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Abstract

Persistent (low volatility) liquids can disseminate significantly in porous sub-

strates and wet large volumes before they are removed by evaporation or chemical

processes. The liquid saturation during this kind of dissemination process quickly

reaches very low levels, well below 10% of the available void space, and the liquid

dispersion enters a special regime of spreading, when the transport predominantly

occurs over surface elements of the porous matrix.

On the ’macroscopic’ level, this phenomenon can be described by a special

super-fast non-linear diffusion model. But, the model requires the knowledge of

permeability coefficients defined by ’microscopic’ mechanisms. The focus of this

study is on the mathematical problems associated with the ’microscopic’ level,

that is on the details of the surface diffusion processes to obtain accurate defini-

tions of the ’macroscopic’ parameters. We consider two kinds of porous structures

with representative properties, paper-like and particulate porous materials, and as

a result, two different model approaches, a network model and a surface diffusion

model based on the Laplace-Beltrami operator and on the associated Laplace-

Beltrami boundary value problems. We demonstrate their feasibility by applying

numerical methods, specifically, surface finite elements techniques.
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We will show, in the Thesis, that the network model is capable of accurately

reproducing macroscopic descriptions of the fibrous material, while at the same

time providing necessary permeability coefficients of the porous network with min-

imal assumptions. In the case of particulate porous media, we will demonstrate

that, solutions to the Laplace-Beltrami boundary value problem can be used to

obtain surface permeability of both single porous matrix elements and their inter-

connected compositions. We will also demonstrate, for the first time, how effects

of tortuosity of the surface flow can be easily obtained while analysing solutions

of the Laplace-Beltrami boundary value problem set in the multiply-connected

domains formed by mutually coupled particles. Overall, results of this study will

improve our understanding of microscopic dispersion processes central to applica-

tions of macroscopic descriptions formulated at low saturation levels. Numerical

studies of the Laplace-Beltrami boundary value problem using the surface finite

element method are interesting on their own, since they demonstrate that simi-

lar convergence rates (using relatively standard surface element settings) can be

achieved in the domains with smooth boundaries to those regularly observed in

the problems without domain boundaries.

Therefore, due to the fundamental advances achieved in the study, the macro-

scopic descriptions used in practice at low saturation levels obtained rigorous

foundation and practical recipes, which can be directly used in applications.
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Chapter 1

Introduction

Most materials we encounter in everyday life, ranging from ordinary rocks,

soils and clothing to sophisticated household products have porous structure. The

structure of the porous materials has direct implications on their mechanical and

transport properties, such as rigidity, plasticity, thermal conductivity, gas diffu-

sivity and the coefficients of liquid dispersion, which are in turn associated with

the relevant processes, such as deformation, gas diffusion and liquid dispersion.

The phenomenon of liquid dispersion is of particular importance due to its role in

modern technological applications (for example, filtering, medical diagnosing and

cleaning), and geophysical and agricultural processes, (for example, land sliding

and flooding). Understanding of the liquid transport in porous media is crucial

in the design and assessment of building facilities, for example in construction of

dams and artificial reservoirs, and in the environmental analysis of dissemination

processes (Baker 1963; Bear and Verruijt 2012; Koorevaar et al. 1983; Bear and

Verruijt 1987).
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The abundance and variety of liquid transport phenomena in porous media,

and their importance have been stimulating research in this direction providing

us with practical and reliable mathematical models, which can be further used

in the analysis and simulations. Until recently, the least studied area of liquid

transport was at low and very low concentrations of transporting liquids in porous

matrices (Herminghaus 2005; Lukyanov et al. 2012; Scheel et al. 2008a,b). The

mathematical aspects of modelling of this kind of processes is the main subject of

this doctoral study. We aim to understand general and specific features relevant

for the mathematical description of this particular regime of spreading.

To understand the setting of that specific research area, we first consider gen-

eral aspects of transport phenomena, which are relevant to the mathematical

modelling in porous materials.

1.1 Structure and Properties of Porous Media

1.1.1 Porosity and Saturation

One of the main parameters used in the description of porous materials is

porosity, commonly, and in the thesis, designated by φ, the detail is in (Koorevaar

et al. 1983). Generally speaking, porosity is the measure of the void space in a

porous matrix, Fig.1.1. It is defined by the ratio of the total volume of voids Vv

in a sample volume element V of the material, that is

φ =
Vv
V
.

2



Depending on the application, one can distinguish porosity defined with respect

to the total or with respect to the available void space. The porosity defined with

respect to the available void space, which is also often called the effective porosity

and is measured by standard mercury intrusion or gas expansion methods, is of

particular importance, since only open-to-flow pores can participate in the liquid

transport processes (Sahimi 1993). Note, further in the study, the porosity is

defined with respect to the available void space.

Porosity takes values in between 0 and 1, 0 ≤ φ ≤ 1, and varies in a wide range

depending on the material. For example, porosity of the common granite is found

to be as low as φ ≈ 0.01, while porosity of sands lies in between 0.25 ≤ φ ≤ 0.50,

the clay porosity was found in between 0.40 ≤ φ ≤ 0.70, and clothing and paper-

like materials have porosity values up to φ ≈ 0.87 (Dimri et al. 2012; Freeze 1979;

Rasi 2013). A list of typical porosity values can be found in the following table.
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Material type Porosity

Unconsolidated deposits

Clay 0.40 - 0.70

Gravel 0.25 - 0.40

Sand 0.25 - 0.50

Silt 0.35 - 0.50

Rocks

Dense crystalline rock 0.00 - 0.05

Fractured basalt 0.05 - 0.50

Fractured crystalline rock 0.00 - 0.10

Granite < 0.01

Karst limestone 0.05 - 0.50

Limestone, dolomite 0.00 - 0.20

Paper

Mechanical pulp 0.50 - 0.60

Filter paper 0.10 - 0.87

Table 1.1: Range of typical porosity values.

Porosity of porous media is closely related with another parameter, the liquid

saturation of porous materials, s, which is defined as the ratio of the liquid volume

VL in a sample macroscopic volume element V to the volume of the available void

space, that is

s =
VL
Vv
.
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Saturation is closely related with another parameter often used in the analysis

of transport phenomena in porous materials, the total liquid content w, which is

w =
VL
V

= φs.

Both parameters are informative, but we mostly use saturation as a variable

in the study. So, the saturation, which is, as well as porosity, a non-dimensional

parameter, takes also the values in between 0 and 1, 0 ≤ s ≤ 1. Saturation

indicates how the empty space available to the liquid flow is filled in with the

liquid. If s < 1, this implies that there is some void space still available for the

liquid. While at s = 1, the porous media can not absorb any more liquid and is

called fully saturated. Note, the low saturation regime, which is the subject of

the study, takes place at s ≤ sc ≈ 0.1.

In defining parameters of porosity and saturation, we have used representative

sample volume element V , which is assumed to be ’macroscopic’. ’Macroscopic’

in the context of porous media studies does not imply that we are only ignor-

ing molecular structure of the material. Averaging procedures required to obtain

meaningful information in porous media dynamics are applied on different res-

olution levels all of them being much larger than the molecular and/or atomic

time and length scales. Effectively, as we will discuss this further, this implies

that the sample element is used to obtain average quantities, so that it should be

large enough to guarantee that the properties and the parameters of the porous

media will not depend anymore on the size of the volume element with some

reservations, as we would like at the same time to describe variations of average
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properties. That is, if we increase the size of the sample volume element V , say two

times, and then calculate porosity and saturation, then we will find their values

at the same level as it was at the twice smaller volume element size. So that, the

sample volume element of the porous matrix should contain many ’microscopic’

(in the context of the porous media studies at lower level of the description than

the averaging was done) details of porous media, for example, many, a lot of grain

particles in the case of ordinary sands. It is obvious that, if we take too small

volume element, a too small part of the porous media, then porosity and hence

saturation may evince strong deviations from the average. For example, if we

consider a volume element of the size of a grain particle, then we may find that

there is no void space available at all. At the same time, if we take too big volume

element, then we may during the averaging procedure wash out essential details

of average quantities variations. A good balance should be observed between the

length scales involved in the processes and the size of the averaging volumes, V .

(a) Particulate porous media. (b) Fibrous porous media.

Figure 1.1: Illustration of a sample volume element V in porous matrices: the
solids/fibres are shown in grey/orange and the voids are designated by the blue
colour.
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While porosity and saturation are very informative non-dimensional parame-

ters, strictly speaking, their knowledge is insufficient to describe liquid dispersion.

Porosity does affect transport processes, but only indirectly. There is another im-

portant parameter, which is directly related with transport properties of porous

media matrices - permeability of the porous materials.

1.1.2 Darcy’s Law and Permeability

To understand the notion of permeability in porous materials, we consider the

macroscopic models used to describe macroscopic liquid fluxes in porous media.

As one can imagine, as we have already briefly discussed, the structure of porous

materials is very complex. If we dig a small hole in the ground, one would see that

even an ordinary soil consists of different granular particles mixed with complex

organic material. Under high magnification of a microscope, the structure of

ordinary papers or drapery looks like a jungle. Obviously, any practical description

of this kind of complex systems should include some kind of averaging procedure

to concentrate on essential, average properties and related parameters. We have

already introduced two essential averaged parameters, porosity φ and saturation

s characterising available void space and its filling with the liquid. Now, we turn

our attention to the average description of liquid flows in porous matrices.

An indication of the possibility of such an average approach, in general, was the

discovery of an empirical law relating liquid flux in porous media with the gradient

of pressure, the Darcy’s law formulated by a French engineer, Henry Darcy in

1856 (Brown 2002). Originally, the Darcy’s law was an empirical relationship

formulated on the basis of experimental observations in fully saturated porous
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media, which now-days takes a standard form assuming standard conditions under

the action of the gravity force along the z-direction

q = −κ
µ
∇(p+ ρg0z). (1.1)

Here, g0 = 9.80665 m/s2 is the standard acceleration due to gravity on the Earth

surface, ρ is the liquid density, µ is the liquid viscosity, p is the pressure in the

liquid, q is the volumetric liquid flux density with dimensions [q] = m
s and κ is

the coefficient of permeability of the porous media with dimensions [κ] = m2. In

the original formulation, the coefficient of permeability was assumed and experi-

mentally found in homogeneous conditions to be a constant only depending on the

nature of the porous materials. For example, permeability of common granite was

found between 10−18 m2 and 10−19 m2 and permeability of sand between 10−12 m2

and 10−15 m2 (Bear 2013). A list of typical permeability values can be found in

Table 1.2.
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Material type Coefficient of permeability (m2)

Unconsolidated sand and gravel

Clean gravel 10−7 − 10−8

Clean sand or sand and gravel 10−9 − 10−11

Very fine sand, silt, loess, loam 10−12 − 10−15

Unconsolidated clay and organic

Peat 10−11 − 10−12

Layered clay 10−13 − 10−15

Unweathered clay 10−16 − 10−19

Consolidated rocks

Oil rocks 10−11 − 10−13

Sandstone 10−14 − 10−15

Fresh limestone, dolomite 10−16 − 10−17

Granite 10−18 − 10−19

Table 1.2: Range of the typical coefficients of permeability in saturated regime of
spreading.

In heterogeneous porous media, both porosity and permeability will be, ob-

viously, functions of spatial coordinates, that is the points of observations. This

is possible, if the averaging description is balanced, that is the averaging length

scale (the size of the sample volume element V ) is chosen properly to allow for

slow variations of the porous media parameters.
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If the liquid in the porous media is incompressible, as is practically always the

case, in fully saturated regime assuming constant porosity

∇ · q = 0. (1.2)

The Darcy’s law (1.1) then takes the form, which can be used in mathematical

analysis

∇ ·
(
κ

µ
∇(p+ ρg0z)

)
= 0. (1.3)

In a one-dimensional case (along the z-axis), equation (1.3) represents a sec-

ond order ordinary differential equation for pressure p, which can be integrated

assuming constant liquid viscosity µ = const to obtain

dp

dz
+ ρg0 = C0κ

−1, (1.4)

which can be further integrated to obtain distribution of pressure in the domain

p+ ρg0z = C1 + C0

∫ z

z1

κ−1 dξ, (1.5)

and via (1.1) distribution of the volumetric flux density q. Two free parameters

C0 and C1 can be determined with the help of two boundary conditions, usually

two values of pressure known at some points at the domain boundaries.

In a two- or a three-dimensional case, equation (1.3) belongs to the well-studied

class of generalised Laplace equations, the Poisson’s equation. It also requires

certain types of the boundary conditions to obtain a unique solution (Evans 2010;

Jost 2007). So, mathematically, the problem of defining the flow in fully saturated
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porous media is well defined and studied, and can be used in applications if the

coefficient of permeability κ is known.

The situation becomes more complex in the case of unsaturated regimes of

liquid dispersion.

1.2 Unsaturated Regime of Liquid Dispersion

Later on, the empirical Darcy’s law has been derived using averaging tech-

niques and generalised to the case of unsaturated regimes of liquid spreading,

when the coefficient of permeability κ = κ(s) becomes a function of the satura-

tion s (Bear and Verruijt 1987, 2012; Koorevaar et al. 1983; Whitaker 1969).

Despite the fact that the Darcy’s law is still in the form similar to that in

equation (1.3)

q = −κ(s)

µ
∇(p+ ρg0z) (1.6)

with κ = κ(s) and s = s(z, t) the problem becomes mathematically slightly dif-

ferent. The incompressibility condition (1.2) is no longer fulfilled and instead, the

mass conservation law should be used in full, so that the liquid content becomes

a function of time and the point of observation. That is

∂(φs)

∂t
+∇ · q = 0. (1.7)

If we designate p + ρg0z = H, which is known as the ’head’ in the litera-
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ture (Koorevaar et al. 1983), then using (1.6) and (1.7), one arrives at

∂(φs)

∂t
= ∇ ·

(
κ(s)

µ
∇H

)
, (1.8)

which can be also presented as

∂(φs)

∂t
= ∇ · (D∇s) , (1.9)

where

D(s) =
κ(s)

µ

∂H

∂s

is the coefficient of non-linear diffusion or diffusivity.

Obviously, the new dependent variable is now saturation s, and one requires

two additional relationships to complete the problem formulation. Namely, H =

H(s) and κ = κ(s) have to be known. As a result, instead of a linear boundary

value problem for a modified Laplace equation, we are facing analysis of a non-

linear partial differential equation, a non-linear diffusion equation.

Non-linear diffusion equations have been studied mathematically in relation

to different applications in biology, surface science and hydrology (Vázquez 2006)

and (Vázquez 2007). They possess a constellation of properties, which are cardi-

nally different from those of a linear diffusion equation. In particular, non-linear

diffusion equations have a class of self-similar solutions with compact support

and a boundary moving at finite speed (Barenblatt 2003; Vázquez 2014) and

(Barenblatt 2014). The boundedness of the propagation velocity is characteris-

tic of non-linear diffusion, since in linear diffusion processes the propagation is

12



instantaneous.

1.2.1 Linear and Non-linear Diffusion

To understand main differences inherent in non-linear diffusion problems, con-

sider a particular example of the so called porous medium equation (PME) in a

one-dimensional case. Namely,

∂u

∂t
=

∂

∂x

(
um

∂u

∂x

)
, t > 0, m > 0, x ∈ R, (1.10)

where t is time and x is the spatial coordinate.

To find a particular solution, let’s first observe that the equation is invariant

under the transformation

t→ εt,

u→ εqu,

x→ εrx,

(1.11)

where ε > 0 is some real positive constant and q, r are some real constants.

Indeed, if we introduce new variables t̄ = εt, ū = εqu, x̄ = εrx and substitute

them into (1.10), then

∂ū

∂t̄
= ε−qm+2r−1 ∂

∂x̄

{
ūm

∂ū

∂x̄

}
. (1.12)

That is, when

2r − qm− 1 = 0 (1.13)

we end up with exactly the same equation as that before the transformation.
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Condition (1.13) is sufficient, and there is still freedom to choose one of the two

parameters q or r.

Following the invariance property and introducing new variables

w(y) =
u

tq
, y =

x

tr
,

one can obtain a self-similar solution of one independent variable y choosing r =

−q, that is q = −1/(2 +m),

w(y) =

{
C1 −

my2

2(2 +m)

}1/m

.

One constant of integration has been determined according to the symmetry con-

dition

dw

dy

∣∣∣∣
y=0

= 0

assuming that the solution is bounded. One can immediately see that the solution

has naturally compact support. Indeed, w = 0 at y = y0 = ±
√

2C1(2+m)
m

.

Returning to the original variables t, x = ytr and u = wtq, one can see that

u(x, t) = t−
1

2+m

{
C1 −

mx2

2(2 +m)t
2

2+m

}1/m

.

Illustration of these self-similar solutions is shown in Fig.B.1 where the boundaries

of the compact support xb(t) are moving with finite velocity as xb = ±t
1

2+m |y0|.
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Figure 1.2: Illustration of the self-similar solutions u(x, t) to the PME (1.10) at
m = 2 and at different moments of observation t > 0.

In the case of the linear diffusion, analogous invariance arguments (at m = 0)

give rise to the well-known self-similar solution obtained in an instantaneous (at

t = 0) symmetric injection problem

u(x, t) =
C√
4πt

exp

(
−x

2

4t

)
,

which has no compact support and therefore has infinite propagation rate of the
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solution. So, contrary to our experience with the linear diffusion equation, non-

linear diffusion problems have a clearly defined moving boundary.

1.2.2 Macroscopic Models of Liquid Dispersion in Soils

In relation to mathematical simulations of unsaturated transport in soils, the

permeability coefficient demonstrates very large variations as a function of sat-

uration - by five-six orders of magnitude in the range 0.1 ≤ s ≤ 1. Roughly,

coefficient of permeability behaves as log10 κ ∝ s in that range (Koorevaar et al.

1983).

There are no general analytical expressions available for κ(s) and H(s). In-

stead, several empirical models have been developed on the basis of numerous

experimental observations, see, for example, (Millington and Quirk 1961; Mualem

1976; Van Genuchten 1980).

In the practical range of saturations 0.1 ≤ s ≤ 1, the Van Genuchten model

is the most popular, widely used and tabulated providing values of permeability

coefficients κ(s) and retention curves, that is H = H(s) dependencies as functions

of saturation s for practically every soil found on this planet (Montzka et al. 2017).

This would be instructive to consider a one-dimensional (in the x-direction),

steady state problem associated with (1.9) assuming a general relationships D(s).

If the flux density is fixed and known, that is q = q0 = const, then

q0 = −D(s)
ds

dx
. (1.14)

Hence, measuring s(x) in an interval s ∈ [s1, s2] one can deduce coefficient of
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diffusivity D(s) as a function of saturation. As an example, consider PME with

m = 2, that is D(s) = s2. Integrating (1.14), one can get implicitly

s3(x) = C − 3q0x,

where the free constant C can be fixed by setting a certain value of saturation

at some point in the domain. Therefore, if we consider the data s = s(x), the

dependence of the derivative on s (that is, in practice, plotting a graph of ds/dx

as a function of s and finding a reasonable fit to the dependence)

ds

dx
= −s−2q0,

can be recovered. Note, that instead of fixing the flux value, one can consider

a boundary value problem fixing the value of saturation at the end points (the

boundary) of the domain.

We will use this one-dimensional set-up later in the analysis of transport in

fibrous materials, Chapter 2, to recover unknown coefficients of diffusivity. Here

we mention that the analysis of transport in porous media has one complication,

which is the effect of hysteresis observed in the dependence of the head H = H(s)

on s, (Koorevaar et al. 1983; Leverett et al. 1941; Mualem 1974).

The hysteresis phenomenon is closely related with the distribution of the pores

with different sizes and the capillary pressure developed in them. In the next

part, we consider the notion of capillary pressure, which plays a central role in

the mechanism of liquid spreading in porous materials.
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1.2.3 Retention Curves and Capillary Pressure

1.2.3.1 Surface Tension

Capillary pressure in liquids is generated due to the surface tension effect.

In macroscopic approximation, surface tension manifests itself through the work

done to change surface area without varying other thermodynamic parameters

such as volume and temperature. For example, if initially spherical liquid drop

is disturbed, so that its surface area is increased by ∆S, then at constant tem-

perature and constant volume of the drop, the necessary amount of work ∆W to

facilitate such a change is given by

∆W = γ∆S

where γ is known as the coefficient of surface tension (Miller and Neogi 2007;

Shikhmurzaev 2007).

Physically, at the nanoscale, the origin of this effect is due to uncompensated

inter-molecular forces at the interface. In the bulk of the liquid, the molecular

forces are balanced at equilibrium, while at the interface, typically at the distance

of a couple of nanometres, there is a strong net force acting on the particles in the

perpendicular to the interface direction. At the free surface, the force is directed

inwards the liquid bulk area, so that the effect of the surface tension tends to

decrease the surface area. At liquid-solid interfaces, the direction is typically the

opposite one, so that the surface area tends to increase - the effect known as the

wetting of solid surfaces.
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1.2.3.2 Surface Tension and Contact Angle

In another way, the wetting phenomena are described by the contact angle θc

between the free surface of the liquid and the solid-liquid interface at the point

of contact - the contact line, which is a function of surface tensions. The contact

angle and the surface tensions are related by the Young equation, that is

γ cos θc = −γLS + γGS,

where γ is the liquid-gas surface tension, γLS is the surface tension of the liquid-

solid interface and γGS is the surface tension of the gas-solid interface at equilib-

rium (Miller and Neogi 2007; Shikhmurzaev 2007).

The value of the contact angle is informative and indicative of either wetting

or non-wetting liquid-solid combinations. If −γLS + γGS − γ > 0 then θc = 0,

and a liquid drop placed on a solid substrate will eventually spread into a thin

film. This regime is called complete wetting, that is the liquid wets available solid

surface. When 0 < θc < π/2, the regime is called partial wetting, and above the

critical value θc = π/2, we are dealing with a non-wetting case. In these two cases,

the liquid surface has a shape of a liquid drop, wetting partially the substrate.

1.2.3.3 Surface Tension and Capillary Pressure

If the liquid-gas interface is curved, the interface curvature creates a pressure

difference ∆p known as the Laplace pressure, which is given by

∆p = pin − pout = γ

{
1

R1

+
1

R2

}
= γκR. (1.15)
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Here, R1 and R2 are the principal radii of the surface at the point of observation,

so that κR is the mean curvature of the interface. If the surface tension and the

curvature are both positive, as is the case for liquid-gas interfaces (γ > 0) and

spherical drops κR > 0, pin > pout. In the case of a meniscus in a cylindrical

capillary, the curvature is negative in the wetting case, and therefore the pressure

drop is also negative and serves as a driving force sucking the liquid into the

capillary tubes. This wetting phenomenon is also the driving force of the liquid

spreading in porous materials.

If the pore size is small, this can create relatively strong pressure. For example,

in the case of water (γ = 72.8 mN/m at the room temperature), ∆p ≈ 1.4 atm

at R1 = R2 = 1µm and ∆p ≈ 144 atm at R1 = R2 = 10 nm. Therefore, if the

amount of the available liquid is limited, as is the case in the unsaturated regime,

the smaller pores or geometric structures possessing smaller length scale would

always eventually win over the large geometry in the competition for the liquid

during the spreading. On the other hand, resistance to the flow is larger in small

capillaries.

These two effects, roughly speaking, lead to the origin of the hysteresis effect

in porous materials during drainage and imbibition cycles. When the liquid is

spreading through a dry material during imbibition, small pores can take part in

creating the capillary pressure, on the other hand during drainage, small pores

are already filled in and the pressure is defined by the larger length scale avail-

able. That is, the retention curves or capillary pressure - saturation relationships

H = H(s) are not single valued functions, but can have two or more brunches

corresponding to imbibition and drainage phases of the wetting cycles, so that at
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the same level of saturation, capillary pressure may be different depending on the

history of the processes involved.

1.3 Macroscopic Model of Liquid Dispersion at

Low Saturation

The mathematical models developed in soil science and hydrology to describe

liquid transport in unsaturated porous media are usually bounded from below by

relatively high lower bounds, just about s ≈ sc ≈ 10% or so. The lower limits of

applicability of the models were partially dictated by the practical needs and, on

the other hand, by the strong reduction of permeability at low saturation levels

making direct experimental observations of the spreading phenomena difficult

unless very persistent liquids were used. As a result, the dynamic phenomena in

the low saturation region remained practically unexplored till recently (Lukyanov

et al. 2012).

What happens exactly, when the saturation level drops down to sc ≈ 10%

and below that critical level? As an example, we consider the process in par-

ticulate porous media like ordinary sand, Fig. 1.1, which has been studied

experimentally and theoretically in (Lukyanov et al. 2012).

When the saturation levels reach ≈ 30% from above, a percolation transition

occurs when the largest cluster containing about 90% of the available liquid breaks

down into complex structures formed around solid particles, such as trimers and

pentamers, and the global connectivity of the liquid volumes disappears (Her-

minghaus 2005; Scheel et al. 2008a,b). With a further decrease of the saturation
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levels, at s ≈ sc ≈ 10% all liquid is concentrated in the liquid bridges, so called

pendular rings, formed at the points of particle contacts, Fig. 1.3, and in the

grooves on the rough surfaces of the constituent particles. In literature, this liquid

morphology is called the pendular regime of wetting.

GrainGrain

Liquid bridgesLiquid bridges

GrainGrain

Liquid bridgeLiquid bridge
contact areacontact area

GrainGrain

GrainGrain

Surface flowSurface flow

Figure 1.3: Illustration of the pendular rings - the liquid morphology at low
saturation levels s < 10%.

The formation of isolated liquid bridges, pendular rings, is the main charac-

teristic feature of the pendular regime of wetting, when liquid volumes inside the

porous matrix are only connected via liquid layers developed on rough surfaces

of the particles, Fig. 1.3. The pendular regime of wetting in static and dynamic

conditions was observed in experiments and computer simulations in a range of

saturations 0.2% ≤ s ≤ 10% (Denoth 1999; Herminghaus 2005; Lukyanov et al.

2012; Melnikov et al. 2015, 2016; Scheel et al. 2008a,b).
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Obviously, there exists clear separation of the length scales in the pendular

wetting states. There are two characteristic length scales in the problem: the

length scale related with the size of the particles, sand grains for example, that is

their average radius R, which is also the length scale of the pendular rings, and a

length scale associated with surface roughness δR. The surface roughness in sands

has been studied in detail providing us with characteristic values involved (Alshibli

and Alsaleh 2004). In typical sands, 100µm < R < 800µm, while δR lies in a

range of a few micrometers or even less 250 nm < δR < 3µm, so that δR � R

is always fulfilled. As a result, when the wetting front is moving into a dry

porous area, the capillary pressure is mostly generated on the length scale of the

surface roughness. The capillary pressure due to the surface roughness is the main

driving force of the wetting in dry porous materials, while the pendular rings serve

as variable-volume reservoirs.

In what follows, we consider formulation of a macroscopic model of liquid

dispersion at low saturation values. In a similar way, as the macroscopic transport

model was formulated in general in unsaturated regime, one requires the same

main ingredients here, that is permeability coefficients and capillary pressure (or

head) dependencies on the value of saturation. In the next part, we consider

pressure-saturation relationships, that is the liquid morphology of the pendular

rings and in the surface roughness grooves.
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1.3.1 Morphology of Liquid Distributions at Low Satura-

tion Levels and Capillary Pressure

The critical value of saturation sc marks the beginning of the pendular regime

of wetting when the liquid is contained only in the bridges formed at the points

of particle contacts and on the rough surface of the particles themselves. As an

approximation, we consider spherical (or nearly spherical) particles.

1.3.1.1 Liquid Distribution in Surface Roughness Grooves

The high negative capillary pressure generated by the surface irregularities of

the smallest length scale ≈ 250 nm can be only observed at the moving front,

basically within the layer of one particle diameter thick. In the bulk of the wet

area, the capillary pressure is distributed, having much lower negative values. As

a result, in the surface roughness grooves, the interface is expected to be mostly

flat, that is its curvature κR � δ−1
R . Basically, the grooves can be assumed to

be fully filled in due to the pinning of the contact line to the groove edges, as is

shown in Fig. 1.4. Therefore, the liquid content in the surface roughness can be

assumed in the first approximation to be constant.

To estimate the contribution made by the liquid contained within the surface

roughness layer, consider an ensemble of identical spherical particles of radius R

with the surface roughness layer described by only one parameter δR, its charac-

teristic thickness. In any sample volume V , the total volume of the surface layers

of thickness δR is

VR = 3(1− φ)V
δR
R
,
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where φ is porosity.

Considering that only some part of the surface layer can be occupied by the

liquid, the total liquid content due to the surface roughness is

V L
R = 3αR(1− φ)V

δR
R

where parameter 0 < αR < 0.5 is the fraction of the surface (roughness) volume

occupied by the liquid. Therefore, saturation due to the liquid in the surface layer

s0 (as if no pendular rings exist in the system) can be represented by

s0 = 3αR
(1− φ)

φ

δR
R
. (1.16)

Taking typical values R = 500µm, δR = 1µm, φ = 0.3 and αr = 0.25, one gets

s0 ≈ 0.35%. This implies that only at very small saturation levels the surface

liquid content starts to contribute substantially.

1.3.1.2 Liquid Distribution in the Pendular Rings

We have estimated that liquid content due to the surface roughness in partic-

ulate porous media can be considered to be constant (independent of pressure)

and contributes about s0 ≈ 0.35% in terms of saturation. The pendular rings,

on the other hand, due to much larger length scale involved should demonstrate

variations in the liquid content as pressure varies in the system.

Consider two spherical particles in contact, Fig. 1.5. The configuration of

a liquid-gas interface at rest is described by the Young-Laplace equation, which

relates the hydrostatic pressure difference across the interface to the local mean
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curvature κR and surface tension γ of the liquid. When the Bond number is

small, that is Bo = ρgR2

γ
� 1, where g is acceleration of gravity, ρ is liquid density

and γ is the surface tension, the effects of gravity are negligible and the capillary

pressure p and the mean curvature are practically uniform.

In general, the problem of determination of the shape of a constant-curvature

surface is quite difficult and provides little opportunity to find analytical solutions.

The analysis is much easier if the problem has some symmetry, for example in an

axisymmetric case. In such a situation, using the setup in Fig. 1.5, the free surface

profile z = z(x) (of constant curvature) satisfies the Young-Laplace equation

2κR =
d2z

dx2

(
1 +

(
dz

dx

)2
)−3/2

+
dz

dx

1

x

(
1 +

(
dz

dx

)2
)−1/2

= const =
p

γ
. (1.17)

The equation should be augmented with two boundary conditions, the contact

angles θ1 and θ2 the interface makes with the solid surface of the particle and

at the mid-plane between two particles (Orr et al. 1975). The particular case

of two identical particles separated by distance 2D can be recovered at θ2 =

π/2. Analytical expressions relating geometric properties of the surface, such as

curvature, with the model parameters and the bridge size (angle ψ in Fig. 1.5)

even in this simplified case were found to be very bulky. For example, in the case

of negative capillary pressure, when the uniform-curvature interface has a shape

of a nodoid, the non-dimensional mean curvature has an implicit form (Orr et al.

1975)

2κRR = A1

[
A2 − φ−1

k (E(φ2, φk)− E(φ1, φk)) +
1− φ2

k

φk
(F (φ2, φk)− F (φ1, φk))

]
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where A1 = 1
D/R+1−cosψ

, A2 = − cos(θ1 + ψ) − cos θ2, φ1 = π/2 − θ1 − ψ, φ2 =

θ2−π/2, φk = (1+ck)
−1/2, ck = 4κ2

RR
2 sin2 ψ−4κRR sinψ sin(θ1+ψ) and F , E are

incomplete elliptic integrals of the first and second kinds respectively (Abramowitz

and Stegun 1970). Nevertheless, despite the apparent complexity of the analytical

expressions, the capillary pressure dependence on the volume of the ring VB (per

particle) can be approximated at zero separation distance D = 0 and small contact

angles θc with good accuracy, Fig. 1.6, as

p ≈ p0

{
C0 − C1

(
R3

VB

)1/2
}

where C0 = 3.7, C1 = 1.3, p0 = 2γ
R

cos θc.

Liquid

SolidSolidδR

θR

Gas

Figure 1.4: Illustration of the liquid morphology at low saturation levels s < 10%
in the surface roughness grooves.
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(a) Pendular ring between two particles.
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(b) Setup to obtain pressure-volume dependence.

Figure 1.5: Illustration of a pendular ring morphology setup.

Since in the pendular regime s � 1, that is VBR
−3 � 1, the pressure-
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saturation relationship can be further reduced to

p ≈ −p0C1

(
R3

VB

)1/2

. (1.18)

10-3 10-2 10-1

-30

-20

-10

0

 
c
=0o

 
c
=20o

 
c
=30o

 

 

C
a

p
il

la
ry

 b
ri

d
g

e
 p

re
s

s
u

re
, 

p
/p

0

Bridge volume, V
B
R

-3

Contact angle

Figure 1.6: Reduced capillary bridge pressure p/p0 in the case of two identical
solid spheres in contact (zero separation distance D = 0) as a function of the
reduced bridge volume VB/R

3 at different contact angles θc. Symbols indicate
exact solutions from (Orr et al. 1975) and the solid line is the fit p/p0 = C0 −
C1(VBR

−3)−1/2 at C0 = 3.7, C1 = 1.3.

To express pressure-saturation law (1.18) in terms of saturation s, one can

calculate the liquid content in sample volume element V containing many grain

particles N � 1. Using similar procedure as that to get (1.16), one gets

s = s0 +
3

4

1− φ
φ

Nc

π

〈VB〉l

R3
, (1.19)
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where Nc is the coordination number, that is the average number of bridges per

a particle, 〈VB〉l is the average bridge volume, 〈 . . . 〉l = V −1
l

∫
Vl
... d3x is intrinsic

liquid averaging (Whitaker 1969), Vl is liquid volume within the sample volume

V . In experiments (Lukyanov et al. 2012), it has been found that Nc ≈ 7.

Treating the bridge volume VB as an average, using (1.18) and (1.19), the av-

erage capillary bridge pressure P = 〈p〉l in the volume element V can be presented

as

P = −p0
Ac

(s− s0)1/2
, Ac = C1

√
3

4

1− φ
φ

Nc

π
. (1.20)

This would be instructive here to consider some simplified relations between

the geometry of the liquid bridge and the capillary pressure (Herminghaus 2005;

Willett et al. 2000), Fig. 1.5. When VBR
−3 � 1, the pressure is defined by the

smallest radius of curvature r1, Fig. 1.5, p ≈ −γ cos θc/r1, which is related with

the second radius

r1 ≈ r2
2/2R, (1.21)

so that when s � 1, one has r2 � r1. One should note also that, r2 defines the

size of the area covered by the bridge.

If we have two particles of different radii, say R1 and R2, in contact, the size

of the bridge area will be approximately the same r
(1)
2 ≈ r

(2)
2 at low saturation

levels, s� 1 with the difference being proportional to r1, that is

r
(1)
2 − r

(2)
2

max(R1, R2)
= O

(
r1

max(R1, R2)

)
. (1.22)
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1.3.2 Surface Diffusion and Microscopic Model

Consider now the local transport on the surface of particles, which is described

by the average surface flux density q. The quantity is defined by averaging the

volumetric flux over a sample cross-section area of width δR containing many

grooves and including areas of both solid and liquid. According to a study of

liquid spreading on rough surfaces made of microscopic grooves of various shapes

and dimensions (Or and Tuller 2000; Ransohoff and Radke 1988; Romero and

Yost 1996; Rye et al. 1998), the flow on average obeys a Darcy-like law

q = −κm
µ
∇ψ, (1.23)

where µ is liquid viscosity, ψ is the averaged pressure within the surface roughness

and κm is the effective coefficient of permeability, which is proportional to δ2
R.

The fact that the local liquid dispersion on the surface of particulate elements

can be described by the Darcy’s law is important. In the approximation of con-

stant liquid content in the surface layer

∇ · q = 0,

and the local pressure obeys the Laplace-Beltrami equation defined on the surface

Ω of the porous media elements

∆Ω ψ = 0. (1.24)

This implies that, the analysis of the Laplace-Beltrami problem can serve to pro-
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vide information about permeability of complex surface structures. This problem

will be considered in Chapters 3-6 of the thesis.

Now, using the obtained pressure-saturation relationship and the local Darcy’s

law, one can formulate a macroscopic model of the liquid dispersion at low satu-

ration levels.

1.3.3 Macroscopic Model

According to the spatial averaging theorem (Whitaker 1969), applying intrinsic

liquid averaging 〈 . . . 〉l = V −1
l

∫
Vl
. . . d3x to (1.23),

− κm
µ

{
∇〈ψ〉l + V −1

l

∫
Sl

ψ n dS

}
= 〈q〉l, (1.25)

where Sl is the area of the liquid interface confined inside the volume element

V and with normal vector n. The surface integral in the creeping flow condi-

tions, when the pressure variations across the liquid layer are insignificant, can be

neglected V −1
l

∫
Sl
ψ n dS ≈ 0 and as a result

− κm
µ
∇〈ψ〉l = 〈q〉l. (1.26)

Thus, one can cast the continuity equation,

∂φs

∂t
+∇ ·Q = 0,

into

∂φs

∂t
= ∇ ·

{
K

µ
∇P

}
. (1.27)
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Here,

Q =
Se
S
〈q〉l, (1.28)

S is the surface area of the sample volume V with the effective area of entrances

and exits Se and coefficient of permeability K = κm
Se

S
. It is assumed that in

creeping flow conditions P = 〈p〉l ≈ 〈ψ〉l. Note, that the ratio Se/S is not strictly

speaking just a geometric factor. It is an average quantity defined by (1.28),

which incorporates connectivity and the shape of the surface elements. A priori,

one can expect that Se/S ≈ δR/R, that is it is proportional to the surface layer

cross-section.

Assuming further that porosity φ is constant and using expression (1.20) for

the average pressure, one can transform the governing equation (1.27) into a non-

linear diffusion equation for the saturation s(x, t)

∂s

∂t
= ∇ ·

{
Ds∇s

(s− s0)3/2

}
, t > 0 (1.29)

where

Ds =
1

2

K

µ

p0Ac
φ

,

and

Ac = C1

√
3

4

1− φ
φ

Nc

π
.

where Nc is the coordination number.

In the case of a moving boundary-value problem with a smooth boundary

∂Ω moving with velocity v, the super-fast diffusion equation (1.29) should be
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augmented with boundary conditions at the moving front

s|∂Ω = sf , sf > s0

and

v · n|∂Ω = −D0
n · ∇s

sf (sf − s0)3/2
.

where n is the normal vector to the boundary ∂Ω and sf is the boundary value of

the saturation which is defined by the capillary pressure developed at the moving

front. Note that, the requirement sf > s0 is equivalent to assume that liquid

bridges always exist in the domain of spreading. This has been confirmed by

direct experimental observations (Lukyanov et al. 2012).

1.3.4 Super-Fast Non-Linear Diffusion

The non-linear diffusion equation (1.29) is known to belong to the super-fast

non-linear diffusion class (Vázquez 2006) due to the presence of a singular term

(s − s0)−3/2. This is a very distinctive and characteristic feature of the model,

which appears as the result of the characteristic pressure-saturation relationship.

The singularity is formal in our case, since according to the experimental evi-

dence (Lukyanov et al. 2012), the pendular rings always exists in the domain of

the liquid spreading, and hence

s > s0

is always the case. While the divergence is formal, nevertheless, the singular char-

acter of the diffusivity coefficient (s−s0)−3/2 makes the diffusion process relatively

fast when saturation levels are approaching the minimal value s0. Otherwise, the
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diffusion process would be much slower considering that the permeability coeffi-

cient in ordinary sands or gravels at low saturation is expected to be about

K ∝ δ2
R

δR
R
≈ 10−15 − 10−16 m2

according to the scaling of Se/S ≈ δR/R. This is very low, practically on the level

of the permeability coefficients of the compressed clay, limestone or dolomite in

the fully saturated matrix, Table 1.2. Note, those materials are always regarded

as waterproof in soil science and hydrology.

1.3.5 Super-Fast Non-Linear Diffusion and Self-Similarity

The moving boundary-value problem to (1.29) has compact support, so that

it is tempting to determine self-similar solutions to that problem. But, this is

not the case here. The super-fast diffusion model does not demonstrate this

universal behaviour. While initial distributions of saturation evolve with time

to a distinctive saturation profile (Lukyanov et al. 2012), there was no true self-

similar behaviour identified so far. Indeed, consider a simplified non-dimensional

version of (1.29) in a one-dimensional domain Ω ⊂ R with the boundary ∂Ω

moving with velocity v

∂u

∂t
=

∂

∂x

{
1

(u+ u0)
3
2

∂u

∂x

}
, x ∈ Ω, t > 0

with

u|∂Ω = 0 (1.30)
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and

v|∂Ω = −s−1
f u

− 3
2

0

∂u

∂x

∣∣∣∣
∂Ω

, (1.31)

where u = s − sf and u0 = sf − s0. Consider again the one-parameter group

of transformations (1.11) of the variables t → εt, u → εqu and x → εrx, which

was used to obtain self-similar solutions, in particular the Barenblatt self-similar

distribution profiles; ε > 0. One can immediately see that the moving boundary

value problem is not invariant under the group of transformations, that is one can

not determine such q and m at u0 6= 0 so that to obtain an invariant equation

with invariant boundary conditions.

The only way to get some kind of self-similarity is to scale the boundary

conditions accordingly, that is s̄f = εqsf and ū0 = εqu0. In this case, a self-similar

solution can be found if

2r − 1 +
3

2
q = 0.

Then, a symmetric around x = 0 solution is given by

u(x, t) =
1

t2
1{

C1 + 3
2
x2

t4

}2/3
, t > 0

but, it is impossible to satisfy the boundary condition u|∂Ω = 0.

1.3.6 Super-Fast Non-Linear Diffusion and Surface Per-

meability

Another essential element of the model, which has to be determined in practical

applications of the model, is the coefficient of permeability K = K(s), which is
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expected to be some function of saturation.

Previously, the super-fast diffusion model (1.29) has been validated against ex-

periments using a simplifying assumption that K = const (Lukyanov et al. 2012).

The study has demonstrated sufficiently good comparison, though it was under-

stood that any enhancement of the model predictive power can be only achieved

if the permeability coefficient K as a function of the liquid content (saturation s)

is determined. This is the main topic of this study. Obviously, the curved shape

of the particles should affect the ability of those surfaces to conduct the flow. In

what follows, we will first generalise the macroscopic description to the case of fi-

brous porous materials, where the permeability coefficient can be recovered using

a relatively simple network model. Then, we will analyse mathematical problems

related with the definition of the coefficient permeability K in particulate porous

media.

1.4 Thesis Overview

In this thesis, we will consider several aspects of mathematical modelling liquid

dispersion processes at low saturation levels. After an introduction in Chapter

1, in Chapter 2, we deal with the macroscopic description of the low saturation

regime of spreading in fibrous porous materials using a mesoscopic network model.

We demonstrate how the macroscopic properties of fibrous materials (common

paper would be a good example) and the super-fast non-linear diffusion model,

initially developed to describe liquid dispersion in particulate porous media, can

be recovered on the basis of a mesoscopic network description.
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In Chapter 3 and 4, we return to the mathematical description of liquid dis-

persion in particulate porous media and examine surface transport over a single

constituent element of the porous matrix to estimate effective coefficient of per-

meability, which in turn appears in the macroscopic super-fast diffusion model.

We demonstrate that the permeability coefficient of an element can be accurately

determined on the basis of the analysis of the Laplace-Beltrami boundary value

problem set on the curved surface of the element. We analyse weak formulation of

the problem and its approximation via surface finite element techniques including

error analysis using appropriate norms.

In Chapter 5, we examine the surface transport and the Laplace-Beltrami

problem over a set of coupled elements.

Finally, in Chapter 6, we apply the developed technique and its finite element

realisation to consider a representative ensemble of randomly packed intercon-

nected particles. We summarise the analysis and demonstrate how the results

can be directly used in practical estimations of the permeability coefficients of

particulate porous media at low saturation levels. In Chapter 7, we briefly discuss

how the results can be generalised and transferred to different settings.

The main results presented in Chapter 4 have been published in (Sirimark

et al. 2018a,b). The results obtained in a randomly packed particle ensemble,

Chapter 6, have been submitted to a journal (Sirimark et al. 2019).
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Chapter 2

Capillary Transport in Fibrous

Porous Materials at Low Levels

of Saturation

The problem of capillary transport in particulate porous materials, such as

sand, at low levels of saturation can be simulated using a macroscopic math-

ematical model, the superfast non-linear diffusion (Lukyanov et al., 2012). The

mathematical model is based on several characteristic features of the phenomenon.

First of all, in particulate porous media at low saturation levels, the liquid is con-

centrated in the pendular rings formed at the point of contact of the constituent

particles. The pendular rings are the reservoirs bounded by a constant-curvature

interface, which has a characteristic pressure-volume relationship. At the same

time, the flow predominantly occurs over the surface elements of the particles

characterised by a constant saturation level s0. Apparently, such separation of
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the functional elements can occur in other types of porous media. In this chapter,

we will study the process of diffusion in one of those system, the fibrous porous

materials, like textile or paper.

The structure of fibrous porous materials is quite different from that of par-

ticulate porous media (Alava and Niskanen 1994; Eichhorn and Sampson 2005;

Herminghaus 2005; Niskanen and Alava 1994a; Rasi 2013; Sampson 2003). Yet,

all the main elements of the super-fast diffusion model are present. At low satura-

tion levels, the liquid is only located on the rough surfaces of the fibres (including

intrafibre pores) and in the liquid bridges formed at the intersections of the fi-

bres (Sauret et al. 2014, 2015; Soleimani et al. 2015). The microscopic surface

roughness of the fibres generates the capillary pressure to drive the liquid flow

through the network, where the liquid bridges, as in the case of particulate me-

dia, play the role of variable volume reservoirs. We further assume that the liquid

at least partially wets the fibres, so that the contact angle on rough surfaces of

the fibres would be small (close to zero) or zero.

2.1 Morphology of Liquid Distributions in Fi-

brous Materials.

The morphology of the liquid bridges formed between the crossing fibres in the

wetting case is found to be in general more complex than that observed between

the particles (Alava and Niskanen 1994; Eichhorn and Sampson 2005; Herming-

haus 2005; Niskanen and Alava 1994a; Rasi 2013; Sampson 2003; Scheel et al.

2008a,b). The liquid volume at the crossing of two rigid fibres can take under
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the action of surface tension forces several distinct morphologies depending on

the amount of the liquid VB, the separation distance and the angle between the

fibres θf : a long liquid column, a mixed morphology state that consists of a drop

on one side together with a small amount of liquid on the other side and a drop

or a compact hemispherical drop or a pendular ring (Sauret et al. 2014, 2015;

Soleimani et al. 2015). In general, the elongated liquid columns are only formed

at small angles θf ≤ 20◦ between the crossing fibres (Sauret et al. 2015).

2.2 Pressure-Saturation Law

So, the predominant shape of the liquid volumes in randomly oriented fibrous

materials appears to be either a drop or a pendular ring at small volumes VBR
−3 �

1 with the capillary pressure scaled as

p ≈ −p0

(
R3

VB

)γf
, γf ≈ 1/2, (2.1)

where R is the characteristic fibre thickness and p0 = 4γ cos θc
R

. In what follows,

(2.1) is taken as the main pressure scaling law in capillary bridges at fibre crossings

in our model. The pressure law is similar to that observed at low saturation levels

in the pendular rings formed between the particles in particulate porous media

leading to almost constant capillary forces acting between the fibres (Sauret et al.

2015).
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2.3 The Structure of Fibrous Porous Materials

and the Macroscopic Model.

The porosity of fibrous materials φ is highly variable (one can easily change

paper porosity by applying moderate mechanical pressure to a sample), and in

general it is much higher than that of particulate porous media. The typical

porosity values for most paper grades are found to be around φ = 0.7 (sand

porosity, in comparison, is around φ = 0.3) (Rasi 2013). The larger porosity

values imply that overlapping (coalescence) of the liquid volumes attached to

different crossings, the effect observed in particulate porous media (Herminghaus

2005; Scheel et al. 2008b), may only occur at much larger values of saturation.

It is well known that the structure of fibrous materials is effectively two-

dimensional, that is the fibres are roughly oriented in the paper sheet plane. The

main characteristics of the paper materials are therefore also two-dimensional,

such as the total length of fibres Lq per unit area of a paper sheet. Typically,

it takes the values in between 200 ≤ Lq ≤ 400 mm−1 at the characteristic paper

thickness around 50µm (Alava and Niskanen 1994). Given the characteristic fibre

thickness R in the range 4µm ≤ R ≤ 10µm, one can define the total length of

fibres Lq per unit area in a layer of thickness R, which is expected in the range

of 16 ≤ Le ≤ 80 mm−1. The so obtained typical range is consistent with the

typical paper porosity levels. Indeed, φ = VE
V

, that is φ = 1 − πLeR/4 in a

sample volume V of thickness R assuming circular fibre cross-section area πR2/4.

The estimate then gives φ ≈ 0.7, if we take parameters in the middle of their

expected, estimated intervals, that is Le = 50 mm−1 and R = 7µm. This implies
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that parameters φ, Le and R characterising porous network are interrelated.

To characterise liquid distributions macroscopically, an average coordination

number, that is the average number of crossings per unit volume Nc is to be

defined. The value of Le in a random paper network allows to estimate the mean

distance lf between the nearest fibre crossings lf ≈ 2
πLe

(Alava and Niskanen 1994).

That is typical values of lf are expected in the range 8µm ≤ lf ≤ 13µm. Using

R = 7µm and Le = 50 mm−1, one can obtain an estimate of the coordination

number with a typical value Nc = πL2
e

2R
≈ 5.6× 105 mm−3. Note the dimension of

[Nc] = L−3.

To parametrize saturation, we split, as before, average liquid content in a

sample volume V = S0R of thickness R and surface area S0 into two parts:

the liquid contained on the rough surface of fibres and in the intrafibre pores

of volume Vr = LeS0δ
2
R and the liquid contained in the capillary bridges at the

fibre crossings Vc = 〈VB〉lNc V , where 〈...〉l = V −3
l

∫
Vl
d3x designates, as before,

intrinsic averaging over the liquid volume Vl within the sample volume element

V . Here parameter δR has the dimension of length and can be interpreted as the

characteristic length scale of the surface roughness (intrafibre pore size), which

may be regarded as a fitting parameter of the model. We further assume that the

rough surface of the fibres is fully saturated (Rye et al. 1998), such that the amount

of the liquid stored on the surface and in the intrafibre pores is independent of

the liquid pressure, that is constant.

Combining both contributions, saturation

s =
Vc + Vr
φV
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can be presented as

s = 〈VB〉lV −1
0 + s0, s0 =

Leδ
2
R

φR
, V0 =

φ

Nc

.

Then, the average capillary bridge pressure P =< p >l

P = −p0

(
R3

V0

)1/2
1

(s− s0)1/2
, (2.2)

where < ... >l= V −1
l

∫
Vl
d3x is again the intrinsic liquid averaging. Using Le =

50 mm−1, δR = 1µm, R = 7µm and φ = 0.7 as the typical parameters, one can

estimate that s0 ≈ 10−2, that is about 1%. This estimate is not far from the value

of the similar quantity s0 ≈ 0.35% in the particulate porous media.

2.3.1 Local Transport in Fibres.

We know from previous studies of liquid spreading along rough surface grooves

of various shapes and dimensions, (Rye et al. 1998), that the surface average

volumetric flux density obeys a Darcy’s Law. That is,

q = −κm
µ
∇u, (2.3)

here, as before, q is average flux density, u is a local pressure, µ is liquid viscosity

and κm is the effective coefficient of permeability. As a matter of fact, a similar

law would be observed in the process of wetting of a solid rod (Quere 1999). So

in general, this kind of dependence is expected when the liquid is spreading in

fibrous media. We note here that fibrous materials, as any porous structure, may

44



have a hierarchy of different length scales. For example, a single fibre may consist

of much thinner fibres packed together. In our model here, we take into account

only the largest length scale available, assuming that smaller length scales are

fully saturated. Basically, we treat smaller fibres as roughness of the larger fibre.

Such an approach can be justified at low saturation considering the characteristic

times involved in the process of spreading. Obviously, liquid spreading involving

smaller length scale should be taking more time, that is being slower than that at

the larger length scales due to the strong reduction of the permeability coefficient

with the length scale. For example, in particulate porous media we have observed

that K ∝ δ2
R
δR
R

. So here, we use this separation of length scale to obtain a

macroscopic model.

This would be instructive to estimate permeability of a fibre using some basic,

simplified geometry, for example permeability of a section of an axisymmetric

rod of radius R and length L0, where the flow takes place in the surface layer of

thickness δR, Fig. 2.1. If the pressure difference ∆p is applied to the rod ends

uniformly, the problem is one-dimensional so that the total flux Qf is given by

Qf = −2πRδR
κm
µ

∆p

L0

, (2.4)

where κm ∝ δ2
R. So, overall, the rod permeability is expected to be ∝ δ3

R/R,

similar to the permeability in the case of particulate porous media.
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2.3.2 Macroscopic Model.

If we follow the same procedure as that in the particulate porous media us-

ing the spatial averaging theorem (Whitaker 1969) and applying intrinsic liquid

average 〈 . . . 〉l = V −1
l

∫
Vl
. . . d3x, one gets

− κm
µ
∇〈u〉l = 〈q〉l. (2.5)

The non-linear super-fast diffusion equation can be recovered from (2.5) ap-

plying conservation of mass principle in a divergence form, that is,

∂(φs)

∂t
+∇ ·Q = 0, (2.6)

Q =
Se
S
< q >l= −Se

S

κm
µ
∇〈u〉l.

Here, as before, S is the surface area of the sample volume V with the ef-

fective area of exists and entrances Se and the global coefficient permeability

K = κm
Se
S

(Lukyanov et al. 2012).

That is using a reasonable assumption that P ≈ 〈u〉l and the pressure-saturation

relationship (2.2), assuming that porosity φ is constant,

∂s

∂t
= ∇ ·

{
D0∇s

(s− s0)3/2

}
, (2.7)

where

D0 =
1

2

K

µ

p0

φ

(
R3

V0

)1/2

.

In the case of a moving boundary-value problem with a smooth boundary ∂Ω
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moving with velocity v, the super-fast diffusion equation (2.7) should be, as before

in particulate porous media augmented with boundary conditions

s|∂Ω = sf , sf > s0

and v · n|∂Ω = −D0
n · ∇s

sf (sf − s0)3/2
.

where n is the normal vector to the boundary ∂Ω and sf is the boundary value of

the saturation which is defined by the capillary pressure developed at the moving

front.

As is in the case of particulate porous media, the superfast diffusion model in

fibrous materials requires the knowledge of the permeability coefficient K. Obvi-

ously, this coefficient can be only obtained by means of a model based on a lower

level of description, which is called here the microscopic model. We will utilise

a network model for this purpose, which is the subject of the next section. This

way, we can not only determine the coefficient of permeability, but also validate

the whole macroscopic model.

2.4 Microscopic Model

The idea of the microscopic network model is quite simple and almost straight-

forward, Fig. 2.1. First of all, we replace the actual fibres by straight transport

links of given permeability (2.4) connecting nodal points of a network. The nodal

points represent the capillary bridges of given capacity VB, which is a function

of local pressure given by the relationship (2.2). The initial distribution of the

liquid in the network then evolves with time, such that on each ’small’ time step
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δt a certain amount of the liquid is transported between the nodes according to

the permeability of the links and the pressure difference between the nodes. After

that, the nodal pressure values are updated according to the amount of the liquid

transported (assuming conservation of mass, of course) and the system evolves

in time. This network design is similar to (Bronkhorst 2003; Corte and Kallmes

1962; Sampson 2003; Sauret et al. 2015) and (Niskanen and Alava 1994b), but

essentially differs by the nodal capacity properties, which are characteristic to the

super-fast diffusion phenomena, that is, for example, given by relationship (2.2).

The network model is two-dimensional reflecting the properties of fibrous ma-

terials simulating one layer of the fibres of the width R. To validate the macro-

scopic model and calculate the permeability coefficient, we consider a steady state

one-dimensional representative problem (1.14) with the Dirichlet boundary con-

ditions. Varying the network properties, we study the influence of microscopic

parameters on the macroscopic properties.

Figure 2.1: Illustration of the microscopic network.
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2.4.1 Network Construction

The first step in the developing of our network model is to create a random

distribution of nodes, the fibre crossings, connected by the links. In principle,

every node can be connected to many neighbouring nodes, but in our analysis,

we focus on mostly common situations observed in paper-like materials, when

each node is only connected with three or four other nodes. The method of the

mesh generation in our study is based on the properties of the the Delaunay

triangulation, introduced in 1934 by Boris Delaunay (Enŕıquez-Cervantes and

Rodŕıguez-Dagnino 2015), is characterised by an empty circumcircle property.

The circumcircle of a triangle is an unique circle that passes through the three

points of the triangle, see Fig. 2.2.

Figure 2.2: Illustration the circumcircle of a triangle.

Definition 2.1. (Enŕıquez-Cervantes and Rodŕıguez-Dagnino 2015)

A triangulation of a finite point set P ∈ R2 is called a Delaunay Triangulation, if

the circumcircle of every triangle does not contain other points of P in its interior,

that is, the circumcircle is empty.
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(a) (b)

Figure 2.3: Illustration of the Delaunay triangulation and the empty circumcircle
criterion.

This is illustrated in Fig. 2.3. Some part of the Delaunay triangulation is

shown in Fig. 2.3a, where the circumcircle does not contain a point in its interior.

On the other hand, in Fig. 2.3b the circumcircle contains a point V8 in its interior.

Consequently, the second example does not represent the Delaunay triangulation.

Figure 2.4: Illustration of a Delaunay triangulation with six points.
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The example of the picture 2.4 is a Delaunay triangulation of a set of six

points. The circumcircles of all five triangle satisfy an empty circumcircle prop-

erty. However, the green dashed circle is not empty but it is not circumcircle of

any triangle. So that is fine.

In case of four points in convex position, there are two possibility triangles

which in general there is only one of them can be Delaunay, see Fig. 2.5

(a) Non-Delaunay triangulation (b) Delaunay triangulation

Figure 2.5: Illustration of the triangulations for four points in convex position.

If every points are on a edge of circle which is empty, so both of triangles are

Delaunay, see Fig. 2.6
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Figure 2.6: Illustration of the Delaunay triangulation.

Proposition 2.2. Given P is a set of four points, P ⊂ R2. If the point are in

convex position but no co-circular, then set P has one Delaunay triangulation.

Proof. The proof is in (Gärtner and Hoffmann 2014 page 59).

These are the basic ideas to construct the Delaunay triangulation, which is gen-

erated in our study using Matlab 2018. More the details can be found in (Gärtner

and Hoffmann 2014) and (Shewchuk et al. 2016).

We now generate the network model by considering the example Delaunay

triangulation Fig. 2.4. The node inside each Delaunay triangulation has been

created by using the property of barycentre such that each node has three neigh-

bours, see Fig. 2.7.
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(a) Delaunay triangulation (red) with the con-

necting lines between barycentres (blue) of the

triangles representing the crossing points in

porous media.

(b) Network model

Figure 2.7: Illustration of the resultant microscopic network model for 10 nodes.

Note that, the microscopic network model consisting of quadrilaterals can be

constructed by combining two triangles.
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2.4.2 Network Evolution: Time Steps and Liquid Trans-

port

The volume capacity of each node of the network is designated by V i
B at, say,

node i and the liquid content in the fibre roughness will be ignored, since it is

constant and can be added a posteriori, if necessary. In what follows in this

chapter, unless otherwise stated explicitly, we use non-dimensional variables con-

sidering the fibre radius R as the characteristic length scale, capillary pressure

p0 = 4γ cos θc
R

as the characteristic pressure, I0 = 2πδRκmp0µ
−1 as the character-

istic flux along the fibre links, q0 = I0/R
2 = 2π δR

R2
κmp0
µ

as the characteristic flux

density and t0 = R
q0

as the characteristic time. In non-dimensional form, the nodal

pressure-volume relationship takes the form

pi = −
(

1

V i
B

)1/2

, (2.8)

where for simplicity we used the same notation as for the dimensional variables.

At non-equilibrium, the liquid flux between the network nodes connected by

the links is defined by the pressure difference. That is the volumetric flux be-

tween two nodes, i and j for example, connected by the filament of length Lij is

proportional to the pressure difference between the nodes

Iij = −αij
pj − pi
Lij

, (2.9)

where an additional parameter, a coefficient αij was introduced to generate models

with different properties of the links. For example, when simulating porous media
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with nearly identical fibres (all links would be of cylindrical shape of diameter R

having a uniform liquid layer of thickness δR carrying the liquid flux), one can set

αij = 1, on the other hand, in a more realistic scenario, one should regard the

parameter αij as a random number distributed, somehow, between 0 and 1. In

particular, we consider uniform distribution in the unit interval.

The macroscopic parameter, saturation (disregarding the capacity of the links)

can be calculated by means of averaging over a sample area element S0

s =

∑
i V

i
B

φS0R
(2.10)

where the summation is over all nodes within the surface element.

2.5 Liquid Spreading: a Steady State Problem

At non-equilibrium, the liquid distribution in the network evolves in time with

a time step δt chosen such that to achieve numerical stability. After each time

step the total amount of the liquid at every node is calculated according to the

mass balance, that is the mass change due to the total flux through the links

connected to the node and the amount at the previous time step.

To validate the macroscopic model and determine permeability, we use one-

dimensional set-up, as is shown in Fig. 2.8.
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Figure 2.8: Illustration of the flow domain in the one-dimensional problem setup.

2.5.1 Setup for Averaging and the Macroscopic Boundary

Conditions

The two-dimensional flow domain is a square area with a side size X, which is

divided into equidistant strips in the x-direction of a fixed width ∆x to facilitate

averaging procedure (∆x is the averaging length scale) in the comparison with

macroscopic results. The nodes in the first and in the last strip are kept at a

fixed liquid volume to emulate Dirichlet boundary conditions with fixed boundary

values of saturation. In the y-direction there are no explicitly imposed conditions,

so naturally, the zero flux condition should be observed.

2.5.2 The Steady State Problem

The network nodes are distributed randomly but uniformly, so that the equiv-

alent steady-state macroscopic problem is one-dimensional and can be formulated,
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similar to (1.14), in non-dimensional form as follows

∂

∂x

{
D(s)

∂s

∂x

}
= 0, x ∈ (0, X), s > 0 (2.11)

where the coefficient of diffusivity is expected at least to be proportional to s−3/2.

That is, using q0 = 2π δR
R2

κmp0
µ

as the characteristic flux density

D(s) =
D0(s)

s3/2
, D0(s) =

1

4πφ

Se
S

R

δR

(
R3

V0

)1/2

. (2.12)

Parameter
(
R3

V0

)1/2

represents the inverse number of fibre crossing in a volume

element R3, which is practically
(
R3

V0

)1/2

≈ 1 considering that the non-dimensional

parameter N̄c = NcR
3 = 8

π
(1 − φ)2. So the factor D0 represents the scaling of

Se/S with δR
R

and porosity φ. Basically, if we can determine D0, then one gets

the Se/S scaling.

The diffusion equation should be augmented with the boundary conditions

s(0) = s1 and s(X) = s2.

Obviously, in a steady state the flux density should be constant in the domain

if its structure is homogeneous. That is equation (2.11) is equivalent to

D(s)
∂s

∂x
=

q

q0

= q̄. (2.13)

Now we can run the network setup to reach a steady state as is described

in appendices A - B and obtain the distribution of saturation to determine the
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functional form D = D(s). The steady state is reached when the flux density

distribution is uniform and is not evolving with time anymore.

2.6 Liquid Spreading: Numerical Results

We consider several representative sets of parameters. First, we will vary the

resolution of the network model, that is the density of the nodes, which is directly

related with the porosity of the samples. We consider two cases: N̄c = 0.23

corresponding to φ = 0.7 and N̄c = 0.64 corresponding to φ = 0.5 according to

N̄c = 8
π
(1− φ)2.

Secondly, we vary the properties of the links using either constant coefficients

αij = 1 or more realistic parameter values randomly distributed between 0 and

1, such that 〈αij〉 = 0.5. We will also analyse two kinds of the networks. In

the first type, each node has three neighbours, and in another one there are four

neighbours.

2.6.1 Distribution of Pressure

The reduced size of the domain was chosen to beX/R = 100 in the simulations.

This should be sufficient to accommodate Nd = 2300 nodes at φ = 0.7 and

Nd = 6400 nodes at φ = 0.5 and to obtain statistically meaningful results after

the averaging. Each strip in the domain, Fig. 2.8, should have at least 60 nodes,

so that the relative error due to fluctuations is expected to be at 12%.

To study the boundary-value problem (2.11) in the range of low saturation
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values, we augment it with the boundary conditions

s1 = 10−3, s2 = 0.2,

which have been fixed throughout the simulations.

Then we set an initial distribution of the mass at every node i according to a

linear distribution of the saturation

s(x) = s1 + x(s2 − s1)/100, x ∈ (0, 100)

and let the system evolve to a steady state. The details of the algorithm, that is

how the calculations are performed step-by-step, can be found in appendices A

and B.

First, we consider the networks with each node having only three neighbours.

We consider distribution of nodes with two characteristic densities N̄c = 0.64,

φ = 0.5 and N̄c = 0.23, φ = 0.7. In each case, we run simulations with identical

link permeabilties, αij = 1, and with permeability values uniformly distributed in

the interval [0, 1], that is 〈αij〉 = 0.5.

The steady state was achieved at t/t0 ≈ 100, that is after approximately 107

times steps at δt = 10−5 to be comfortably within the stability window, Fig.

2.9. With increasing the step size, the network evolution eventually becomes

numerically unstable, as is expected. The steady state is illustrated in Fig. 2.10,

for numerical values see Table 2.1, where the results have been averaged over

five statistically independent experiments. We will use this averaging procedure

throughout this chapter. One can observe in Fig. 2.10, that the flux fluctuations
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measured in the boxes are within the expected range of 12%. One can also observe

that flux density increases as the nodal density N̄c increases and, consequently

the porosity φ decreases. This trend is expected, since with the increase of the

nodal density there would be more pathways available to transport the liquid

at a given value of the pressure difference, that is at the fixed boundary values

of the saturation. One can notice another interesting trend that when the link

permeabilities are randomly distributed, there exists strong reduction in the flux

density values. While on average the link permeability is changed twofold, there

is a threefold reduction in the density flux value. The fluctuations of the link

permeability emulate the presence of inhomogeneities in the porous matrix, that

is the presence of an additional length scale. Obviously, due to the non-linear

character of the expected diffusion mechanism, the response function should also

be non-linear - the effect, which is clearly observed.

The distribution of average pressure is shown in Fig. 2.11 The dependence of

pressure is expected to be a power law monomial s−1/2 according to our macro-

scopic analysis, equation (2.2), which is in non-dimensional form, ignoring contri-

bution from the liquid stored in the links s0,

P̄ =

(
N̄c

φ

)1/2
1

s1/2
. (2.14)

This behaviour is clearly seen in the obtained dependencies if we fit them with

|P |/p0 =
Af

s1/2
, Fig. 2.11. As it might be expected, the distribution of pressure is

insensitive to the distribution of the link permeabilities αij, but is a function of

N̄c or porosity φ. If we compare the prefactor AMf =
(
N̄c

φ

)1/2

in the analytical
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expression of the macroscopic model (2.14) with the parameter Af of the fitting

function, then a very good agreement is also observed. Indeed, at N̄c = 0.64,

φ = 0.5, the obtained value of Af = 1.14±0.03, while AMF = 1.13 is expected, and

at N̄c = 0.23, φ = 0.7, the obtained value of Af = 0.57 ± 0.03, while AMf = 0.57

is expected. That is, the network model turned out to be able to reproduce the

macroscopic behaviour of the capillary pressure with excellent accuracy.

Figure 2.9: Averaged reduced flux density q/q0 as a function of time t/t0 in
the setup with three nodal neighbours at s1 = 0.001 and s2 = 0.2 and random
distributions of αij at x/R = 2.5 and x/R = 97.5 . Here N̄c = 0.64 and φ = 0.5.
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Figure 2.10: Averaged reduced flux density q/q0 as a function of the reduced
distance x/R in the setup with three nodal neighbours at s1 = 0.001 and s2 = 0.2
and different values of N̄c, and φ, N̄c = 0.64, φ = 0.5 and N̄c = 0.23, φ = 0.7, and
different distributions of αij.
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Figure 2.11: Averaged reduced capillary pressure |P |/p0 as a function of saturation
s in the setup with three nodal neighbours at s1 = 0.001 and s2 = 0.2 and different
values of N̄c, and φ, N̄c = 0.64, φ = 0.5 and N̄c = 0.23, φ = 0.7, and different
distributions of αij. The numerical data are shown by symbols and the solid lines

(brown) indicate the fitting function |P |/p0 =
Af

s1/2
.

2.6.2 Distribution of Saturation and Permeability of the

Porous Network.

Consider now distribution of saturation. When all links in the network are

identical, that is αij = 1, the permeability of the network is not expected to

depend on the saturation distribution, and one can anticipate that parameter

D0 = const would be simply a constant. In this case, equation (2.11) can be

easily integrated to obtain after applying the boundary conditions, we have the
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distribution of saturation

s−1/2 = − q̄

2D0

x+ s
−1/2
1 , (2.15)

and s
−1/2
2 = s

−1/2
1 − q̄

2D0
100.

To facilitate the comparison, we plot function s−1/2 versus the reduced distance

x/R. The result is shown in Fig. 2.12. One can readily observe that the data

indeed collapse on a linear dependence given by a fitting function s−1/2 = As+Bsx

at As = 29.2± 0.2 and Bs = −0.27± 0.004. This behaviour is characteristic and

independent of the nodal density N̄c. It is very interesting to observe that the

trend is also independent of the nature of the network link permeability. While

with identical links, such behaviour is expected, randomly distributed links could

have generated some dependence on the distribution of saturation. To the large

extent, this effect is not observed. Some deviation can be possibly detected only

at small saturation values, close to s1. Now, the coefficients of the linear fit

function allow to estimate the permeability coefficient. From the first coefficient,

one can obtain s1 = 0.00117, which is close to the specified value at the boundary

s1 = 0.001. The observed deviation is within the expected error of 12%. From

the second coefficient, Bs, one can obtain that

q̄

2D0

= −0.27.
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Figure 2.12: Averaged saturation s−1/2 as a function of the reduced distance x/R
in the setup with three nodal neighbours at s1 = 0.001 and s2 = 0.2 and different
values of N̄c, and φ, N̄c = 0.64, φ = 0.5 and N̄c = 0.23, φ = 0.7, and different
distributions of αij. The numerical data are shown by symbols and the solid line
(brown) indicates the fitting function s−1/2 = As + Bsx at As = 29.2 ± 0.2 and
Bs = −0.27± 0.004.

That is, given flux density and porosity φ (or nodal density N̄c), one can

estimate the scaling of Se/S from (2.12). The results are summarised in Table

2.1.
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Parameters
Nodes = 2300 Nodes = 6400

α = 1 α - Random α = 1 α - Random

φ 0.7 0.7 0.5 0.5

N̄c 0.23 0.23 0.64 0.64

Af 0.57 0.57 1.14 1.14

q̄ · 102 −3.8± 0.6 −1.5± 0.1 −15± 0.8 −5.6± 0.5

D0 0.07± 0.01 0.028± 0.002 0.28± 0.015 0.1± 0.009

Se

S
δr
R

0.4 δr
R

1.5 δr
R

0.55 δr
R

Table 2.1: Parameters of the microscopic network model with triangle tessellation
and macroscopic parameters. All data has been averaged over five independent
simulations.

Consider now the microscopic network model with four neighbours. Simula-

tions with a similar set of parameters as that in the network with three nodal

neighbours have shown qualitatively similar results, which are demonstrated in

Figs. 2.13-2.14. One may notice larger flux densities in general due to the larger

number of pathways available in the case of four-neighbour nodal points, Table

2.2. At the same time, as is expected, the distribution of pressure is identical

including its variations with N̄c, Fig. 2.14.
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Figure 2.13: Averaged reduced flux density q/q0 as a function of the reduced
distance x/R in the setup with four nodal neighbours at s1 = 0.001 and s2 = 0.2
and different values of N̄c, and φ, N̄c = 0.64, φ = 0.5 and N̄c = 0.23, φ = 0.7.
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Figure 2.14: Averaged reduced capillary pressure |P |/p0 as a function of saturation
s in the setup with four nodal neighbours at s1 = 0.001 and s2 = 0.2 and different
values of N̄c, and φ, N̄c = 0.64, φ = 0.5 and N̄c = 0.23, φ = 0.7. The numerical
data are shown by symbols and the solid lines (brown) indicate the fitting function

|P |/p0 =
Af

s1/2
.

The results are summarised in Table 2.2.
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Parameters
Nodes = 2300 Nodes = 6400

α = 1 α - Random α = 1 α - Random

φ 0.7 0.7 0.5 0.5

N̄c 0.23 0.23 0.64 0.64

Af 0.57 0.57 1.14 1.14

q̄ · 102 −7.5± 0.4 −3± 0.2 −27± 1 −11± 0.5

D0 0.14± 0.007 0.056± 0.004 0.5± 0.019 0.2± 0.009

Se

S
2.2 δr

R
0.86 δr

R
2.8 δr

R
1.1 δr

R

Table 2.2: Parameters of the microscopic network model with quadrilateral tes-
sellation and macroscopic parameters. All data has been averaged over five inde-
pendent simulations.

This would be instructive to compare results obtained in the four-neighbour

network with random distribution of nodes and in a regular network, for example

in the network as is shown in Fig. 2.15, when the network consists of squares

with the nodal points being in their vertices. If we calculated the flux density

corresponding to the similar pressure difference as that with s1 = 10−3 and s2 =

0.2 at the interval ends, then we would find that q̄r = 0.08 at N̄c = 0.23 and

q̄r = 0.27 at N̄c = 0.64. As one can see, those values are very close to the results

obtained with random distribution of nodes, Table 2.2, but identical links. So,

in quadrilateral case, the regular analogue of the network should provide a good

model to study the processes.
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Figure 2.15: Illustration of a regular network with regular positions of the nodes.

In conclusion, the network model for liquid transport at low saturation levels

we have developed was shown to be capable of reproducing macroscopic dynamics

with high accuracy. Potentially, this model can be used to study complex phenom-

ena by varying the model parameters such as the link permeability, fibre crossing

density to simulate porous media with different non-uniform distribution of prop-

erties. The numerical scheme is shown to handle very well the peculiar character

of the super-fast diffusion. The non-trivial behaviour is clearly observed when

the link properties are distributed, which makes the model irreplaceable to study

permeability properties in the case of complicated porous media compositions.
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Chapter 3

The Laplace-Beltrami Equation

and Permeability of Surface

Elements

In this chapter, we return to the problem of capillary transport in particulate

porous media. We have argued previously that to use the super-fast diffusion

model (1.29) in practice, one needs to determine the permeability coefficient of

the surface elements. It has been established that in the approximation of low

capillary pressure, the surface roughness is saturated with the liquid and the

transport process can be described by the Laplace-Beltrami equation (1.24). We

first consider surface permeability of just one constituent element of the porous

matrix. We demonstrate how the permeability coefficient of the element can be

determined on the basis of solutions to the Laplace-Beltrami Dirichlet boundary

value problem. We will generalise the method into a cluster of interconnected
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particles. In general, it is not feasible to find analytical solutions to the Laplace-

Beltrami boundary value problems, so that their numerical treatment will be

addressed in the next chapter. Here, we consider some special cases to determine

analytical solutions to the problem. Based on the exact solutions, we consider

how surface permeability can be incorporated into the macroscopic description.

Before considering the Laplace-Beltrami equation, we briefly introduce main

notions, which are taken from (Dziuk and Elliott 2013). The details can be found

in the following section.

3.1 Basic Notions

To begin with, we introduce a few concepts, which will be used in the context

of the finite element method in Chapter 4. Let Ω ⊂ R3 be a domain and Γ ⊂ Ω be

a smooth surface in R3 and Ωt be a neighbourhood of the surface Γ with normal

coordinates ∇d(x) as is shown in Fig. 3.1.
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Figure 3.1: Neighbourhood Ωt around the surface Γ and normal coordinates
x = p(x) + d(x)∇d(x). Here nΓ is a normal vector.

Consider a smooth surface shown in Fig. 3.1. The shortest distance from a

point x ∈ Ωt to Γ can be defined as follows.

Definition 3.1. Signed Distance Function

Suppose that Γ ⊂ Rn+1 be a compact smooth connected surface and contained by

Ωt, where n=1 or 2 (Dziuk and Elliott 2013). The sign distance function d for Γ

is the shortest distance from a point x ∈ Ωt to Γ which is defined by,

d(x) < 0 in Ω−

d(x) = 0 on Γ

d(x) > 0 in Ω+.

Here the domain Ω is split into an exterior open region Ω+, an interior open

region Ω− and the boundary between them Γ, Ω = Ω+ ∪ Ω− ∪ Γ.
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In 2017, Cenanovic et al. described the neighbourhood around surface Γ. The

detail is in the following theorem.

Theorem 3.2. The neighbourhood around surface Γ, see Fig. 3.1 can be defined

by

Ωt = {x ∈ Rn+1 : |d(x)| < t/2},

and with |∇d(x)| = 1, we have that ∇d(xΓ) = n(xΓ).

For every point x ∈ Ωt, the normal vector to Γ coincides with ∇d(x), thus we

may introduce the nearest point projection map p : Ωt → Γ, such that

p(x) = x− d(x)∇d(x). (3.1)

We will get the Jacobian matrix by differentiating p(x). The first component,

for example, yields

∂p1

∂x1

= 1− ∂

∂x1

(
d(x)

∂d(x)

∂x1

)
= 1− ∂d(x)

∂x1

∂d(x)

∂x1

− d(x)
∂2d(x)

∂x2
1

.

The derivative in the matrix form is given by

Dp = I−∇d(x)⊗∇d(x)− d(x)D2d(x).

Here I is a 3×3 identity matrix, ⊗ is the outer tensor product (A⊗B)ij = AiBj
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and

D2d(x) =



∂2d(x)

∂x2
1

∂2d(x)

∂x2∂x1

∂2d(x)

∂x3∂x1

∂2d(x)

∂x1∂x2

∂2d(x)

∂x2
2

∂2d(x)

∂x3∂x2

∂2d(x)

∂x1∂x3

∂2d(x)

∂x2∂x3

∂2d(x)

∂x2
3

 .

For ∀x ∈ Γ we have d(x) = 0 , so that d(x)D2d(x) = 0 on surface.

Consequently for ∀x ∈ Γ, we have the linear projector onto the tangent plane

at p(x)

D p(x) = I−∇d(x)⊗∇d(x) := PΓ(x).

Definition 3.3. Tangential Gradients

For a given function u : Γ→ R we can define its tangential gradient on Γ by

∇Γu = PΓ∇u = ∇u− (∇u · nΓ)nΓ,

where PΓ is the projection onto the tangent space and nΓ is the normal vector

(Dziuk and Elliott 2007).

3.2 Laplace-Beltrami Equation and Surface Per-

meability.

Let ΩR ⊂ R3 be a domain and Γ ⊂ ΩR be a smooth surface in R3. Locally,

on the surface of the porous matrix elements, such as sand grains, the transport
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is described by the Laplace-Beltrami equation over a generic manifold Ω

∆Ω u = 0, (3.2)

where u is the liquid pressure.

α

Ω0

Ω1

Ω2

∂Γ1

∂Γ2

Γ θ0

ns

nΓ

Figure 3.2: Illustration of the physical domains of the problem Ω0, Ω1 and Ω2

with the boundaries ∂Γ1 and ∂Γ2 defined on Γ. Here, nΓ is the unit outward
normal vector to the surface Γ and ns is the tangential outward normal vector to
the boundaries ∂Γ1,2.

On each element, one can distinguish at least two characteristic areas: some

parts of the element surface are covered by the liquid being part of the bridge

and other parts of the particle surface are saturated with the liquid, but it is only

present in the surface roughness grooves. We note that there could be some dry

areas on the particle surface. In the first approximation, we ignore their existence.
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The surface area disposition is schematically illustrated in Fig. 3.2 when there

are only two areas covered by the bridges on the surface, and hence there are three

domains to consider Ω0,Ω1 and Ω2. The transport described by (3.2) is only taking

place in Ω0. The character of the liquid flow is different in Ω0,Ω1 and Ω2. The

groove size δR ≈ 1µm is much smaller than that of the bridge, so that the grooves

have much stronger resistance to the flow than the areas covered by the liquid

bridges. The pressure difference over the bridge, that is in the domains Ω1 and

Ω2 is thus expected to be negligible in comparison to that in Ω0. Accordingly, we

presume that the pressure is roughly constant in the bridges and on the boundary

of the domains Ω1 and Ω2, that is on ∂Γ1 and ∂Γ2 respectively. Another plausible

assumption, to simplify problem formulation and analysis is that δR = const. As

a result, the Laplace-Beltrami problem can be set solely in Ω0, that is

∆Ω0 u = 0, (3.3)

with Dirichlet boundary conditions on ∂Γ1 and ∂Γ2

u|∂Γ1 = U1 = const (3.4)

and

u|∂Γ2 = U2 = const. (3.5)
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3.2.1 Permeability and the Laplace-Beltrami Boundary-

Value Problem on a Single Particle Surface

Let ΩR ⊂ R3 be a domain and Γ ⊂ ΩR be a smooth surface in R3 with the

outward unit normal vector nΓ, see Fig. 3.2. We are going to consider the following

partial differential equation on a subset Ω0 of Γ with continuously differentiable

boundaries ∂Γj

−∆Ω0u = 0 on Ω0, (3.6)

where u is an unknown function that may represent the distribution of pressure

on Ω0. The Laplace - Beltrami operator on the surface Ω0 is defined in the usual

way by means of the tangential surface gradient and the outward normal vector

nΩ0

∇Ω0 = ∇− nΩ0(nΩ0 · ∇),

such that

∆Ω0 = ∇Ω0 · ∇Ω0 .

The partial differential equation (3.6) is augmented with Dirichlet boundary

conditions

u|∂Γ1 = U1 = const (3.7)

and

u|∂Γ2 = U2 = const, (3.8)

where u1 and u2 are some constants.

For a smooth enough manifold, the problem (3.6) - (3.8) has a unique (weak)
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solution (Pigola et al. 2005). If a solution is found, one can determine the total

flux QT passing through the boundary elements ∂Γ1 and ∂Γ2. Accordingly, we

can then define the permeability of the single element K1 by

QT = −R2K1

µ

U2 − U1

R
, (3.9)

where R is the characteristic length scale of the element, the radius of the particle.

Note, the total flux can be found according to (1.23)

QT = δR
κm
µ

∮
∂Γ1

∂u

∂ns
dl = −δR

κm
µ

∮
∂Γ2

∂u

∂ns
dl,

where ns is the outward tangential normal vector to the boundaries ∂Γj and

operator ∂
∂ns

= ns · ∇.

The problem (3.6) - (3.8) will be the first one, which we consider in the study

in detail. Further in this chapter, we obtain some analytical solutions if Γ is a

sphere and Ω0 is a truncated sphere such that ∂Γj are simply circles and the

system has azimuthal symmetry. In a general case, there is little hope to obtain

analytical solutions to the problem, so in Chapter 4 we consider how the problem

can be solved numerically using a surface finite element technique.
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3.2.2 Permeability and the Laplace-Beltrami Boundary-

Value Problem for a System of Two Coupled Parti-

cles

However informative the surface permeability of a single particle is, in porous

media, however, the particles are coupled via liquid bridges forming complex clus-

ters of interconnected elements. In this case, the problem formulation is slightly

different. As an example and as the first step, we consider the problem of two

particles coupled through the ”common” boundaries ∂Γ
(2)
1 and ∂Γ

(2)
2 , as is shown

in Fig. 3.3.
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Figure 3.3: Illustration of the domains of two coupled (via a liquid bridge) parti-

cles. The flow domains are designated by Ω
(1)
0 and Ω

(2)
0 with the smooth boundary

contours ∂Γ
(1)
1 , ∂Γ

(2)
1 , ∂Γ

(1)
2 and ∂Γ

(2)
2 . Here, nΓj

are the outward unit normal vec-
tors to Γj and nsj are the outward unit tangential normal vectors to the boundary

contours on Ω
(1)
0 and Ω

(2)
0 respectively.

The two boundaries ∂Γ
(2)
1 and ∂Γ

(2)
2 belong to the same bridge coupling the

particles. Liquid pressure variation in the bridges is negligible in slow, creeping

flows in comparison to that in the surface flow domains Ω
(k)
0 . To put this differ-

ently, resistance to the flow of the bridge is much lower that that of the surface

rough area. So from the physical point of view, we should require that the pres-

sure is constant over ∂Γ
(2)
1 and ∂Γ

(2)
2 and is continuous. That is, if we designate

81



pressure in Ω
(1)
0 as u1 and subsequently pressure in Ω

(2)
0 as u2

u1|∂Γ
(2)
1

= u2|∂Γ
(2)
2

= const.

Obviously, due to the conservation of mass in the absence of any sources or

sinks of the liquid, one must require continuity of the total flux through the

boundary contours as well, that is

∮
∂Γ1

∇u1 · ns1|∂Γ
(2)
1
dl = −

∮
∂Γ2

∇u2 · ns2|∂Γ
(2)
2
dl,

where ns1 and ns2 are outward tangential normal vectors to the boundary con-

tours.

To summarise, in the case of two coupled by a bridge particles, we are solving

the following Laplace - Beltrami problem

−∆
Ω

(1)
0
u1 = 0 (3.10)

and

−∆
Ω

(2)
0
u2 = 0, (3.11)

with Dirichlet boundary conditions

u1|∂Γ
(1)
1

= U1 and u2|∂Γ
(1)
2

= U2
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and two continuity conditions

u1|∂Γ
(2)
1

= u2|∂Γ
(2)
2

= const (3.12)

and ∮
∂Γ1

∇u1 · ns1|∂Γ
(2)
1
dl = −

∮
∂Γ2

∇u2 · ns2|∂Γ
(2)
2
dl, (3.13)

where U1 and U2 are some constants. The two Dirichlet boundary conditions,

as in the case of a single particle, set the pressure difference to create finite flux

through the system. By calculating the total flux QT , one can then define the

coefficient of permeability of the system of two coupled particles. The problem

(3.10)-(3.13) will be analysed in detail further in this chapter. Numerically, the

coupled particles problem will be considered in Chapter 5.

3.2.3 Permeability and the Laplace-Beltrami Boundary-

Value Problem for a System of Many Interconnected

Particles

Let’s briefly discuss here a generalisation of the two coupled particle problem

into a system of many particles, as is shown in Fig. 3.4. As in the previous

cases, in this case, one needs to distinguish between surface areas covered by the

liquid in bridges Ωij and the flow domains Ω
(k)
0 . Since in practice this problem

is to define permeability of porous media, we only need to consider a finite, but

representative, macroscopic set of particles. Therefore, sub-domains Ωij could be

classed as internal, that is where the continuity boundary conditions are set, and
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external, that is where the Dirichlet boundary conditions are required to create

surface flux through the system.

On the boundary of the external sub-domain, the pressure u is set to a constant

value, while on the boundary of the internal sub-domain, we have continuity of

pressure and the total flux.

That is, on each sub-domain Ω
(k)
0 one has the Laplace - Beltrami problem,

which can be written as

−∆
Ω

(k)
0
u = 0.

Figure 3.4: Illustration of the domains for the multi-particle connected problem

Consequently, the boundary conditions can be expressed for the internal sub-

domains as

u|∂Γkj
= u|∂Γjk

= constant,
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∮
∂Γkj

∇u · ns|∂Γkj
dl = −

∮
∂Γjk

∇u · ns|∂Γjk
dl,

and on the boundaries of the external sub-domains as

u|∂Γkk
= Uk = constant.

We will consider this problem numerically in Chapter 6 to determine perme-

ability of particulate porous media and now turn to some special cases admitting

analytical solutions.

3.2.4 Analytical Solutions of the Laplace-Beltrami Boundary-

Value Problem in Azimuthally Symmetric Case

The Laplace-Beltrami boundary-value problem does not admit analytical solu-

tions in a general case on arbitrary surfaces with arbitrary boundary contours. To

analyse general problems, we consider surface finite element techniques in Chap-

ter 4. Here, we will analyse a few cases when analytical treatment is possible and

the results are easily observable.

First of all, let’s restrict our analysis to spherical particles, that is we consider

first a single spherical particle of radius R, as is shown in Fig. 3.2. In the

azimuthally symmetric case, the boundary contours are circles located in the

opposite poles of the sphere.

We solve problem (3.6) in a spherical coordinate system with its origin at the

particle centre and the polar angle θ counted from the axis of symmetry passing

through the centre of the circular contours.
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The domain is split into 3 sub-domains Ω0,Ω1 and Ω2 with the boundaries ∂Γ1

and ∂Γ2. The size of the boundary circle is fixed and is defined by the value of

the polar angle on the boundary circle. We consider a situation when there are

two boundaries characterised by θ0 and θ1. Due to the symmetry, the solution

is a function of only one variable, the polar angle θ, and the Laplace-Beltrami

problem is simplified to

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0, θ0 ≤ θ ≤ π − θ1 (3.14)

with the Dirichlet boundary conditions

uθ=θ0 = U1 and uθ=π−θ1 = U2. (3.15)

Equation (3.14) can be easily integrated twice to obtain after applying the

boundary conditions (3.15)

u = Ψ0(U2 − U1) ln

{
sin θ

sin θ0

1 + cos θ0

1 + cos θ

}
+ U1, (3.16)

where

Ψ0 =
1

ln
{

sin θ1
sin θ0

1+cos θ0
1−cos θ1

} .
One can now calculate total flux and define permeability of a spherical particle

K1
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QT = −K1

µ
D(U2 − U1) = −2π sin θ0δR

km
µ

∂u

∂θ

∣∣∣∣
θ=θ0

(3.17)

= −(U2 − U1)2πδRΨ0
km
µ
, (3.18)

where D is the characteristic length scale of the problem, κm is local perme-

ability of the surface layer, δR is the layer width and µ is liquid viscosity.

So that, taking simply D = 2R,

K1 = πΨ0
δR
R
km. (3.19)

One can see that, if we take θ1 = θ0, the permeability coefficient K1 is divergent

at θ0 = π/2, as is expected, when the two contours move closer to each other and,

at the same time, their radius R sin θ0 increases, that is

K1 =
δL
2R

πκm(
π
2
− θ0

) + O
(π

2
− θ0

)
, θ0 →

π

2

In the opposite limit, at θ0 = 0, when the two contours move further away from

each other and their radius decreases, the permeability coefficient tends to zero,

that is

K1 =
δL
2R

πκm
| ln θ0|

+ o

(
1

| ln θ0|

)
, θ0 → 0. (3.20)

Parametrically, the coefficient of permeability (3.19) is inversely proportional to

the particle radius R, so that larger particles create stronger resistance to the

flow. Noticeably, the coefficient demonstrates strong dependence on the surface
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layer thickness δR, that is K1 ∝ δ3
R since it is anticipated that km ∝ δ2

R, so that

evaluation of this parameter in applications is crucial for the accurate estimates

of the liquid dispersion rates.

How does the result affect the super-fast diffusion model (1.29), and basically

how can it be incorporated into the main diffusion equation? First, we approxi-

mate the permeability coefficient K by K1 obtained in the azimuthally symmetric

case at θ1 = θ0. Secondly, we use an approximate relationship between the radius

of curvature R sin θ0 of the boundary contour ∂Γ1 and the pendular ring volume

VB at θ0 � 1 or (s− se0)� 1, see more details in (Herminghaus 2005),

R sin θ0 ≈ Rθ0 = R

(
VB
R3

)1/4

,

to get

θ0(s) = (s− s0)1/4. (3.21)

That is, from (3.20) and (3.21)

K1 =
δL
R

πκm
| ln(s− s0)|

. (3.22)

So, finally, (1.29) using (3.22) becomes

∂s

∂t
= ∇ ·

{
D0∇s

| ln(s− s0)|(s− s0)3/2

}
. (3.23)

The model now includes a logarithmic correction to the non-linear coefficient

of diffusion due to the specific permeability of spherical particles. This is the

main result of this part. To some extent, this is an approximation, since we have
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used permeability of only one, single particle. To understand the accuracy of this

assumption, our next step is to analyse the coupled particle problem. We note,

also, that the obtained analytical solution represents a good benchmarking prob-

lem to test the numerical procedure implemented in Chapter 4. The character of

the correction term ∝ 1
| ln(s−s0)| will serve to provide a benchmark case to compare

results obtained in Chapter 6.

3.2.5 Analytical Solution in the Case of Azimuthal Sym-

metry for the System of Two Coupled Particles

Consider two identical spherical particles (of radii R) coupled via a liquid

bridge. In this case, the problem domain consists of two truncated spheres, Fig.

3.3, with functions representing distribution of pressure on each domain Ω
(1,2)
0

designated by u1 and u2 respectively. We consider a slightly less general case,

which is usually well observed in porous media, when the boundary contours are

roughly of the same size due to slow variation of pressure in the system. Using

again spherical coordinates on each domain Ω
(k)
0 with polar angle θ and assuming

azimutal symmetry (independence of distributions on the azimutal angle), the

system of the Laplace - Beltrami equations (3.10)-(3.13) can be written as follows

1

sin θ

∂

∂θ

(
sin θ

∂u1

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0 (3.24)

and

1

sin θ

∂

∂θ

(
sin θ

∂u2

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0, (3.25)
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but with a slightly different set of the boundary conditions

u1 |θ=θ0 = U1, (3.26)

u2 |θ=π−θ0 = U2, (3.27)

u1 |θ=π−θ0 = u2

∣∣
θ=θ0

(3.28)

and (
sin θ

∂u1

∂θ

)∣∣∣∣
θ=π−θ0

=

(
sin θ

∂u2

∂θ

)∣∣∣∣
θ=θ0

. (3.29)

Obviously, equations (3.24) and (3.25) can be integrated twice, similar to the

previous problem of a single particle (3.14), to obtain

u1 = C0 ln
sin θ

1 + cos θ
+ C1, (3.30)

u2 = B0 ln
sin θ

1 + cos θ
+B1, (3.31)

where C1 and B1 are free constant parameters to be found from the boundary

conditions, and θ0 defines the size of the bridge footprint on the particle surface.

Since we assumed, for simplicity, that all bridges are roughly identical, we have

only one parameter θ0 to describe the bridge size.

It is not difficult to see from (3.29), that one has C0 = B0 implying continuity

of the contact flux. Applying the remaining boundary conditions (3.26)-(3.28),
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from (3.30) and (3.31)

u1 = Ψ
(2)
0 (U2 − U1) ln

(
sin θ

1 + cos θ

1 + cos θ0

sin θ0

)
+ U1, (3.32)

u2 = Ψ
(2)
0 (U2 − U1) ln

(
sin θ

1 + cos θ

1− cos θ0

sin θ0

)
+ U2, (3.33)

where

Ψ
(2)
0 =

1

2 ln
(

1+cos θ0
1−cos θ0

) .
One can now calculate total flux and define permeability of the coupled spher-

ical particles K2

QT = −K2

2µ
D(U2 − U1) = −2π sin θ0δR

km
µ

∂u1

∂θ

∣∣∣∣
θ=θ0

= −(U2 − U1)2πδRΨ
(2)
0

km
µ
,

where D is the characteristic length scale of the cross-section in the problem, κm

is local permeability of the surface layer, δR is the layer width and µ is liquid

viscosity.

So that, taking simply D = 2R,

K2 = 2πΨ
(2)
0

δR
R
km. (3.34)
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3.2.6 Analytical Solution in the Case of Azimuthal Sym-

metry for the System of Three (and More) Particles

Consider three identical spherical particles (of radii R) coupled via a liquid

bridge. In this case, the problem domain consists of three truncated spheres, Fig.

3.5, with functions representing distribution of pressure on each domain Ω
(1,2,3)
0

designated by u1, u2 and u3 respectively. As in the previous example, consider

a slightly less general case, when the boundary contours are roughly of the same

size due to slow variation of pressure in the system.
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Figure 3.5: Illustration of the domains of the three linked (via a liquid bridge)

particles. The flow domains are designated by Ω
(1)
0 , Ω

(2)
0 and Ω

(3)
0 with the smooth

boundary contours ∂Γ
(1)
1 , ∂Γ

(2)
1 , ∂Γ

(1)
2 , ∂Γ

(2)
2 , ∂Γ

(1)
3 and ∂Γ

(2)
3 . Here, nΓj

are the
outward unit normal vectors to Γj and nsj are the outward unit tangential normal

vectors to the boundary contours on Ω
(1)
0 , Ω

(2)
0 and Ω

(3)
0 respectively.

Using again spherical coordinates on each domain Ω
(k)
0 with polar angle θ

and assuming azimutal symmetry (independence of distributions on the azimutal

angle), the system of the Laplace - Beltrami equations for three truncated spheres

can be written as follows
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1

sin θ

∂

∂θ

(
sin θ

∂u1

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0, (3.35)

1

sin θ

∂

∂θ

(
sin θ

∂u2

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0 (3.36)

and

1

sin θ

∂

∂θ

(
sin θ

∂u3

∂θ

)
= 0 , θ0 ≤ θ ≤ π − θ0, (3.37)

with the set of the Dirichlet and continuity boundary conditions

u1

∣∣
θ=θ0

= U1 and u3

∣∣
θ=π−θ0

= U3 (3.38)

u1

∣∣
θ=π−θ0

= u2

∣∣
θ=θ0

and u2

∣∣
θ=π−θ0

= u3

∣∣
θ=θ0

(3.39)

sin θ
∂u1

∂θ

∣∣∣∣
θ=π−θ0

= sin θ
∂u2

∂θ

∣∣∣∣
θ=θ0

and sin θ
∂u2

∂θ

∣∣∣∣
θ=π−θ0

= sin θ
∂u3

∂θ

∣∣∣∣
θ=θ0

(3.40)

The analytical solutions are given by

u1 = A0 ln
sin θ

1 + cos θ
+ A1, (3.41)

u2 = B0 ln
sin θ

1 + cos θ
+B1, (3.42)

u3 = C0 ln
sin θ

1 + cos θ
+ C1. (3.43)

where A0,1, B0,1 and C0,1 are free constants, and θ0 as before defines the size of

the bridge footprint on the particle surface.

It is not difficult to see from (3.40), that one has A0 = B0 = C0 implying con-
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tinuity of the flux at the contacts. Applying the remaining boundary conditions

(3.38)-(3.39), from (3.41)- (3.43), one gets a particular solution

u1 = Ψ
(3)
0 (U3 − U1) ln

(
sin θ

1 + cos θ

1 + cos θ0

sin θ0

)
+ U1, (3.44)

u2 = Ψ
(3)
0 (U3 − U1) ln

(
sin θ

1 + cos θ

1 + cos θ0

sin θ0

)
+

2

3
U1 +

1

3
U3, (3.45)

u3 = Ψ
(3)
0 (U3 − U1) ln

(
sin θ

1 + cos θ

1− cos θ0

sin θ0

)
+ U3, (3.46)

where

Ψ
(3)
0 =

1

3 ln
(

1+cos θ0
1−cos θ0

) .
The total flux and permeability can be calculated in a similar way as in the

case of two spheres

QT = −K3

3µ
D(U3 − U1) = −2π sin θ0δR

km
µ

∂u1

∂θ

∣∣∣
θ=θ0

= −(U3 − U1)2πδRΨ
(3)
0

km
µ
,

(3.47)

where as before D is the characteristic length scale of the cross-section in the

problem, κm is local permeability of the surface layer, δR is the layer width and

µ is liquid viscosity.

So that, taking D = 2R, one obtains

K3 = 3πΨ
(3)
0

δR
R
km. (3.48)
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3.2.7 Permeability of a System of Particles in a Symmet-

rical Case

Basically, summarising, from (3.19), (3.34), (3.34) and (3.48), one can see that

the permeability of a system of two coupled particles K2 is identical to that of a

single particle,

K2

K1

=
2Ψ

(2)
0

Ψ0

= 1 (3.49)

and the permeability of a system of three particles K3 is also identical to that of

a single particle,

K3

K1

=
3Ψ

(3)
0

Ψ0

= 1. (3.50)

It is not difficult to discern by deduction that in a general case of N coupled

particles in a chain

KN = πNΨ
(N)
0

δR
R
km = K1, (3.51)

where

Ψ
(N)
0 =

1

N ln
(

1+cos θ0
1−cos θ0

) .
Note, experimentally, the setup of many beads coupled by liquid bridges is often

used in microfluidics to create flexible water channels (Chen et al. 2016).

In conclusion, surface permeability of porous matrix elements is shown to be

evaluated on the basis of the Laplace-Beltrami boundary value problem. A correc-

tion to the global permeability coefficient of the porous matrix is discussed using

analytically treatable symmetric cases. It is interesting, and important, that for

a system of coupled spherical particles arranged in a chain, the line permeability
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is given by permeability of a single spherical particle with azimuthally symmetric

boundaries. A chain of particles is still an approximation to real configurations

of particulate porous media. One can expect effects of tortuosity. This will be

investigated in Chapter 6, where we use random packing configuration and study

their characteristic permeability.
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Chapter 4

Weak Formulation and Numerical

Solution of the Laplace Beltrami

Problem

The goal of this chapter is twofold. First of all, it is to consider numerically a

weak formulation of a problem, closely related to (3.2), but without complications

emerging from the boundaries on the surface element. This is to benchmark

the main numerical method in the study, the surface finite element technique

applied to weak formulations of the Laplace-Beltrami problems. Once the weak

formulation and the implementation of the numerical procedure was thoroughly

verified, we proceed with the second goal, which is to consider the main problem

(3.2) now with domain boundaries and with Dirichlet boundary conditions.
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4.1 The Surface Finite Element Method

In this section, we will consider the following Laplace-Beltrami type equation

on the closed surface Γ:

−∆Γu+ cu = f on Γ, (4.1)

which we will use for benchmarking. We suppose that f ∈ L2(Γ) is a given source

term and we will examine the cases when the constant c > 0 or when c = 0 and∫
Γ
fdA = 0.

We now consider the solution of the Laplace-Beltrami equation in weak form

which involves the use of weak derivative and surface Sobolev spaces as stated in

the following definition.

Definition 4.1. Surface Sobolev Space

Assume that p ∈ [1,∞] and let m be a non-negative integer (Hebey 2000). We

define the Sobolev space of order m as

Wm
p (Ω) = {u ∈ Lp(Ω) : Dnu ∈ Lp(Ω),∀ |n| ≤ m},

where Dn is the tangential derivative of order n and the natural m is the order of

the Sobolev space.(Dziuk and Elliott 2013.)

The Sobolev norm is then

‖u‖Wm
p (Ω) =

( ∑
|n|≤m

||Dnu||pLp(Ω)

)1/p

when 1 ≤ p <∞,
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and

‖u‖Wm
∞(Ω) = max

∑
|n|≤m

||Dnu||L∞(Ω) when p =∞.

We also consider the semi-norms as follows

|u|Wm
p (Ω) =

( ∑
|n|=m

||Dnu||pLp(Ω)

)1/p

when 1 ≤ p <∞,

and

|u|Wm
∞(Ω) = max

∑
|n|=m

||Dnu||L∞(Ω) when p =∞.

Note that, in case of p = 2, the space Wm
2 (Ω) is a Hilbert space.

The above definition, now we can define a weak formulation of 4.1: For all

φ ∈ H1(Γ), find the solution u ∈ H1(Γ) such that

∫
Γ

∇Γu · ∇Γφ dA+ c

∫
Γ

uφ dA =

∫
Γ

fφ dA. (4.2)

where dA is the surface measure. In case c = 0 we must impose the additional

constraint ∫
Γ

u dA = 0.

We can rewrite the equation 4.2 into a bilinear form a : H1(Γ)×H1(Γ) → R

and a linear form l : H1(Γ)→ R. Find u ∈ H1(Γ) such that

a(u, φ) = l(φ), (4.3)
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where,

a(u, φ) =

∫
Γ

∇Γφ · ∇ΓudA+

∫
Γ

cuφdA

and

l(φ) =

∫
Γ

fφdA

for all u, φ ∈ H1(Γ).

Theorem 4.2. (Well-posedness) There exists a unique weak solution u ∈ H1(Γ)

satisfying 4.3 (Ranner 2013), such that

||u||H1(Γ) ≤ c||f ||L2(Γ). (4.4)

Next, we will describe a partitioning (approximating) of the problem domain

into finite elements, triangles in our case.

4.1.1 Triangulated Surface and the Finite Element Space

Consider a smooth surface Γ, which is approximated by a piecewise polynomial

surface Γh, in the simplest case the approximating surface Γh is a space consisting

of triangles in T . The approximation surface Γh is a Lipschitz surface and lies in

Ωt (Dziuk and Elliott 2013)

101



Figure 4.1: Approximation Γh of a smooth surface Γ.

Suppose that the discrete triangulate surface Γh has the following properties,

(Guzman et al. 2018) :

1. Γh is the nonempty set of all triangles, such that

⋃
T∈Th

T,

where Th is the set of all triangles T .

2. All vertices belong to Γ.

3. Two triangles Ti, Tj ∈ Th, we have Ti ∩ Tj = ∅ whenever i 6= j.

4. For two neighbours triangles Ti and Tj should share a common edge.

To realise the triangulation we have made use of the software GMSH (Geuzaine

and Remacle 2006). We use this to generate a coarse surface Γh and then refine by

projecting the new degrees of freedom onto the surface to finer approximations,

as illustrated in Figure 4.2.
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(a) No refinements, N =

18.

(b) 1st refinements, N =

66.

(c) 2nd refinements, N =

258.

(d) 3rd refinements, N =

1026.

(e) 4th refinements, N =

4098.

(f) 5th refinements, N =

16386.

Figure 4.2: Illustration examples of refinements of the surface with a sphere, where
N is number of nodes.

Now, we are in a position to approximate the solution of the Laplace-Beltrami

equation over the discrete surface. We begin by recalling the definition of the

tangential gradient from the definition 3.3 as

∇Γu = P∇u.

If we construct and analytically treat an approximation of the smooth surface Γ
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by the discrete surface Γh which is defined by the union of the set of all triangles

⋃
T∈Th

T,

then will obtain the tangential gradient on the discrete surface in a piecewise sense

as follows

∇Γh
u = Ph∇u

where (Ph)ij = δij − nhinhj, (i,j=1,2,3,...,n).

Next, we set up the surface finite element method on discrete surface for solving

the Laplace-Beltrami Equation. Since the approach is quite transparent, firstly

we will treat the piecewise linear finite element on the discrete surface and then

approximate the solution of the Leplace-Beltrami equation.

We have the definition of the piecewise linear finite element space on the

discrete surface as (Dziuk and Elliott 2013):

Vh := {φh ∈ C0(Γh)

∣∣∣∣ φh∣∣T is a linear function for each T ∈ Th}.

The space above is spanned by the nodal basis χ1, χ1, ...χN , that is, Vh =

span(χi). Furthermore, we have that

χj ∈ Vh

and for nodal values Xk over Γh

χj(Xk) = δjk,
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where j, k = 1, 2, 3, ..., N .

Since {χi} forms a basis of Vh we have that every function Uh ∈ Vh can be

written as

Uh(x) =
N∑
j=1

αjχj(x), (x ∈ Γh)

for some real constants αj, j = 1, 2, 3, ..., N .

4.1.2 The Discrete Variational Equation

Next, the finite element method can be defined by the problem 4.2 which

consists of the following discrete version of the weak formulation :

Definition 4.3. Let Vh ⊂ H1(Γ) then the finite element approximation is the

unique function Uh ∈ Vh such that

∫
Γh

∇Γh
φh · ∇Γh

UhdAh +

∫
Γh

cUhφhdAh =

∫
Γh

FhφhdAh, ∀φh ∈ Vh. (4.5)

As in the continuous case when c = 0 we impose the additional constraint that

∫
Γh

UhφhdAh = 0.

We can rewrite the equation 4.5 by modifying the bilinear and linear forms

used in the continuous case, that is consider ah : Vh × Vh → R and lh : Vh → R

be defined through:

ah(u, φ) =

∫
Γh

∇Γh
φ · ∇Γh

udAh +

∫
Γh

cuφdAh
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and

lh(φ) =

∫
Γh

fφdAh.

The problem then becomes to find Uh ∈ Vh such that

ah(Uh, φh) = lh(φh) for all φh ∈ Vh. (4.6)

Theorem 4.4. (Well-posedness, Ranner 2013). There exists a unique solution

Uh ∈ Vh to 4.5 that satisfies:

||Uh||H1(Γh) ≤ c||f ||L2(Γ). (4.7)

To practically compute the finite element approximation we notice that the

equation 4.5 is actually a linear system for the solution Uh =
N∑
j=1

αjχj and is

equivalent to
n∑
j=1

( Kkj +Mkj) αj = Fk, (k = 1, 2, 3, ...N),

here the stiffness matrix

Kkj =

∫
Γh

∇Γh
χk · ∇Γh

χjdAh (k, j = 1, ..., N),

the mass matrix

Mkj = c

∫
Γh

χkχjdAh, (k, j = 1, ..., N)
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and

Fk =

∫
Γh

FhχkdAh.

Therefore, the linear system reads

(K +M)α = F,

for α = (α1, α2, α3, ..., αN).

Note that this is a square symmetric system. To assemble the stiffness matrix

and mass matrix, the computational of the surface derivative on the triangulate

surface is require. The details of the finite element method are describe in ap-

pendix C.

4.2 Benchmarking

To test the implementation of the surface finite element procedure, we first

consider a problem similar to the Laplace-Beltrami boundary value problem (3.2),

but on a closed surface Γ in R3 without boundaries, that is presuming ∂Γ = ∅.

The closed surface Γ is assumed to be smooth with a well-defined outward unit

normal vector nΓ. In the first tests, we will find weak solutions to

−∆Γu+ cu = f on Γ (4.8)
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where u is an unknown function and ∆Γ is the Laplace-Beltrami operator, which

is defined on Γ in the usual way by means of the tangential surface gradient

∇Γ = ∇− nΓ(nΓ · ∇)

such that

∆Γ = ∇Γ · ∇Γ.

In (4.8), c ≥ 0 and f is a given source term, so that the equation represents

a more general case of a reaction-diffusion equation, but on the other hand

without boundaries on the surface, which may cause unnecessary complications

in the numerical implementations. Note, in case c is identically zero, one needs

to add more conditions to guarantee well-posedness of the problem (Olshanskii

et al. 2012).

4.2.1 Numerical Examples

To benchmark our code written in Matlab, we pose a set of problems with

known exact solutions. Note, all simulations were performed on a cluster. We

have solve the finite element method on the surface and the errors. When ap-

proximating the partial difference equation using finite element method which

the finite element subspace consisting of linear function. Since the functions is

used for numerical, the approximation space completely linear over individual ele-

ments. Consequently we can choose an interpolation Iuh that is matches the true

solution at each nodes (Ern and Guermond 2013), the error E(h) is calculated

108



in H1 semi-norm defined as follows

E(h) = ||∇Γh
(u− Iuh)||L2(Γh) (4.9)

where u is the exact solution and Iuh be the interpolant of u.

We will have the error estimate in the first order derivative of the error which

associate with the interpolant as follows

Theorem 4.5. Let u ∈ H(Γ) and let Iu ∈ Vh be an interpolant of u , then

||∇Γh
(u− Iuh)||L2(Γh) ≤ ch|u|H2(Γh) (4.10)

Proof. The proof is in theorem 0.1 of Tuncer 2013

From that, we determine another quantity, which is useful in the comparisons,

the so-called experimental order of convergence (EOC).

Definition 4.6. Experimental order of convergence (Jackaman et al.

2019) Given two sequences E(hi) and hi ↘ 0. The experimental order of con-

vergence (EOC) can be defined by comparing two errors E(hi) and E(hi−1) at

different mesh size hi and hi−1

EOC(i) =
log(E(hi)/E(hi−1))

log(hi/hi−1)
. (4.11)

Example 1 Our first example is to consider the problem

∆Γu+ cu = f (4.12)
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on the unit sphere: Γ = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}.

As we have already mentioned before, we assume that there is no boundaries

∂Γ = ∅ on Γ. To obtain an exact solution, we set c = 1 and f = 13xyz. Then, it

is not difficult to discern that the exact solution is given by u = xyz (Olshanskii

et al. 2012).

We start our tests with a relatively low resolution of just 66 node approxima-

tion of Γ gradually increasing the number of nodes to a maximum value 262146

to observe numerical convergence of the procedure. For each resolution, we define

the largest value of the mesh size h. The results are summarised in Table 4.1 and

are illustrated in Fig. 4.3 and Fig. 4.4.

Figure 4.3: Distribution of non-dimensional pressure on the surface at 262146
node resolution. The colour bar presents the value of the reduced non-dimensional
pressure.
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Figure 4.4: A log-log plot of the approximation error in H1 semi-norm as a func-
tion of the non-dimensional mesh size h/R. The numerical data are shown by
symbols and the dashed line is the slope error ∝ h/R shown for comparison.
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i n h/R E(h) EOC

1 66 0.5792 0.0728 -

2 258 0.3088 0.0436 0.8140

3 1026 0.1577 0.0231 0.9435

4 4098 0.0795 0.0118 0.9867

5 16386 0.0399 0.0059 0.9983

6 65538 0.0200 0.0030 1.0010

7 262146 0.0100 0.0015 1.0012

Table 4.1: Results of the problem (4.12) benchmarking. Here, i is the refinement
step, n is number of nodes, h/R is the non-dimensional mesh size, E(h) is the
error in H1 semi-norm, see formula 4.9 and EOC is the experimental order of con-
vergence, see formula 4.11. Notice that the results clearly show that the method
is first order accurate in the H1 semi-norm, as is also verified by theorem 4.5.

Example 2 In the second numerical example, we consider problem (4.12) but

at c = 0. In this case

−∆Γu = f. (4.13)

Since ∫
Γ

u dA = 0,

to obtain a well-posed problem, an additional condition

∫
Γ

f dA = 0
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should be imposed and satisfied to guarantee existence and uniqueness of u.

For the purpose of benchmarking, we select a particular solution

u = sin(πx) sin(πy) sin(πz)

which requires

f = −∇Γ · v, v = ∇Γu = ∇u− (∇u · n)n

and

∇Γ · v = ∇ · v −
3∑
i=1

(∇vi · n)ni

where the normal vector to the surface is obviously

n(x, y, z) =
(x, y, z)√
x2 + y2 + z2

.

The results are summarised in Table 4.2 and are illustrated in Figs. 4.5 and 4.6.
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Figure 4.5: Distribution of non-dimensional pressure on the surface at 262146
nodes. The colour bar presents the value of the reduced non-dimensional pressure.

Figure 4.6: A log-log plot of the approximation error in H1 semi-norm as a func-
tion of the non-dimensional mesh size h/R. The numerical data are shown by
symbols and the dashed line is the slope error ∝ h/R shown for comparison.
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i n h/R E(h) EOC
∫

Γh
fdA

∫
Γh
udA

1 66 0.5792 0.2390 - 0.7300 0.0179

2 258 0.3088 0.1305 0.9622 0.1839 0.0051

3 1026 0.1577 0.0661 1.0118 0.0453 0.0013

4 4098 0.0795 0.0329 1.0200 0.0114 0.0003

5 16386 0.0399 0.0163 1.0141 0.0028 0.0001

6 65538 0.0200 0.0081 1.0077 0.0007 0.0000

7 262146 0.0100 0.0041 1.0039 0.0001 0.0000

Table 4.2: Results of the problem (4.13) benchmarking. Here, i is the refinement
step, n is number of nodes, h/R is the non-dimensional mesh size, E(h) is the
error in H1 semi-norm, see formula (4.9) and EOC is the experimental order
of convergence, see formula 4.11. Notice that the results clearly show that the
method is first order accurate in the H1 semi-norm, as is also verified by theorem
4.5.

In conclusion, we have shown the performance of the surface finite element

method by the illustration of two numerical examples. The accuracy of the method

is observed by the error in H1 semi-norm that we have as expected the first order

convergence. The approximation error plots in the log-log scale are presented

in Fig. 4.4 and 4.6. The results showed the approximate solutions converge

accurately to the analytic solutions as the mesh size, h/R is refined. We have also

computed the experimental order of convergence and show that it approaches the

proven values.

Moreover, the performance of the numerical scheme will be used in the bound-

ary value problem for the Laplace-Beltrami equation (3.2) which the detail is in
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the following section to determine permeability.

4.3 Dirichlet Boundary Value Problem for the

Laplace–Beltrami Equation

In this section, we consider the Dirichlet boundary value problem for the

Laplace–Beltrami Equation on a truncated sphere which is come from cutting

a close sphere with a planes. Consequently the shape of the obtained boundary

is circle with the radius R sin θ0, R is the radius of sphere, see Fig. 4.7. For more

information is given in the topic 3.2

Figure 4.7: Illustration of the physical domains of the problem Ω0, Ω1 and Ω2

with the boundaries ∂Γ1 and ∂Γ2 defined on Γ. Here, nΓ is the unit outward
normal vector to the surface Γ and ns is the tangential outward normal vector to
the boundaries ∂Γ1,2.

This problem implies that ∂Γ 6= ∅. We also suppose that c ≡ 0 and a the
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source term f ≡ 0, that is

−∆Ω0u = 0 on Ω0 (4.14)

subject to the Dirichlet boundary conditions

u|∂Γ1 = u1 = const (4.15)

and

u|∂Γ2 = u2 = const. (4.16)

The numerical procedure to approximation weak formulation of the Laplace-

Beltrami boundary value problem is expected to be similar to that applied to the

benchmark problems, though the weak formulation itself needs some amendments.

4.3.1 The Laplace-Beltrami Boundary Value Problem: Weak

Formulation

In this section, we are going to formulate weak forms of the Laplace-Beltrami

problem (4.14) set on a truncated sphere, Fig. 4.7.

To obtain a weak form, equation (4.14) is multiplied by a test function v ∈

H1
0 (Ω0) (v|∂Γ1∪∂Γ2

= 0) and is integrated over the domain of the definition to

obtain

−
∫

Ω0

(∆Ω0u)v dA = 0. (4.17)
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Using the product rule for divergence and gradient operators

∇ · (v∇Ω0u) = (∇Ω0v) · (∇Ω0u) + v∇ · (∇Ω0u), (4.18)

(4.17) can be rewritten as follows

−
∫

Ω0

v∇Ω0 · (∇Ω0u) dA =

∫
Ω0

(
∇Ω0v · ∇Ω0u−∇Ω0 · (v∇Ω0u)

)
dA. (4.19)

We now apply the Green theorem to the second term on the right-hand side

of the equation to obtain

−
∫

Ω0

v∇Ω0 · (∇Ω0u) dA =

∫
Ω0

∇Ω0v · ∇Ω0u dA−
∫
∂Γ1∪∂Γ2

(v∇Ω0u) ·ns1 dl. (4.20)

Therefore, (4.17) becomes

∫
Ω0

∇Ω0v · ∇Ω0u dA−
∫
∂Γ1∪∂Γ2

(v∇Ω0u) · ns1 dl = 0. (4.21)

The second term of (4.21) vanishes because of the choice of the test functions,

so that as a net result

∫
Ω0

∇Ω0v · ∇Ω0u dA = 0. (4.22)

We then apply the boundary condition (4.15) - (4.16) to approximate the

solutions by using the finite element method.
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4.3.2 Numerical Examples

In the case of Dirichlet boundary conditions, we approximate the solution of

the Laplace - Beltrami equation

∆Ω0u = 0, (4.23)

on a truncated sphere, see Fig. 4.7. We have used the Dirichlet boundary condi-

tions ;

u|∂Γ1 = u1 and u|∂Γ2 = u2. (4.24)

The results for the pressure u are presented in Fig. 4.8. In order to show the

convergence of the finite element approximation, we also show the error measured

in the H1 semi-norm, see Fig. 4.9 and Table 4.3.
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Figure 4.8: Distribution of non-dimensional pressure u/u0 plotted on surface at
592960 nodes. The angle α = 180°, θ0 = 22.5°. The colour bar presents value of
non-dimensional pressure. Here, u0 = 2γ

R
cos θc, θc is the contact angle and γ is

the coefficient of the surface tension.
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Figure 4.9: A log-log plot of the approximation error in H1 semi-norm as a func-
tion of the mesh size h/R. The numerical data are shown by symbols and the
dashed line is the slope error ∝ h/R shown for comparison.
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i Number of Nodes h/R E(h) EOC

1 40 0.9078 0.0466 -

2 144 0.4815 0.0248 0.9947

3 672 0.1996 0.0110 0.9232

4 2368 0.1226 0.0059 1.2781

5 9152 0.0611 0.0029 1.0199

6 37252 0.0307 0.0014 1.0581

7 148496 0.0154 0.0007 0.9619

8 592960 0.0077 0.0004 0.9985

Table 4.3: Results for the bench-marking of one sphere problem with non-
dimensional pressure on the boundaries u1/u0 = 0.8 and u2/u0 = 0.2. Here,
u0 = 2γ

R
cos θc, θc is the contact angle and γ is the coefficient of the surface ten-

sion, h/R is the non-dimensional mesh size, E(h) is the error in H1 semi-norm,
see formula (4.9) and EOC is the experimental order of convergence, see formula
(4.11). Notice that the results clearly show that the method is first order accurate
in the H1 semi-norm, as is also verified by theorem 4.5.

In this practice, the convergence of the H1 errors as a function of the mesh

size h is illustrated in Table 4.3. One can see, that the errors converge optimally,

that is EOC ≈ 1, as is expected from the order of the numerical method. One can

also see in Figure 4.9, that the approximation errors in the H1 semi norm are in

decline to zero when the mesh size is decreased. Moreover, the experimental order

of convergence is observed, which the values correspond to the standard norm in

the error analysis. These mean that the surface finite element method is a very

efficient from a computational the solutions of the Laplace-Beltrami equation.

Next, we will approximate the total flux and the surface permeability for one
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particle.

4.4 Surface Permeability of a Single Particle

We have used this section to demonstrate how the coefficient of permeability

can be approximated by the solutions of the Laplace - Beltrami equation. In this

part of our study, we consider the truncated spherical domain in case of arbi-

trary oriented boundaries and the arbitrary particle shapes. One can distinguish

two cases. First, when the particle still has a spherical shape but the azimuthal

symmetry is lost, that is the boundaries are oriented arbitrary to each other. Sec-

ondly, the particle shape may differ from the spherical shape, which is commonly

the case in natural materials like sand.

4.4.1 Arbitrary Oriented Boundaries

One way to understand the coefficient of permeability is to observe the total

flux as function of the angle α, so the next topic will focus on the value of total flux

with respect to different positions of the boundary. In this research, the boundary

∂Γ1 is fixed and the boundary ∂Γ2 is rotated around x-axis, anticlockwise for α

which 0 ≤ α ≤ 180. The examples of the domain have been shown in Fig. 4.10.

Using the surface finite element method we are able to approximate the total flux

and hence the permeability of the particle.
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(a) α = 180°, N = 2368. (b) α = 170°, N = 2273.

(c) α = 160°, N = 2082. (d) α = 150°, N = 2047.

(e) α = 140°, N = 2133. (f) α = 130°, N = 2084.

Figure 4.10: Illustration examples of the surface given by a truncated sphere. The
examples show the different angle α with θ0 = 22.5°, see details in Fig. 4.7. N is
the number of nodes.
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The results have been shown for the tilt angle α = 165° and α = 150° in Fig.

4.11 and Fig. 4.12 respectively, where the value of the non-dimensional pressure

on the boundaries are fixed at
u1

u0

∣∣∣
∂Γ1

= 0.8 and
u2

u0

∣∣∣
∂Γ2

= 0.2.

Figure 4.11: Distribution of non-dimensional pressure u/u0 plotted on the surface
using 523328 nodes resolution of the numerical method. The angle α = 165°,
θ0 = 22.5° The colour bar presents value of non-dimensional pressure. Here,
u0 = 2γ

R
cos θc, θc is the contact angle and γ is the surface tension.
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Figure 4.12: Distribution of non-dimensional pressure u/u0 plotted on the surface
using 613090 nodes resolution of the numerical method. The angle α = 150°,
θ0 = 22.5° The colour bar presents value of non-dimensional pressure. Here,
u0 = 2γ

R
cos θc, θc is the contact angle and γ is the surface tension.

Now we have observed the total flux in case of arbitrary oriented boundaries,

see Table 4.4.
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Tilt angle α,

[deg]

Total flux QT/Q0 Tilt angle α,

[deg]

Total flux QT/Q0

75 1.5527 125 1.0882

80 1.4567 130 1.0711

85 1.3803 135 1.0562

90 1.3183 140 1.0435

95 1.2656 145 1.0327

100 1.2244 150 1.0236

105 1.1882 155 1.0161

110 1.1574 160 1.0102

115 1.1311 165 1.0055

120 1.1079 170 1.0024

Table 4.4: Non-dimensional total flux QT/Q0 for one spheres problem in case of
arbitrary oriented boundaries with the different tilt angle α. The value of the non-
dimensional pressure on the boundaries are fixed at u1/u0 = 0.8 and u1/u0 = 0.2
on ∂Γ(1,2). Here, Q0 is the normalized total flux in the azimuthally symmetric
case, u0 = 2γ

R
cos θc, θc is the contact angle and γ is the surface tension. QT is the

dimensional total flux, see formula 3.18.

.

This table shows the values of non-dimensional total flux at the different tilt

angle α between 75 degrees and 170 degrees at 5 degrees interval.

It can be seen that the value of non-dimensional total flux QT/Q0 through

the spherical element decrease slightly when the tilt angle α is increasing and the

boundary contours move away from each other.

Next, we will take those data to examine the dependency of the total flux,
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and hence the permeability as a function of the tilt angle α. The graph is already

illustrated in Figure 4.13.

Figure 4.13: Non-dimensional total flux QT/Q0 as a function of tilt angle α at
fixed values of the non-dimensional pressure on the boundaries u1/u0 = 0.8 and
u1/u0 = 0.2 on ∂Γ(1,2), where Q0 is the normalized total flux in the azimuthally
symmetric case, u0 = 2γ

R
cos θc, θc is the contact angle and γ is the surface tension.

QT is the dimensional total flux, see formula 3.18. The solid line is the fit to the
data QT/Q0 = AαB + C at A = 4.11× 104, B = −2.565 and C = 0.9183.

The picture 4.13 presents the non-dimensional total flux QT/Q0 as a func-

tion of tilt angle α set up with the value of the non-dimensional pressure on the

boundaries u1/u0 = 0.8 and u1/u0 = 0.2 on ∂Γ(1,2) as is shown in Fig. 4.7. Sym-

bols are the numerical result obtained at high resolution (maximum mesh size

h/R ≈ 0.003). The solid line is the fit to the data QT/Q0 = AαB + C with

A = 4.11× 104 ± 1.23× 104, B = −2.565± 0.0710 and C = 0.9183± 0.0070.
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One can conclude that at relatively large tilt angles which close to the the

angle in the azimuthal symmetrical case, the liquid total flux value and hence

permeability also close to that predicted on the basis of the azimuthally symmetric

solution, see equation (3.19). One may notice that the value of permeability can

be approximated with the accuracy 50 % for the small tilt angles (Sirimark et al.

2018b). This effect will be considered in a particle ensemble setting in Chapter 6.

Since the permeability is expected to be related with (or even proportional to)

the effective length of the pathway connecting the boundary contour, we next con-

sider the specific systematic change of the original spherical shape to understand

the role of effective parameters characterising these variations.

4.4.2 Arbitrary Particle Shapes

In this section, the arbitrary particle shapes have been considered by pertur-

bations of a sphere preserving surface smoothness. The results formed in part our

recent publication (Sirimark et al. 2018b).

Based on the previous methodology, we will approximate solutions of the

Laplace-Beltrami Dirichlet boundary value problem set up with perturbed par-

ticle surfaces element to calculate the liquid total flux, that is used to measure

the surface permeability. We have changed the original spherical shape via the

transformation r(θ, φ) = R(1 +As cos(mθ) cos(nφ)) at m = n = 5, where R is the

radius of spherical, As is the shape perturbation amplitude, θ and φ are the angles

in the spherical coordinate system. We keep the original boundary contours which

are circular and are not perturbed. The results have been shown in Figure 4.14.
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Figure 4.14: Distribution of the non-dimensional pressure u/u0 on the truncated
surfaces given by r(θ, φ) = R(1 + As cos(mθ) cos(nφ) at m = n = 5 and different
As, as is shown in the figure, with identical circular boundary contours at u1/u0 =
0.8, u2/u0 = 0.2, θ0 = 22.5° and α = 180°. The colour scheme represents the value
of the non-dimensional pressure, as in Fig. 4.12. Here, u0 = 2γ

R
cos θc, θc is the

contact angle and γ is the surface tension of the liquid.
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Next, we show how the perturbation of the spherical shape have an effect on

the liquid total flux, and hence permeability. The results are given in the Table

4.5.

Amplitude As Total flux QT/Q0 Amplitude As Total flux QT/Q0

0.005 0.9960 0.100 0.9793

0.010 0.9948 0.150 0.9637

0.030 0.9900 0.250 0.9037

0.050 0.9869 0.350 0.8254

Table 4.5: Non-dimensional total flux QT/Q0 in case of arbitrary particle shapes
with different amplitudes As. The values of the non-dimensional capillary pressure
on the boundaries are fixed at u1/u0 = 0.8 and u1/u0 = 0.2 on ∂Γ(1,2). Here
Q0 is the total flux value through the unperturbed spherical element in similar
conditions, u0 = 2γ

R
cos θc, θc is the contact angle and γ is the surface tension. QT

is the dimensional total flux, see formula 3.18.

.

We now consider the characteristic arc length scale Lp which can be estimated

by means of

QT

Q0

≈ LP
(π − 2θ0)R

≈ 1 +
A2
sm

2

8
, (4.25)

at A2
sm

2 � 1. The estimate of the characteristic arc length scale LP of the

perturbed shape can be defined along the meridian line (φ = const) taking into

account that A2
sm

2 � 1 and considering the averaging in the azimuthal direction,

we obtain the formula,

LP =

∫ π−θ0

θ0

√
1 +

1

R2

(
∂r

∂θ

)2

Rdθ
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=

∫ π−θ0

θ0

√
1 + A2

sm
2 sin2 (mθ) cos2 (nφ)Rdθ

=

∫ π−θ0

θ0

√
1 + A2

sm
2
(1− cos(2mθ))

2

(1 + cos(2nφ))

2
Rdθ

=

∫ π−θ0

θ0

√
1 +

A2
sm

2

4
(1− cos(2mθ))(1 + cos(2nφ))Rdθ

≈
∫ π−θ0

θ0

{
1 +

A2
sm

2

8
(1− cos(2mθ))(1 + cos(2nφ))

}
Rdθ.

That is after averaging over the azimuthal angle and neglecting the term of

sin θ0

2m
� 1. Therefore, we obtain

LP ≈

{∫ π−θ0

θ0

{
1 +

A2
sm

2

8
(1− cos(2mθ))

}
Rdθ

and

LP ≈ (π − 2θ0)R

{
1 +

A2
sm

2

8

}
.

Since it is expected that the total volume flux is proportional to the pressure

gradient, one can anticipate that it depends on the effective arc length. From this

assumption, we have

QT

Q0

≈ (π − 2θ0)R

LP
≈ 1− A2

sm
2

8
. (4.26)

To understand the effective pathway length scale, we now consider the depen-

dency of the total flux through such elements with the amplitude of perturbation

As as shown in Fig. 4.15.
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Figure 4.15: Non-dimensional total flux QT/Q0 as a function of the shape per-
turbation amplitude A2

s at fixed values of u1/u0 = 0.8 and u1/u0 = 0.2 on ∂Γ(1,2),
α = π, m = n = 5 and θ0 = θ1 = π/8. Here Q0 is the total flux value through
the unperturbed spherical element in similar conditions. QT is the dimensional
total flux, see formula 3.18. The numerical results obtained at medium resolution
(maximum mesh size h/R ≈ 0.01) are shown by symbols and the solid line is the
best fit QT/Q0 = 1−BsA

2
s at Bs = 1.7.

The graph shows the dependency of the total flux and hence the permeability

as a function of the amplitude A2
s. It is related with the arc length LP , equation

(4.26). The simulations are performed at the medium resolution, h/R ≈ 0.01 set

up with the value of the non-dimensional capillary pressure on the boundaries,

u1/u0 = 0.8 and u1/u0 = 0.2 on ∂Γ(1,2). Symbols are the results of averaging the

liquid total flux averaging and the solid line is the best fit to the data

QT

Q0

= 1−BsA
2
s at Bs = 1.7.
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From the line graph, one can see that the match is not perfect because we have

obtained the value of Bs ≈ 1.7, while the expected value would be Bs ≈
m2

8
≈ 3.1.

This implies that the problem of surface diffusion over uneven landscapes is more

complicated phenomenon than the simple scaling which is suggested by the ef-

fective path way length. We note that the effective parameter LP cannot be

estimated in the simple way. One need to consider the problem over strongly dif-

ferent surface profile with the large areas inaccessible to the liquid flow (Sirimark

et al. 2018b).

In conclusion, we demonstrated how the coefficient of permeability of a porous

matrix element can be estimated from the weak solution of the Laplace-Beltrami

equation obtained by the FEM method. We have benchmarked the methodology

using the simplest case of a single sphere without an internal boundary. We have

then analyzed several cases of arbitrary particle shapes and arbitrary oriented

boundaries. The methodology developed in this chapter can be used in practical

application with more elements involved. This will be the subject in Chapters 5

and 6.
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Chapter 5

The Laplace-Beltrami Problem in

Coupled Domains

We present in this chapter the Laplace-Beltrami problem in two coupled do-

mains using the finite element method. The key idea is quite similar to the

Laplace-Beltrami problem on a single spherical surface, which is explained in the

previous chapter, but now we have two domains with the continuity of pressure

and the total flux on the boundary of internal sub-domains. The coupled-sphere

problem is stated in Chapter 3, see 3.2.2. In order to ensure that the numerical

method behaves with optimal efficiency in this case with modified boundary condi-

tions, we verify the numerical results on a model problem with a known analytical

solution (3.32)-(3.33) by checking the convergence of the numerical method. In

this part, the experimental order of convergence (EOC) is calculated, as before,

by means of (4.11).
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5.1 The Problem in Two Coupled Domains

We consider the problem of two particles coupled through the ”common”

boundaries ∂Γ
(2)
1 and ∂Γ

(2)
2 , as is shown in Fig. 3.3.

We are solving the following Laplace - Beltrami problem

−∆
Ω

(1)
0
u1 = 0 (5.1)

and

−∆
Ω

(2)
0
u2 = 0, (5.2)

with Dirichlet boundary conditions

u1|∂Γ
(1)
1

= α1 and u2|∂Γ
(1)
2

= α2 (5.3)

and two continuity conditions due to the conservation of mass

u1|∂Γ
(2)
1

= u2|∂Γ
(2)
2

= const (5.4)

and ∮
∂Γ

(2)
1

∇u1 · ns1|∂Γ
(2)
1
dl = −

∮
∂Γ

(2)
2

∇u2 · ns2 |∂Γ
(2)
2
dl, (5.5)

where α1 and α2 are some real constants.

Next, the weak formulation of the mathematical model will be derived for the

numerical analysis.
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5.1.1 The Laplace-Beltrami Coupled Boundary Value Prob-

lem: Weak Formulation

In this section, we are going to describe the weak formulation of the coupled

Laplace-Beltrami boundary value problem (5.1)-(5.2) set on the truncated spheres,

which will be later solved numerically by the surface finite element method using

the Galerkin formulation. We define the surface Ω
(1)
0 and Ω

(2)
0 as truncated spheres,

shown in Fig. 3.3.

As before, Chapter 4, equation (5.1) is multiplied by a test function v1 ∈

H1
0 (Ω

(1)
0 ) and equation (5.2) is multiplied by v2 ∈ H1

0 (Ω
(2)
0 ) (v1|∂Γ

(1)
1 ∪ ∂Γ

(2)
1

= 0 and

v2|∂Γ
(1)
2 ∪ ∂Γ

(2)
2

= 0) to get the weak form. We integrate over the domains to obtain

−
∫

Ω
(1)
0

(∆
Ω

(1)
0
u1)v1 dA = 0 on Ω

(1)
0 , (5.6)

−
∫

Ω
(2)
0

(∆
Ω

(2)
0
u2)v2 dA = 0 on Ω

(2)
0 . (5.7)

Using the product rule for divergence and gradient operators

∇ · (v∇u) = (∇v) · (∇u) + v∇ · (∇u), (5.8)

(5.6) and (5.7) can be rewritten as follows

−
∫

Ω
(1)
0

v1∇Ω
(1)
0
· (∇

Ω
(1)
0
u1) dA =

∫
Ω

(1)
0

(
∇

Ω
(1)
0
v1 · ∇Ω

(1)
0
u1 −∇Ω

(1)
0
· (v1∇Ω

(1)
0
u1)
)
dA

(5.9)
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and

−
∫

Ω
(2)
0

v2∇Ω
(2)
0
· (∇

Ω
(2)
0
u2) dA =

∫
Ω

(2)
0

(
∇

Ω
(2)
0
v2 · ∇Ω

(2)
0
u2 −∇Ω

(2)
0
· (v2∇Ω

(2)
0
u2)
)
dA.

(5.10)

We now apply the Green theorem to the second term on the right-hand side

of the both equations to obtain

−
∫

Ω
(1)
0

v1∇Ω
(1)
0
·(∇

Ω
(1)
0
u1) dA =

∫
Ω

(1)
0

∇
Ω

(1)
0
v1·∇Ω

(1)
0
u1 dA−

∫
∂Γ

(1)
1 ∪ ∂Γ

(2)
1

(v1∇Ω
(1)
0
u1)·ns1 dl,

(5.11)

and

−
∫

Ω
(2)
0

v2∇Ω
(2)
0
·(∇

Ω
(2)
0
u2) dA =

∫
Ω

(2)
0

∇
Ω

(2)
0
v2·∇Ω

(2)
0
u2 dA−

∫
∂Γ

(1)
2 ∪ ∂Γ

(2)
2

(v2∇Ω
(2)
0
u2)·ns2 dl.

(5.12)

Therefore, (5.6) and (5.7) become

∫
Ω

(1)
0

∇
Ω

(1)
0
v1 · ∇Ω

(1)
0
u1 dA−

∫
∂Γ

(1)
1 ∪ ∂Γ

(2)
1

(v1∇Ω
(1)
0
u1) · ns1 dl = 0, (5.13)

and

∫
Ω

(2)
0

∇
Ω

(2)
0
v2 · ∇Ω

(2)
0
u2 dA−

∫
∂Γ

(1)
2 ∪ ∂Γ

(2)
2

(v2∇Ω
(2)
0
u2) · ns2 dl = 0. (5.14)

The second terms in (5.13) and (5.14) vanish because of the choice of the test

functions, so that as a net result

∫
Ω

(1)
0

∇
Ω

(1)
0
v1 · ∇Ω

(1)
0
u1 dA = 0, (5.15)
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and ∫
Ω

(2)
0

∇
Ω

(2)
0
v2 · ∇Ω

(2)
0
u2 dA = 0. (5.16)

We then apply the boundary condition (5.3) - (5.5) to find the solutions by using

the finite element method.

5.1.2 Numerical Examples

Here, the surface finite element approximation to the Laplace-Beltrami prob-

lem in two coupled domains, see Fig. 5.1, corresponding to the equation (5.1)-(5.5)

will be presented. In all examples, the linear finite element discretisation has been

used. The experimental order of convergence is calculated by (4.11).
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Figure 5.1: Illustration of the domains of two coupled particles. The flow domains
are designated by Γ1 and Γ2 with the smooth boundary contours ∂Γ

(1)
1 , ∂Γ

(2)
1 ,

∂Γ
(1)
2 and ∂Γ

(2)
2 respectively. Here, α is an angle between boundaries, nΓj

are the
outward unit normal vectors to Γj and nsj are the outward unit tangential normal
vectors to the boundary contours on Γ1 and Γ2 respectively.

The presentation of the simulation will be split between two case : one with the

azimuthal symmetrical case, one with the case of arbitrary oriented boundaries.

The numerical examples are illustrated next topic.

5.1.2.1 The Azimuthal Symmetrical Case in Coupled Domains

To start with the first example, we solve the Laplace - Beltrami equation

(5.1)-(5.5) on two spherical domains. The methodology formulated in Chapter

4 is used to approximate the solutions of the Laplace -Beltrami. To obtain the
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exact solution 3.32-3.33, we have described in chapter 3 topic 3.2.5

We start our tests with a relatively low resolution of just 80 node approxima-

tion of Γ gradually increasing the number of nodes to a maximum value 296992

to observe numerical convergence of the procedure. For each resolution, we define

the largest value of the mesh size h/R. The results of non-dimensional pressure

are presented in Fig. 5.2. In order to show the convergence of the finite element

approximation, we also show the error measured in the H1 semi-norm, formula

(4.9), see Fig. 5.3 and the and Table 5.1.

Figure 5.2: Distribution of non-dimensional pressure u1/u0 on Ω
(1)
0 and u2/u0 on

Ω
(2)
0 , plotted on surface at 296992 nodes. The angle α = 180°, θ0 = 22.5°. The

colour bar presents value of non-dimensional pressure. Here, u0 = 2γ
R

cos θc, θc is
the contact angle and γ is the surface tension.
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Figure 5.3: A log-log plot of the approximation error in H1 semi-norm as a func-
tion of the mesh size h/R. The numerical data are shown by symbols and the
dashed line is the slope error ∝ h/R shown for comparison.
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i n h/R E(h) EOC

1 80 0.9078 0.0415 -

2 288 0.4815 0.0221 0.9929

3 1344 0.1996 0.0109 0.8048

4 4736 0.1226 0.0058 1.2812

5 18304 0.0611 0.0030 0.9694

6 74504 0.0307 0.0015 1.0076

7 296992 0.0154 0.0007 1.0176

Table 5.1: Results of the problem (5.1)-(5.5) benchmarking. Here, i is the refine-
ment step, n is number of nodes, h/R is the non-dimensional mesh size, E(h) is
the error in H1 semi-norm, see formula (4.9) and EOC is the experimental order
of convergence which is defined in (4.11). Notice, that the results clearly show
that the method is first order accurate in the H1 semi-norm, as is also verified by
theorem 4.5.

In this practice, we have approximated the solutions of the Laplace-Beltrami

equation with coupled domains. The accuracy of the method is observed by the

error in H1 semi-norm which are shown in Table 5.1. It has been illustrated

that the value of the errors converge optimally. Moreover, the approximation

error plots in the log-log scale are presented in Fig. 5.3. The results showed

the approximate solutions converge accurately to the analytic solutions as the

mesh size, h/R is refined. We have also computed the experimental order of

convergence and show that it approaches the values as we expected. These mean

that the surface finite element method is very efficient for solving the solutions of

the Laplace-Beltrami equation on the connected domains.

Next examples, we will present the solution in case of arbitrary oriented bound-
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aries.

5.1.2.2 The Case of Arbitrary Oriented Boundaries in Coupled Do-

mains

One way to understand the coefficient of permeability in case of the two con-

nected domain is to observe the total flux as function of the angle α, so the next

topic will focus on the value of total flux with respect to different positions of

the boundary. In this work, the boundary ∂Γ
(1)
1 and ∂Γ

(1)
2 are fixed while the

boundary ∂Γ
(2)
1 and ∂Γ

(2)
2 are rotated around x-axis, anticlockwise for α which

0 ≤ α ≤ 180°. The examples of the domain have been shown in Fig. 5.1.

Using the surface finite element method to solve the system of the Laplace

-Beltrami equations on truncated spheres we are able to find out the total flux

and hence the permeability of the particles. The results are given for the angle

α = 170° and α = 135° in Fig. 5.4 and Fig. 5.5 respectively. Here, the value of

non-dimensional pressure on the boundaries are fixed at α1/u0 = 0.8 and α2/u0 =

0.2 on ∂Γ
(1)
(1,2).
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Figure 5.4: Distribution of non-dimensional pressure u1/u0 on Ω
(1)
0 and u2/u0 on

Ω
(2)
0 , plotted on surface at 289082 nodes. The angle α = 170°, θ0 = 22.5°. The

colour bar presents the value of non-dimensional pressure. Here, u0 = 2γ
R

cos θc,
θc is the contact angle and γ is the surface tension.
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Figure 5.5: Distribution of non-dimensional pressure u1/u0 on Ω
(1)
0 and u2/u0 on

Ω
(2)
0 , plotted on surface at 289082 nodes. The angle α = 170°, θ0 = 22.5°. The

colour bar presents value of non-dimensional pressure. Here, u0 = 2γ
R

cos θc, θc is
the contact angle and γ is the surface tension.

Next we have observed the total flux in case of arbitrary oriented boundaries

for two coupled domains, see Table 5.2.
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Angle α, [deg] Total flux, QT/Q0 Angle α, [deg] Total flux, QT/Q0

75 1.5619 125 1.0881

80 1.4657 130 1.0711

85 1.3896 135 1.0561

90 1.3280 140 1.0454

95 1.2772 145 1.0343

100 1.2346 150 1.0255

105 1.1940 155 1.0167

110 1.1680 160 1.0072

115 1.1311 165 1.0024

120 1.1080 170 1.0022

Table 5.2: Tabulated values of the non-dimensional liquid total flux QT/Q0 in case
of arbitrary oriented boundaries for two coupled domains with the different tilt
angle α. The value of the non-dimensional capillary pressure on the boundaries are
fixed at α1/u0 = 0.8 and α2/u0 = 0.2 on ∂Γ

(1)
(1,2). The data are from triangulation

level 7 (the maximum mesh size h/R ≈ 0.018). Here, Q0 is the normalized total
flux in the azimuthally symmetric case, u0 = 2γ

R
cos θc, θc is the contact angle and

γ is the surface tension.

This table shows the values of total flux at the different tilt angle α from 135

degrees to 75 degrees at 170 degrees interval.

If we look at the data on the table, we can see the value of the non-dimensional

liquid total flux QT/Q0 drops that result in the increasing the tilt angle α, and

the boundary contours at the connected domains move away from each other. In

order to understand the overall trend in data, we now show the dependence of the

total flux, and hence the permeability as a function of the tilt angle α in case of
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two coupled domains. The graph is already illustrated in Figure 5.6.

Figure 5.6: Non-dimensional total flux QT/Q0 as a function of the tilt angle α at
the fixed values of pressure on the boundaries, α1/u0 = 0.8 and α2/u0 = 0.2 on

∂Γ
(1)
(1,2). Here Q0 is the normalized total flux in the azimuthally symmetric case,

u0 = 2γ
R

cos θc, θc is the contact angle and γ is the surface tension. The solid line
is the best fit to the data QT/Q0 = AαB + C, at A = 2.80× 104, B = −− 2.469
and C = 0.9065. The data of the total flux are from (5.2) at triangulation level 7
(the maximum mesh size h/R ≈ 0.018)

The graph 5.6 shows the non-dimensional total flux QT/Q0 as a function of tilt

angle αobtained with the boundary conditions at α1/u0 = 0.8 and α2/u0 = 0.2

on ∂Γ
(1)
(1,2), as is shown in Fig. 5.1. Symbols are the numerical result obtained at

the highest mesh refinement (maximum mesh size h/R ≈ 0.018). The solid line

is the fit to the data QT/Q0 = AαB + C with A = 2.80 × 104, B = −2.469 and

C = 0.9065.
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One can summarise that at relatively large tilt angles, which are close to the

angle in the azimuthal symmetrical case, the liquid total flux value and hence

permeability are also close to that predicted on the basis of the azimuthally sym-

metric solution, see equation (3.34) and the dependence is similar to that obtained

for a single-sphere, see 4.4.1 in Chapter 4.

Moreover, we compare the liquid total flux and hence permeability between

one sphere and two spheres, as shown in Fig.5.7. The red line illustrated the

data of the liquid total flux of one sphere problem (the data shown in Table 4.4);

the blue line illustrated the data of the liquid total flux of two spheres problem,

showed in the data in Table 5.2.

Figure 5.7: Non-dimensional total liquid flux QT/Q0 as a function of the tilt
angle α obtained in the solution of two problems: a single sphere with two tilted
boundaries and two coupled spheres. Here, Q0 is the normalized total flux in the
azimuthally symmetric case α = π.
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It can be seen that the red line and the blue line have an overlap. It is shown

that the permeability of a single spherical particle is identical to that of two

coupled spheres as is expected according to (3.49). The effect is solely due to

the symmetry of the two-coupled-particle problem and the continuity of the total

flux and pressure set by the new set of the boundary conditions. As a result, the

pressure at the link is an average of the boundary values (α1 + α2)/2, and hence

we recover solutions similar to the ones found in the case of one element.

In conclusion, we have demonstrated how the coefficient of permeability of

a few coupled elements of the porous matrix can be evaluated on the basis of

the solution of the Laplace-Beltrami equation in the subsequent coupled domains.

The idea is similar with the one used to obtain permeability of a single element,

but with an addition of two coupling boundary conditions, namely the continuity

of pressure and the total flux on the boundary of the internal sub domains. In

azimuthally symmetric case, we were able to estimate the value of the errors.

We have shown that the error converges with diminishing of the triangulation

size. The optimal convergence rate observed implies that our method is efficient

for solving the Leplace-Beltrami equations with the new set of the boundary

conditions.

Moreover, in the symmetric case, we have shown that the total flux and hence

permeability of the coupled elements can be obtained from the permeability of

a single element, (3.51). The methodology developed in this and the previous

chapters can be used in practical application involving more particles, as we will

demonstrate in Chapter 6.
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Chapter 6

Surface Permeability of a Particle

Ensemble and the

Laplace-Beltrami Problem.

In the previous parts of the study, we have developed a methodology based

on the Laplace-Beltrami Dirichlet boundary-value problem to obtain surface per-

meability of porous matrix elements, which is one of the main ingredients of the

super-fast diffusion model in porous media. We have thoroughly validated and

demonstrated the use of the methodology by means of numerical simulations of

the Laplace-Beltrami problem with the help of a specifically adopted surface fi-

nite element technique using simplified examples. We have shown, that surface

permeability of a single element or a small cluster of the elements of a porous

matrix can be accurately calculated by the developed method. The influence of

the surface shape and the geometry, and configuration of the contacts between
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the particles have been investigated.

In this chapter, we will tackle a more realistic problem of the global surface

permeability of a sample volume element containing many particles of an ensemble

of randomly packed spheres of different diameters. This problem corresponds to

a realistic scenario, when surface permeability, the macroscopic parameter, which

is difficult to estimate a priori, can be accurately calculated for the use in porous

media transport modelling. We have shown in Chapter 3, that permeability of

particulate porous media comprised of isolated parallel chains of spherical parti-

cles coupled by liquid bridges is equivalent to permeability of a single spherical

particle obtained in azimuthally symmetric case. Real configurations are more

complex, and azimuthal symmetry is, of course, broken. So the objectives of

this chapter are twofold. First, we study effects of tortuosity by comparing re-

sults obtained in randomly packed configurations with analytical result (3.19).

Secondly, we observe permeability-saturation dependence and compare with the

scaling expected according to (3.22).

6.1 Random Distribution of Spheres

To obtain a realistic distribution of the randomly packed spherical particles of

different diameters, a method developed in molecular dynamics simulations has

been used. In the simulations, initially uniform, but a random distribution of

particles (about 200 − 3000 particles) at some finite temperature interacting by
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the Lennard-Jones pair-wise potential

Uij = ε

{(σij
r

)12

−
(σij
r

)6
}

(6.1)

is evolving in time according to the Newton’s second law under the action of an

external force Fe

m
dvi

dt
= −

∑
j

∇Uij + Fe.

Here, m is particle mass, ε is an interaction parameter, r is the distance between

the particle centres and σij = Ri+Rj is the sum of the particle radii Ri,j, which is

roughly the shortest distance between the particles. The external force is applied

to emulate the force of gravity in the standard procedure of obtaining a set of

packed particles by gentle shaking. The shaking of the particle ensemble has

been emulated by finite temperature, which then has been gradually reduced to

almost zero values in the end of the procedure to obtain the randomly packed

configurations. Standard cut-off procedure has been applied in the simulations to

the interaction potential to reduce the costs of simulations. The particle radius

distribution was normal W (R) = 1√
π∆R

exp
(
− (R−R0)2

∆R2

)
with ∆R/R0 ≈ 0.3.

The simulations were performed using an in-house C++ software package de-

veloped in the University of Reading Polymer Physics group (Lukyanov and Likht-

man 2016). The temperature of the particles is controlled by a thermostat and is

reduced during the simulations while the system is evolving towards the minimum

energy state. The resultant minimum energy distribution at almost zero tempera-

ture corresponds to a randomly packed geometric configuration of the (spherical)

particles.
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6.1.1 Sample Volume Element

Once the randomly packed distribution of particles has been obtained, a sample

volume element containing around 13−17 particles to apply the Laplace-Beltrami

method was cut-off preserving the particle positions, see illustration in Fig. 6.1.

In order to obtain the sample volume element, we have chosen a box with char-

acteristic dimensions LBx , LBy and LBz and defined its position inside the pack of

particles. The box dimensions are adjusted to have approximately 13− 17 parti-

cles fully contained (the particle centre is within the radius of the particle from

the box boundaries) in the box. This will be our subset, that is the sample vol-

ume element. The number of particles should be sufficient to obtain macroscopic

properties by averaging, while at the same time allowing high resolution of the

numerical method on each particle of the subset. We will check this a posteriori.

Figure 6.1: Particle ensemble and a sample volume element.
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6.2 Finite Element Set-up for the Laplace-Beltrami

Problem Evaluation

Once the set of test particles was chosen, the contacts between the particles

are identified on the basis of the distance between the particles centres r and

particle radii Ri and Rj

r < Ri +Rj + 0.05 max(Ri, Rj).

Figure 6.2: Illustration of a liquid bridge between particles and the size of bridge,
HB.

As one can see, we have allowed for some small gap between the particles to

form a liquid bridge coupling the surface elements. Physically, this is justified since
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the liquid bridges are stable even if there is a small gap between two particles,

if the gap δR is, of course, not too large δR � R (Herminghaus 2005). In this

chapter, we measure (normalise) all distances with respect to some average length

scale R in the system, such that the average particle diameter D/R = 1. Once

the contacts were identified, the internal and external boundaries are established

on the basis of the given bridge size 2R sin θ0, see Fig.6.2. Despite the fact that

radii of particles are not identical, the bridge size 2R sin θ0 can be assumed to

be roughly the same if the pressure variations within the sample element are

small, according to the estimate (1.22). In typical conditions of liquid spreading

in porous materials, this condition is well satisfied.

After the tessellation of the domains is completed, the Laplace-Beltrami prob-

lem is solved numerically using the technique (weak formulation solved via the

Galerkin method, see Bathe 2006 ) described in Chapters 4 and 5 with the bound-

ary conditions formulated and discussed in Chapter 3. The external boundaries

in the system, where the Dirichlet boundary conditions are set, are chosen on the

particles within the characteristic distance R facing the edges in the z-direction,

as is shown in Fig. 6.1. The external boundaries, the circles are oriented with

zero tilt angle with respect to the z-axis. On those boundaries, we set constant

pressure values uin and uout to generate the flow, as is shown in Fig. 6.3.

6.3 Results

For the sake of comparison, we have generated several sets of randomly packed

particles together with a regular set consisting of a chain of coupled particles,
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similar to the problem setup (3.35)-(3.37) where the surface permeability is known,

for example (3.48) and/or (3.51), see also Fig. 6.3. Consider first numerical

evaluation of the surface flux in a regular set of particles, Fig. 6.3.

6.3.1 Surface Flux and Permeability in a System Consist-

ing of Regular Sets of Particles.

Recall the system of the Laplace-Beltrami equations for the three truncated

spheres.

−∆
Ω

(1)
0
u1 = 0, (6.2)

−∆
Ω

(2)
0
u2 = 0, (6.3)

and

−∆
Ω

(3)
0
u3 = 0, (6.4)

with the Dirichlet boundary conditions

u3|∂Γ
(1)
3

= uin and u1|∂Γ
(2)
1

= uout (6.5)

and continuity boundary conditions due to small pressure gradients and the con-

servation of mass

u1|∂Γ
(1)
1

= u2|∂Γ
(2)
2

= const and u2|∂Γ
(1)
2

= u3|∂Γ
(2)
3

= const (6.6)
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∮
∂Γ

(1)
1

∇u1 · ns1|∂Γ
(1)
1
dl = −

∮
∂Γ

(2)
2

∇u2 · ns2|∂Γ
(2)
2
dl, (6.7)

and ∮
∂Γ

(1)
2

∇u2 · ns2|∂Γ
(1)
2
dl = −

∮
∂Γ

(2)
3

∇u3 · ns3|∂Γ
(2)
3
dl, (6.8)

where uin and uout are some real constants representing the pressure boundary

values to create liquid flux through the system. In all numerical simulations, we

fix uin = 0.8u0 and uout = 0.2u0, where u0 = 2γ
R

cos θc and R is the characteristic

length scale.

Using the surface finite element method as described in Chapter 4 to obtain

weak solutions of the system of the Laplace-Beltrami equations (6.2)-(6.8), we

obtain the results shown in Fig.6.4 and Table 6.1.
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Figure 6.3: Illustration of the domains of the regular configuration Ω
(1)
0 , Ω

(2)
0 and

Ω
(3)
0 with smooth boundary contours ∂Γ

(1)
1 , ∂Γ

(2)
1 , ∂Γ

(1)
2 , ∂Γ

(2)
2 , ∂Γ

(1)
3 and ∂Γ

(2)
3 .

Here, nΓj
are the outward unit normal vectors to Γj and nsj are the outward

unit tangential normal vectors to the boundary contours on Ω
(1)
0 , Ω

(2)
0 and Ω

(3)
0

respectively.

The regular configuration of particles represent excellent benchmark problem

for the numerical method and also may serve to provide a comparison to the

simulations involving randomly packed particles. A regular model configuration

is shown in Fig. 6.3.

We have done simulations, as before, with different mesh resolutions to verify

the convergence rate and the experimental order of convergence (EOC) which is

calculated by (4.11). At the same time, we have also varied the size of the bridge
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HB = 2R sin θ0 to verify the fidelity of the approach at different entry parameters.

Figure 6.4: The graph illustrates the order of convergence of the surface finite
elements method applied to the regular configurations of the three particles, as is
shown in 6.3. The numerical data are shown by symbols and the dashed line is
the slope error ∝ h/R shown for comparison.
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Bridge
Triangulation Levels

size HB/R Param. 1 2 3 4 5 6 7 8

h/R 0.67 0.34 0.18 0.09 0.045 0.023 0.011 0.006

0.025
Error 0.03 0.02 0.009 0.005 0.003 0.002 9 · 10−4 4 · 10−4

EOC - 0.81 1.1 0.9 0.81 0.84 0.88 0.96

0.050
Error 0.03 0.017 0.009 0.005 0.003 0.0014 8 · 10−4 4 · 10−4

EOC - 0.65 1.01 0.879 0.847 0.89 0.94 0.98

0.075
Error 0.02 0.015 0.008 0.005 0.003 0.001 7 · 10−4 3 · 10−4

EOC - 0.53 0.88 0.86 0.88 0.93 0.97 0.99

0.100
Error 0.02 0.013 0.007 0.004 0.002 0.001 6 · 10−4 3 · 10−4

EOC - 0.57 0.85 0.86 0.9 0.95 0.98 0.99

0.125
Error 0.02 0.011 0.006 0.003 0.002 9 · 10−4 4 · 10−4 2 · 10−4

EOC - 0.7 0.9 0.92 0.95 0.98 0.99 1

0.150
Error 0.02 0.01 0.006 0.003 0.002 8 · 10−4 4 · 10−4 2 · 10−4

EOC - 0.67 0.92 0.93 0.96 0.98 0.99 1

Table 6.1: Approximation error in H1 semi-norm (Error) and the experimental
order of convergence (EOC) (4.11) of the surface finite element method applied to
the regular distribution of spherical particles, Fig. 6.3, as a function of the mesh
size h/R at different bridge length scales HB/R.

The results are summarised in Fig. 6.4 and in Table 6.1. As one can see, as we

expected the convergence rate is the first order in H1 semi-norm. It is vital that

the rate of convergence is uniform with respect to different size of the boundary

HB/R, that is the area covered by the bridge. In real conditions, as capillary

pressure in the system is varied during the spreading, the size varies at the same

rate, so that the uniform convergence guarantees solid output of the numerical
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simulations in different conditions.

Before comparing the simulation results of the regular distribution of particles

with the different configurations, we now calculate the total liquid flux at different

sizes of bridges, which is summarised in Table 6.2.

Bridge size HB/R
Reduced Liquid Flux QT/S0Q0

Numerical solutions Exact Solutions

0.0250 0.650 0.702

0.0500 0.781 0.830

0.0750 0.900 0.930

0.1000 0.995 1.017

0.1250 1.073 1.097

0.1500 1.162 1.172

Table 6.2: Tabulated values of the total liquid flux QT/S0Q0 through the system
shown in Fig. 6.3 at different values of the bridge size HB/R obtained in numerical
simulations versus exact analytical solution at the triangulation level 8 with the

maximum mesh size h/R = 0.006. Here, Q0 = δR
κm
µ

uin − uout
L̄Bz

, uin − uout =

0.6u0, u0 = 2γ
R

cos θc, θc is the contact angle, γ is the surface tension, δR is the
characteristic length scale of the surface roughness, κm is the local permeability,
µ is liquid viscosity, S0 = LBx L

B
y /R

2. The total flux for the exact solution is
calculated by means of equation (3.47).
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Figure 6.5: Comparison of the reduced flux QT/S0Q0 obtained in the numerical
(symbols) and exact (solid line) solutions (3.44)-(3.46) as a function of bridge

size HB/R. Here, Q0 = δR
κm
µ

uin − uout
L̄Bz

, uin − uout = 0.6u0, u0 = 2γ
R

cos θc,

θc is the contact angle, γ is the surface tension, δR is the characteristic length
scale of the surface roughness, κm is the local permeability, µ is liquid viscosity,
S0 = LBx L

B
y /R

2.

Since the regular distribution of particles is described by the analytical solution

(3.44)-(3.46), one can also compare them rigorously as functions of the boundary

length scale, which is shown in Fig. 6.5. As one can see, the two curves are

almost identical, as is expected. The largest error is observed at small size of

the boundary contour due to the reduced resolution of the boundary line in the

triangulation. We can conclude now that the numerical method can be safely

applied to investigate the permeability of a random pack.
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6.3.2 Permeability in a Random Configuration and the

Laplace-Beltrami Method

We will now simulate steady surface flows in several randomly generated con-

figurations of spherical particles of different diameters, as is illustrated in Fig. 6.7.

The Dirichlet boundary conditions are applied to the particle surfaces at the top

and the bottom of the pack, as is indicated in Fig. 6.7.

The idea of this investigation is many-fold. First of all, we would like to es-

tablish how the effective surface flux density QT/S0Q0 through the system varies

with the configuration. Given that we have many particles in the pack randomly

distributed, it is expected that the variations should be on the level defined by the

number of particles, that is no more than 20%. We can achieve a better compari-

son of the configuration properties by measuring the flux density as a function of

the bridge size. Varying the bridge size, one can also verify the scaling of the coef-

ficient of diffusion D ∝ 1
ln(s−s0)

found in our previous analysis, which follows from

the analytical form of the total flux (3.47). This would have practical meaning,

since in applications one needs to have a simple way to estimate transport prop-

erties of porous matrices. Notice that, for the sake of the fair comparison between

different configurations, we have reduced the total flux QT by the non-dimensinal

cross-section area S0 = LBx L
B
y /R

2 and by some characteristic value

Q0 = δR
κm
µ

uin − uout
L̄Bz

, L̄Bz = LBz /R.

The later takes into account different system dimensions while applying constant

pressure difference uin − uout = 0.6u0. This reduction allows to compare geomet-
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rically different configuration by bringing them into equivalent conditions. Here,

u0 = 2γ
R

cos θc, θc is the contact angle, γ is the surface tension, δR is the character-

istic length scale of the surface roughness, κm is the local permeability, µ is liquid

viscosity.

To consider the problem of randomly packed spheres, we first recall the system

of the Laplace-Beltrami equations for many, say k coupled particles, which is

discussed in Chapter 3,

−∆
Ω

(k)
0
u = 0. (6.9)

Figure 6.6: Illustration of the domains for the multi-particle connected problem

The Laplace-Beltrami system is augmented with the boundary conditions. On

the internal boundaries of the sub-domains, one has continuity conditions

u|
∂Γ

(j)
k

= u|
∂Γ

(k)
j

= constant, (6.10)
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∮
∂Γ

(j)
k

∇u · ns|∂Γ
(j)
k
dl = −

∮
∂Γ

(k)
j

∇u · ns|∂Γ
(k)
j
dl, (6.11)

and on the external boundaries of the sub-domains, the Dirichlet conditions are

set to generate the flow through the system

u|
∂Γ

(k)
k

= uin or uout = constant. (6.12)
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Configuration 2 

Configuration 3 
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uout 
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Figure 6.7: Random configurations of spherical particles with radius R1 = 0.53R
(purple), R2 = 0.42R (yellow) and R3 = 0.31R (white). Here, the boundary
conditions are fixed at uin = 0.8u0 and uout = 0.2u0.

We will consider four representative configurations consisting of the particles

166



of size R1 = 0.53R, R2 = 0.42R, R3 = 0.31R and R = 0.55R. Here the

number of particle in configuration 1, configuration 2, configuration 3 and regular

configuration are 15, 17, 13 and 3 respectively. Using the surface finite element

method, which is described in Chapter 4 to solve the system of the Laplace-

Beltrami equations (6.9)-(6.12), we obtain the results in Table 6.3, Fig. 6.8.

Bridge size
Reduced total flux QT/S0Q0

Config. 1 Config. 2 Config. 3 Regular

(Fig.6.3)

HB/R N=15,

LBx = 2.8R,

LBy = 2.5R,

LBz = 3R

N=17,

LBx = 3.1R,

LBy = 2.6R,

LBz = 2.7R

N=13,

LBx = 2.8R,

LBy = 2R,

LBz = 2.9R

N=3,

LBx = 1.1R,

LBy = 1.1R,

LBz = 3.3R

0.025 0.3 0.26 0.33 0.65

0.050 0.39 0.35 0.43 0.78

0.075 0.46 0.4 0.49 0.9

0.100 0.51 0.45 0.55 1.

0.125 0.55 0.49 0.6 1.1

0.150 0.6 0.53 0.66 1.2

Table 6.3: Tabulated values of the non-dimensional total liquid flux QT/S0Q0

in different configurations with the different bridge size HB/R. Here, N is the
number of particles in the sample. Notice that, the configurations 1, 2 and 3
consist of the particles with radii R1 = 0.53R, R2 = 0.42R and R3 = 0.31R
respectively, while the regular configuration consists of the particles with radius
R1 = 0.55R.

If we look at the trend of the reduced flux QT/S0Q0 passing through the ran-

domly packed configuration, one can see that the flux is a monotonically increasing
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function of the bridge size HB/R, as is predicted on the basis of the azimuthally

symmetric solution (3.20).

Moreover, one can see that the value of the flux QT/S0Q0 and hence the perme-

ability of the random configuration is lower than that of the regular configuration.

Consequently, this is an indication of the tortuosity effects in the randomly packed

particles, that is longer pathways for the liquid to pass through the system. In

total, the tortuosity effect can be estimated as a factor of two reduction of the

system permeability. As it was expected, the variations of the flux dependencies

in different random geometric configurations was within 10− 20%. This justifies

the chosen size of the sample volume elements.

Next, we analyse the permeability-saturation dependence and compare with

the scaling expected according (3.22). To do so, we present the flux QT/S0Q0 as

the function of the bridge size relationship inspired by (3.47) taking into account

that HB = 2R sin θ0

g(HB) = ln−1

1 +

√
1−

(
HB

2R

)2

1−
√

1−
(
HB

2R

)2

 .

As one can see, Fig. 6.8, all the dependencies are straight lines indicating that

indeed, the scaling found in the analysis of a single particle element is fully appli-

cable here with correction coefficient to take into account the tortuosity effects.
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Figure 6.8: Reduced total flux QT/S0Q0 as a function of bridge size, g(HB) =

ln−1

1+

√
1−
(

HB
2R

)2
1−
√

1−
(

HB
2R

)2
 in the set up with the pressure at the boundary uin = 0.2u0

and uout = 0.8u0 as is shown in Fig. 6.7. Here, Q0 = δR
κm
µ

uin − uout
L̄Bz

and

S0 = LBx L
B
y /R

2. Symbols are the numerical solutions and the solid line is the
exact result. The error indicates potential dispersion of the flux values (20%) due
to the finite number of particles in the sample volume element.

The results obtained in this chapter have been submitted to a journal (Siri-

mark et al. 2019).
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Chapter 7

Conclusions and Future Work

We have demonstrated that transport processes in different porous matrices

at low saturation levels can be simulated with high accuracy using the techniques

developed and analysed in the study presented in the thesis. In particular, in

Chapter 2 we have demonstrated how transport in fibrous porous materials at low

saturation levels can be simulated using a mesoscopic network model. Based on

the mesoscopic description, we have been able to validate a macroscopic approach

to deal with this kind of problems, which requires less computational resources if

it can be applied.

In Chapters 3, 4, 5 and 6 we have shown how permeability of particulate porous

media can be investigated rigorously using the methodology based on the Laplace-

Beltrami Dirichlet boundary value problem. We have formulated the problem of

permeability calculation in terms of the Laplace-Beltrami problem in Chapter

3. Then, we have thoroughly verified the surface finite element technique with

application to the problem in Chapters 4 and 5. Finally, in Chapter 6, we have
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demonstrated the application of the whole methodology to study permeability of

randomly distributed particles. Based on the analysis presented in Chapters 4,5,

and 6, we can conclude that the technique is ready to be applied to real problems

involving, practically, arbitrary shapes and surfaces.

There are several problems we have not studied yet, but which could be of

immediate practical importance as far as the developed method is concerned. First

of all, this would be interesting to study surfaces with topological singularities,

such as folds and/or cusps, for example. This would allow to extend the technique

to more realistic situations, which can be found in practice. The second immediate

goal, we have no time to investigate, is the situations (often found in applications)

when the surface has many areas inaccessible to the flow, as is schematically shown

in Fig. 7.1 by contours ∂γ. This can be further generalised to the case, when

there are regions absorbing the liquid from the surface flow, contours ∂ζ in Fig.

7.1. For example, many porous materials have particles with internal structure so

that the liquid may be soaked by the particle interior. This can be considered on

the basis of the developed methodology by introducing some Neumann boundary

conditions on the contours ∂ζ, as is shown in Fig. 7.1.

As an extension of the network methodology developed in Chapter 2 of the

thesis, this would be interesting to consider more complex fibrous materials in-

volving a distribution of defects of a characteristic length scale different from the

length scales involved. Also, the model can be generalised to a situation when the

links have some internal structure, so that permeability of the links would depend

on the history of the wetting process.

Concerning more long-term plans, in many industrial applications surface flows

171



are accompanied by chemical reactions also taking place on the element surfaces.

For example, many catalysis reactions are surface driven. This may require refor-

mulation of the problem to study potential dynamic processes. It is completely

in the realms of the developed methodology and the numerical techniques.

∂Γ1

∂Γ2

∂γ i∂γ l

∂γk
∂ ζi Surface 

  Flux

Figure 7.1: Illustration of a porous media particle with inaccessible areas ∂γ and
sink/source regions ∂ζ. Contours ∂Γ1,2 designate the footprint of the liquid bridge
areas, as before.
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Appendices

A The Numerical Simulation of the Network Model

In this model, we will consider a two-dimensional domain Ω ⊂ R2. An irregular

Cartesian discretisation of the domain Ω is defined by distribution of nodes i. Let

pi be the pressure at each node i with the liquid volume V i
B.

pi = −
(

1

V i
B

)1/2

. (A.1)

In fact, the liquid mass is Mi = ρV i
B, where ρ is liquid density. The flux Iij

between the nodes i and j, for example, can be presented as

Iij = −αij
pj − pi
Lij

. (A.2)

Here, the coefficient αij is an additional parameter to describe the links physi-

cal properties associated with their conductivity, pi and pj are the pressure at the

nodes i and j respectively, and Lij is the length of the link connecting the nodes.

If we consider evolution of the network during a small (theoretically infinitesi-

mal, but in practice finite) time interval ∆t the volumetric flux is obviously given

by

Iij =
Mn+1

i −Mn
i

∆t
(A.3)

where, Mn
i is the mass at the node i at the time step n, and Iij is the volumetric

flux between nodes.
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B Algorithm of the Network Model

Figure B.1: Algorithm of the network model.
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C Implementation of the Surface Finite Element Method

Surface discretization and parametric projection

We have generated the surface discretization by using a standard application,

the GMSH software (Geuzaine and Remacle 2006). From the application output,

we can extract the node coordinates xi, yi, zi and the node arrangement in each

particular triangular element. All triangular elements, that is the position of the

nodes are then projected into the standard parametric domain (ξ, η), such that

the vertices of the triangles have always coordinates (0, 0), (0, 1) and (1, 0), as is

shown in Fig. C.1.

Figure C.1: Linear mapping between a reference triangles in the local coordinate
system (η, ξ) (Left) and the physical coordinate system (x, y, z) (Right).

Consider the discrete surface Γh which consists of the set of the triangles, see

Figure 4.2. In order to construct a mapping between a reference triangle in the

local coordinate system (η, ξ) and the physical coordinate system (x, y, z), such

that

M : (η, ξ)→ (x, y, z).
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From the paramatric mapping, We first define xΓ(η, ξ) which is the point on

the surface Γh. From Theorem 3.2, for any given parametric mapping, we can

extend its outside the surface by

x(η, ξ, ζ) = xΓ(η, ξ) + ζnΓ(η, ξ) (C.1)

here the signed distance function ζ is chosen i.e −t/2 ≤ ζ ≤ t/2 and nΓ is the

normal.

Next we specialize to the finite element parametrization of the surface :

xΓh
(η, ξ) =

n∑
i

xiΦi(η, ξ) (C.2)

where xi is the nodal point of triangles and the linear shape functions used in

the FEM calculations Φi(η, ξ) are defined by

Φ1 = 1− η − ξ, Φ2 = η, Φ3 = ξ,

with the derivatives

[
∂Φ1

∂ξ
,

∂Φ2

∂ξ
,

∂Φ3

∂ξ

]
= [−1, 0, 1]

and [
∂Φ1

∂η
,

∂Φ2

∂η
,

∂Φ3

∂η

]
= [−1, 1, 0].

Using the parametrization to extend this approximation outside the surface,
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thus (C.1) can be approximated by

x(η, ξ, ζ) ≈ xh(η, ξ, ζ) = xΓh
(η, ξ) + ζnΓh

(η, ξ), (C.3)

where the normal vector at each node to the element surface is defined as follows

nΓh
=

∂xΓh

∂η
× ∂xΓh

∂ξ∣∣∣∣∂xΓh

∂η
× ∂xΓh

∂ξ

∣∣∣∣ .

Now, the finite element method can be employed to approximate the derivative

of the chosen shape function Φ on the surface, at the local coordinate (η, ξ)

∇Φ =


∂Φi

∂x
∂Φi

∂y
∂Φi

∂z

 = J−1(η, ξ, 0)



∂Φi

∂η
∂Φi

∂ξ
∂Φi

∂ζ

 ,

where the Jacobian is

J(η, ξ, ζ) =

∣∣∣∣∣∣∣∣∣∣∣

∂xh
∂η

∂yh
∂η

∂zh
∂η

∂xh
∂ξ

∂yh
∂ξ

∂zh
∂ξ

∂xh
∂ζ

∂yh
∂ζ

∂zh
∂ζ

∣∣∣∣∣∣∣∣∣∣∣
.

Note that, we have
∂Φi

∂ζ
= 0. Consequently, the derivative of the shape func-
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tion on the surface is approximated by

∇Φ =


∂Φi

∂x
∂Φi

∂y
∂Φi

∂z

 = J−1(η, ξ, 0)


∂Φi

∂η
∂Φi

∂ξ

0

 .

From (C.3), one can obtain
∂xh
∂ξ

= nΓh
. Therefore, the Jacobian on Γ can be

rewritten as follows:

J(η, ξ, 0) =

∣∣∣∣∣∣∣∣∣∣∣

∂xh
∂η

∂yh
∂η

∂zh
∂η

∂xh
∂ξ

∂yh
∂ξ

∂zh
∂ξ

nΓh,x
nΓh,y

nΓh,z

∣∣∣∣∣∣∣∣∣∣∣
,

where

∂xh
∂η

=
∑
i

∂Φ(η, ξ)

∂η
xh,i.

From the outlined methodology, the surface gradient of a function u can be

approximated by

∇Γu ≈
∑
i

∇ΓΦui,

where

∇ΓΦ = (I− nΓh
⊕ nΓh

)∇Φi = PΓ∇Φi

and I is a 3× 3 matrix.

Note, more information can be found in the works (Cenanovic et al. 2017)

and (Hansbo and Larson 2014).
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