interval

0 ≤ c ≤ 1. The upwind scheme is numerically diffusive; this results mainly in amplitude

errors in the solution when the model is run with the correct c value and without any

data assimilation. Full details of the model validation are given in appendix C. The

reason for using the discretisation (7.4) is that it can be expressed as a linear matrix

system. This will be advantageous when computing the Jacobian matrix Nk.

The state forecast model (7.4), with known constant advection speed c, can be written

as

zk+1 = Mzk (7.5)

where zk ∈ R
m is the model state at time tk and M is a (constant) m×m matrix, that

depends nonlinearly on the advection velocity c,

M = M(c) =




(1− c µ) 0 cµ

c µ (1− c µ) 0 . . .

. . .
. . .

. . .

0

0 . . . 0 c µ (1− c µ)




. (7.6)
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Since the advection velocity c is constant, the parameter evolution model (3.1) is given

by

ck+1 = ck. (7.7)

Setting

wk =


 zk

ck


 , (7.8)

we can combine (7.5) and (7.7) to give the augmented system model

wk+1 = f̃(wk) (7.9)

=


 Mk 0

0 1





 zk

ck


 (7.10)

Note that the constant matrix M in (7.5) has been replaced by the time varying matrix

Mk = M(ck). Although the true matrix M is constant, the forecast model at time tk

will depend on the current estimate, ck, of the true advection velocity, c. The matrix

Mk will therefore vary as ck is updated by the assimilation process.

7.1.1 State-parameter cross covariance

For the approximation of the cross covariances between the errors in the model state

z and parameter c at time tk+1 we need to calculate the matrix Nk; the Jacobian of

the state forecast model with respect to the model parameters. For the linear advection

model this is given by

Nk =
∂ (Mkzk)

∂c

∣∣∣∣
zak,c

a
k

. (7.11)

From (7.6) we have

∂Mk

∂ck
=




−µ 0 µ

µ −µ 0 . . .

. . .
. . .

. . .

0

0 . . . 0 µ −µ




. (7.12)
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which is constant for all ck.

The matrix Nk is a m× 1 vector with elements Nkj

Nkj = −µ(zk,j − zk,j−1), j = 1, . . . ,m. (7.13)

Multiplying (7.13) with the parameter error variance σ2
c gives the matrix Bzpk+1 ele-

ments as

bzpk+1,j
= −σ2

c µ(zk,j − zk,j−1), j = 1, . . . ,m. (7.14)

where bzpk+1,j
represents the cross covariance between the parameter error εck+1

and

element j of the state background error vector εbzk+1
at time tk+1.

We note that if we take
zk,j − zk,j−1

∆x
≈ f̃ ′

k(xj − ctk) (7.15)

to be an approximation to the gradient of the true solution at time tk, we can write

(7.14) as

bzpk+1,j
= −σ2

c ∆tf̃ ′
k(xj − ctk), j = 1, . . . ,m. (7.16)

If we compare (7.16) with the approximation (5.43) derived in chapter 5, section 5.6 we

find that the two expressions are very similar, the main difference being that (7.16) uses

a new estimate of the gradient f̃ ′
k at each assimilation time. The form (7.14) is used in

the experiments described in the next section.

7.1.2 Assimilation experiments

We run the linear advection model on the domain x ∈ [ 0, 3] with grid spacing ∆x = 0.01

and time step ∆t = 0.01. The true initial data is given by the Gaussian function

z(x, 0) =





0 x < 0.01

e−
(x−0.25)2

0.01 0.01 < x < 0.5

0 x ≥ 0.5

. (7.17)
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The true advection velocity is set as c = 0.5 and the initial model estimate for c is

generated by adding Gaussian random noise with zero mean and variance σ2
c = 0.1 to

this value. This corresponds to an error variance of 20%.

The initial model background state for z is also a Gaussian but is rescaled so that it is

a different height, width and in a slightly different starting position to the truth. The

state background error covariance matrix Bzz is defined as in section 5 equation (5.23)

with background error variance σ2
b = 0.05. The correlation length scale L in (5.23) is set

at twice the current observation spacing. The parameter error covariance matrix Bpp

is simply the scalar quantity σ2
c = 0.1.

The analytic solution (5.5) is used to provide observations for the assimilation and also

to evaluate the performance of the scheme in terms of estimating the model state z.

The observations are generated by sampling the analytic solution on a regularly spaced

grid and are initially assumed to be perfect. The spatial and temporal frequency of the

observations remains fixed for the duration of each individual assimilation experiment

but is varied between experiments as described below in section 7.1.3. The observation

operator therefore takes the form

H̃k = H̃ ≡
(

H 0
)

for all k. (7.18)

where H ∈ R
r×m, with the number of observations rk = r the same for all k.

We assume that the observation errors are spatially and temporally uncorrelated and

set the observation error covariance matrix Rk

Rk = R = σ2
oI, I ∈ R

r×r, (7.19)

where σ2
o is the observation error variance.

The assimilation process is carried out sequentially as described in algorithm 6.1. The

augmented cost function is minimised iteratively using the quasi-Newton descent algo-

rithm described in section 5.2.
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7.1.3 Results

Perfect observations

Experiments were carried out using a range of both over- and under-estimated initial

c values and different initial background guesses for zb. We found that the quality of

the state analysis and convergence and accuracy of the parameter estimates depends

on a number of factors including the initial background guess, the location and spatial

frequency of the observations, the time between successive assimilations, and the pres-

ence of observational noise. Here, we discuss the results from one example case; the

advection velocity c is initially over estimated as c0 = 0.87116 and the initial model

background bathymetry is slightly shorter, narrower and positioned behind the true

z(x, 0) as illustrated in the first panel of figure 7.1.

Figure 7.2 shows the effect on the parameter c estimates of varying the spatial fre-

quency of the observations. Observations are assimilated every 10∆t with observation

error variance σ2
o = 0.01. The grid spacing between observations ranges from every ∆x

to every 50∆x. The hybrid approach works extremely well. For observations taken at

intervals between ∆x and 25∆x the true value of c is found to a high level of accuracy.

The speed of convergence decreases as the number of observations decreases. For in-

tervals of ∆x, 5∆x and 10∆x the analysis for z is consistently good and closely tracks

the true solution. As figure 7.1 illustrates, when observations are taken every 25∆x we

find that the model does not always correctly predict the true height of the curve. If

the observation spacing is further increased to 50∆x, there is much greater variation

in the parameter estimates. The estimates get close to but never quite settle on the

true value of c, even when the assimilation period is extended beyond that shown. The

corresponding state estimates are shown in figure 7.4. Although the predicted model

state remains approximately in phase with the true solution, the observations are too

widely spaced to be able to accurately reproduce the characteristics of the curve.

Figure 7.3 shows the effect of varying the temporal frequency of the observations between

5∆t and 50∆t. For these experiments, the spatial frequency is fixed at 10∆x. The

results are similar to the previous experiment; the speed of convergence decreases as the

frequency of the observations decrease but the final estimated c values are very close to
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the true value. There are only small differences in convergence when the time between

successive assimilations is increased from every 5∆t to 10∆t to 25∆t. The analysis is

for z is also very good, with only slight fluctuations in height for the case 25∆t. When

observations are taken every 50∆t the c estimate takes much longer to converge and as

a result the model takes longer to stablise. As can be seen in figure 7.5, once the model

has settled the analysis for z is relatively good. Although again we see a similar problem

as in figure 7.1 above with the true height of the curve being underestimated at times

when the peak of the curve is not directly observed. If the time between observations is

doubled to 100∆t the scheme completely fails to recover c.

Noisy observations

The effect of observational errors was investigated by adding random noise to the ob-

servations. This noise was defined to have a Gaussian distribution with mean zero

and variance σ2
o where σ2

o is the observation error variance. Observations were taken

at spatial intervals of 10∆x and assimilated every 10∆t. The top panel in figure 7.6

shows the parameter c estimates produced for observation error variance increasing from

σ2
o = 0.001 to σ2

o = 0.1. This represents errors with variance of up to 10% of the maxi-

mum curve height.

As we would expect, when the observations are noisy the resulting state analysis and

parameter estimates are also noisy. The amplitude of oscillations in c increase as σ2
o

is increased. The oscillations are, however, approximately centered around the true c

value and lie within the bounds of uncertainty placed on the observations. We found

that smoother and more accurate parameter estimates could be obtained by averaging

over a moving time window as the assimilation is running as is shown in the bottom

panel of figure 7.6. Here, the above experiments were repeated but with the c estimates

being averaged over a moving time window of 40 time steps. Note that to allow time

for the scheme to settle we omit the early estimates and begin the averaging at t = 2.0.

When σ2
o = 0.001 the impact of the noise on the analysis for z is relatively minor. When

σ2
o is increased the effect of the noise becomes more noticeable. As figure 7.7 shows,

when σ2
o = 0.01, the main body of the curve is reproduced to a high level of accuracy

but oscillations appear in the tails of the curve. When the observation error variance
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Figure 7.1: Linear advection: state analysis at times t = 0, 0.9, 2.1, 3.2, 3.9 & 5, with perfect observations
every 25∆x, 10∆t. The red dot-dash line represents the true solution zt, observations y are given by
circles, the background zb is given by the dashed blue line and the analysis za is given by the solid green
line.

is further increased to σ2
o = 0.1 the oscillations become much larger (figure 7.8). The

noise now pollutes the entire solution, but the model does move roughly in phase with

the true solution.
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Figure 7.2: Linear advection: varying the spatial frequency of observations. Parameter updates for initial
estimate c = 0.87116: solid black line - observations at 1∆x intervals; solid green line - observations
at 5∆x intervals; solid red line - observations at 10∆x intervals; solid blue line - observations at 25∆x
intervals; solid pink line - observations at 50∆x intervals. The dotted black line indicates the true
parameter c value.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

time

c 
es

tim
at

e

Figure 7.3: Linear advection: varying the temporal frequency of observations. Parameter updates for
initial estimate c = 0.87116: solid black line - observations every 5∆t; solid green line - observations
every 10∆t; solid red line - observations every 25∆t; solid blue line - observations every 50∆t. The
dotted black line indicates the true parameter c value.
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Figure 7.4: Linear advection: state analysis at times t = 0, 1, 1.5, 2.5, 3.5 & 5, with perfect observations
every 50∆x, 10∆t. The red dot-dash line represents the true solution zt, observations y are given by
circles, the background zb is given by the dashed blue line and the analysis za is given by the solid green
line.
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Figure 7.5: Linear advection: state analysis at times t = 0, 1, 2, 3, 4 & 5, with perfect observations every
50∆t, 10∆x. The red dot-dash line represents the true solution zt, observations y are given by circles,
the background zb is given by the dashed blue line and the analysis za is given by the solid green line.
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Figure 7.6: Linear advection model: imperfect observations. Parameter updates for initial estimate
c = 0.87116. Top: unaveraged estimates. Bottom: time averaged estimates. Solid black line -
σ2
o = 0.001; solid green line - σ2

o = 0.01; solid red line - σ2
o = 0.1. The dashed black line indicates the

start of parameter averaging. The dotted black line indicates the true parameter c value.
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Figure 7.7: Linear advection model: state analysis at times t = 0, 1, 2, 3, 4 & 5, with noisy observations
every 10∆x, 10∆t and σ2

o = 0.01. The red dot-dash line represents the true solution zt, observations y
are given by circles, the background zb is given by the dashed blue line and the analysis za is given by
the solid green line.
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Figure 7.8: Linear advection model: state analysis at times t = 0, 1, 2, 3, 4 & 5, with noisy observations
every 10∆x, 10∆t and σ2

o = 0.1. The red dot-dash line represents the true solutionj zt, observations y
are given by circles, the background zb is given by the dashed blue line and the analysis za is given by
the solid green line.
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7.2 Nonlinear oscillator

Our second test model is a two parameter, unforced, damped nonlinear oscillator given

by the second order ordinary differential equation

ẍ+ dẋ+mx+ x3 = 0. (7.20)

where d and m are real, constant, parameters and x = x(t).

Equation (7.20) is often referred to as the Duffing equation or Duffing oscillator. It

arises in a variety of applications and in a number of different forms. For a more de-

tailed discussion see e.g. [35], [106], [99]. For d,m > 0, the form (7.20) describes the

motion of a single mass attached to a spring with nonlinear elasticity and linear damp-

ing. The parameter d is the damping coefficient and m is the square of the frequency

of oscillation. The quantity −(mx + x3) is known as the restoring or spring force and

represents the force exerted by the spring when it is subjected to a displacement x [98].

Equation (7.20) can be written as the first order system

ẋ = y,

ẏ = −(mx+ x3 + dy). (7.21)

The nature of the solution of this system varies greatly depending on the values of the

parameters. For d,m > 0 the sytem (7.21) has a single stable equilibrium at (x, ẋ) =

(0, 0).

We solve (7.21) numerically using a second order Runge-Kutta method (see e.g. [11]).

The discrete system is given by the following set of equations

xk+1 =

(
∆t− d

∆t2

2

)
yk +

(
1−m

∆t2

2
−

∆t2

2
x2k

)
xk (7.22)

yk+1 =

(
1− d∆t−m

∆t2

2
+ d2

∆t2

2

)
yk +

(
−m∆t+ dm

∆t2

2
+ (d

∆t2

2
−

∆t

2
)x2n

)
xk

−
∆t

2
(xk +∆tyk)

3 . (7.23)
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We combine the model parameters d and m in the parameter vector pk ∈ R
2

pk =


 dk

mk


 . (7.24)

with

pk+1 = pk, k = 0, 1, . . . , T. (7.25)

Adding the parameter vector pk to the state vector

xk =


 xk

yk


 , (7.26)

gives the augmented state vector

wk =


 xk

pk


 =




xk

yk

dk

mk




. (7.27)

This allows us to write (7.22)-(7.23) and (7.25) as the equivalent augmented system

wk+1 = f̃(wk)

=


 f(xk,pk)

pk


 . (7.28)

where f : R2 −→ R
2 and f̃ : R4 −→ R

4.

7.2.1 State-parameter cross covariance

For the oscillating system, the Jacobian of the state forecast model with respect to the

parameters is a 2× 2 matrix defined as

Nk =

(
∂f(x,p)

∂d

∂f(x,p)

∂m

)∣∣∣∣
xa
k,p

a
k

=




∂xk+1

∂d

∂xk+1

∂m
∂yk+1

∂d

∂yk+1

∂m




∣∣∣∣∣∣∣
dk,mk

(7.29)

The elements of Nk can be computed directly from the discrete equations (7.22)-(7.23).

Details of this calculation are given in appendix D.
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We assume that the parameters d and m are uncorrelated and set the parameter error

covariance matrix

Bpp =


 σ2

d 0

0 σ2
m


 , (7.30)

where σ2
d and σ2

m are the error variances of the parameters d and m respectively.

The state-parameter cross covariance matrix is then given by

Bxpk+1 = NkBpp

=

(
σ2
d

∂f(xk,pk)

∂d
σ2
m

∂f(xk,pk)

∂m

)∣∣∣∣
xa
k,p

a
k

. (7.31)

7.2.2 Assimilation experiments

The scheme is tested using identical twin experiments. We define the ‘true’ solution to

be that given by the discretised equations (7.22) - (7.23) with model time step ∆t = 0.1,

initial displacement x0 = 2.0, initial velocity y0 = 0.0 and parameter values d = 0.05

and m = 1.0. The solution for x and y is shown in figure 7.9 for t ∈ [0, 50].

The initial background estimate for the state xb
0 is generated by adding random noise

to the the true initial conditions. This noise is taken from a Gaussian distribution with

zero mean and variance σ2
b = 0.01. The state background error covariance matrix is set

as the diagonal matrix

Bxx = σ2
b I, I ∈ R

2×2. (7.32)

Observations of both x and y are taken from the true model trajectory and are assimi-

lated at regular time intervals. The augmented observation operator is simply

H̃ =
(

I 0
)

for all k, (7.33)

with I ∈ R
2×2.

For the observation error covariance matrix we use

R = σ2
oI, I ∈ R

2×2. (7.34)
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Figure 7.9: Damped, unforced nonlinear oscillator: computed numerical solution for x and y = dx
dt
.

We generate initial estimates d0 and m0 for the parameters d and m by adding random

noise with error variance σ2
d = 0.005 and σ2

m = 0.1 respectively to the ‘true’ values. It is

assumed that we know d and m are positive. Since the dimension of augmented state is

small, we compute the analysis directly from the augmented OI analysis equation (3.12).

7.2.3 Results

Perfect observations

Figures 7.10 and 7.11 show the parameter d and m updates for two example model

runs with initial parameter estimates (i) d0 = 0.081877 (over estimated), m0 = 0.58617

(under estimated) and (ii) d0 = 0.0193 (under estimated), m0 = 1.4711 (over estimated),

with observations of x and y = dx
dt at varying temporal frequencies. The observation

error variance is set at σ2
o = 0.01.

In the first example (figure 7.10) the scheme manages to retrieve the true values of both

d and m to a good level of accuracy for observation intervals up to every 25∆t. We

see a large increase in error in the estimated parameter values when the observation

frequency is decreased to 50∆t. This is reflected in the analysis for x and y and can be

seen by comparing figures 7.12 and 7.13. The x and y analyses for observation intervals

of less than 25∆t are not shown as qualitatively they are indistinguishable from the true
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solution. When observations are taken every 25∆t we start to see very small differences

(figure 7.12), and when the observation frequency is halved to 50∆t (figure 7.13) there

is a marked deterioration in the analysis. The over estimation of both d and m causes

significant phase and amplitude errors. We can see from figure 7.13 that too much weight

is being given to the background state and suggests that our background error variance

estimate of σ2
b = 0.01 is too low in this case. Indeed, we would expect the errors in the

model forecast to grow as the time between succesive assimilations is increased. Figure

7.14 and the dashed pink line in figures 7.12 (a) and (b) show the results produced when

the same experiment was repeated but with the background error variance doubled to

σ2
b = 0.02. More weight is now given to the observations, the error in the parameter d

and m estimates is considerably reduced and hence the quality of the state analysis is

greatly improved.

For example (ii) (figure 7.11), the scheme produces accurate estimates of both d and m

for observation frequencies ∆t, 5∆t and 10∆t but the results are poor for observation

intervals of 25∆t and 50∆t. The estimate of the parameter d for 25∆t is around twice

its true value. The quality of analysis for x and y is also similar to that in figure 7.13 and

so is not shown. When observations are assimilated every 50∆t the d and m estimates

are beyond any reasonable error bounds. As in example (i), this has a detrimental

effect on the model and therefore the state analysis. However, we again found that we

could significantly improve both the state and parameter estimates by inflating σ2
b (not

shown).

Noisy observations

The assimilation experiments were repeated using imperfect observations. Figures 7.15

(a) and (b) show the results produced when random noise with variance σ2
o = 0.01 was

added to the observations as described in section 7.1.3 above. Note that the assimilation

time has been increased. Overall the scheme performs well, although there is some

interesting behaviour. Unlike the perfect observation case, there is no clear relationship

between the observation frequency and the accuracy of the parameter estimates; the

best estimates of d and m were obtained using different observation intervals. There

was also variation across model runs. The most noticable result is the parameter d
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Figure 7.10: Nonlinear oscillator: (a) Parameter d updates for initial estimate d0 = 0.081877, (b)
Parameter m updates for initial estimate m0 = 0.58617: solid black line - observations every ∆t; solid
green line - observations every 5∆t; solid red line - observations every 10∆t; solid blue line - observations
every 25∆t; solid pink line - observations every 50∆t; dashed pink line - observations every 50∆t with
inflated σ2

b . The dotted black line indicates the true parameter value.
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Figure 7.11: Nonlinear oscillator (a) Parameter d updates for initial estimate d0 = 0.0193, (b) Parameter
m updates for initial estimate m0 = 1.4711: solid black line - observations every ∆t; solid green line
- observations every 5∆t; solid red line - observations every 10∆t; solid blue line - observations every
25∆t; solid pink line - observations every 50∆t. The dotted black line indicates the true parameter
value.

94



0 5 10 15 20 25 30 35 40 45 50

−2

−1

0

1

2

time

x

(a)

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

4

time

d
x
/d

t

(b)

Figure 7.12: Nonlinear oscillator: analysis for x and y = dx
dt

with initial parameter estimates (i) d0 =
0.081877, m0 = 0.58617 and perfect observations assimilated every 25∆t. The red dashed line represents
the true solution xt, observations y are given by circles, the background xb is given by the dashed blue
line and the analysis xa is given by the solid green line.
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Figure 7.13: Nonlinear oscillator: analysis for x and y = dx
dt

with initial parameter estimates (i) d0 =
0.081877, m0 = 0.58617 and perfect observations assimilated every 50∆t. The red dashed line represents
the true solution xt, observations y are given by circles, the background xb is given by the dashed blue
line and the analysis xa is given by the solid green line.
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Figure 7.14: Nonlinear oscillator: analysis for x and y = dx
dt

with initial parameter estimates (i) d0 =
0.081877, m0 = 0.58617 and perfect observations assimilated every 50∆t with inflated σ2

b . The red
dashed line represents the true solution xt, observations y are given by circles, the background xb is
given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.15: Nonlinear oscillator: imperfect observations with observation error variance σ2
o = 0.01 (a)

Parameter d updates for initial estimate d0 = 0.081877, (b) Parameter m updates for initial estimate
m0 = 0.58617: solid black line - observations every ∆t; solid green line - observations every 5∆t; solid
red line - observations every 10∆t; solid blue line - observations every 25∆t; solid pink line - observations
every 50∆t. The dotted black line indicates the true parameter value.
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Figure 7.16: Nonlinear oscillator: imperfect observations with observation error variance σ2
o = 0.01 (a)

Averaged parameter d updates for initial estimate d0 = 0.081877, (b) Averaged parameter m updates
for initial estimate m0 = 0.58617: solid black line - observations every ∆t; solid green line - observations
every 5∆t; solid red line - observations every 10∆t; solid blue line - observations every 25∆t; solid pink
line - observations every 50∆t. The dotted black line indicates the true parameter value.
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Figure 7.17: Nonlinear oscillator: analysis for x and y = dx
dt

using initial parameter estimates (i)
d0 = 0.081877, m0 = 0.58617 with noisy observations assimilated every 50∆t and σ2

o = 0.01, σ2
b = 0.02 .

The red dashed line represents the true solution xt, observations y are given by circles, the background
xb is given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.18: Nonlinear oscillator: imperfect observations with observation error variance σ2
o = 0.1 (a)

Parameter d updates for initial estimate d0 = 0.081877, (b) Parameter m updates for initial estimate
m0 = 0.58617: solid black line - observations every ∆t; solid green line - observations every 5∆t; solid
red line - observations every 10∆t; solid blue line - observations every 25∆t; solid pink line - observations
every 50∆t. The dotted black line indicates the true parameter value.
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Figure 7.19: Nonlinear oscillator: analysis for x and y = dx
dt

using initial parameter estimates (i)
d0 = 0.081877, m0 = 0.58617 with noisy observations assimilated every 10∆t and σ2

o = 0.1. The red
dashed line represents the true solution xt, observations y are given by circles, the background xb is
given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.20: Nonlinear oscillator: analysis for x and y = dx
dt

using initial parameter estimates (i)
d0 = 0.081877, m0 = 0.58617 with noisy observations assimilated every 25∆t and σ2

o = 0.1. The red
dashed line represents the true solution xt, observations y are given by circles, the background xb is
given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.21: Nonlinear oscillator - overweighting the observations: analysis for x and y = dx
dt

using
initial parameter estimates (i) d0 = 0.081877, m0 = 0.58617 with noisy observations assimilated every
25∆t. The observation noise is generated using σ2

o = 0.1 but an observation error variance of σ2
o = 0.01

is used in the assimilation. The red dashed line represents the true solution xt, observations y are given
by circles, the background xb is given by the dashed blue line and the analysis xa is given by the solid
green line.
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Figure 7.22: Nonlinear oscillator - overweighting the observations: imperfect observations with error
variance σ2

o = 0.1 assimilated every 25∆t. (a) parameter d updates for initial estimate d0 = 0.081877,
(b) parameter m updates for initial estimate m0 = 0.58617. The dotted black line indicates the true
parameter value. The solid blue line represents the updates obtained when an under estimated obser-
vation error variance σ2

o = 0.01 is used in the assimilation algorithm; the dashed blue line shows the
results produced when the true observation error variance σ2

o = 0.1 is used.
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estimates when observations are assimilated at every time step (solid black line in figure

7.15(a)). The estimates initially appear to be moving towards the correct value but at

around 40 time steps they begin to increase away. The experiment was repeated with

different noise simulations and different starting values for d but similar behaviour was

found in every case. It is possibile that the interval between assimilation time steps is

insufficient for the model to adjust to the updated value of d. A further hypothesis is

that this behaviour is related to the role of d in the model equations. The parameter d

determines how quickly the solution becomes damped. As we move forward in time the

amplitude of the solution decreases, the relative size of the observational noise therefore

increases causing greater misrepresentation of the true amplitude and making it harder

to identify the true d value.

We found that this behaviour could be remedied by averaging the estimates as is illus-

trated in figures 7.16 (a) and (b). For observation intervals of ∆t to 25∆t the parameter

estimates were averaged over a moving time window of 50 timesteps starting at t = 30.

For observations every 50∆t this was increased to 100 time steps. The averaging pro-

duces more stable estimates for the parameters which in turn gives greater stability to

the forecast model.

In this example, the value prescribed for σ2
o is relatively small and so the observational

noise has very little impact on the overall quality of the state analysis as can be seen

by comparing figure 7.17 with figure 7.14 (note that figure 7.17 shows the state analysis

obtained with the unaveraged parameter estimates). We see a much greater effect on

the state analysis if the observation error variance is increased to σ2
o = 0.1. As figures

7.18 (a) and (b) illustrate, in terms of the parameters, for observation intervals ∆t, 5∆t

and 10∆t, we are still able to estimate both the parameters to a reasonable level of

accuracy; although the fluctuations in the estimates are larger. Note the greater range

in scale in figures 7.18 (a) and (b) compared to figure 7.15.

When an observation interval of 10∆t is used, there are initially large errors in the

estimated values of parameter m. However, this is gradually corrected as more obser-

vations are processed and the m estimates eventually converge towards the true value.

The d estimates also take slightly longer to reach the true d. This behaviour effects

the analysis for x and y as shown in figure 7.19. Initially, amplitude and phase errors
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begin to develop in the predicted solution, however once the d and m estimates have

stablised (at around t = 70) the analysis for x and y recovers and becomes a much better

approximation of the truth.

There is a big jump in error when the observation frequency is decreased to 25∆t and

50∆t. The high d estimates mean that the model very quickly becomes over-damped.

The increased time between assimilations mean that, unlike the 10∆t case, the scheme

is unable to recover and as a result the state analysis becomes extremely poor. By in-

creasing the observation errors we now have σ2
b << σ2

o . The analysis in figure 7.20 shows

that insufficient weight is being given to the observations. Taking a similar approach to

the 50∆t perfect observation case in which the background error variance was inflated,

we found that the state estimates could be improved by increasing the weight given to

the observations. Figure 7.21 shows the x and y analysis for observation frequencies

25∆t when variance σ2
o = 0.1 is used to simulate the observation noise but a observation

error variance of σ2
o = 0.01 is used in the assimilation. The parameter updates are

shown in figures 7.22 (a) and (b) along with previous estimates obtained using error

variance σ2
o = 0.1. The errors in the damping parameter d are slightly reduced but the

estimates are still too high. There is a substaintial improvement in the parameter m

estimates which now converge close to the true value. The same approach was tried

with an observation frequency of 50∆t. This failed to produce any real improvement in

the parameter estimates but did produce a notable improvement in the state analysis.

7.3 The Lorenz 63 equations

The Lorenz equations is the name given to a system of first order differential equations

describing a simple nonlinear dynamical system that exhibits chaotic behaviour. The

system was originally derived from a model of fluid convection and consist of the three

coupled, nonlinear ordinary differential equations [60]

ẋ = −σ(x− y) , (7.35)

ẏ = ρx− y − xz , (7.36)

ż = xy − βz , (7.37)

where x = x(t), y = y(t) and z = z(t) and σ, ρ and β are real, positive parameters.
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The strong nonlinearity of these equations means that the model solution is extremely

sensitive to perturbations in the initial conditions and parameters. For this reason, the

model is often used as a framework for examinining the properties of data assimilation

methods when applied to highly nonlinear dynamical systems [21], [69].

The origin is a stationary point for all parameter values. When ρ > 1 there are two

other stationary points

(
±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1

)
.

For these experiments we set the ‘true’ parameters at σ = 10, ρ = 28 and β = 8/3.

These are the classic values first used by Lorenz. At these values all three equilibrium

points are unstable and give rise to chaotic solutions [95].

To investigate the applicability of our new hybrid assimilation scheme to this system

we adapt a pre-existing Matlab routine written by M.J Martin [64], [62]. The code was

originally developed as a training aid to illustrate the application of sequential data

assimilation schemes to state estimation in simplified models. A copy of the original,

unmodified code can be obtained from [61]. The program solves equations (7.35)-(7.37)

numerically using the same second order Runge-Kutta method as was used in section

7.2. The discrete system is given by

xk+1 = xk + σ
∆t

2

[
2(yk − xk) + ∆t(ρxk − yk − xkzk)− σ∆t(yk − xk)

]
, (7.38)

yk+1 = yk +
∆t

2

[
ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk))− yk −∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk +∆t(xkyk − βzk))
]

(7.39)

zk+1 = zk +
∆t

2

[
xkyk − βzk + (xk +∆tσ(yk − xk))(yk +∆t(ρxk − yk − xkzk))

− β(zk +∆t(xkyk − βzk))
]
. (7.40)

We define the state and parameter vectors

xk =




xk

yk

zk


 , and pk =




σk

ρk

βk


 . (7.41)
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giving the augmented system model

wk+1 = f̃(wk)

=


 f(xk,pk)

pk


 . (7.42)

where w ∈ R
6 is the augmented state vector, f(xk,pk) : R

3 −→ R
3 is the state evolution

model given by (7.38)-(7.40) and pk+1 = pk is the parameter evolution model.

7.3.1 State-parameter cross covariance

For the Lorenz model, the Jacobian matrix Nk is given by

Nk =

(
∂f(x,p)

∂σ

∂f(x,p)

∂ρ

∂f(x,p)

∂β

)∣∣∣∣
xa
k,p

a
k

=




∂xk+1

∂σ

∂xk+1

∂ρ

∂xk+1

∂βk
∂yk+1

∂σ

∂yk+1

∂ρ

∂yk+1

∂β
∂zk+1

∂σ

∂zk+1

∂ρ

∂zk+1

∂β




∣∣∣∣∣∣∣∣∣∣∣
σk,ρk,βk

, (7.43)

and can be computed by differentiating the discrete equations (7.38), (7.39) and (7.40)

with respect to each of the parameters as described in appendix D.

We assume that σ, ρ and β are uncorrelated and set

Bpp =




σ2
σ 0 0

0 σ2
ρ 0

0 0 σ2
β


 , (7.44)

where σ2
σ, σ

2
ρ and σ2

β are the error variances of the parameters σ, ρ and β respectively.

The state-parameter cross covariance matrix at tk+1 is then given by

Bxpk+1 = NkBpp

=

(
σ2
σ

∂f(xk,pk)

∂σ
σ2
ρ

∂f(xk,pk)

∂ρ
σ2
β

∂f(xk,pk)

∂β

)∣∣∣∣
xa
k,p

a
k

. (7.45)
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7.3.2 Assimilation experiments

Again we test our scheme by running identical twin experiments. The ‘true’ solution is

taken to be that given by the discrete equations (7.38) - (7.40) with model time step

∆t = 0.01 and initial conditions x0 = −5.4458, y0 = −5.4841 and z0 = 22.5606. The

solutions for x and z are illustrated in figure 7.23 for t ∈ [0, 30].

Initial estimates of the three parameters σ̃, ρ̃ and β̃ are generated by adding random

noise with variance equal to 20% of the true value to each of σ, ρ and β. The components

of the initial model background state vector xb
0 are taken equal to the true initial values

plus random noise. This noise is taken from a Gaussian distribution with zero mean

and variance σ2
b = 0.1. The state background error covariance matrix is taken as

Bxx = σ2
b I, I ∈ R

3×3, (7.46)

with inflated error variance σ2
b = 1.0.

Observations of x, y and z are taken from the true solution and assimilated sequentially

at regular time intervals as described in algorithm 6.1. The augmented observation

operator H̃ and observation error covariance matrix R for this system are given by

(7.33) and (7.34) with I ∈ R
3×3.

Although by adding the parameters to the state vector we double the dimension of the

system, its size is still relatively small. We therefore use equation (3.12) to compute the

analysis directly.

7.3.3 Results

Perfect observations

Once again we find that the hybrid scheme performs extremely well. Figure 7.24 shows

the parameter updates for model runs with observations at decreasing temporal fre-

quency. For this example, the initial parameter values are σ̃ = 11.0311, ρ̃ = 30.1316

and β̃ = 1.6986 and the observation error variance is set at σ2
o = 0.01. For observation

frequencies 5∆t, 10∆t and 20∆t the estimates of ρ and β converge to their true values
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Figure 7.23: Lorenz equations: computed numerical solution for x and z.

very rapidly. The updating of σ is much slower but the correct value is eventually recov-

ered to a high level of accuracy. There are no visible differences between the model and

true solutions for x, y and z at these frequencies and so we do not show the results here.

When the observation interval is increased to 30∆t the scheme takes longer to stabilise

and there are much larger initial deviations in the parameter estimates. The updating

of the state variables x and z is shown in figure 7.25. Although initially there are some

quite large differences between the predicted and true solutions, at around t = 10− 15

the model appears to have stabilised and beyond t = 25 the true solution is reproduced

near perfectly. If the time period between assimilations is further increased to 40∆t the

scheme completely fails to find the correct parameter values and the state analysis is

poor across the entire assimilation window (figure 7.26).

Noisy observations

The effect of observational errors was examined by re-running the above experiments

with random Gaussian noise added to the observations. We used observation error

variances σ2
o = 0.01, σ2

o = 0.1 and σ2
o = 0.25 and assimilated the observations at

increasing time intervals as in the perfect observations example. Figures 7.27 and 7.28

show parameter updates obtained when the observation error variances were set at

σ2
o = 0.1 and σ2

o = 0.25 respectively. The results for σ2
o = 0.01 are not shown as

the convergence and quality of the parameter and state estimates is very similar to
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Figure 7.24: Lorenz equations: Parameter updates for initial estimates σ = 11.0311, ρ = 30.1316 and
β = 1.6986. Solid black line - observations every 5∆t; solid green line - observations every 10∆t; solid
red line - observations every 20∆t; solid blue line - observations every 30∆t. The dotted black line
indicates the true parameter value.
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Figure 7.25: Lorenz equations: analysis for x and z using initial parameter estimates σ = 11.0311,
ρ = 30.1316 and β = 1.6986 with perfect observations assimilated every 30∆t. The red dot-dash line
represents the true solution xt, observations y are given by circles, the background xb is given by the
dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.26: Lorenz equations: analysis for x and z using initial parameter estimates σ = 11.0311,
ρ = 30.1316 and β = 1.6986 with perfect observations assimilated every 40∆t. The red dot-dash line
represents the true solution xt, observations y are given by circles, the background xb is given by the
dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.27: Lorenz equations: imperfect observations with observation error variance σ2
o = 0.1. Pa-

rameter updates for initial estimates σ = 11.0311, ρ = 30.1316 and β = 1.6986. Solid black line -
observations every 5∆t; solid green line - observations every 10∆t; solid red line - observations every
20∆t; solid blue line - observations every 30∆t. The dotted black line indicates the true parameter
value.
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Figure 7.28: Lorenz equations: imperfect observations with observation error variance σ2
o = 0.25. Pa-

rameter updates for initial estimates σ = 11.0311, ρ = 30.1316 and β = 1.6986. Solid black line -
observations every 5∆t; solid green line - observations every 10∆t; solid red line - observations every
20∆t; solid blue line - observations every 30∆t. The dotted black line indicates the true parameter
value.
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Figure 7.29: Lorenz equations: imperfect observations with observation error variance σ2
o = 0.1. Av-

eraged parameter updates for initial estimates σ = 11.0311, ρ = 30.1316 and β = 1.6986. Solid black
line - observations every 5∆t; solid green line - observations every 10∆t; solid red line - observations
every 20∆t; solid blue line - observations every 30∆t. The dotted black line indicates the true parameter
value.
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Figure 7.30: Lorenz equations: imperfect observations with observation error variance σ2
o = 0.25. Av-

eraged parameter updates for initial estimates σ = 11.0311, ρ = 30.1316 and β = 1.6986. Solid black
line - observations every 5∆t; solid green line - observations every 10∆t; solid red line - observations
every 20∆t; solid blue line - observations every 30∆t. The dotted black line indicates the true parameter
value.
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Figure 7.31: Lorenz equations: analysis for x and z using initial parameter estimates σ = 11.0311,
ρ = 30.1316 and β = 1.6986 with noisy observations assimilated every 30∆t and σ2

o = 0.1. The red
dot-dash line represents the true solution xt, observations y are given by circles, the background xb is
given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.32: Lorenz equations: analysis for x and z using initial parameter estimates σ = 11.0311,
ρ = 30.1316 and β = 1.6986 with noisy observations assimilated every 30∆t and σ2

o = 0.25. The red
dot-dash line represents the true solution xt, observations y are given by circles, the background xb is
given by the dashed blue line and the analysis xa is given by the solid green line.
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Figure 7.33: Lorenz equations - time averaged parameter estimates: analysis for x and z with initial
parameter estimates σ = 11.0311, ρ = 30.1316 and β = 1.6986 with noisy observations assimilated every
30∆t and σ2

o = 0.1. The red dot-dash line represents the true solution xt, observations y are given by
circles, the background xb is given by the dashed blue line and the analysis xa is given by the solid green
line.
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the perfect observation case. With σ2
o = 0.1 and σ2

o = 0.25 the parameter estimates

are very noisy. The size of the parameter errors increase as σ2
o increases and also as

the frequency of the observations decreases. For observations up to every 20∆t the

oscillations are approximately centered around the true parameter values. There is a

significant growth in the size of the oscillations when the time between assimilations is

increases to 30∆t. If we try to extend the observation interval any further, the model

fails to produce any meaningful results.

Figures 7.29 and 7.30 show the effect of averaging the parameter estimates over a moving

time window. For observation intervals 5∆t to 20∆t the parameters were averaged over

a moving window of 50 time steps, starting at t = 10. For observation interval 30∆t

this was increased to 60 timesteps and averaging was started later at t = 15. With

σ2
o = 0.1 the parameters ρ and β are predicted to a good level of accuracy, even when

the observation interval is extended to 30∆t. With σ2
o = 0.25 we get similarly good

results for observation intervals of 5∆t to 20∆t. When the observation frequency is

decreased to every 30∆t the errors are much larger but the averaged estimates still offer

a significant improvement on the unaveraged values.

The parameter σ estimates are less accurate for both σ2
o = 0.1 and σ2

o = 0.25. When

σ2
o = 0.25, the averaging produces only a slight improvement on the initial estimate

of σ = 11.0311 for intervals greater then every 5∆t. When observations are taken at

30∆t intervals the final σ estimate is actually further from the true value than the

starting estimate. In the perfect observation experiments, we found that this parameter

converged much slower than the other two. This perhaps suggests that the model

is relatively insensitive to small deviations in its value. The averaged estimate could

potentially be improved by starting the averaging at a later time.

For observation intervals of 5∆t to 20∆t, the quality of the analysis for the state variables

is good for both σ2
o = 0.1 and σ2

o = 0.25 even without the averaging of the parameter

estimates. As figures 7.31 and 7.32 illustrate, there is a noticable deterioration in the

analysis when the observation frequency is decreased to 30∆t, particularly in the σ2
o =

0.25 case. When σ2
o = 0.1, we found that the state analysis improved when the model

was re-run using the time averaging of the parameter estimates as shown in figure 7.33.

Here the model is quicker to stabilise and subsequently more closely follows the true

122



solution. We failed to see any substantial improvement when the same approach was

tried for the case σ2
o = 0.25.

7.4 Summary

In this chapter we examined the effectiveness of our proposed new hybrid state-parameter

data assimilation scheme. The method was applied to three simple dynamical system

models, where the number of parameters increased with each model. Although each

system has different characteristics the technique performed well in all three cases. As

the results of our experiments illustrate, we were able to recover the true parameter

values to a good level of accuracy, even when observational data were noisy. This had a

positive impact on the skill of the forecast model and enabled more accurate predicitions

of the true model state.

As we would expect, there are limits to the success of the method; when observational

data became too infrequent or too noisy, or if the initial state and parameter background

estimates were particularly poor then we were unable to yield reliable results. The

threshold for each model varied depending on properties the of model structure and

the underlying dynamics but were not overly restrictive. We also found that we were

less able to accurately identify parameters to which a model is relatively insensitive,

as was the case for certain values in the oscillating system. This is not surprising as

we cannot expect to be able to correct parameter errors that cause errors in the model

solution that are on smaller scales than can be observed. Other parameter estimation

techniques would also be likely to fail in such a scenario. This is linked to the concepts of

observability and identifiability discussed in chapter 3. A parameter estimation method

can only be expected to work reliably when both these properties hold. Future work

will need to consider these issues in more depth and examine how they relate to our new

hybrid approach.

In this work we assumed that the parameters in the oscillating and Lorenz models were

uncorrelated and set the cross covariances between the parameters equal to zero. Whilst

this assumption worked for these particular models it may not adequate for models in

which the parameters are strongly correlated. A model sensitivity analysis can be used to
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help identify the interdependence of parameters and ascertain whether cross correlations

are needed. In this case, more attention will need to be given to the parameter error

covariance matrix Bpp and methods for defining the cross correlations will need to be

considered.

The models we used here are of relatively low dimension and have only a small number of

parameters. The increase in the dimension of the problem caused by the addition of the

parameters to the state vector does not have a significant impact on the computational

cost of the assimilation scheme and the re-calculation of the Jacobian matrix Nk at each

new assimilation time is not infeasible. We chose model discretisations that allowed

us to obtain explicit expressions for the matrix Nk thereby avoiding any additional

computational complexity. We remark, however, that an explicit form for the Jacobian

is not necessarily required. As we show in the next chapter, the matrix Nk can, for

example, be approximated using a simple local finite difference approach.

This study has provided a valuable insight into how the hybrid method is likely to

perform in a range of dynamical systems. Overall, the approach has proved extremely

successful and we are confident that it offers an efficient and versatile solution to the

problem of approximating the state-parameter cross covariances. In the next chapter

we apply our new algorithm to the 1D nonlinear sediment transport model introduced

in chapter 4. This model presents further challenges as we encounter difficulties relating

to parameter interdependence.
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Chapter 8

1D sediment transport model

In this chapter we evaluate the potential for practical application of our new hybrid

technique in a morphodynamic modelling context by testing the approach in an idealised

sediment transport model.

Details of the model and its discretisation are given in sections 8.1 to 8.3. In section 8.4

we explain how the Jacobian matrix Nk and hence the state-parameter cross covariances

are approximated. The various elements of the experimental design are described in

section 8.5. Results are presented in section 8.6 followed by a summary of the conclusions

in section 8.7.

8.1 The model

We consider the 1D nonlinear sediment transport model introduced in chapter 4 and

use a generic test case consisting of a smooth, initially symmetric, isolated bedform in

an open channel. The bed level changes are governed by the sediment conservation

equation (4.1)
∂z

∂t
= −

(
1

1− ǫ

)
∂q

∂x
. (8.1)

Here z(x, t) is the bathymetry or bed height, t is time, q is the total load sediment

transport rate in the x direction and ǫ is the sediment porosity.
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To calculate q we use the power law equation (4.2), but for ease of computation we

assume that the current u takes only positive values. The sediment transport flux can

then written as

q = Aun, with u ≥ 0, (8.2)

where A and n are parameters whose values we wish to estimate.

One of the reasons for choosing this simplified scenario is that, under certain assump-

tions, it is possible to derive an approximate analytical solution to (8.1) and this will be

useful for model validation purposes.

We assume that the amplitude of the bedform is sufficiently small relative to the water

depth such that any variation in the elevation of the water surface can be ignored. The

water height, h, can then be taken to be constant. We further assume that the water flux,

F , is constant across the whole domain. The solution derived under these assumptions

is only strictly valid when the migration speed of the bedform is slow relative to the flow

velocity [43]. Given these assumptions, the depth averaged current can be rewritten in

terms of the water height, flux and the bed height as

u =
F

h− z
. (8.3)

This enables us to express the sediment transport rate q as a function of bed height z

rather than u,

q = A

(
F

h− z

)n

. (8.4)

Thus, q can be now differentiated with respect to z

∂q

∂z
= AnFn(h− z)−(n+1). (8.5)

This allows us to rewrite the sediment conservation equation (8.1) in the quasi-linear

advection form
∂z

∂t
+ c(z, q)

∂z

∂x
= 0, (8.6)

where

c(z, q) =

(
1

1− ǫ

)
∂q

∂z
(8.7)

is the celerity of the bedform.
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Figure 8.1: Schematic: solutions to the quasi-linear advection equation (8.6) for Gaussian initial data
at times t0 (solid line), t1 (dashed line), t2 (dot-dash line) and t3 (dotted line), t0 < t1 < t2 < t3.

Using (8.5) we have

c(z) =

(
AnFn

1− ǫ

)
(h− z)−(n+1) , (8.8)

i.e, the advection velocity of the bed is now a function of the bed height z only. As

described in [88], equation (8.6) can be solved using the method of characteristics. The

solution for an initial Gaussian hump is illustrated in figure 8.1. Since c(z) is non-linear

the top of the bedform moves faster than its base so that as the bed moves downstream

it becomes distorted and eventually overturns. Whilst this type of solution would make

sense in some contexts (such as a breaking wave) we would not expect it here. In real

life, this overturning is prevented by natural phenomena such as bed-slope effects [94].

We create a more physically realistic solution that remains smooth and single valued by

adding a small diffusive term to the right hand side of (8.6). Thus, the evolution of the

bedform is now described by the nonlinear advection-diffusion equation

∂z

∂t
+ c(z)

∂z

∂x
= κ

∂2z

∂x2
, (8.9)

where κ is the diffusion coefficient.

8.2 Discretisation of the state evolution model

We discretise (8.9) using a hybrid semi-Lagrangian Crank-Nicolson (SLCN) algorithm

based on that presented in [96]. The advection term (LHS of 8.9) is discretised using the
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semi-Langrangian technique as described in chapter 5 and this is then combined with

the Crank-Nicolson methodology for the solution of diffusion problems. The scheme can

be written as the matrix system

[
I −

∆t

2
L

]
zk+1 = C∗

[(
I +

∆t

2
L

)
zk

]
. (8.10)

The vectors zk and zk+1 ∈ R
m represent the solution at times tk and tk+1 on a discrete

regular grid with spacing ∆x and model time step ∆t, where xj = j∆x, tk = k∆t. The

operator L ∈ R
m×m is the discrete Laplacian operator corresponding to the second order

spatial derivative and C∗ is an interpolation operator that interpolates the solution at

time tk from the regular model spatial mesh x to the irregular departure points xd. For

this work, we use a cubic spline interpolation.

The departure points are as defined in chapter 5 equation (5.11) for the linear advection

model

xd = x−α. (8.11)

Here the vector xd contains the initial positions or departure points at time tk of the

particles arriving on the uniform model grid x at time tk+1 and the vector α represents

the displacement of the particles in the x direction between tk and tk+1.

In chapter 5, the advection velocity c was constant and so the displacements, connect-

ing the departure points xd at time tk to the regular grid x at time tk+1, could be

computed exactly. Here the advection velocity c(z), given by equation (8.8), is a non-

constant function of the bed height z(x, t) and so evaluation of the displacements is

less straightforward. We implement a two-time-level, semi-implicit algorithm based on

that presented in [97]. The scheme uses a linear interpolation combined with an O(∆t2)

accurate extrapolation formula to iterately solve for the displacements and hence find

xd. The Crank-Nicolson method uses a centered difference to approximate the second

order spatial derivative; this gives the operator L a particularly convenient structure.

For zero boundary conditions, L is given by the tri-diagonal matrix
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L =




−2ν ν 0 . . .

ν −2ν ν 0

. . .
. . .

. . .

. . .
. . .

. . . 0 ν −2ν




, (8.12)

where ν =
κ

∆x2
.

The Crank-Nicolson scheme is second order accurate in both time and space and, like

the semi-Lagrangian method, is unconditionally stable [71]. The Semi-Lagrangian and

Crank Nicolson components of the scheme were tested and validated both independently

and in combination. Details are given in appendix E.

Implementation of the semi-Lagrangian Crank-Nicolson algorithm (8.10) can be sum-

marised as follows:

Algorithm 8.1 The semi-Lagrangian Crank Nicolson algorithm

(i) Iteratively compute the vector of displacements α, for all grid points x using values

from the previous time step as an initial guess.

(ii) Calculate the vector of departure points xd = x−α.

(iii) Apply the diffusion operator
(
I + ∆t

2 L
)
to zk on the regular grid at time tk and

interpolate the resulting field to the departure points xd to obtain zk(xd).

(iv) Evaluate the solution zk+1 on the regular grid x at time tk+1 by solving the system

(8.10) using a standard matrix equation solver.

8.3 The parameter model

The parameters A and n are constant, thus we have the standard discrete parameter

evolution model

pk+1 = pk, k = 0, 1, . . . , T, (8.13)
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where

pk =


 Ak

nk


 . (8.14)

The augmented system model is given by combining (8.14) with (8.10). The augmented

state vector wk is a m+ 2 vector where m is the dimension of the model state vector

zk.

8.4 State-parameter cross covariances and parameter co-

variances

Unlike the models we considered in chapter 7, the Jacobian of the state forecast model

with respect to the parameters cannot be easily computed from the model discretisation

(8.10). A simple alternative is to use a local finite difference approximation.

Here, the Jacobian matrix Nk is defined as

Nk =

(
∂f(z,p)

∂A

∂f(z,p)

∂n

)∣∣∣∣
zak,p

a
k

. (8.15)

We approximate the derivatives ∂f(z,p)
∂A and ∂f(z,p)

∂n using a forward difference between the

current model background forecast (made using the current model parameter estimate)

and the forecast obtained by adding a small perturbation to the current parameter.

Defining

zbk+1 = f(zak,p
a
k) and ẑbk+1 = f(zak, p̂

a
k) (8.16)

we approximate ∂f(z,p)
∂A as

∂f(zak,p
a
k)

∂A
≈

ẑbk+1 − zbk+1

δA
(8.17)

where

p̂a
k =


 Aa

k + δA

na
k


 , (8.18)

pa
k is the current parameter vector and δA is a small perturbation to the current estimate

of A.

130



0 100 200 300 400 500

−3

−2

−1

0

1

2

3

(a)

x
0 100 200 300 400 500

−3

−2

−1

0

1

2

3

x 10
−3 (b)

x

Figure 8.2: Approximating the matrix Nk: (a)
∂f
∂A

and (b) ∂f
∂n

at t = 1 for an example assimilation run
with A0 = 0.01 ms−1, δA = 10−5 ms−1, n0 = 2.4, δn = 0.1.

Similarly
∂f

∂n

∣∣∣∣
zak,p

a
k

≈
ẑbk+1 − zbk+1

δn
(8.19)

where

ẑbk+1 = f(zak, p̂
a
k) and p̂a

k =


 Aa

k

na
k + δn


 , (8.20)

and δn is a small perturbation to the current approximation of n.

Figures 8.2 (a) and (b) show ∂f
∂A and ∂f

∂n calculated for an example assimilation run. The

model is run forward over a single time step; once using the current parameter estimate

(a) Aa
k or (b) na

k and a second time using the perturbed value Aa
k + δA (or na

k + δn).

The difference between the two forecasts divided by the perturbation is then computed

thus giving an approximation to the model gradient (8.17) or (8.19).

Although the gradient approximations shown in figure 8.2 are not completely smooth

this is due to variations in the smoothness of the background field rather than instability

of the calculation. The accuracy and stability of the finite difference approximation will

depend on the size of the parameter perturbation and the forecast time step. The choice

of these values is related to the sensitivity of the model to changes in the parameters. A

change in the value of A or n affects the model in similar ways. From equation (8.4) we

know that both A and n affect the magnitude of the sediment transport rate q and this

will in turn affect the bed celerity (8.8). A particular feature of our chosen flux formula
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(8.4) is that the model is more sensitive to the parameter A than it is to n. Incorrect

estimation of either parameter produces a phase error but the divergence of the model

from the true solution is more rapid when the error is in A. If the current u = F
h−z is

close or equal to 1 ms−1, a change in n will have little or no effect on the model.

Suitable values for δA and δn were determined by carrying out a model sensitivity

study. The parameter perturbation must be sufficiently small that the behaviour of

the model does not become unstable but sufficiently large so as to cause a measurable

change. Additionally, if the forecast time step is too short it may not allow sufficient

time for the model to react to the change in parameter value. Because the model is

relatively insensitive to n, we found that a relatively large δn was required to produce

a determinable change in the state forecast. The converse was true for A; if δA was

set too large the method became unstable. This type of approach to model sensitivity

analysis can have limitations; we do not discuss this further here but note that many of

the issues are neatly described in the paper by Errico [19].

A further problem with our chosen model formulation is that of equifinality or collinear-

ity. This is linked to the issues of uniqueness and identifiability discussed in chapter

3 and occurs when there exists a range of different parameter combinations that pro-

duce similar model behaviour [72], [93]. This can can make it difficult to distinguish

individual parameters and can lead to estimates that are, strictly speaking, ‘incorrect’

but that are in practice sufficiently accurate when used to forecast the model over short

time periods.

Initial experiments with this model indicated a strong interdependence between A and

n. We found that when the state-parameter cross covariances are poorly specified, the

tendency of the model is to compensate for errors in the value of n through A, i.e.

an underestimated n value is offset by an overestimate of parameter A and vice versa.

This highlights the need for greater consideration of the relationship between individual

parameters and how this can be best described in terms of the covariance matrices Bzp

and Bpp.

For the experiments with the oscillator and Lorenz models presented in the previous

chapter, we assumed that the parameters were uncorrelated and set the off diagonal

elements of the parameter error covariance matrix Bpp equal to zero. Because of the
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evident interaction between the parameters A and n and their errors, this assumption

is not sufficient in this case.

We can write the covariance matrix of the errors in the parameter vector Bpp as

Bpp =


 σ2

A σAn

σnA σ2
n


 , (8.21)

where σ2
A = E(ε2A) and σ2

n = E(ε2n) are the error variances for A and n respectively and

σAn = σnA = E(εAεn) is the covariance between the errors in A and n.

The state-parameter cross covariance matrix Bzp is given by

Bzpk+1 = NkBpp

=
(

∂f
∂Ak

∂f
∂nk

)

 σ2

A σAn

σAn σ2
n




=
(

σ2
A

∂f
∂Ak

+ σAn
∂f
∂nk

σ2
n

∂f
∂nk

+ σAn
∂f
∂Ak

)
(8.22)

The question remains as to how to approximate the parameter covariance σAn; this will

be discussed in the results section 8.6 in the context of specific examples.

8.5 Assimilation experiments

We test our scheme by running a series of identical twin experiments. For the purpose

of these experiments we assume that the values of h, F and ǫ are known and constant

but that the true values of the parameters A and n are uncertain. The water height

and flux are specified as h = 10.0 m, F = 7.0 m and the sediment porosity is given the

default value ǫ = 0.4. The diffusion coefficient is set at κ = 0.001 m2s−1; we found that

this value was sufficient to prevent the bed from overturning without overly smoothing

the solution.

We assume that our numerical model is perfect and generate a reference or ‘true’ solution

by running the model on the domain x ∈ [0, 500] with grid spacing ∆x = 1.0 m, time

133



step ∆t = 30 minutes and parameter values A = 0.002 ms−1 and n = 3.4. The true

initial bathymetry is taken as

z(x, 0) =





0 x < 50

e
−

(x−200)2

2×302 50 < x < 450

0 x ≥ 450

(8.23)

This solution is used to provide pseudo-observations for the data assimilation and also

to evaluate the performance of our scheme. The model is then re-run with the data

assimilation, starting from a perturbed initial bathymetry and with incorrect starting

values for the parameters A and n.

The initial model background state is of the form (8.23) but with slightly different scal-

ing factors. The state background error covariance matrix Bzz is given by the isotropic

correlation function (5.23). The correlation length scale L is adjusted empirically as de-

scribed in chapter 5. For these experiments a value of four times the current observation

spacing was found to work well. The background error variance is set at σ2
b = 0.05.

For the parameter error covariance matrix, we set σ2
A and σ2

n equal to the square of the

initial error; the parameter cross covariance σ2
An is specified according to the direction

of these errors, as described in the following results section.

The state-parameter cross covariance matrix Bzpk is recalculated at each new assimila-

tion time as described in section 8.4 with perturbations δA = 10−5ms−1 and δn = 10−1.

Observations of the bed height z are taken directly from the reference solution and

are assimilated sequentially at regular time intervals. The space and time frequency

of the observations is kept fixed for each individual experiment but is varied between

experiments as discussed in the results section below. We use a constant diagonal matrix

for the observation error covariance matrix

Rk = R = σ2
oI, I ∈ R

r×r, (8.24)

where r is the number of observations.

Experiments were carried out using both perfect and noisy observations. For the per-

fect observation experiments we set the observation error variance σ2
o = 0.01; for the

experiments with noisy observation σ2
o is set equal to the variance of the added noise.
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The augmented cost function is minimised iteratively using the quasi-Newton descent

algorithm presented in section (5.2). At the end of each assimilation cycle the values of

A and n are updated and the state analysis is integrated forward using the model (with

the new parameter values) to become the background state for the next assimilation

time.

8.6 Results

8.6.1 Perfect observations

Experiments were repeated for a range of starting combinations of A and n and for a

range of time and space steps. Figures 8.3 and 8.4 show the parameter A and n up-

dates for two example model runs with initial parameter estimates (i) A0 = 0.01 ms−1

(overestimated), n0 = 2.4 (underestimated) and (ii) A0 = 0.0 ms−1 (underestimated),

n0 = 4.4 (overestimated). Here observations are taken at fixed space intervals of 25∆x

and assimilated at time intervals varying from every 2∆t (1 hour) to 24∆t (12 hours).

The parameter cross covariance is assumed to be strongly negative. The speed of con-

vergence of the estimates decreases as the time frequency of the observations decreases

but the scheme retrieves the true values of A and n to a high level of accuracy in both

cases. We found that when A is initially underestimated (as in example (ii)) the conver-

gence of the estimates was much slower than when A is initially over estimated. This

is believed to be due to our model being much more sensitive to the parameter A than

it is to the parameter n. Here, a low A estimate combined with a good approximation

of the initial bathymetry means that the model predicted bathymetry does not diverge

away from the true bathymety as rapidly as when A is overestimated. Because the

time between successive assimilations is short and we are weighting towards the obser-

vations, the difference between the modelled and true bathymetry remains small. The

observation minus background increments are therefore small, leading to small analy-

sis increments and hence slower updating. In other words, the state estimation alone

is good enough to compensate for the incorrect parameters over short timescales. We

found that the convergence of the estimates could be improved by inflating the error

variances. The parameter updates illustrated in figure 8.4 were obtained by increasing
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the estimated parameter error variances by a factor of 20. The estimates obtained using

the non-inflated error variances are not shown.

When the initial overestimation of A is relatively large we get the opposite effect. For

example (i) (figure 8.3) we see much greater fluctuation in the parameter values as the

time frequency of the observations is decreased. The state forecast model reacts to these

changes and consequently takes longer to stabilise as is illustrated in figure 8.6. Once

the model has settled the quality of the analysis for the bathymetry z is excellent.

Figure 8.5 shows the effect of varying the grid spacing between observations from every

10∆x to every 100∆x for example (i). The observation are assimilated at fixed time

intervals of 4∆t (2 hours). The effect is similar to decreasing the time frequency with

the speed of convergence decreasing as the number of observations is decreased. Again,

the scheme proves effective at recovering the true parameter values to high accuracy.

For observation intervals up to 50∆x the quality of the analysis for z is consistently good

and so we do not present the results here. As figure 8.7 illustrates, when observations are

taken every 100∆x the height and shape of the predicted bathymetry varies depending

on the positioning of the observations relative to the main body of the sediment; most

notably whether an observation is taken sufficiently close to the peak of the curve.

8.6.2 Discussion

In these examples we have chosen our initial estimates of A and n such that the initial

parameter errors εA and εn are of opposite sign. When A is over (under) estimated

the increments in A need to be negative (positive), and the same applies for n. Both

the state and parameters are updated according to the observations, exactly how the

information in these observations is used depends on the background error covariances.

Specifically, the magnitude and direction of the parameter updates will depend on the

magnitude and direction of the state-parameter cross covariances BzA and Bzn and

these in turn depend on the error variances σ2
A, σ

2
n and cross covariance σAn. To ensure

that the parameters are updated correctly, our choice of σ2
A, σ

2
n and σAn needs to be

consistent with the true error statistics.

We know that A and n effect the model in similar ways. Figure 8.2 in section 8.4 shows
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Figure 8.3: 1D sediment transport model: varying the time frequency of observations. Parameter
updates for initial estimates A0 = 0.01 ms−1, n0 = 2.4. (a) estimated A values against time, (b)
estimated n values against time. Solid black line - observations every 2∆t; solid green line - observations
every 4∆t; solid red line - observations every 8∆t; solid blue line - observations every 12∆t; solid pink
line - observations every 24∆t. The true parameter values are indicated by the dotted black line.
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Figure 8.4: 1D sediment transport model: varying the time frequency of observations. Parameter
updates for initial estimates A0 = 0.0 ms−1, n0 = 4.4. (a) estimated A values against time, (b)
estimated n values against time. Solid black line - observations every 2∆t; solid green line - observations
every 4∆t; solid red line - observations every 8∆t; solid blue line - observations every 12∆t; solid pink
line - observations every 24∆t. The true parameter values are indicated by the dotted black line.
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Figure 8.5: 1D sediment transport model: varying the spatial frequency of observations. Parameter
updates for initial estimates A0 = 0.01 ms−1, n0 = 2.4. (a) estimated A values against time, (b)
estimated n values against time. Solid black line - observations every 10∆x; solid green line - observations
every 25∆x; solid red line - observations every 50∆x; solid blue line - observations every 100∆x. The
true parameter values are indicated by the dotted black line.
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Figure 8.6: 1D sediment transport model: state analysis at times t = 0, 24, 48, 72, 96 & 120, for initial
parameter estimates A0 = 0.01 ms−1, n0 = 2.4 with perfect observations every 25∆x, 4∆t. The red
dot-dash line represents the true solution zt, observations y are given by circles, the background zb is
given by the dashed blue line and the analysis za is given by the solid green line.
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Figure 8.7: 1D sediment transport model: state analysis at times t = 0, 24, 48, 72, 96 & 120, for initial
parameter estimates A0 = 0.01 ms−1, n0 = 2.4 with perfect observations every 100∆x, 4∆t. The red
dot-dash line represents the true solution zt, observations y are given by circles, the background zb is
given by the dashed blue line and the analysis za is given by the solid green line.
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that ∂f
∂A and ∂f

∂n have a close resemblance and are generally expected to take the same

sign. From (8.22), we have that if the parameter cross covariance σAn ≥ 0 then the

elements of BzA and Bzn will have the same sign and so A and n will both be updated

in the same direction. When the errors in A and n are in opposite directions we need

BzA and Bzn to take opposite signs. We can achieve this by setting σAn < 0 and

choosing a σ2
A and σ2

n that take account of the relative magnitude of the errors in the

parameter estimates.

Figure 8.8 illustrates the effect of setting σAn > 0 in example (i) A0 = 0.01 ms−1

(overestimated) and n0 = 2.4 (underestimated). We find that the parameters A and

n are now both updated in the same direction. When this experiment was repeated

for other parameter combinations it was found that the direction of the parameter

increments is dominated by the direction of the error in the A estimate, resulting in the

parameter n being updated in the wrong direction. This is most likely due to our model

being more sensitive to small changes in A than in n. The A estimates converge towards

the true value of A but are generally less accurate than when σAn is correctly specified,

possibly due to the model compensating for the error in n. Despite the inability to

recover the correct n value, the analysis for the bathymetry z is extremely accurate.

8.6.3 Noisy observations

The impact of observation error was examined by adding random Gaussian noise to the

observations. Figure 8.9 shows the parameter updates produced for initial parameter

estimates A0 = 0.0 ms−1 (underestimated) and n0 = 4.4 (overestimated) with error

variances σ2
o = 0.001, σ2

o = 0.01 and σ2
o = 0.1. An error variance σ2

o = 0.1 is equiv-

alent to 10% of the maximum bed height and is believed to represent a realistic level

of measurement error. For these examples, observations were taken at 25∆x intervals

and assimilated every 4∆t (2 hours). When σ2
o = 0.001 and σ2

o = 0.01 the parameter

estimates fluctuate back and forth about their true values. The response is much slower

when σ2
o = 0.1. We would expect the amplitude of the oscillations to increase as σ2

o is

increased but here we find that the updates are actually less erratic. For these experi-

ments the background error variance was kept fixed at σ2
b = 0.05; as σ2

o is increased the

relative weighting of the background increases. When σ2
o = 0.1 we are actually weighting
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Figure 8.8: 1D sediment transport model: incorrect parameter cross covariance. Parameter updates
for initial estimates A0 = 0.01 ms−1, n0 = 2.4 with observations every 25∆x, 4∆t. (a) estimated A
values against time, (b) estimated n values against time. The true parameter values are indicated by
the dotted black line.
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towards the background state and this has the effect of smoothing the updates. Similar

results were observed in a set of related experiments discussed in [91].

In all cases, the parameter estimates could be improved by averaging over a moving time

window, as illustrated in figure 8.10. In the examples shown, we use a time window of

12 time steps. When σ2
o = 0.001 and σ2

o = 0.01 averaging is started at t = 24 hours.

This is increased to t = 48 hours when σ2
o = 0.1 to allow for the fact that the estimates

are converging more slowly.

In terms of the predicted bathymetry z, there are only very small differences between

the truth and the model when the observation errors have variances σ2
o = 0.001 and

σ2
o = 0.01. When σ2

o is increased to σ2
o = 0.1 there is a noticable deterioration in the

shape of the bed profile, as illustated in figure 8.11. However, it is worth noting that

the model still manages to track the position of the solution with reasonable accuracy.

8.7 Summary

In this chapter we applied our new hybrid assimilation method in an idealised 1D sedi-

ment tranport model. There are two significant differences between this and the models

we used in chapter 7. Firstly, the model has two uncertain, but highly correlated param-

eters. This means that in addition to the state-parameter cross covariances being well

defined, it is also important that the parameter error covariances (as described by the

matrix Bpp) are given a good a priori specification. Because of the strong correlation

between A and n, the values assigned to the parameter error variances σ2
A and σ2

n and

cross covariance σAn has a significant effect on the accuracy of the estimates obtained.

To ensure that the scheme produces updates that are in the right direction and consis-

tent with the scales of the model, σAn should be non-zero and most crucially take the

correct sign. We know from the results of the experiments in chapter 7 that this is less

important for applications without parameter interdependence, or where parameters are

only weakly correlated and therefore more easily identifiable.

The importance of the parameter correlations will also depend to a certain extent on the

purpose of the parameter estimation. In some situations, the values of the individual
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Figure 8.9: 1D sediment transport model: imperfect observations. Parameter updates for initial esti-
mates A0 = 0.0 ms−1, n0 = 4.4. (a) estimated A values against time, (b) estimated n values against
time. Solid black line - σ2

o = 0.001; solid green line - σ2
o = 0.01; solid red line - σ2

o = 0.1. The true
parameter values are indicated by the dotted black line.
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Figure 8.10: 1D sediment transport model: imperfect observations. Averaged parameter updates for
initial estimates A0 = 0.0 ms−1, n0 = 4.4. (a) estimated A values against time, (b) estimated n values
against time. Solid black line - σ2

o = 0.001; solid green line - σ2
o = 0.01; solid red line - σ2

o = 0.1.
The true parameter values are indicated by the dotted black line. Averaging is started at t = 24 when
σ2
o = 0.001, σ2

o = 0.01 and t = 48 for σ2
o = 0.1.
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Figure 8.11: 1D sediment transport model: state analysis at times t = 24, 48, 72 & 96, for initial
parameter estimates A0 = 0.0 ms−1, n0 = 4.4 with noisy observations every 25∆x, 4∆t and σ2

o = 0.1.
The red dot-dash line represents the true solution zt, observations y are given by circles, the background
zb is given by the dashed blue line and the analysis za is given by the solid green line.
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parameters themselves may not be important. For example, we may simply be concerned

with finding a set of parameters that give state estimates with a good fit to observations.

As long as the future behaviour of the model with the parameters in combination is

sufficiently accurate it may not matter that the individual parameter values are incorrect.

In such cases the prescription of the parameter correlations will be less critical. In other

circumstances, it may be that we want to identify individual parameter values in order

to help better understand the underlying processes of a system or because we want to

use the parameters in another context.

In practical situations, where the true statistics of the errors are not known, a model

sensitivity analysis could be used to help identify the interdependence of parameters

and ascertain whether cross correlations are needed. Here the correlation between the

parameters A and n was caused by the formulation of the model. In other such cases,

it may be prudent to consider a reparameterisation of the model equations to improve

the identifiability of the parameters. Another possible approach is to transform the

parameters to a set of uncorrelated variables [93].

The second main difference was the way in which the Jacobian matrix Nk was approx-

imated. The model discretisation was such that an explicit computational form for Nk

was not available. Instead, Nk was approximated by calculating a local finite difference

approximation of the gradient of the model with respect to the parameters. Because

the number of parameters is small and the dimension of the state vector is relatively

low this calculation does not add a significant amount to the computational cost of the

approach and is therefore not impracticable. There could, however, potentially be issues

if an efficient means of approximating Nk is not available and/ or the state vector and

the number of parameters to be estimated is large.

Despite the additional complexities presented by this model our hybrid scheme proved

extremely effective. The results of our experiments have further demonstrated the ver-

satility of the approach and strengthening the expectation that there is potential for

successful application of this new methodology to larger, more realistic models with

more complex parameterisations.
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Chapter 9

Conclusions and further work

Parameters are inherent to numerical models. Specification of model parameters is a

critical part of model development; even with perfect initial data, inaccurate representa-

tion of model parameters will lead to the growth of model error and therefore affect the

ability of a model to accurately predict the true system state. In this thesis we sought

to address the problem of uncertain model parameter estimation using data assimila-

tion techniques in the context of morphodynamic modelling. We now conclude with a

summary of our results and a discussion of some ideas for future research.

9.1 Conclusions

Data assimilation is predominantly used for state estimation so we began, in chapter

2, by describing the data assimilation problem for state estimation in a general system

model.

Generally, parameter estimation is addressed as a separate issue to state estimation and

model calibration is performed offline in a separate calculation. The classic approach is

manual calibration or tuning of the model against observational data, but a variety of

other approaches have been developed. In chapter 3 we discussed some of the different

methods used for the estimation of parameters in coastal modelling applications along

with their strengths and weaknesses. We then introduced the technique of state aug-
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mentation and explained how it is possible to use data assimilation to estimate uncertain

model parameters jointly with the model state variables. The state augmentation frame-

work allows us to estimate the poorly known model parameters whilst simultaneously

updating the predicted model state, rather than treating state and parameter estimation

as two individual processes. The approach enables more efficient state and parameter

estimation; making better use of the available observational data and potentially sav-

ing on calibration time. Data assimilation techniques have the further advantage over

many other parameter estimation methods in that they offer a framework for explicitly

accounting for all sources of uncertainty.

In principle, state augmentation can be applied with any of the standard data assimi-

lation methods. Here we considered application of the technique to sequential 3D-Var

data assimilation. Variational data assimilation is a popular choice for state estimation

in large problems. The 3D-Var approach was primarily chosen for its computational

robustness and ease of implementation. By adopting a sequential approach we are able

to utilise new observations as they become available.

In chapter 5 we used a simple single parameter 1D linear advection model to help

demonstrate the theory and highlight some of the issues associated with practical im-

plementation of the 3D-Var and state augmentation techniques. A key difficulty in the

construction of a data assimilation algorithm is specification of the background error

statistics. These statistics, in the form of error covariances, govern the spatial spread-

ing and smoothing of the observational data and therefore play a fundamental role in

determining the nature of the analysis. Generally, the assumption in 3D-Var is that the

statistics of the background errors are homogeneous, isotropic, and independent of the

flow. We demonstrated the effect the choice of state background error covariance model

can have on the quality of the state analysis via a series of simple state estimation ex-

periments. We found that overall a full, symmetric matrix constructed using a Gaussian

function produced the best results. We were able to use the correlation length scale L

to control the amount of information smoothing.

For joint state-parameter estimation the background error covariance matrix must also

include a description of the covariances of the parameter errors and the cross covari-

ances between the state and parameter errors. Since it is not possible to observe the
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parameters themselves, the parameter estimates depend on the observations of the state

variables. It is the state-parameter cross covariances that pass information from the

observed variables to update the estimates of the unobserved parameters. These covari-

ances therefore play a crucial role in the parameter updating. The success of the state

augmentation approach relies on the relationship between the state and parameters be-

ing well defined and assumes that we have sufficient knowledge to reliably prescribe the

a priori state-parameter cross-covariances.

We considered ways of modelling the state-parameter cross covariances within the con-

text of our simple linear advection model (chapter 5) by examining form of the back-

ground errors under the assumption that both the initial state and parameter are un-

known. We initially applied the same principle as for the state background error covari-

ance matrix, and prescribed the state-parameter cross covariances a static functional

form but this failed to produce reliable estimates. We then investigated using a flow

dependent structure; this was found to work extremely well, with the scheme producing

accurate estimates of both the model state and parameters.

Importantly, the results of our experiments showed that it is not necessary to explicitly

propagate the full augmented background error covariance matrix. We were able to

get accurate estimates of both the parameters and state variables by combining a time

varying approximation of the state-parameter cross covariance matrix Bzpk with an

empirical, static representation of the state background error covariance Bzz and static

parameter error covariance matrix Bpp.

In chapter 6 we considered the question of how to specify the augmented background

error covariance matrix for a general system model. We used the results of chapter 5

to establish a novel approach that is applicable to a range of dynamical system models.

Our new hybrid algorithm combines ideas from 3D-Var and the EKF and enables us

to capture the flow dependent nature of the state-parameter cross covariances without

the computational expense of explicitly propagating the full system covariance matrix.

A simplified version of the EKF forecast step is used to estimate the state-parameter

forecast error cross covariances and this is then combined with an empirical, static

approximation of the state background error covariances and a static parameter error

covariance matrix.
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The method is relatively easy to implement and computationally inexpensive to run. The

updating of the state-parameter cross covariances involves computing an approximation

of the Jacobian of the state forecast model with respect to the parameters, but since

the number of parameters to be estimated is typically quite small this does not add

significantly to the overall cost of the assimilation scheme.

Key advantages of the hybrid approach are that the background error covariance matrix

only needs to be updated at each new analysis time rather than at every time step and

it does not require the previous cross covariance matrices to be stored. It also avoids

many of the potential problems associated with implementation of a fully flow dependent

algorithm such as the extended and ensemble Kalman filters.

The utility of the new algorithm was demonstrated in chapter 7. The scheme was

implemented in three simple dynamical system models with a range of characteristics.

The results were extremely positive; we were able to recover the true parameter values to

a good level of accuracy, even when observations were noisy. This had a positive impact

on the predictive skill of the forecast model. In the experiments with noisy observations

we found averaging the parameters over a moving time window to be very effective

at smoothing the parameter updates and therefore yielding more accurate estimates

(provided the scheme was given an initial lead-in period in which to settle).

The potential applicability of the hybrid technique to morphodynamic modelling was

investigated in chapter 8. Here we tested the methodology in an idealised two parame-

ter 1D nonlinear sediment transport model based on the sediment conservation equation

introduced in chapter 4. This was a particularly valuable exercise as it required con-

sideration of issues not encountered with the previous models. The formulation of this

model is such that the model parameters exhibit strong interdependence. This means

that both parameters have a similar effect on the model and thus causes difficulties re-

lating to identifiability and non-uniqueness of solutions as discussed in chapter 3. This

highlighted the importance of consideration of the relationship between individual pa-

rameters as described by the parameter cross correlations, and raised the issue of how to

specifiy the parameter error covariance matrix Bpp. For the simple model experiments

in chapter 7 the parameter cross covariances were assumed to be zero and this assump-

tion proved sufficient. For the 1D sediment transport model we found that, to obtain
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parameter estimates that matched the true values, non-zero parameter cross covariances

were needed and crucially that these must reflect the direction of the parameter cor-

relation. It was noted that in some cases it may be appropriate to re-parameterise or

restructure the model or to consider transforming the parameters to a set of uncorrelated

variables.

A further issue for consideration was how to approximate the Jacobian matrix Nk re-

quired for the computation of the state-parameter cross covariance matrix Bzp. Unlike

for the models in chapter 7, an explicit computational form for Nk was not available.

We therefore proposed using a local finite difference approximation; this was found to

work well and did not significantly add to the overall cost of the scheme.

As we would expect, there are bounds on the success of the approach. If observational

data are too infrequent in space and time or too noisy, or if the error in the initial state

and parameter background estimates is large then we cannot expect the scheme to yield

reliable results. For the linear advection and nonlinear sediment transport models the

positioning of the observations in relation to key features also had an effect. Generally,

we saw a deterioration in the parameter estimates and model predictions as the quality

and frequency of the observation decreased. Results varied depending on the particular

characteristics of each individual model, but the confines on the scheme were not found

to be unreasonable for any of the cases considered here.

This lead us back to the concept of observability, that is, whether the observations

contain sufficient information to determine the parameters uniquely. Also linked to this

is parameter sensitivity. We found that we were less easily able to identify parameters to

which a model is relatively insensitive, as was the case under certain conditions for the

parameter n in the 1D sediment transport model in chapter 8 and for certain values of

the damping parameter d in the oscillating system in chapter 7. This is not surprising

as we cannot expect to be able to correct parameter errors that cause errors in the

model solution that are on smaller scales than those observed. Further work is needed

to be able to reach more formal conclusions; parameter observability and conditions for

uniqueness need to be considered in more depth in order to establish how they relate to

our hybrid scheme.

Overall, the application of sequential data assimilation to the problem of model pa-
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rameter estimation has proved extremely successful. The state augmentation technique

facilatates efficient joint state-parameter estimation, thereby saving on calibration time,

making better use of the available data and delivering more accurate model forecasts.

The novel hybrid algorithm developed in this work offers an effective and versatile ap-

proach to approximating the state-parameter cross covariances demanded by the aug-

mented system. We expect that there is great potential for successful application of

this new methodology to larger, more complex models across a range of environmental

sciences.

9.2 Further work

In this work we have used simple, low order models; this allowed us to concentrate on

developing, testing and evaluating ideas rather than dealing with modelling complexities.

The experiments in chapters 7 and 8 provided a valuable insight into how our proposed

new hybrid method is likely to perform in a range of dynamical systems. Ultimately,

we hope to use the experience gained from work with these simple models to help guide

the application of data assimilation based state and parameter estimation in operational

forecasting systems. A natural next step is to develop and test our new hybrid technique

in the context of a large, more realistic system.

In our experiments we used synthetic observations that were direct, evenly spaced and as-

similated at regular time intervals. In practical applications, systems are typically mod-

elled as at least 2D and run on much larger domains and over much longer timescales. In

the case of morphodynamic modelling, the state vector may include additional variables

such as waves and currents. The number of uncertain parameters will depend on the

choice and complexity of the model. Observational data are also generally non-uniformly

distributed in space and less frequent in time.

Working with a more realistic model would provide the opportunity to gain a greater

insight into some of these issues and to assess the feasibilty of our augmented hybrid

approach in the context of operational scale modelling. A more complex model will

need a more sophisticated state background covariance model and the assimilation of

real observations will require the consideration of issues such as nonlinear observation
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operators, representativity and instrument errors. The type and frequency of availability

of observational data is also an important factor. We found that the quality of the

state and parameter estimates varied with the spatial and temporal frequency of the

observations. Further investigation is needed to establish whether the observation space

and time frequencies available on an operational level are sufficient for the approach to

be effective. One way of doing this would be to perform some simple observing system

simulation experiments (OSSEs) [1], [14]. This would help us to understand how the

analysis accuracy changes with different observation sets and help to identifying the

optimal observational network design. Alternatively, this question could be addressed

using one of the many adaptive observation or observation targetting strategies employed

in the meteorological community e.g. [8], [52].

A further interesting study would be to compare our new parameter estimation method

against traditional morphodynamic model calibration techniques or against other auto-

mated algorithms as was done in [101] for a simple biogeochemical model. This would

enable us to evaluate whether this new approach offers a cost effective alternative to

methods currently in use.

Ideally we would like to be able to establish some formal results in respect of the con-

vergence and stability of this new method. For this we would need to draw on ideas and

methods from control theory. Since most of the basic theory is based on the assumption

that the forecast model and observation operators are linear, these issues would first

need to be addressed in terms of our simple linear advection model. We would then

hope to be able to extend the results to a linearisation of the nonlinear model.

Although the long-term goal is to implement a parameter estimation scheme in a full

morphodynamic assimilation-forecast system applied to some real coastal study sites,

our new hybrid method could in principle be employed in a variety of environmental

systems. The techniques explored in this thesis are also relevant to other data assimila-

tion applications. Parameter estimation can be viewed as a simplification of the more

complex problem of model error estimation [16]. A particular advantage of the state

augmentation approach is that it allows the errors to take different forms. For different

types of error, different error evolution models will be appropriate. It would be interest-

ing to investigate whether the current parameter estimation technique can be extended
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to account for different types of error, for example to allow for model errors that evolve

with time.
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Appendix A

Tangent Linear Model (TLM)

A.1 Definition

If f is a nonlinear model defined as

zk+1 = f(zk),

then the tangent linear model of f at zk, called F is

δzk+1 = Fkδzk =
∂f(zk)

∂z
δzk.

A.2 Tangent Linear of the augmented system model

Starting from an initial state ŵk at time tk we generate a reference state at tk+1 using

the model equation (3.3)

ŵk+1 = f̃(ŵk). (A.1)

We define a perturbation to this state as

δwk+1 = wk+1 − ŵk+1. (A.2)

This perturbation then satisfies

δwk+1 = f̃(wk)− f̃(ŵk). (A.3)
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Assuming δwk+1 is small, we can expand (A.3) in a Taylor series about ŵk+1. To first

order we have

δwk+1 = f̃(ŵk + δwk)− f̃(ŵk)

= f̃(ŵk) + Fkδwk + . . .− f̃(ŵk)

≈ Fkδwk, (A.4)

where

Fk =
∂ f̃(ŵk)

∂w
, (A.5)

is the Jacobian of the forecast model with respect to w evaluated at ŵk.

Thus we can approximate

f̃k(wk)− f̃k(ŵk) ≈ Fk(wk − ŵk) (A.6)

Note that this approximation is only valid if the perturbations to the model state are

small, i.e. ‖w − ŵk‖2 < ǫ for some small ǫ > 0.
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Appendix B

Block Matrix Inversion

If we partition the augmented background error covariance matrix B into block form

B =


 Bzz Bzp

(Bzp)
T Bpp


 , (B.1)

we can invert B blockwise using the analytic inversion formula [80]:

B−1 =


 Bzz Bzp

(Bzp)
T Bpp




−1

=


 Bzz

−1 +Bzz
−1BzpSz

−1 (Bzp)
T Bzz

−1 −Bzz
−1BzpSz

−1

−Sz
−1 (Bzp)

T Bzz
−1 Sz

−1


 , (B.2)

where

Sz = Bpp − (Bzp)
T Bzz

−1Bzp

is the called the Schur complement of Bzz [80].

Alternatively this can be written as

B−1 =


 Sp

−1 −Sp
−1BzpBpp

−1

−Bpp
−1 (Bzp)

T Sp
−1 Bpp

−1 +Bpp
−1 (Bzp)

T Sp
−1BzpBpp

−1


 . (B.3)

where

Sp = Bzz −BzpBpp
−1 (Bzp)

T

is the Schur complement of Bpp.
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Appendix C

The Upwind scheme for the linear

advection equation

The upwind scheme for the linear advection equation (7.1) with c > 0 and periodic

boundary conditions is given by

zk+1
j = (1− cµ)zkj + cµzkj−1, j = 1, 2, . . . ,m k = 0, 1, . . . , T (C.1)

with

zk,0 = zk,J (C.2)

where zk,j ≈ z(xj , tk) with xj = j∆x, tk = k∆t and µ = ∆t
∆x .

The scheme is first order accurate and stable provided that the CFL condition cµ ≤ 1

is satisfied [18].

C.1 Model validation

The model is validated against the analytical solution (5.3). The quality of the numerical

solution varies with ∆x and ∆t. Figure C.1 (top) compares the exact (solid red line) and

upwind numerical (dashed blue line) solutions for c = 0.5 using Gaussian initial data

(7.17) on the domain x ∈ [ 0, 3] at times t = 1, 2 and 3 with grid spacing ∆x = 0.01 and

time step ∆t = 0.01. The upwind scheme suffers from numerical dissipation; this causes
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Figure C.1: Comparison of analytic and numerical solutions to the linear advection equation (5.3) for
c = 0.5 with Gaussian initial data at times t = 1, 2 & 3. Top: cµ = 0.5, Bottom: cµ = 1.0. The
solid red line represents the analytic solution, the dashed blue line is the solution computed using the
Upwind scheme.

a smearing of the solution over time so that our initial data profile gradually reduces in

height and increases in width. However, the scheme is non dispersive which means that

the numerical solution travels at the correct speed. The accuracy of the solution can be

improved by refining the model grid. With cµ = 1 the discretistation (C.1) yields the

true solution of the linear advection equation. The rate of dissipation can be decreased

by increasing the value of cµ towards the upper boundary of the stability region. The

bottom three panels of figure C.1 compare the exact and upwind numerical solutions

with grid spacing ∆x = 0.01 and time step ∆t = 0.02, giving cµ = 1. Here the two

solutions are indistinguishable.
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Appendix D

Jacobian matrix calculations

The matrix Nk ∈ R
m×q is defined as the Jacobian or derivative of the state forecast

model with respect to the parameter vector evaluated at the current analysis state xa
k,

pa
k

Nk =
∂f(x,p)

∂p

∣∣∣∣
xa
k,p

a
k

, (D.1)

where x ∈ R
m and p ∈ R

q.

D.1 Nonlinear oscillating system

Defining the state and parameter vectors

x =


 x

y


 , and p =


 d

m


 , (D.2)

where y = dx/dt, we discretise the oscillating system (section 7.2) as follows

xk+1 =

(
∆t− d

∆t2

2

)
yk +

(
1−m

∆t2

2
−

∆t2

2
x2k

)
xk , (D.3)

yk+1 =

(
1− d∆t−m

∆t2

2
+ d2

∆t2

2

)
yk +

(
−m∆t+ dm

∆t2

2
+ (d

∆t2

2
−

∆t

2
)x2n

)
xk

−
∆t

2
(xk +∆t yk)

3 . (D.4)
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For this system, Nk is the 2× 2 matrix

Nk =




∂xk+1

∂d

∂xk+1

∂m
∂yk+1

∂d

∂yk+1

∂m




∣∣∣∣∣∣∣
dk,mk

(D.5)

The elements of the matrix (D.5) can be calculated directly from (D.3) and (D.4) as

∂xk+1

∂d
= −

∆t2

2
yk (D.6)

∂xk+1

∂m
= −

∆t2

2
xk (D.7)

∂yk+1

∂d
=

(
d∆t2 −∆t

)
yk +

(
x2k +m

) ∆t2

2
xk (D.8)

∂yk+1

∂m
= −

∆t2

2
yk +

(
−∆t+ d

∆t2

2

)
xk. (D.9)

The matrix (D.5) is recomputed at each new assimilation time by evaluating equations

(D.6) - (D.9) at the current parameter estimates dk, mk.

D.2 Lorenz equations

For the Lorenz system (section 7.3) we have the state and parameter vectors

x =




x

y

z


 , and p =




σ

ρ

β


 . (D.10)
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The discrete equations for the evolution of the model state variables x, y and z are

xk+1 = xk + σ
∆t

2

[
2(yk − xk) + ∆t(ρxk − yk − xkzk)− σ∆t(yk − xk)

]
, (D.11)

yk+1 = yk +
∆t

2

[
ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk))− yk −∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk +∆t(xkyk − βzk))
]

(D.12)

zk+1 = zk +
∆t

2

[
xkyk − βzk + (xk +∆tσ(yk − xk))(yk +∆t(ρxk − yk − xkzk))

− β(zk +∆t(xkyk − βzk))
]
. (D.13)

The Jacobian matrix Nk is given by

Nk =




∂xk+1

∂σ

∂xk+1

∂ρ

∂xk+1

∂β
∂yk+1

∂σ

∂yk+1

∂ρ

∂yk+1

∂β
∂zk+1

∂σ

∂zk+1

∂ρ

∂zk+1

∂β




∣∣∣∣∣∣∣∣∣∣∣
σk,ρk,βk

. (D.14)

The elements of (D.14) are computed by differentiating the discrete equations (D.11),

(D.12) and (D.13) with respect to each of the parameters σ, ρ and β. This yields the

following

∂xk+1

∂σ
=

∆t

2

[
2(yk − xk) + ∆t(ρxk − yk − xkzk)− 2σ∆t(yk − xk)

]
,

= ∆t (1− σ∆t) (yk − xk) +
∆t2

2
(ρxk − yk − xkzk) (D.15)

∂xk+1

∂ρ
= σ

∆t2

2
xk (D.16)

∂xk+1

∂β
= 0 (D.17)
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∂yk+1

∂σ
=

∆t

2

[
ρ∆t(yk − xk)−∆t(yk − xk)(zk +∆t(xkyk − βzk))

]
,

=
∆t2

2
(yk − xk)

[
ρ− zk −∆t(xkyk − βzk)

]
(D.18)

∂yk+1

∂ρ
=

∆t

2

[
xk + xk + σ∆t(yk − xk)−∆txk

]
,

=
∆t

2

[
(2−∆t)xk + σ∆t(yk − xk)

]
,

= (∆t−
∆t2

2
)xk − σ

∆t2

2
(yk − xk) (D.19)

∂yk+1

∂β
=

∆t

2

[
xk∆tzk + σ∆t(yk − xk)∆tzk

]
,

=
∆t2

2

[
xk + σ∆t(yk − xk)

]
zk (D.20)

∂zk+1

∂σ
=

∆t

2

[
∆t(yk − xk)(yk +∆t(ρxk − yk − xkzk))

]
,

=
∆t2

2

[
(yk − xk)yk +∆t(yk − xk)(ρxk − yk − xkzk))

]
(D.21)

∂zk+1

∂ρ
=

∆t

2

[
(xk +∆tσ(yk − xk))∆txk

]
,

=
∆t2

2

[
xk + σ∆t(yk − xk)

]
xk (D.22)

∂zk+1

∂β
=

∆t

2

[
− zk −∆txkyk + 2β∆tzk

]
,

=
∆t2

2
xk yk +

∆t

2
(2β∆t− 1)zk. (D.23)

The Jacobian matrix at time tk is formed by evaluating (D.15) - (D.23) at the current

estimated parameter values σk, ρk, βk.
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Appendix E

SLCN scheme validation

E.1 The semi-Lagrangian scheme

The semi-Lagrangian component of the combined SLCN algorithm 8.1 was validated

using the inviscid Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0, (E.1)

on the domain x ∈ [−1, 1], with initial data

u(x, 0) =





0 x ≤ −1

1− x2 −1 < x < 1

0 x ≥ 1

. (E.2)

An analytic solution for u(x, t) can be derived using the method of characteristics as

described in [88]. The solution for t > 0 is given by

u(x, t) = u(x0, 0) =





0 x0 ≤ −1

1− x20 −1 < x0 < 1

0 x0 ≥ 1

(E.3)

where

x0 =
1−

√
1− 4t(x− t)

2t
, −1 < x < 1. (E.4)

Figure E.1 compares the solution computed using the semi-Lagrangian method with grid

spacing ∆x = 0.01 and time step ∆t = 0.05 against the exact solution at times t = 0 to

t = 0.5. As illustrated, the model is in close agreement with the analytical solution.
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Figure E.1: Comparison of analytic and numerical solutions to the inviscid Burgers’ equation (E.1) at
times t = 0, 0.1, 0.2, 0.3, 0.4 & 0.5. The solid red line represents the analytic solution, the dot-dash blue
line is the solution computed using the semi-Lagrangian scheme with grid spacing ∆x = 0.01 and time
step ∆t = 0.05.

E.2 The Crank-Nicolson scheme

The Crank Nicolson component was validated using the heat equation

∂u

∂t
=

∂2u

∂x2
(E.5)

on the domain x ∈ [0, π], subject to the initial data

u(x, 0) = sinx, (E.6)

and boundary conditions

u(0, t) = u(π, t) = 0 t > 0. (E.7)

The exact solution for t > 0 is given by [11]

u(x, t) = e−t sinx. (E.8)

Figure E.2 shows the solution computed using the Crank Nicolson method with grid

spacing ∆x = π/125 and time step ∆t = 0.05 plotted against the exact solution (E.8)

at times t = 0 to 0.5. Again, the numerical solution is extremely accurate.
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Figure E.2: Comparison of analytic and numerical solutions to the heat equation (E.5) at times t =
0, 0.1, 0.2, 0.3, 0.4 & 0.5. The solid red line represents the analytic solution, the dot-dash blue line is
the solution computed using the Crank Nicolson scheme with grid spacing ∆x = π/125 and time step
∆t = 0.05.

E.3 Combined semi-Lagrangian Crank-Nicolson scheme

To validate the combined SLCN algorithm we consider the viscous Burgers’ equation

∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
, t > 0. (E.9)

We use the solution given by [7]

u(x, t) =
2 sinx

cosx+ et
t > 0 (E.10)

on x ∈ [0, π], t ∈ [0.1, 0.5] with boundary conditions

u(0, t) = u(π, t) = 0. (E.11)

The exact and approximate numerical solutions are shown in figure E.3 at times t =

0.1, 0.2, 0.3, 0.4 & 0.5. In this example the model was run with grid spacing ∆x = π/125

and time step ∆t = 0.05. The errors for the combined algorithm are marginally greater

than in the individual test cases but we are nonetheless satisfied that the scheme provides

a suitable method for discretising the advection diffusion model (8.9).
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Figure E.3: Comparison of numerical and analytical solutions to the viscous Burgers’ equation, at times
t = 0.1, 0.2, 0.3, 0.4 & 0.5, on 0 < x < π. The solid red line represents the analytic solution, the dot-dash
blue line is the solution computed using the hybrid SLCN scheme with time step ∆t = 0.05 and model
grid spacing ∆x = π/125.
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1992.

[54] J. M. Lewis, S. Lakshmivarahan, and S. K. Dhall. Dynamic Data Assimilation:

A Least Squares Approach, volume 104 of Encyclopedia of Mathematics and its

applications. Cambridge University Press, 2006.

[55] W. Long, J. T. Kirby, and Z. Shao. A numerical scheme for morphological bed

level calculations. Coastal Engineering, 55:167–180, 2008.

174



[56] A. C. Lorenc. A global three-dimensional multivariate statistical interpolation

scheme. Monthly Weather Review, 109:701–721, 1981.

[57] A. C. Lorenc. Analysis methods for numerical weather prediction. Quarterly

Journal of the Royal Meteorological Society, 112:1177–1194, 1986.

[58] A. C. Lorenc, S. P. Ballard, R. S. Bell, N. B. Ingleby, P. L. F. Andrews, D. M.

Barker, J. R. Bray, A. M. Clayton, T. Dalby, D. Li, T. J. Payne, and F. W.

Saunders. The Met Office global three-dimensional variational data assimilation

scheme. Quarterly Journal of the Royal Meteorological Society, 126:2991–3012,

2000.

[59] A. C. Lorenc and F. Rawlins. Why does 4D-Var beat 3D-Var? Quarterly Journal

of the Royal Meteorological Society, 131:3247–3257, 2005.

[60] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,

20:130–141, 1963.

[61] M. Martin and A. Lawless. Oscillating system with sequential data assimilation

scheme. NERC National Centre for Earth Observation. Available at http://www.

nceo.ac.uk/training.php. (last accessed June 2010).

[62] M. J. Martin. Data Assimilation in Ocean Circulation Models with Systematic

Errors. PhD thesis, University of Reading, 2000.

[63] M. J. Martin, M. J. Bell, and N. K. Nichols. Estimation of systematic error

in an equatorial ocean model using data assimilation. International Journal for

Numerical Methods in Fluids, 40:435–444, 2002.

[64] M. J. Martin, N. K. Nichols, and M. J. Bell. Treatment of systematic errors in

sequential data assimilation. Technical Note No. 21, Meteorological Office, Ocean

Applications Division, 1999.

[65] D. C. Mason, M. Amin, I. J. Davenport, R. A. Flather, G. J. Robinson, and J. A.

Smith. Measurement of recent intertidal sediment transport in Morecambe Bay

using the waterline method. Estuarine, Coastal and Shelf Science, 49:427–456,

1999.

[66] D. C. Mason, I. J. Davenport, R. A. Flather, C. Gurney, G. J. Robinson, and J. A.

Smith. A sensitivity analysis of the waterline method of constructing a digital

175



elevation model for intertidal areas in an ERS SAR scene of eastern England.

Estuarine, Coastal and Shelf Science, 53:759–778, 2001.

[67] D. C. Mason, C. Gurney, and M. Kennett. Beach topography mapping - a com-

parison of techniques. Journal of Coastal Conservation, 6:113–124, 2000.

[68] G. Masselink and M. G. Hughes. Introduction to Coastal Processes and Geomor-

phology. Hodder Arnold, 2003.

[69] R. N. Miller, M. Ghil, and F. Gauthiez. Advanced data assimilation in strongly

nonlinear dynamical systems. Journal of the Atmospheric Sciences, 51(8):1037–

1056, 1994.

[70] H. Moradkhani, S. Sorooshian, H. V. Gupta, and P. R. Houser. Dual state-

parameter estimation of hydrological models using ensemble Kalman filter. Ad-

vances in Water Resources, 28:135–147, 2005.

[71] K. Morton and D. Mayers. Numerical solution of partial differential equations.

Cambridge University Press, 2nd edition, 2005.

[72] I. M. Navon. Practical and theoretical aspects of adjoint parameter estimation

and identifiability in meteorology and oceanography. Dynamics of Atmosphere

and Oceans, 27:55–79, 1997.

[73] R. J. Nicholls, P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F.

McLean, S. Ragoonaden, and C. D. Woodroffe. Chapter 6: Coastal systems and

low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability.

Contribution of Working Group II to the Fourth Assessment Report of the In-

tergovernmental Panel on Climate Change, pages 315–356. Cambridge University

Press, 2007.

[74] N. K. Nichols. Data assimilation: Aims and basic concepts. In R. Swinbank,

V. Shutyaev, and W. A. Lahoz, editors, Data Assimilation for the Earth System,

volume 26 of Nato Science Series IV: Earth & Environmental Sciences, pages

9–20. Kluwer Academic, 2003.

[75] N. K. Nichols. Mathematical concepts of data assimilation. In W. A. Lahoz,

R. Swinbank, and B. Khattatov, editors, Data Assimilation: Making Sense of

Observations. Springer, 2009.

176



[76] P. Nielsen. Coastal bottom boundary layers and sediment transport, volume 4 of

Advanced Series on Ocean Engineering. World Scientific, 2005.

[77] J. Nocedal. Theory of algorithms for unconstrained optimization. Atica Numerica,

1992.

[78] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Opera-

tions Research. Springer, New York, 1999.

[79] D. F. Parrish and J. C. Derber. The National Meteorological Center’s spectral

statistical-interpolation analysis system. Monthly Weather Review, 120:1747–1763,

1992.

[80] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Technical University of

Denmark, October 2008. Available at http://www2.imm.dtu.dk/pubdb/p.php?

3274 (last accessed June 2010).

[81] L. Pinto, B. Andre, and P. F. Fortunato. Sensitivity analysis of non-cohesive

sediment transport formulae. Continental Shelf Research, 26:1826–1839, 2006.

[82] C. D. Rodgers. Inverse Methods for Atmospheric Sounding: Theory and Prac-

tice, volume 2 of Series on Atmospheric, Oceanic and Planetary Physics. World

Scientific, 2000.

[83] J. A. Roelvink. Coastal morphodynamic evolution techniques. Coastal Engineer-

ing, 53:277–287, 2006.

[84] B. Ruessink. Calibration of nearshore process models - application of a hybrid

genetic algorithm. Journal of Hydroinformatics, 7:135–149, 2005.

[85] B. Ruessink. Predictive uncertainity of a nearshore bed evolution model. Conti-

nental Shelf Research, 25:1053–1069, 2005.

[86] B. Ruessink. A Bayesian estimation of parameter-induced uncertainty in a

nearshore alongshore current model. Journal of Hydroinformatics, 7:37–49, 2006.

[87] T. R. Scott and D. C. Mason. Data assimilation for a coastal area morphodynamic

model: Morecambe Bay. Coastal Engineering, 54:91–109, 2007.

[88] P. J. Smith, M. J. Baines, S. L. Dance, N. K. Nichols, and T. R. Scott. Simple

models of changing bathymetry with data assimilation. Numerical Analysis Report

177



10/2007, Department of Mathematics, University of Reading, 2007. Available at

http://www.reading.ac.uk/maths/research/.

[89] P. J. Smith, M. J. Baines, S. L. Dance, N. K. Nichols, and T. R. Scott. Data

assimilation for parameter estimation with application to a simple morphodynamic

model. Mathematics Report 2/2008, Department of Mathematics, University of

Reading, 2008. Available at http://www.reading.ac.uk/maths/research/.

[90] P. J. Smith, M. J. Baines, S. L. Dance, N. K. Nichols, and T. R. Scott. Variational

data assimilation for parameter estimation: application to a simple morphody-

namic model. Ocean Dynamics, 59(5):697–708, 2009.

[91] P. J. Smith, S. L. Dance, and N. K. Nichols. Data assimilation for morphodynamic

model parameter estimation: a hybrid approach. Mathematics Report 2/2009,

Department of Mathematics, University of Reading, 2009. Available at http:

//www.reading.ac.uk/maths/research/.

[92] P. J. Smith, S. L. Dance, and N. K. Nichols. A hybrid sequential data assimilation

scheme for model state and parameter estimation. Mathematics Report 2/2010,

Department of Mathematics, University of Reading, 2010. Available at http:

//www.reading.ac.uk/maths/research/.

[93] S. Sorooshian and V. K. Gupta. Model calibration. In V. J. Singh, editor, Com-

puter models of watershed hydrology, chapter 2, pages 23–68. Water Resources

Publications, Colorado, 1995.

[94] R. Soulsby. Dynamics of marine sands. Thomas Telford Publications, 1997.

[95] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors.

Applied Mathematical Sciences 41. Springer-Verlag, 1982.

[96] M. Spiegelman and R. F. Katz. A semi-Lagrangian Crank-Nicolson algorithm for

the numerical solution of advection-diffusion problems. Geochemistry Geophysics

Geosystems, 7(4), 2006.
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