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Abstract

For problems of time harmonic wave scattering, standard numerical methods (using

piecewise polynomial approximation spaces) require the computational cost to grow

with the frequency of the problem, in order to maintain a fixed accuracy. This can

make many problems of practical interest difficult or impossible to solve at high

frequencies. The Hybrid Numerical Asymptotic Boundary Element Method (HNA

BEM) overcomes this by enriching the approximation space with oscillatory basis

functions, in such a way that accuracy may be maintained with a computational

cost that grows only modestly with frequency. HNA methods have previously been

developed for a range of problems, including screens in two and three dimensions,

also convex, non-convex and penetrable polygons in two dimensions. To date, all

HNA methods have been developed for problems of plane wave scattering by a single

obstacle. The key aim of this thesis is to extend the HNA method to

multiple obstacles.

A range of extensions to the HNA method are made in this thesis. Previous HNA

methods for convex polygons use an approximation space on two overlapping meshes,

here we use HNA on a single mesh. This single-mesh approach is easier to implement,

and we prove that the frequency-dependence of the size of the approximation space

is the same as for the overlapping mesh. We generalise HNA theory to provide a

priori error estimates for a broader range of incident fields than just the plane wave,

including point sources, beam sources, and Herglotz-type incidence. We also extend

the HNA ansatz to include multiple obstacles.

In addition to the development of HNA methods, we also consider other ideas

and developments related to multiple scattering problems. This includes the first (to

the best knowledge of the author) mesh and frequency explicit condition for well-

posedness of Galerkin BEM for multiple scattering.

We investigate numerical implementation of Embedding Formulae, which provide

the far-field pattern for any incident plane wave, given the far-field patterns induced

by a small (frequency independent) number of plane waves. We establish points at

which a naive implementation of the theory can cause numerical instabilities and

present alternative, numerically stable Embedding Formulae. We also extend the

Embedding Formulae to produce the far-field pattern of any Herglotz-type wave.

The recently developed Tmatrom method, a numerically stable T-matrix method, is

explored as an alternative means of extending the HNAmethod from single to multiple

obstacles. Tmatrom typically requires a number of single scattering problems to be
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solved, and this number grows (more than) linearly with the frequency of the problem.

Using the numerically stable Embedding Formulae, we show that Tmatrom can be

applied by solving a number of problems that depends only on the geometry of the

obstacle, and not the frequency of the incident wave.
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Chapter 1

Introduction

1.1 General problem statement and formulation

Problems of high-frequency time harmonic scattering arise in a range of real world

problems, including seismic imaging, noise reduction, and atmospheric modelling. In

this thesis, the focus is on two-dimensional acoustic waves, although many of the ideas

may be extended to electromagnetic or elastic waves. Naturally, three-dimensional

problems are more common in practical applications. We expect that with further

work, much of the theory in this thesis may be extended to three dimensions, possible

extensions are discussed at the end of each chapter. Indeed, three-dimensional HNA

methods have already been developed in [33], extending the two dimensional screen

problem of [34]. However, the two-dimensional setting is a more sensible starting

point for new methodology and theory.

The Helmholtz equation is named after Hermann Ludwig Ferdinand von Helmholtz,

and is often referred to as the reduced or time-harmonic wave equation. This is be-

cause solutions of the Helmholtz equation correspond to time-harmonic (periodic in

time) solutions of the wave equation. We introduce the problem from this starting

point of the two-dimensional wave equation (see, e.g., [17, (§2.1)] for a derivation),
(
1

c2
∂2

∂t2
−∆

)
U = 0, in Ω× [0,∞), (1.1)

modelling waves U(x, t) propagating at speed c > 0 with x := (x1, x2) ∈ Ω ⊂ R2,

with the two-dimensional Laplacian operator

∆ :=
∂2

∂x21
+

∂2

∂x22
.

A time-harmonic wave may be represented as

U(x, t) = Re
{
u(x)e−iωt

}
, for ω > 0, (1.2)
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hence inserting (1.2) into (1.1) yields the Helmholtz equation

(∆ + k2)u = 0, in Ω, (1.3)

where k := ω/c denotes the wavenumber. We assume throughout this thesis that

the wavenumber k does not vary in space. As an example, the sound of a piano

will satisfy the wave equation (1.1), however it will peak at the moment when the

key is pressed and the hammer hits the string, the amplitude |U(x, t)| will decay
in time t. Hence it cannot be considered time-harmonic; there will exist no U of

the form (1.2) with component u(x) satisfying (1.3). In contrast, an organ sound is

produced by a constant stream of air forcing a pipe to vibrate, and may be considered

time-harmonic; hence there exists a u corresponding to the sound of an organ which

satisfies (1.3).

1.1.1 Boundary Value Problem

Let Ω− ⊂ R2 be a bounded, Lipschitz open set (see for example [13, Definition A.2]

for a definition of this) with boundary ∂Ω, and define the exterior scattering domain

as the complement of the closure of this set, that is Ω+ := R2 \Ω−. The unit normal

vector n is perpendicular to ∂Ω, defined almost everywhere on ∂Ω. For example, the

normal vector n is not defined at corner points. We assume that the wavenumber

k > 0 does not vary in R2; an essential requirement for the boundary integral equation

formulation that follows in §1.1.2. The incident field uinc is the (known) wave which

will be excited by the obstacle Ω−. Constraints on uinc will change throughout the

thesis, however they all fit inside the following general definition:

DEFINITION 1.1 (Incident field/wave). We say uinc ∈ L2
loc(R

2) is an incident

field or an incident wave if there exists some open neighbourhood N ⊂ R2 such that

Ω− is compactly embedded inside of N and uinc

(i) is in C∞(N ),

(ii) satisfies the Helmholtz equation (1.3) in N .

We are interested in the interaction between an incident wave uinc and an obstacle

(or collection of obstacles) Ω−. We aim to solve the following Boundary Value Problem

(BVP): given the incident field uinc, determine the total field u ∈ C2(Ω+) ∩ C(Ω̄+)

(see Definition A.1, and more generally §A.1 for a summary of function spaces) such

that

(∆ + k2)u = 0 in Ω+, (1.4)
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u = 0 on ∂Ω+ (1.5)

and the scattered field us := u − uinc satisfies the Sommerfeld radiation condition,

that is (
∂

∂r
− ik

)
us = o(r−1/2), where r = |x|, as |x| → ∞. (1.6)

The condition (1.5) is typically referred to as the Dirichlet sound-soft boundary con-

dition. Such boundary conditions occur in electromagnetic problems [17, §6.4]; if Ω−

can be modelled as a perfectly conductive infinitely long cylinder. Such cylindrical

problems are referred to as axis invariant (see e.g. [45, pp5-6]) and may be modelled

in two-dimensions, in which the total electric field is transverse electric, whilst perfect

conductivity implies that the total electric field (analogous to u) vanishes inside of

Ω−, and satisfies a Dirichlet boundary condition equivalent to (1.5). It follows that

the problem (1.4)-(1.6) is uniquely solvable (see for example [42, Theorem 9.10]).

The problem we currently describe is a general problem statement, whereas each

chapter that follows will contain a specific problem statement, which fits inside of

this general framework, but will contain specific constraints on the geometry of the

scatterer Ω−, and the incident field uinc.

Explicit solutions to (1.4)-(1.6) only exist for special geometries, for example

when Ω− is a circle. This has motivated a significant amount of research into nu-

merical methods for scattering problems in recent years. If a standard finite differ-

ence/element scheme is used, one typically approximates the solution u by a series of

piecewise polynomials. As k grows, the number of degrees of freedom must typically

grow by more than O(k2) to maintain accuracy, in order to resolve the oscillations

and account for pollution effects. Moreover, it is necessary to truncate the domain

Ω+ and construct an artificial boundary, as it is impossible to consider a problem on

an infinite domain with finite computational cost. These drawbacks of domain-based

methods motivate Boundary Element Methods, which will be introduced shortly in

§1.1.4.

1.1.2 Boundary integral equation formulation

Provided that k does not vary in space, the BVP (1.4)-(1.6) can be reformulated

as a Boundary Integral Equation (BIE). Our BIE will make use of the fundamental

solution to (1.3),

Φ(x,y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (1.7)
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for x and y in R2, where H
(1)
n denotes the Hankel function of the first kind, order n.

If u satisfies the BVP (1.4)–(1.6), we may construct an open ball BR centred at the

origin, with radius R > 0 chosen sufficiently large such that Ω− ⊂ BR, and a second

open ball Bǫ(x) centred at x of radius ǫ > 0, and apply Green’s second identity

( [13, Theorem 2.19]) to us and Φ(x, ·) in Ω+ ∩ BR \Bǫ(x). Considering the limit as

ǫ→ 0 and R → ∞, it follows from the radiation condition (1.6) and the asymptotics

of (1.7) that

us(x) =

∫

∂Ω

[
−Φ(x,y)

∂us

∂n
(y) + us(y)

∂Φ(x,y)

∂n(y)

]
ds(y), x ∈ Ω+, (1.8)

where
∂

∂n
:= n · ∇

denotes the normal derivative, which is often referred to as the Neumann trace, and

shall also be denoted by the shorthand ∂+n in this thesis. A more formal definition

can be found in Appendix A.2. For further details of (1.8) see [13, Theorem 2.21]

or [17, Theorem 2.5]. Applying Green’s second identity to uinc and Φ(x, ·) in Ω−, we

obtain

uinc(x) =

∫

∂Ω

[
−Φ(x,y)

∂uinc

∂n
(y) + uinc(y)

∂Φ(x,y)

∂n(y)

]
ds(y), x ∈ Ω+. (1.9)

For further details see [13, Theorem 2.20] or [17, Theorem 2.1]. Summing (1.8) and

(1.9) and noting the boundary condition (1.5) we obtain

u = uinc − Sk∂
+
n u in Ω+, (1.10)

where Sk : H
s−1/2(∂Ω) → Hs+1

loc (R2) for s ∈ [−1/2, 1/2],

Skϕ(x) :=

∫

∂Ω

Φ(x,y)ϕ(y) ds(y), x ∈ Ω+, (1.11)

denotes the acoustic single layer operator (see [13, Theorem 2.15] for detailed dis-

cussion of its mapping properties). Typically, one may obtain a BIE by taking a

combination of traces (relevant operators introduced in §A.2) of the representation

(1.10).

For s ∈ [−1/2, 1/2], the single layer operator Sk : Hs−1/2(∂Ω) → Hs+1/2(∂Ω) is

defined by

Skϕ(x) := 2

∫

∂Ω

Φ(x,y)ϕ(y) ds(y), x ∈ ∂Ω,

the double layer operator Dk : H
s+1/2(∂Ω) → Hs+1/2(∂Ω) is defined by

Dkϕ(x) := 2

∫

∂Ω

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ ∂Ω,

4



whilst its adjoint D′
k : H

s−1/2(∂Ω) → Hs−1/2(∂Ω) is defined by

D′
kϕ(x) := 2

∫

∂Ω

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y), x ∈ ∂Ω.

We have the following relationship between these operators and Sk of (1.11), from [13,

(2.41)]:

2τ±Sk = Sk, 2∂±n Sk = ∓I +D′
k, (1.12)

where τ± and ∂±n denote the Dirichlet and Neumann interior and exterior traces (see

§A.2), and I denotes the identity operator. We will also make use of the vector valued

integral operator: the surface gradient of the single layer,

∇∂ΩSkϕ(x) := 2

∫

∂Ω

∇∂Ω,xΦ(x,y)ϕ(y) ds(y), x ∈ ∂Ω, (1.13)

where the kernel is defined by

∇∂Ω,xΦ(x,y) := ∇xΦ(x,y)− n(x)
∂Φ(x,y)

∂n(x)

and the integral (1.13) is to be understood in the Cauchy principle value sense.

We seek a BIE of the form

A∂+n u = f, on ∂Ω, (1.14)

where A : L2(∂Ω) → L2(∂Ω) is a boundary integral operator, and f ∈ L2(∂Ω), where

∂+n denotes the Neumann trace (see (A.6) for a formal Definition). By taking the

Dirichlet trace (as in (A.5)) of (1.10), we obtain the formulation with A = Sk and

f = τ+u
inc. However Sk is non-invertible for certain values of k, so in practice this is

not a suitable formulation. In what follows, we will describe two suitable choices for

A, which are invertible. Throughout the thesis, A may refer to either of these two

operators. By combining the Dirichlet and Neumann trace, we obtain the following

formulation.

DEFINITION 1.2 (Combined potential formulation). The standard combined po-

tential operator Ak,η : Hs−1/2(∂Ω) → Hs−1/2(∂Ω), for s ∈ [−1/2, 1/2] (see e.g.

[13,17]) and the corresponding BIE formulation is defined as

A = A′
k,η := I +D′

k − iηSk,

where η ∈ R \ {0} is the coupling parameter, with

f = fk,η := 2

(
∂

∂n
− iη

)
uinc.

5



It follows from [13, Theorem 2.27] that A′
k,η is invertible for k > 0 and η 6= 0. In

§5.4 we will make use of Ak,η (defined in (5.42)), the adjoint of A′
k,η.

The second formulation (which we state shortly in Definition 1.4) is new for multi-

ple scattering problems and may be considered a generalisation of the star-combined

operator of [52] to multiple star-shaped obstacles. This will be discussed in greater

detail in Chapter 5. Indeed, for a single star shaped Ω−, the definition is equivalent

to that of [52]. First, some additional terminology is required.

DEFINITION 1.3 (Star- and constellation-shaped). A bounded open set Ωi with

boundary γi is ‘star-shaped’ if there exists xc
i ∈ Ωi and a Lipschitz continuous gi :

S1 → R, where S1 := {x̂ ∈ R2 : |x̂| = 1}, such that gi(x̂) > 0 for all x̂ ∈ S1 with

γi = {gi(x̂)(x̂− xc
i) : x̂ ∈ S1}.

Intuitively, this may be interpreted as the following: Given any x ∈ Ωi, one can draw

a straight line from xc
i to x, without leaving Ωi.

We say a domain Ω− is ‘constellation-shaped’ if it can be represented as the union

of nγ ∈ N star-shaped, pairwise disjoint obstacles. Hence we can write Ω− = ∪nγ

i=1Ωi,

where each component Ωi is star-shaped.

DEFINITION 1.4 (Star/Constellation combined formulation). For a star/constellation

shaped domain Ω− with boundary γ, with γi the boundary of each star-shaped com-

ponent (as in Definition 1.3), we define the star/constellation-combined operator

Ak : L
2(γ) → L2(γ) as

A = Ak := (Z · n) (I +D′
k) + Z · ∇γSk − iη̂Sk

where Z(x) = x − xc
i (with xc

i chosen as in Definition 1.3 above) on γi, for i =

1, . . . , nγ. with η̂(x) := k|Z(x)|+ i/2. Choosing A = Ak, the right-hand side data for

the corresponding BIE formulation (1.14) is

f = fk := 2 (Z · ∇ − iη̂) uinc, on γ.

In Theorem 5.6 we show that the constellation combined operator is invertible on

constellation-shaped domains.

There are two key advantages of a BIE formulation such as (1.14) over the BVP

(1.4)-(1.6), in particular in solving for ∂+n u on ∂Ω instead of u in Ω+. Firstly, we have

reduced the dimension of our problem by one, which makes for easier implementation

of any numerical approximation. Secondly, we are solving for a function defined on

the compact ∂Ω, as opposed to the unbounded Ω+. This removes the requirement of

an artificial boundary that arises in domain based methods.
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REMARK 1.5 (Formulational conventions). It is worth noting the equivalent for-

mulations in other BIE literature. Many formulations contain a 1/2 in front of the

identity component I of A, and do not contain the factor 2 in the boundary operator

definition, or the function f . Here (as in [16]) we include this factor of 2, which

corresponds to an alternative scaling. Note also that this effect follows through to

quantities such as the coercivity constant of the star-combined operator of Definition

1.4. Moreover, the extensive review article [13] uses calligraphic notation for the

operators which map from the domain Ω+, with non-calligraphic for the operators

mapping from and to the boundary, which is the opposite of the convention adopted

in this thesis (also in [35] and [15]).

On multiple occasions, we will make use of the following definition, which is useful

when considering single obstacles in a multiple obstacle configuration.

DEFINITION 1.6 (Operator restriction). Denote by Hs1(∂Ω) and Hs2(∂Ω) two

Sobolev spaces on ∂Ω. For T : Hs1(∂Ω) → Hs2(∂Ω) with X and Y ⊂ ∂Ω, s1 and s2

in R, we define the operator TY �X : Hs1(∂Ω) → Hs2(X) by

TY �Xϕ := (T ◦ QY ϕ) |X ,

where the operator QY : Hs1(∂Ω) → {ϕ ∈ Hs3(∂Ω) : suppϕ ⊂ Y }, with s3 ∈
(−∞, s1] ∩ (−∞, 1/2), is defined as

QY ϕ =

{
ϕ, on Y,
0, on ∂Ω \ Y. (1.15)

We will also use the same notation for T : Hs1(Y ) → Hs2(X) for Y ⊂ ∂Ω where

no confusion can arise, replacing ∂Ω in the definition (1.15) with Y . Note also that

for an operator T : Hs1(Y ) 7→ Hs2(X), we write ‖T ‖Hs1 (Y )�Hs2 (X) as a convenient

shorthand for ‖TY �X‖Hs1 (Y )�Hs2 (X), (also) where no confusion can arise.

The operator TY �X in the above Definition 1.6 may be interpreted as the contri-

bution to the scatterer X from the scatterer Y , in the operator T .

A concept that is useful when relating solutions of the BVP to solutions of the

BIE is the following:

DEFINITION 1.7 (Dirichlet-to-Neumann map). We denote the Dirichlet-to-Neumann

map by P+
DtN : H1/2(∂Ω) → H−1/2(∂Ω). This maps Dirichlet boundary data τ+u

s =

−uinc|∂Ω to the Neumann trace of the scattered field ∂+n u
s. A detailed discussion can

be found in [13, §2.7].
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We note that the DtN map is defined for traces of functions which satisfy (1.4)

and (1.6), hence is typically applied to τ+u
s and not τ+u.

We will consider waves of the following type in several places in this thesis.

DEFINITION 1.8 (Herglotz-type functions). Suppose that ϕ is an entire solution

of (1.4) and satisfies

lim
R�∞

∫

BR

|ϕ|2 dV <∞,

where BR is a ball of radius R centred at the origin, then there exists a ‘Herglotz

kernel’ gHerg ∈ L2(0, 2π) such that, (see for example [17, Theorem 3.30])

ϕ(x) =

∫ 2π

0

gHerg(θ)e
ikx·dθ dθ, for x ∈ R2,

where dθ := (cos θ,− sin θ). We say that ϕ is a ‘Herglotz-type’ function.

We solve problems of Herglotz-type incidence in §3.1.

1.1.3 The far-field pattern

A quantity of practical interest is the far-field pattern of the scattered field us (also

referred to as the far-field coefficient), which describes the distribution of energy of

the scattered field us (of a solution to (1.4)-(1.6)) far away from Ω−. We can represent

the asymptotic behaviour of the scattered field (as in [35, §6]) by

us(x) ∼ u∞(θ)
ei(kr+π/4)

2
√
2πkr

, as r = |x| � ∞,

where the term u∞(θ) denotes the far-field coefficient at observation angle θ ∈ [0, 2π),

which we can represent via the Neumann trace of the total field:

u∞(θ) := −
∫

∂Ω

e−ik[y1 cos θ+y2 sin θ] ∂u

∂n
(y) ds(y), θ ∈ [0, 2π), y = (y1, y2). (1.16)

The following concept for the far-field map will also be useful

F∞ϕ(θ) := −
∫

∂Ω

e−ik[y1 cos θ+2sin θ]
[
−PDtNτ+ + ∂+n

]
ϕ(y) ds(y), (1.17)

for ϕ satisfying the conditions of Definition 1.1, chosen such that F∞(uinc) = u∞,

where uinc is the incident field of problem (1.4)-(1.6).
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1.1.4 Boundary Element Methods

We now introduce the standard version of the Boundary Element Method (BEM),

which underpins many of the numerical experiments in this thesis. BEM is the ap-

proach of approximating the boundary solution ∂+n u on ∂Ω.

Given a suitable choice for A of (1.14), we seek an approximation vN ≈ ∂+n u ∈
Hs(∂Ω) for some s ∈ R, inside a finite dimensional subspace VN ⊂ Hs(∂Ω). We

choose a basis ΛN = {φi}Ni=1 of VN . The Galerkin method seeks a solution such that

(AvN , ϕ)Hs(∂Ω) = (f, ϕ)Hs(∂Ω), for all ϕ ∈ VN , (1.18)

holds, where (·, ··)Hs(∂Ω) denotes the H
s(∂Ω) inner product (see Appendix A.2 for a

definition). It is therefore an equivalent condition to (1.18) that

(AvN , φi)Hs(∂Ω) = (f, φi)Hs(∂Ω), for all φi ∈ ΛN .

Alternatively, we may use the collocation method, such that for a chosen set of points

X = {x1, . . . , xN} ⊂ ∂Ω, the following holds:

AvN(xi) = f(xi), for all xi ∈ X. (1.19)

A comparison of collocation and Galerkin within the context of the high frequency

methods of this thesis will be seen in Remark 2.12. There are extensions to both

methods, for example Petrov Galerkin methods permit the space of the test functions

ϕ to be different to the solution space VN , whilst a least squares collocation approach

allows for a number of collocation points greater than N . The Nyström method,

offers another alternative, although it will not be discussed in this thesis (see for

example [3, Chapter 4] for a summary).

Given a BEM approximation to the solution of the problem (1.14) vN ≈ ∂+n u, we

can approximate the solution to the problem (1.4)-(1.6), by inserting the approxima-

tion into (1.10) to obtain

u ≈ ui − SkvN , in Ω+.

For BEM, when an approximation space VN of piecewise polynomials is used, the

number of degrees of freedom N must increase at least linearly with k to maintain

accuracy. Hybrid Numerical Asymptotic methods overcome this by enriching the

approximation space with oscillatory basis functions, as we shall see in §2.2.
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1.2 Motivation and aims of this thesis

Before outlining what this thesis contains, we aim to explain why all of the work

was necessary, approximately in chronological order (which is not the order that the

chapters are presented).

If the dimension of the approximation space of a numerical method does not

need to grow with the wavenumber k to maintain a fixed accuracy, we describe the

method as k- or frequency- independent. This term will be used throughout the thesis.

Hybrid Numerical Asymptotic (HNA) methods have shown to produce frequency

independent results, and are provably no more than log2 k dependent. Methods have

been developed for a range of Ω−: convex polygons in [35], non-convex polygons

in [15], penetrable obstacles in [31] and the two- and three- dimensional screen in [34]

and [33] respectively. All of these methods are for single obstacles, with plane wave

incidence.

A key motivation for this thesis is to extend previous methods to multiple obsta-

cles. We now briefly summarise two well-researched multiple scattering approaches

here, the Iterative and T-matrix methods. Iterative multiple scattering methods may

be interpreted as solving many successive single scattering problems, in which the

scattered field at the previous step becomes the incident field at the current step.

Mathematically this requires the problem to be reformulated as a Neumann series,

which will diverge if the obstacles are sufficiently close together. A detailed analy-

sis of such methods can be found in [1]. The T-matrix method originally presented

in [55] has recently been adapted to a more stable approach in [23], which has been

implemented into the software package Tmatrom. This extends naturally to multi-

ple obstacles and although certain restrictions are imposed on the separation of the

obstacles, these are more concrete than with a standard iterative approach.

The starting point for the thesis was an extension of the HNA ansatz to multiple

obstacles, which is outlined in Chapter 4. This method is well suited to certain

configurations, and places almost no restriction on the separation of the obstacles. A

disadvantage when compared with single scattering HNA methods for polygons was

that no coercive formulation was available, and we were forced to seek alternative

means when obtaining conditions for well-posedness. This was the entire motivation

for Chapter 5, in which stability of the Galerkin method for multiple scattering h-

BEM is explored, and a coercive formulation is presented.

A second consequence of the work of Chapter 4 was the motivation to explore

alternative approaches to extend HNA to multiple obstacles, in particular using the
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well-studied iterative and T-matrix methods of [1] and [23]. Both methods require

the solutions of many single scattering problems, with a special type of incident field.

This motivated the work of Chapter 3, in which the single scattering HNA method

is generalised to solve for a far broader range of incident fields. The beam source

incidence may be used in conjunction with iterative methods (although we do not

explore this here) whilst the Herglotz-type incidence enables the HNA method to

solve for radiating wavefunction incidence, allowing the HNA method to be used in

conjunction with the Tmatrom T-matrix method, for multiple scattering problems.

The Tmatrom method (discussed in Chapter 7) requires the far-field of O(k) single

scattering problems of radiating wavefunction incidence. As the HNA method is

designed for high frequency problems, this motivated an attempt to reduce the number

of far-field patterns required using the Embedding Formulae of [9], which provide

the far-field pattern induced by any Herglotz-type incident field, given the far-field

induced by a k-independent number of plane waves. However a naive implementation

of these Embedding Formulae can lead to numerical instabilities at certain points.

Understanding and overcoming these instabilities was the motivation for Chapter 6.

1.3 Outline of thesis

Chapter 2 introduces the HNA method, inside of a framework more general than has

been seen in previous works, with the intention of extending the method to a broader

class of problems. HNA methods for polygons have previously utilised an approxima-

tion space defined on two overlapping meshes, for which numerical implementation

can be quite complicated. Here we present an alternative approximation space on a

single mesh, and prove a new best approximation result analogous to the overlapping

mesh case. This mesh will also be used in the multiple scattering configuration that

follows in Chapter 4. Finally, the Galerkin method for a single convex polygon HNA

BEM is explained, and a range of known results are discussed.

In Chapter 3 we use the framework of Chapter 2 to generalise the HNA method

from plane waves to new types of incidence, including point source, beam source

and Herglotz-type functions (see Figure 1.1). A general formulation for source-type

incidence is presented, and the theory for the HNA method is extended further to

source-type incidence, permitting less regular incident fields. Numerical results for

the point source are presented, demonstrating exponential convergence of the method.

Chapter 4 aims to generalise the HNA method to multiple obstacles. Here we extend

the HNA ansatz to obtain a representation for the solution on a single side of a convex

polygon, when there is one (or many) other obstacle(s) present (see Figure 1.2). The
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Figure 1.1: Diagram of the type of source-type incidence scattered by a convex poly-
gon, which is considered in Chapter 3. Analysis holds for cases where the source point
is at least 1/k from the corners of the obstacle.

Figure 1.2: Diagram of plane wave scattering by multiple obstacles, which is consid-
ered in Chapter 4. Analysis holds for cases where the convex polygon is at least 1/k
from the other obstacle(s).

other obstacle(s) need not be polygonal for the representation to hold. The method

we propose then constructs an oscillatory basis (either on an overlapping or single

mesh as described in Chapter 2) on the convex polygon, with a standard hp-BEM

basis of piecewise polynomials on the other obstacle(s). Under certain assumptions,

exponential convergence is predicted, which is subsequently demonstrated by numer-

ical results. This Chapter also introduces a new bound on the solution in the domain

for non-trapping polygonal scatterers, which may also be applied to non-convex poly-

gons. An alternative wavenumber-independent method for multiple convex polygons

is also presented.

Chapter 5 begins to answer more general questions about well-posedness for mul-

tiple scattering BEM. The new theory in this Chapter leads to two key results, both
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(a)

X

(b)

Figure 1.3: Diagram (b) shows a mild-trapping configuration, for which h-BEM
Galerkin stability estimates are derived in Chapter 5. Such analysis does not hold for
stability estimates of configuration (a), which contains a non-smooth obstacle.

of which provide information about the stability constant and conditions for exis-

tence and uniqueness of a solution to the Galerkin equations. Firstly, we show that

if the obstacles are star-shaped and sufficiently far apart, then the constellation com-

bined operator of Definition 1.4 is coercive. Secondly, we obtain wavenumber-explicit

conditions for uniqueness of the Galerkin equations with the standard combined op-

erator (of Definition 1.2), for configurations of multiple smooth obstacles with strictly

positive curvature (with no restriction on the separation of the obstacles, see Figure

1.3). Additionally, Chapter 5 contains standard h-BEM approximation on multiple

convex polygons, and k-explicit bounds on the inverse of the constellation combined

operator.

Chapter 6 explains how instabilities can arise when numerically implementing

Embedding Formulae (of [9]) and proposes a novel reformulation which is numerically

stable. The formulae considered hold only for rational polygons, for which each

external angle is a rational multiple of π (see Figure 1.4). We also provide numerical

analysis of this new method, which provides an upper bound on the global error

in terms of the key parameters of the problem, and this stability is backed up by

numerical results. Additional notes on implementation of such a method, including a

new algorithm for fast computation of far-field derivatives, can be found in Appendix

C.

Chapter 7 summarises the Tmatrom method of [23], and explains different ways

that this may be combined with the HNA method. The type of multiple obstacle

configurations which may be solved using Tmatrom are summarised in Figure 1.5.
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(a)

X

(b)

Figure 1.4: Embedding formulae of Chapter 6 hold for rational polygons of type
(a), which has external angles 5π/3. Our method cannot be applied to irrational
polygons such as (b), which has external angles {(5+ ǫ)π/3, (5− ǫ)π/3, 5π/3}, where
ǫ = 2−1/2/10 6∈ Q.

The first approach utilises the Herglotz representation of Chapter 3, whilst the second

combines this with the Embedding Formulae of Chapter 6. A numerical example

combining Tmatrom with the Embedding Formulae of Chapter 6 with MPSpack

of [4] is presented.

In Chapter 8, we summarise the work presented in the thesis alongside ideas for

future work. The majority of the results of the thesis is partitioned into two distinct

methods, which are compared. We also compare the single- and overlapping-mesh

approximation spaces.

Appendix A provides a formal definition of the majority of terms used throughout

the thesis. This includes a definition of trace spaces, Bessel potential spaces, and

k-weighted norms. Fundamental bounds and regularity results for the fundamental

solution (1.7) are also presented.

Appendix B summarises quadrature rules used to generate numerical examples

throughout the thesis. Much of the information of this section can be obtained

elsewhere, although having it all contained in one place may be useful. Issues arising

with near singularities are discussed, alongside related issues arising when computing

singular integrals on long and thin domains. An explanation for the latter of these

issues is provided, which to the best knowledge of the author, is new.

Appendix C provides further details for implementation of the Embedding For-

mulae of Chapter 6. This includes an algorithm for fast computation of derivatives

of the far-field pattern, assuming that an approximation to the Neumann trace is

available. An alternative algorithm for computing the far-field pattern at unstable
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(a)

X

(b)

Figure 1.5: T-matrix method of Chapter 7 requires that each obstacle can sit inside
of a ball, such that the intersection of any two of these balls is empty. Hence, our
method is applicable to Configuration (a), but not configuration (b).

points, which is outside of the scope of Chapter 6, is outlined. These enable the

Embedding Formulae to become controllably accurate at any observation point, at

any observation angle.
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Chapter 2

General HNA framework

In this chapter we summarise much of the single scattering HNA work prior to this

thesis, inside a general framework which will also encompass a broader class of prob-

lems in Chapters 3 and 4. We also introduce and analyse a new approximation space,

as an alternative to what has been used previously.

2.1 Representation on a single side

In related literature, there appears to be no single consistent definition of the term

polygon, so we shall clarify a definition that is appropriate for what follows.

DEFINITION 2.1 (Polygon). We say Ω− is a polygon if it is a bounded Lipschitz

open set with a boundary ∂Ω consisting only of straight line segments, such that the

endpoint of every segment is connected to one other endpoint of another segment.

We note that Definition 2.1 permits multiple disconnected shapes, whereas other

conventions in the literature do not. Many results that follow hold for a subclass of

polygons, which we define now (as in e.g., [50, Definition 1.1])

DEFINITION 2.2 (Non-trapping polygon). We say that a polygon Ω− (in the sense

of Definition 2.1) is non-trapping if:

(i) No three vertices of ∂Ω are co-linear, i.e. they lie in a straight line.

(ii) For a ball BR with radius R > 0 sufficiently large that Ω− ⊂ BR, there exists

a T (R) < ∞ such that all billiard trajectories that start inside of BR \ Ω− that

start at time zero T = 0 and miss the vertices of ∂Ω will leave BR by time T (R).

In this chapter we assume that scattering obstacle Ω− of the general problem

statement of §1.1 is a convex polygon, which we denote ΩΓ with boundary ∂Ω = Γ. We
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P4

ω4
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Figure 2.1: Example of a five-sided polygon (nΓ = 5) with boundary Γ.

now define a range of parameters related to the geometry of ΩΓ, on which subsequent

bounds will depend. The parameters in these definitions will hold for any convex

polygon in this thesis.

DEFINITION 2.3 (Parameters of a convex polygon). For an nΓ-sided polygon (in

the sense of Definition 2.1) with boundary Γ, we denote by Pj and Pj+1 the nodes at

the endpoints of each side Γj, for j = 1, . . . , nΓ setting PnΓ+1 := P1. Conventionally,

the vertices are indexed anti-clockwise. We denote by Lj := |Pj+1 −Pj| the length of

Γj, L̃j :=
∑j

ℓ=1 Lℓ, and LΓ := L̃nΓ
. The jth exterior angle is denoted ωj, hence for a

convex polygon we have ωj ∈ (π, 2π). Finally we choose the constant c∗ > 0 such that

kLj ≥ c∗ for j = 1, . . . , nΓ (e.g. c∗ = minj{kLj}), and L∗ := maxj{Lj}

Figure 2.1 depicts a five-sided polygon with certain parameters of Definition 2.3.

We parametrise Γ by

xΓ(s) = Pj +
s− L̃j−1

Lj

(Pj+1 −Pj), s ∈ [L̃j−1, L̃j), j = 1, . . . , nΓ (2.1)

and Γ−
j ∪Γj ∪Γ+

j , which is the straight line containing Γj, extended infinitely in both

directions (defined in more detail in Chapter 3), by

yj(s) = Pj +
s− L̃j−1

Lj

(Pj+1 −Pj), s ∈ R, j = 1, . . . , nΓ.

Now we consider the scattering problem (1.4)-(1.6), with solution u, for the case

where the scattering object Ω− is a convex polygon. In such a case, there are two
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key physical components of the scattered field us. Firstly, the waves reflected by the

edges Γj, for j = 1, . . . , nΓ. As we will see, these can be written explicitly without

the need for numerical approximation. The second type of wave which contributes

to the scattered field are the diffracted waves emanating from the corners Pj, for

j = 1, . . . , nΓ. Recall that with a BIE formulation (1.14), we are instead solving for

∂+n u. In such a case, the diffracted waves move in just two directions along each side

Γj, for j = 1, . . . , nΓ, making this formulation an ideal approach for approximating

the diffracted waves. Moreover, it is possible to separate explicitly the oscillatory

behaviour of these two diffracted terms; the remaining (unknown) term which must be

approximated numerically is non-oscillatory [16, Corollary 3.4]. The full mathematical

derivation depends on the incident wave ui (see [16, §3] for plane waves, see Chapter

3 of this thesis for more general incidence), however the HNA ansatz for a single

impenetrable convex polygon may be written as:

∂u

∂n
(xΓ(s)) =

Reflected terms︷ ︸︸ ︷
Ψ(xΓ(s)) +

Diffracted terms︷ ︸︸ ︷
v+j (xΓ(s− L̃j−1))︸ ︷︷ ︸
First unknown envelope

eiks + v−j (xΓ(L̃j − s))
︸ ︷︷ ︸

Second unknown envelope

e−iks, (2.2)

where s ∈ [L̃j−1, L̃j], for j = 1, . . . , nΓ, with µ(z) := e−izH
(1)
1 (z)/z, the (unknown)

amplitudes of the diffracted waves are represented by

v+j (s) :=
ik2

2

∫ ∞

0

µ
(
k(s+ t)

)
eik(t−L̃j−1)u

(
yj(L̃j−1 − t)

)
dt, s ∈ [0, Lj ],

v−j (s) :=
ik2

2

∫ ∞

0

µ
(
k(s+ t)

)
eik(L̃j+t)u

(
yj(L̃j + t)

)
dt, s ∈ [0, Lj ], (2.3)

whilst Ψ represents the leading order asymptotics corresponding physically to the

reflected terms, hence we shall see later that Ψ is zero on the sides which are not illu-

minated by the incident wave. The term Ψ is often referred to as the Physical Optics

Approximation for single scatterers, an approximation which ignores diffracted waves.

Intuitively, this approximation may be interpreted as twice the normal derivative on

the sides that can see the incident waves. At sufficiently high frequencies, this may

be a suitable approximation, however it is not controllably accurate. The Hybrid

Numerical Asymptotic method improves on the Physical Optics Approximation by

approximating the diffracted waves numerically. In previous methods such as [35],

Ψ can be written explicitly in terms of uinc, although an approximate representation

may be sufficient. This is the case for the penetrable obstacles of [31], in which a beam

tracing algorithm is used to approximate reflections inside ΩΓ. This takes the form of

an infinite series, which must be truncated, and is thus only approximate (although in
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theory, controllably accurate). However, the representation for the diffracted waves

for penetrable ΩΓ is more complex, and does not fit within the framework (2.2). Sim-

ilarly, the ansatz for non-convex obstacles of [15] contains an additional term, and

does not fit within (2.2).

It is the envelopes v±j that are approximated numerically, indeed our hp approxi-

mation will converge exponentially (from [35, Theorem 5.2]) if the following assump-

tion holds.

ASSUMPTION 2.4. There exists a term M(u) such that:

(i) The functions v±j , for j = 1, . . . , nΓ, are analytic in the right half-plane Re[s] >

0, where they satisfy the bounds

|v±j (s)| ≤
{
C±

j M(u)k|ks|−δ±j , 0 < |s| ≤ 1/k,

C±
j M(u)k|ks|−1/2, |s| > 1/k,

where δ+j , δ
−
j ∈ (0, 1/2) are given by δ+j := 1− π/ωj and δ−j := 1− π/ωj+1, C

+
j

depends only on c∗ and ωj, C
−
j depends only on c∗ and ωj+1

(ii) M(u) depends on the size of the solution u to (1.4)− (1.6) grows at most alge-

braically with k, i.e. there exists a β ≥ 0 such that

M(u) . kβ, for all k ≥ 0, (2.4)

where a . b means that a ≤ cb, where the constant c depends only on the

geometry of Ω−.

To summarise, in order to design HNA methods we must be able to do the fol-

lowing:

(i) Represent leading order behaviour accurately via Ψ.

(ii) Show that Assumption 2.4 holds.

Prior to this thesis, HNA methods have only been designed for problems of plane

wave incidence, which are defined as:

uinc(x) = uincPW (x;α) := eikdα·x, where dα := (cosα,− sinα). (2.5)

Unlike previous HNA papers (for e.g. [16, §2]), we choose α to be the angle that the

plane wave is emanating from, measured against the x1-axis. This is to be consistent

with previous literature on Embedding Formulae, which we explore in Chapter 6.
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REMARK 2.5 (The constant M(u) for plane waves). For problems of plane wave

incidence (as in (2.5)) scattering by a single convex polygon Ω−, Assumption 2.4 has

been shown to hold with

M(u) =M∞(u) := sup
x∈Ω+

|u(x)|,

[35, Theorem 3.2]. Numerical experiments of [16] and [15] suggest that for problems

of plane wave incidence with convex Ω−, we have M∞(u) ∼ 1, although the strongest

theoretical bound is currently M∞(u) . k1/2 log1/2 k, for k ≥ k0 where k0 is a constant

independent of k, (see [35, Theorem 4.3] for star shaped polygons, this is generalised

to non-trapping polygons in Corollary 4.7 of this thesis). In §3.2.1 we will consider

cases for which Assumption 2.4(i) holds, but with M∞(u) unbounded, hence requiring

a different choice of M(u).

The framework we present does not include the non-convex work of [15]; this

requires an extra term in the ansatz which captures the oscillatory nature of the

waves diffracted by the corners, as they are reflected by the non-convex sides.

2.2 Approximation space

We now design an approximation space to represent efficiently the diffracted waves

emanating from the corners of the convex polygon Γ,

vΓ(s) :=
1

k

(
v+j (s− L̃j−1)e

iks + v−j (L̃j − s)e−iks
)
, s ∈

[
L̃j−1, L̃j

]
, j = 1, . . . , NΓ,

(2.6)

a term containing all of the unknown components of (2.2) (recall that the reflected

waves can be represented explicitly). The scaling by 1/k ensures that vΓ is dimension-

less. Instead of approximating vΓ by piecewise polynomials, we use our knowledge of

the oscillations e±iks and approximate both v+j (s− L̃j−1) and v
−
j (L̃j−1 − s) by piece-

wise polynomials. Both of these are singular as s tends to zero, thus the polynomial

space requires a graded mesh to ensure a strong approximation. In this section we

present two such approximation spaces, both graded and enriched with oscillatory ba-

sis elements. First we present the overlapping-mesh space, which has been used in all

previous HNA methods, included here for completeness and for an easy comparison

against the new mesh. This space consists of two overlapping meshes, graded towards

opposite corners. Secondly we propose a new alternative approach, the single-mesh

space; motivated by potentially easier implementation.

20



We shall see in Chapter 4 that the approximation spaces we present here are not

only appropriate for a new class of incident fields, but may also be used on a convex

polygon inside a multiple scattering configuration.

The overlapping-mesh hybrid space

Nodes:

Widths:

x0 = 0

x1 − x0 = Lσn−1

i=1,...,n−1︷ ︸︸ ︷
xi = Lσn−i

xi − xi−1 = Lσn−i(1− σ)︸ ︷︷ ︸
i=2,...,n−1

xn−1 = Lσ xn = L

xn − xn−1 = L(1− σ)

Figure 2.2: The nodes and widths of the mesh as described in Definition 2.6

Nodes:

Widths:

L− xn = 0

xn − xn−1 = L(1− σ)

L-xn−1 = L(1− σ)

i=1,...,n−1︷ ︸︸ ︷
L− xi = L(1− σn−i)

xi − xi−1 = Lσn−i(1− σ)︸ ︷︷ ︸
i=2,...,n−1

L-x0 = L

x1 − x0 = Lσn−1

Figure 2.3: The nodes and widths of the mesh as described in Definition 2.6 subtracted
from L, to construct a mesh graded in the opposite direction.

DEFINITION 2.6. Given L > 0, n ∈ N and a grading parameter σ ∈ (0, 1), we

denote by M<
n (0, L) = {x0, . . . , xn} the geometrically graded mesh on [0, L] with n

layers graded towards 0, whose n+ 1 meshpoints xi are defined by

x0 := 0, xi := Lσn−i, for i = 1, . . . , n.

For a vector p = (p1, . . . , pn) ∈ (N0)
n we denote by P<

p,n the space of piecewise

polynomials on M<
n (0, L) with degree vector p, i.e.

P<
p,n(0, L) :=

{
ρ ∈ L2(0, L) : ρ|(xi−1,xi)
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is a polynomial of degree at most pi for i = 1, . . . , n
}
.

Where pi = p for i = 1, . . . , n, we write P<
p,n for P<

p,n.

The space P<
p,n(0, Lj) is designed to approximate v+j , enrichment with oscillatory

functions provides a space suitable to approximate v+j e
±iks. We first define two spaces

for each side Γj, j = 1, . . . , nΓ, using nj ∈ N to determine the degree of mesh grading

and the vectors pj to determine the polynomial degree on each mesh element:

V
+

j :=
{
v ∈ L2(0, LΓ) : v|(L̃j−1,L̃j)

(s) = ρ̃(s− L̃j−1)e
iks, ρ̃ ∈ P<

pj ,nj
(0, Lj),

ρ|(0,LΓ)\(L̃j−1,L̃j)
= 0
}
,

V
−

j :=
{
v ∈ L2(0, LΓ) : v|(L̃j−1,L̃j)

(s) = ρ̃(L̃j − s)e−iks, ρ̃ ∈ P<
pj ,nj

(0, Lj),

ρ|(0,LΓ)\(L̃j−1,L̃j)
= 0
}
.

In the space V
−

j , the argument of ρ̃ decreases as s increases. This is related to the

mesh depicted in Figure 2.3. The overlapping-mesh approximation space can now be

defined as

V
HNA

N (Γ) := span

{
nΓ⋃

j=1

(V
+

j ∪ V
−

j )

}
,

where N refers to the number of degrees of freedom in the space V
HNA

N (Γ), and

depends on parameters pj and nj for j = 1, . . . , nΓ.

The single-mesh hybrid space

Nodes:

Widths:

x0 = 0

x1 − x0 = Lσn−1

i=1,...,n−1︷ ︸︸ ︷
xi = Lσn−i

xi − xi−1 = Lσn−i(1− σ)︸ ︷︷ ︸
i=2,...,n−1

xn−1 = Lσ

xn − xn−1 = L− 2σ

xn = L(1− σ)

i=n,...,2n−2︷ ︸︸ ︷
xi = L(1− σi−n+1)

xi − xi−1 = Lσi−n(1− σ)︸ ︷︷ ︸
i=n+1,...,2n−2

x2n−1 = L

x2n−1 − x2n−2 = Lσn−1

DEFINITION 2.7. Given L > 0, n ∈ N and a grading parameter σ ∈ (0, 1/2), we

denote by Mn(0, L) = {x0, . . . , x2n−1} the symmetric geometrically graded mesh on
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[0, L] with n layers in each direction, whose 2n meshpoints xi are defined by

x0 := 0, xi := Lσn−i, for i = 1, . . . , n− 1,
xi := L(1− σi), for i = n, . . . , 2n− 2, x2n−1 := L.

For a vector p = (p1, . . . , pn) ∈ (N0)
n we denote by Pp,n the space of piecewise

polynomials on Mn(0, L) with degree vector p, i.e.

Pp,n(0, L) :=

{
ρ ∈ L2(0, L) : ρ|(xi−1,xi) and ρ|(x2n−1−i,x2n−i)

are polynomials of degree at most pi for i = 1, . . . , n

}
.

In the case where pi = p for i = 1, . . . , n, we write Pp,n for Pp,n.

We first define two spaces for each side Γj, j = 1, . . . , nΓ, using nj ∈ N to determine

the degree of mesh grading and the vectors pj to determine the polynomial degree on

each mesh element:

V
+

j :=
{
v ∈ L2(0, LΓ) : v|(L̃j−1,L̃j)

(s) = ρ̃(s− L̃j−1)e
iks, ρ̃ ∈ Ppj ,nj

(0, Lj),

ρ|(0,LΓ)\(L̃j−1,L̃j)
= 0
}
,

V
−

j :=
{
v ∈ L2(0, LΓ) : v|(L̃j−1,L̃j)

(s) = ρ̃(L̃j − s)e−iks, ρ̃ ∈ Ppj ,nj
(0, Lj),

ρ|(0,LΓ)\(L̃j−1,L̃j)
= 0
}
.

As is explained in Remark 2.8, to avoid ill conditioning of the discrete system we

must remove certain basis functions.

Ṽj := span
({
v ∈ V −

j : v|[L̃j−1,L̃j−1+xñj
] = 0

}
∪
{
v ∈ V +

j : v|[L̃j−xñj
,L̃j ]

= 0
})

where

xñj
:= max

{
xi ∈ Mnj

(0, Lj) such that xi ≤ αj
2π

k

}
(2.7)

and αj is a parameter chosen such that 0 < αj < Ljk/(4π), bounded independently

of k and and pj, used to fine tune the space. Put simply, there are two basis functions

on elements sufficiently far from the corners, and one basis element on elements close

to the corners. The parameter αj determines the threshold referring to precisely what

is meant by sufficiently close. Hence the single-mesh approximation space is defined

as

V
HNA

N (Γ) := span

nΓ⋃

j=1

Ṽj .
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REMARK 2.8 (Why elements of V
±

j are removed). Since the mesh is strongly graded

to approximate the singularities of v±j , some of its elements are much smaller than the

wavelength of the problem, thus e±iks are roughly constant on them and the functions

of V
+

j supported on these elements are numerically indistinguishable from those on

V
−

j , leading to an ill-conditioned discrete system of Galerkin methods set in V
+

j ∪V −

j .

To avoid this, in these elements we maintain only one of these two contributions.

Intuitively, αj can be thought of as the value such that in all elements with distance

from one of the segment endpoints smaller than αj, the space Ṽj supports polynomials

multiplied with only one of the waves e±iks. As the parameter αj increases, fewer

degrees of freedom are used and the conditioning of the discrete system is improved,

but the accuracy of the method is reduced, hence care must be taken when selecting

αj.

As has become standard for HNA BEM (see e.g. [35]), in the numerical exper-

iments of §3.2.3 and §4.5 we choose a grading parameter of σ = 0.15, which is a

prudent over-refinement of the value suggested by [32, Theorem 3.2]. We note that

our definition of each approximation space results in symmetric grading and distri-

bution of polynomial degrees. For the more complex asymmetric definition on the

overlapping mesh, see for example [35, §5].
We shall shortly present a new result, a best approximation result analogous to

the overlapping mesh case of [35, Theorem 5.4], adapted for the single mesh. First, we

motivate why a modification to the overlapping mesh theorem is required, outlining

the differences between the two spaces. The basis functions on the graded regions

of the mesh, which are designed to handle the singularities of v±j , will also be used

to approximate a smooth wave propagating in the opposite direction, for which the

grading is not necessary. The elements of the space Ṽj supported on the larger central

2(nj − ñj)−1 elements [L̃j−1+xñj
, L̃j−1+xñj+1], . . . , [L̃j −xñj+1, L̃j−1+xñj

] coincide

with those of span(V
+

j ∪ V −

j ), thus the HNA approximation results of [35, §5] apply.
However, on the first and final ñj mesh elements of Mn(0, Lj), the elements of the

discrete space contain only one of the two oscillating factors e±iks. For example, in

the first ñj smaller elements [L̃j−1, L̃j−1+x1], . . . , [L̃j−1+xñj−1, L̃j−1+xñj
], the basis

functions of the form eiksρ(s−L̃j−1) for a polynomial ρ, need to approximate both the

singular function v+j (s−L̃j−1)e
iks. Here the approximation theory of [35] applies again,

and the smooth function v−j (L̃j − s)e−iks, for which we prove approximation bounds

in the next theorem. These correspond to the approximation of v−j (L̃j−s)e−2iks away

from its singularity with piecewise polynomials. In particular we want to control the
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dependence of the error on the wavenumber k. In the remaining ñj elements closest

to L̃j the same reasoning applies with basis functions of the form e−iksρ(L̃j − s).

For the overlapping-mesh space, best approximation estimates were derived in [35,

Theorem 5.4] (summarised shortly in Corollary 2.11). The single-mesh space is a

relatively new approach to HNA methods, and prior to this thesis no analogous result

had been derived. The following theorem provides such estimates, and illustrates the

dependence of the best approximation on the parameter αj .

THEOREM 2.9. Suppose that the polynomial degree pj is constant across the ele-

ments of the side Γj, that Assumption 2.4 holds, nj ≥ cjpj for cj > 0 of Definition

2.3, and xñj
≤ Ljk/(2+ ǫj)π for some 0 < ǫj ≤ 1. Then we have the following bound,

concerning the best approximation of the single-mesh space, on a single side Γj of a

convex polygon:

inf
wN∈Ṽj

∥∥v±j e±ik· − wN

∥∥
L2(0,Lj)

(2.8)

≤ CjM(u)
√
k
(
(kLj)

1/2−δ±j + log1/2(2 + kLj) +
√
k(kIj)

−δ±j

)
e−pjτ

±
j (2.9)

where

τ±j := min

{
c±j | log σ|(1/2−δ±j ), log

1 + σ1/2(2− σ)1/2

1− σ
, log

(
1+ǫj+ǫ

1/2
j (2+ǫj)

1/2
)}
,

Ij := Lj − xñj
(1 + ǫj/2) > 0, and

Cj := max

{
C4,max

±
{C±

j }
√
xñj

2

ǫj + ǫ
1/2
j (2 + ǫj)1/2

e2αjπ
√

ǫj(ǫj+2)

}
,

with C4 as in [35, Theorem 5.5].

Proof. We give only the details for the case of v+j , that of v−j follows by similar

arguments. From the definition of Ṽj and V
±

j we have

inf
wN∈Ṽj

∥∥v+j eik· − wN

∥∥2
L2(0,Lj)

≤

inf
wN∈V

+
j

∥∥v+j eik· − wN

∥∥2
L2(0,Lj−xñj

)
+ inf

wN∈V
−
j

∥∥v+j eik· − wN

∥∥2
L2(Lj−xñj

,Lj)
.

By Assumption 2.4, g(z) = v+k (z/k) satisfies the estimates required in [35, Theo-

rem 5.2], and using |eiks| = 1 the first term on the right-hand side is hence bounded

as in [35, Theorem 5.4], leading to the first two terms in the brackets in (2.8). Focusing

on the second term, we multiply by eik· and scale by a factor k:

inf
wN∈V

−
j

∥∥v+j eik· − wN

∥∥
L2(Lj−xñj

,Lj)
= inf

P∈Ppj,n(0,Lj)

∥∥v+j e2ik· − P
∥∥
L2(Lj−xñj

,Lj)
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=
1√
k

inf
P∈Ppj,n(0,kLj)

∥∥v+j (·/k)e2i· − P
∥∥
L2(k(Lj−xñj

),kLj)

≤ √
xñj

inf
P∈Ppj,n(0,kLj)

∥∥v+j (·/k)e2i· − P
∥∥
L∞(k(Lj−xñj

),kLj)
.

To bound this term we define the open ellipse by E := {w ∈ C : |w − k(Lj − xñj
)|+

|w − kLj| < R} with R := (1 + ǫj)kxñj
and appeal to [35, Lemma A.2] to obtain

inf
wN∈V

−
j

∥∥v+j eik· − wN

∥∥
L2(Lj−xñj

,Lj)
≤ √

xñj

2

ρ− 1
ρ−pj

∥∥v+j (·/k)e2i·
∥∥
L∞(E)

≤ √
xñj

2

ρ− 1
ρ−pj

∥∥e2i·
∥∥
L∞(E)

∥∥v+j (·/k)
∥∥
L∞(E)

,

where ρ := (R +
√
R2 − (kxñj

)2)/kxñj
= 1 + ǫj + ǫ

1/2
j (2 + ǫj)

1/2. Noting that

sup{| Im(w)| : w ∈ E} = 1
2

√
R2 − x2ñj

= 1
2
kxñj

√
ǫj(ǫj + 2) ≤ αjπ

√
ǫj(ǫj + 2) and

inf{Re(w) : w ∈ E} = kLj − kxñj
(1 + ǫj/2), it follows from Assumption 2.4 that

inf
wN∈V −

j

∥∥v+j eik· − wN

∥∥
L2(Lj−xñj

,Lj)

≤ √
xñj

2

ρ− 1
ρ−pje2αjπ

√
ǫj(ǫj+2)C+

j M(u)k
∣∣k
(
Lj − xñj

(1 + ǫj/2)
)∣∣−δ+j

from which the result follows, recalling that xñ ≤ αj2π/k.

In this proof we have approximated v+j (·/k)e2i· over ñj small elements with a single

polynomial of degree pj; sharper estimates may be derived along the lines of the proof

of [35, Theorem 5.2], which admits different polynomials in each element.

A slightly sharper bound may be achievable by choosing non-oscillating functions

on the elements close to the corners, yielding the constant eαjπ
√

ǫj(ǫj+2) in place of

e2αjπ
√

ǫj(ǫj+2). However this would also require separate bounds close to the singularity

of v±j , we would be unable to use the bounds of [35, Theorem 5.2], making the proof

more complex. If αj is chosen independently of k and sufficiently small, then the

first and the last ñj elements of Mn(0, Lj) are smaller than a given fraction of the

wavelength of the problem.

Construction of the stiffness matrix will have approximately similar CPU time

for the single- and overlapping-mesh approach (assuming that the same quadrature

routine is used in each method) for similar degrees of freedom, because the inner prod-

ucts are very similar. Provided αj is chosen correctly, we expect the implementation

of the single-mesh to be advantageous because implementation is easier, as there are

fewer types of inner products that need computing for the Galerkin method and it

is easily adapted from a standard hp solver, which would not generally be defined
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over an overlapping mesh. Secondly, controlling the number of degrees of freedom

of the discrete space enables us to control the conditioning of the discrete system.

Figure 2.4 suggests that the conditioning remains stable as the number of degrees of

freedom increases, for αj = min{(p)i/2, 2} on the ith mesh element, for j = 1, 2, 3,

whilst the conditioning for the overlapping-mesh space appears to grow exponentially

for a similar number of degrees of freedom. It should be noted that the value of

αj is larger here than that which is used to produce the numerical results in §3.2.3
and §4.5, and we would expect a larger value of αj to produce less accurate results.

Hence an advantage of the single-mesh approach is that the user has control over the

conditioning of the discrete system (by tweaking the parameter αj), but this may

come at a cost (a loss of accuracy). Indeed, Figure 3.11 suggests that the condition

number for αj = min{(p)i/8, 2} grows exponentially, whilst Figure 4.4 suggests that

the larger choice αj = min{(p)i/4, 2} can lead to inaccurate results.
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Figure 2.4: The condition number of the Galerkin stiffness matrix corresponding to
scattering by a single regular triangle, with each side length 2π and wavenumber
k = 5, for a single- and double-mesh discretisation as described in Remark 2.8. The
maximal polynomial degrees used are p = 0, . . . , 9 for the single-mesh space and
p = 1, . . . , 7 for the overlapping-mesh space; the polynomial degrees in the small
elements are decreased as in Remark 2.10.

REMARK 2.10. It is shown in [35, Theorem A.3] for V
HNA

N (Γ) that it is possible to

reduce the number of degrees of freedom on Γ, whilst maintaining exponential conver-

gence, by reducing the polynomial degree in the smaller mesh elements. For example,
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given p > 1, suppose that we define for each side Γj, j = 1, . . . , nΓ, a degree vector p

by

(p)i :=

{ ⌈
i−1
n∗
p
⌉
, 1 ≤ i ≤ n∗,

p, n∗ + 1 ≤ i ≤ n,

where n∗ is the largest i ∈ {1, . . . , n−1} such that xi−1/2 < 1. Numerical experiments

in §3.2.3 and §4.5 suggest that a similar result holds for V
HNA

N (Γ), although we do not

prove this here. To this purpose, one has to use the technique of [35, Theorem A.3],

relying on different approximation bounds on each mesh element, while the technique

used in the proof of Theorem 2.9 requires the presence of high-order polynomials on

each element.

Now we present a result which compares the best approximation of the single-mesh

and overlapping-mesh spaces, over the whole boundary Γ.

COROLLARY 2.11. If Assumption 2.4 and the conditions for Theorem 2.9 hold

for a convex polygon Γ, then we have the following best approximation bound for the

diffracted wave vΓ (see (2.6)):

inf
wN∈V HNA

N (Γ)
‖vΓ − wN‖L2(Γ) ≤ CΓM(u)k−1/2J(k)e−pτΓ , (2.10)

where CΓ is a constant independent of k and

J(k) :=

{
(1 + kL∗)

1/2−δ∗ + log1/2(2 + kL∗) +
√
k(kI∗)

−δ∗ , V HNA
N (Γ) = V

HNA

N (Γ)

(1 + kL∗)
1/2−δ∗ + log1/2(2 + kL∗), V HNA

N (Γ) = V
HNA

N (Γ)

with I∗ := minj{Ij}, p := minj{pj}, τΓ := minj,±{τ±j pj}/p, δ∗ := minj,±{δ±j }. For

the case V
HNA

N (Γ), it follows that CΓ = maxj{Cj}. For the case V
HNA

N (Γ), CΓ is equal

to the constant C4 of [35, Theorem 5.5].

Proof. For V
HNA

N (Γ), the result follows by extending Theorem 2.9 to all sides, noting

the scaling of (2.6). The case V
HNA

N (Γ) is proved in [35, Theorem 5.5].

In the above Corollary 2.11, we note that there is an additional term in the

best approximation error of V
HNA

N (Γ), namely
√
k(kI∗)

−δ∗ . By definition, for convex

polygons we have that δ∗ > 1/2, hence it follows that J(k) ∼ log1/2 k as k → ∞.

REMARK 2.12 (Collocation vs Galerkin HNA BEM). The collocation (see (1.19))

HNA method for the problem of the two-dimensional screen was investigated in [47]. A

key component of the investigation was a comparison between single- and overlapping-

mesh collocation, although no conclusions were drawn regarding how the collocation
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points should be chosen when an overlapping mesh is used. In certain cases, choosing

Chebyshev nodes resulted in a non-convergent numerical method. Given this result,

the single-mesh space V
HNA

N (Γ) would be the recommended choice when coupled with

a collocation HNA method. The key advantage of collocation is that the integrals

in the discrete system are of one dimension less, making for easier implementation,

and faster run time. The disadvantage of collocation is that there is (currently) no

applicable theory on stability constants for collocation HNA BEM, however there are

many problems (for example, looking ahead to multiple obstacle HNA BEM (4.22))

for which there are also no stability bounds available for the Galerkin method (see

(1.18)) either, hence case there is no theoretical advantage to implementing the more

complex Galerkin method. Stability analysis of collocation HNA BEM is a possible

area for future work, as it has been proved (see for example [2]) for certain problems

(not including HNA BEM), that collocation and Galerkin methods produce the same

result, in which case the same error analysis can be applied. In summary, there are

advantages and disadvantages to Collocation and Galerkin methods, depending on

implementation time available and desirability of a priori error bounds.

2.3 HNA Galerkin method for a single convex polygon

Here we summarise the HNA Galerkin method for a single convex polygon Γ. We write

V HNA
N (Γ) to denote either of the two approximation spaces of §2.2. The continuous

BIE to solve may be written by combining (2.2), (2.6) and (1.14) with either choice

of A,

AvΓ =
1

k
(f −AΨ) , on Γ,

and the Galerkin problem (see (1.18)) to solve is: find vN ∈ V HNA
N (Γ) such that

(AvN , ϕ)L2(Γ) =
1

k
(f −AΨ, ϕ)L2(Γ) , for all ϕ ∈ V HNA

N (Γ), (2.11)

where (·, ·)L2(Γ) denotes the L
2 inner product on Γ (see §A.2). For A = Ak,η it follows

by [16, Theorem 5.2] that there exists an N0 > 0 such that (2.11) has a unique solution

for N ≥ N0. For A = Ak we have N0 = 1 (see Remark 2.13 for details). Provided

the conditions of Assumption 2.4 and Corollary 2.11 are satisfied, we may bound the

error in our approximation on a single convex scatterer,

‖vΓ − vN‖L2(Γ) ≤ Ck−1/2Cq(k)M(u)J(k)e−pτΓ , for N ≥ N0, (2.12)
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where C, p, J and τΓ are as in Corollary 2.11. The bound (2.12) follows by com-

bining the best approximation error with [16, Theorem 5.2], and is a natural gener-

alisation of [35, (5.11)] to multiple approximation spaces (recalling that J depends

on the choice of approximation space). The constant Cq(k) ≥ 1 denotes the stabil-

ity or quasi-optimality constant, which determines the relationship between the best

approximation available in the space V HNA
N (Γ) and the solution to the Galerkin equa-

tions (2.11), as these need not be the same thing. The stability constant depends on

the formulation used, and has been the subject of much investigation, which we will

summarise now:

REMARK 2.13 (The stability constant Cq for HNA methods on convex polygons).

Here Cq represents the quasi-optimality constant associated to the Galerkin method.

If A = Ak (of Definition 1.3) then N0 = 1 and Cq . k1/2 for k ≥ k0, where k0 > 0 is

fixed and independent of k. This follows from the coercivity of Ak, by Céa’s lemma

(see [52] and [35, Theorem 6.1]). Numerical experiments of [8, Table 6.1] show that

Ak,k is coercive for the square and equilateral triangle, with a coercivity constant

uniform in k, hence Cq ∼ ‖Ak,k‖; given the current best available bounds on Ak,η

( [20, Theorem 1.4]), we have Cq . k1/4 log k in these particular cases. Such a result

has not yet been proved for Ak,η with general convex polygonal scatterers. Instead

we may use the more general theory (see for example [3, Theorem 3.1.1]), given that

Ak,η is a compact perturbation of a coercive operator [16, p620] we have existence of

N0 and Cq, although this provides no mechanism to bound either in terms of known

parameters.

THEOREM 2.14. Suppose that the stability constant Cq(k) grows at most alge-

braically with k, that Assumption 2.4 holds, A is a compact perturbation of a coercive

operator, and either approximation space is used with the following condition on the

polynomial degree vector on the jth side:

(pj)i = pj ≤ nj/cj for i = 1, . . . , nj with cj ≥ 1 for j = 1, . . . nΓ,

where cj is the constant from Theorem 2.9. Then the solution of the Galerkin equa-

tions (2.11) converges exponentially to the true solution of (1.14) as p→ ∞ on L2(Γ),

where p := minj{pj}.

Proof. It follows by Assumption 2.4 and Corollary 2.11 that Cq(k)M(u)J(k) grows

only algebraically in k. Hence there exists an N ≥ N0, where N grows with p, such

that e−pτΓ will dominate the algebraic terms, given the bound (2.12).
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The above theorem highlights the importance of obtaining algebraic bounds on

M(u) (thus showing that Assumption 2.4 holds), which is a key component of Chapter

3. Although much work has been done to understand the growth of the stability

constant Cq(k) for star-shaped Ω− (as discussed in Remark (2.13)), Chapter 5 provides

the first bound for multiple scattering problems. Given the solution of (2.11), we can

approximate quantities of practical interest using the Definitions (2.2) and (2.6),

noting that vN is an approximation to vΓ, to obtain

∂+n u ≈ νp := Ψ + kvN , on Γ,

where p is the polynomial degree used to obtain the approximation with N degrees

of freedom (there are parameters other than p, in particular cj, which determine N).

From this, an approximation to the total field u of (1.10) follows immediately, by

inserting into (1.10)

u ≈ uN := uinc − Skνp, in Ω+,

and we have (from [35, Theorem 6.3]) that

‖u− uN‖L∞(Ω+) ≤ CM(u)k1/2 log1/2(2 + L∗k)J(k)e
−pτΓ .

Likewise, we have the following approximation to the far-field coefficient of (1.16)

u∞(θ) ≈ u∞N (θ) :=

∫

Γ

e−ik[y1 cos θ+y2 sin θ]νp(y) ds(y), θ ∈ [0, 2π), (2.13)

with error estimate (from [35, Theorem 6.4])

‖u∞ − u∞N ‖L∞(0,2π) ≤ Ck3/2M(u) log1/2(2 + kL∗)J(k)e
−pτΓ . (2.14)
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Chapter 3

Generalisation of incident fields
solvable by HNA method

The results produced in this chapter will appear in [26].

To date, each version of the HNA method has been developed for solving problems

of plane wave incidence (as in Figure 3.2(a), see Remark 2.5). However, point source

incidence (see Definition 3.6(i) and Figure 3.2(c)) also occurs frequently in practical

applications. For example, in acoustic modelling, most sounds originate from a source

point; a plane wave model is only appropriate when the source is far away from the

scattering obstacle (a plane wave may be interpreted as a point source at infinity).

Moreover, a point source is more physically realistic (than a plane wave) as it satisfies

the radiation condition (1.6). Perhaps less commonly studied is a generalisation of the

point source; the beam source (see Definition 3.6(ii), and Figure 3.2(d)), for which

the point source is smeared along a line. Our interest in the beam source is only

partially motivated by direct application; we expect it will also be useful for iterative

multiple scattering versions of HNA BEM, which are discussed briefly in Chapter 8.

We are also interested in scattering by a general Herglotz-type incident field (see

Definition 1.8 and Figure 3.2(b) for an example with Herglotz kernel). As with the

beam source incidence, solutions to such problems may not have as many immediate

applications. Instead, our motivation is nested inside a larger idea for solving multiple

scattering problems. The Tmatrom method of [23] requires an approximation of the

far-field pattern of radiating wavefunctions, for which the Herglotz kernel can be

written explicitly (see Chapter 7 for details). Hence it is necessary to understand

such problems to develop HNA methods which are compatible with the Tmatrom

method.

In this Chapter, we aim to generalise HNA methods to a broader class of obstacles,

whilst restricting our attention to the case of the convex polygon Ω−. For each new
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Γ+
j Γj Γ−

j

x

x̃j

Uj

R2 \ Uj

Figure 3.1: Example of a typical extension of a single side Γj, and the image of x ∈ Uj

reflected in the infinite line Γ∞
j = Γ−

j ∪ Γj ∪ Γ+
j , to create the point x̃j ∈ R2 \ Uj.

problem considered, we will derive a boundary representation analogous to (2.2) using

a half-plane formulation, extending a single side Γj (of the boundary Γ of the convex

polygon Ω−) infinitely in both directions to form the boundary of the half-plane (see

Figure 3.6 for example of an extension of a typical side). Considering a single side Γj

of a convex polygon Γ, 1 ≤ j ≤ nΓ, we define Γ+
j and Γ−

j as the infinite extensions of

Γj in the clockwise and anti-clockwise directions. Denote by Uj the (open) upper-half

plane relative to Γ∞
j := Γ+

j ∪ Γj ∪ Γ−
j , such that the unit normal nj points into Uj .

Finally, we define x̃j to be the reflection of x across Γj. Formally, x = x̃j when

x ∈ Γj, otherwise x̃j 6= x satisfies dist(x,Γ∞
j ) = dist(x̃j,Γ∞

j ) = 1
2
|x− x̃j| (see Figure

3.1 for a visual example).

We will make multiple uses of the following representation from [10, (14)], which

states that for v ∈ C2(Uj) ∩ C(Uj) satisfying the Helmholtz equation (1.3) and the

radiation condition (1.6), we have

v(x) = 2

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
v(y) ds(y), x in Uj . (3.1)

We note that this representation holds for v = us (the scattered field component of the

solution to (1.4)-(1.6)) and holds for plane waves propagating in direction d, provided

that d · nj ≥ 0, i.e. propagating out of Uj (see [10], [16, §3]). Our representation for

the Neumann trace of the solution to (1.4)–(1.6) will typically be of the form

∂u

∂n
(x) = Ψ(x) + 2

∫

Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x in Γj. (3.2)

This leads to the boundary representation (2.2), since

∂2Φ(x,y)

∂n(x)∂n(y)
=

iH
(1)
1 (k|x− y|)
4|x− y| =

ik2

4
eik|x−y|µ(k|x−y|), where µ(z) := e−izH

(1)
1 (z)

z
,

see [16, eq. (3.6)].
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Figure 3.2: Examples of types of incident field solvable in this chapter, with wavenum-
ber k = 40 (although the wavenumber is irrelevant for (a) and (c)). (a) Plane wave.
(b) Herglotz-type wave with kernel gHerg = −e−iℓθ/(2π). (c) Point source. (d) Beam
source (see Definition 3.5) with γ = {(x1, x2) ∈ R2 : x1 ∈ [−1/2, 1/2], x2 = 0} and
ϕ(x) = 1/2 + x21.

As promised in Remark 2.5, we will generalise the definition of M(u) (of As-

sumption 2.4) to problems where the incident field is unbounded at points inside the

scattering domain Ω+. This definition will continue to depend on the size of u in

some sense. We will conclude this introduction with a theorem which will be used

in each problem considered in this chapter, and the multiple scattering problems of

Chapter 4. This theorem will enable us to bound the scattered field us in terms of

the k-weighted norm (see (A.4)) of the incident field uinc on the boundary ∂Ω.

THEOREM 3.1. For an obstacle Ω− with boundary ∂Ω and incident field uinc (in the

sense of Definition 1.1), we have the following bounds on the corresponding scattered
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field us = u− uinc, where u is the solution to (1.4)–(1.6):

(i) For star-shaped polygonal Ω− with boundary Γ = ∂Ω,

‖us‖L∞(Ω+) ≤ C1

[
2 diam(Ω−) +

1

2k

]
k−1/2 log1/2(2 + kL∗)‖uinc‖H1

k(Γ)
,

where

C1 =

√
5nΓ/(8 log 2)[1 + (2/π)(1− γE + e1/4)]

ess inf
x∈Γ

(x · n(x)) ,

where nΓ is the number of sides of Γ, whilst L∗ denotes the length of the longest

side and γE ≈ 0.577 denotes the Euler constant.

(ii) More generally, for a non-trapping polygon (in the sense of Definition 2.2) Ω−

with boundary ∂Ω, given k0 > 0,

‖us‖L∞(Ω+) . k−1/2 log1/2(k)‖uinc‖H1
k(∂Ω), for k ≥ k0.

(Recall that a . b is equivalent to a ≤ cb, where c depends only on the geometry

of Ω−.)

Proof. (i) We have the representation us = −SkA−1
k fk in Ω+ (follows immediately

from (1.10)), where Ak and fk are as in Definition 1.4. As uinc ∈ C∞(N ) by Definition

1.1, it follows that uinc ∈ H1(Γ). Hence by the definition of fk,

‖fk‖L2(Γ) ≤ diam(Ω−)‖∇uinc‖L2(Γ) + k(diam(Ω−) + 1/2)‖uinc‖L2(Γ)

≤
[
2 diam(Ω−) +

1

2k

]
‖uinc‖H1

k(Γ)
. (3.3)

The result follows by combining (3.3) with the bound on Sk of [35, Lemma 4.1] and

the bound on A−1
k of [35, (4.5)] (noting that our definition of Ak is twice that of Ak

in [52], as warned by Remark 1.5) with the bound

‖us‖L∞(Ω+) ≤ ‖Sk‖L2(Γ)�L∞(Ω+)‖A−1
k ‖L2(Γ)�L2(Γ)‖fk‖L2(Γ). (3.4)

(ii) In terms of the Dirichlet to Neumann map, we may consider the BVP with

Dirichlet data us = −uinc on the boundary ∂Ω, hence ∂+n u
s = −PDtNτ+u

inc. We

therefore have the representation

us = −Sk(∂
+
n − PDtNτ+)u

inc, in Ω+,
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which we can bound

‖us‖L∞(Ω+) ≤ ‖Sk‖L2(∂Ω)�L∞(Ω+)

(
1 + ‖PDtN‖H1

k(∂Ω)�L2(∂Ω)

)
‖uinc‖H1

k(∂Ω).

We have that ‖Sk‖L2(∂Ω) . k−1/2 log1/2 k from [35, Lemma 4.1] provided we choose

k0 ≥ max{2L∗, 2/L∗}, also k0 must be chosen such that ‖PDtN‖H1
k(∂Ω)�L2(∂Ω) . 1

( [6, Theorem 1.4]), this proves the assertion.

In the above Theorem 3.1, the bound (i) is a special case of the more general bound

(ii), choosing k0 = max{2L∗, 2/L∗} and k-independent constant c = C1[2 diam(Ω−)+

1]
√
2. In this chapter, we consider only convex polygons (a sub-class of star-shaped

polygons, so all results concerning star-shaped obstacles hold), however Theorem

3.1(ii) is a general result which will also apply to multiple obstacles in Chapter 4, and

to non-convex obstacles (this is discussed further immediately after Corollary 4.7).

3.1 Herglotz-type incidence

First, we extend the well-studied case of plane wave incidence to a weighted integral

of plane waves. From the point of view of the numerical analysis, this is the simplest

case we consider, as smoothness properties are inherited from the single plane wave

case.

We aim to solve the problem (1.4)-(1.6) for a single convex polygon Ω− with

boundary Γ = ∂Ω, where the incident field is a Herglotz-type function (in the sense

of Definition 1.8), for which the Herglotz kernel gHerg ∈ L2(0, 2π) is known, hence

uinc(x) = uincHerg(x; gHerg) :=

∫ 2π

0

gHerg(θ)e
ikx·dθ dθ, for x ∈ R2,

where dθ := (cos θ,− sin θ). We shall typically not specify the second argument

(the Herglotz kernel) of uincHerg(x; gHerg), and instead write uincHerg(x). We now separate

the leading order behaviour (reflected terms) of ∂+n u, by splitting the incident wave

uincHerg into incoming and outgoing waves relative to the half-plane Uj, to obtain a

representation of the form (3.2). To do this, we require Z↓
j := {θ ∈ [0, 2π) : dθ ·nj < 0}

and Z↑
j := {θ ∈ [0, 2π) : dθ · nj ≥ 0}. We may now split the incident wave into plane

waves partitioned over these sets, and use the representation (3.1) on Z↑
j to obtain

for x in Uj

uincHerg(x) =

∫

Z↓
j ∪Z

↑
j

gHerg(θ)e
ikx·dθ dθ
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nj
Uj

R2 \ Uj

Figure 3.3: Example of the two types of waves split over the integral. Dashed arrows
are those in Z↓

j , regular arrows are in Z↑
j .

=

∫

Z↓
j

gHerg(θ)e
ikx·dθ dθ + 2

∫

Γ∞
j

∫

Z↑
j

∂Φ(x,y)

∂n(y)
gHerg(θ)e

iky·dθ dθ ds(y).

(3.5)

We cannot use the representation (3.1) over Z↓
j , instead we may consider

ur(x) = −
∫

Z↓
j

gHerg(θ)e
ikx̃j ·dθ dθ, x in Uj ,

the integral of images of plane waves reflected in the line Γ∞
j (see Figure 3.3). As

this consists only of incident waves which are outgoing relative to x̃j, we can use the

representation (3.1) with v = us to obtain

0 = ur(x) + 2

∫

Γ∞
j

∫

Z↓
j

∂Φ(x,y)

∂n(x)
gHerg(θ)e

iky·dθ dθ ds(y), x in Uj, (3.6)

where ỹj has been replaced by yj, as y = ỹj on Γ∞
j . Summing (3.5), (3.6) and (3.1)

with v = us yields

u(x) =

∫

Z↓
j

gHerg(θ)
[
eikx·dθ − eikx̃·dθ

]
dθ+2

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x in Uj, (3.7)

finally taking the Neumann trace gives the representation (3.2)

∂u

∂n
(x) = ΨHerg(x) + 2

∫

Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x in Γj, (3.8)

where

ΨHerg(x) = 2ik

∫

Z↓
j

[nj · dθ]gHerg(θ)e
ikx·dθ dθ, x in Γj.

We note that the representation (3.8) appears identical to (3.2), the key difference

being the definition of Ψ = ΨHerg.
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THEOREM 3.2. Suppose that the incident field is a Herglotz-type function uincHerg (in

the sense of Definition 1.8), and Ω− is a convex polygon. It follows that Assumption

2.4(i) holds, with

M(u) =M∞(u) := sup
x∈Ω+

|u(x)|,

hence the functions v±j , j = 1, . . . , nΓ, are analytic in the right half-plane Re[s] > 0,

where they satisfy the bounds

|v±j (s)| ≤
{
C±

j M∞(u)k|ks|−δ±j , 0 < |s| ≤ 1/k,

C±
j M∞(u)k|ks|−1/2, |s| > 1/k,

where δ+j , δ
−
j ∈ (0, 1/2) are given by δ+j := 1 − π/ωj and δ−j := 1 − π/ωj+1. The

constant C+
j depends only on c∗, and ωj, whilst the constant C−

j depends only on c∗,

and ωj+1. Here the constants c∗ ωj are as in Definition 2.3.

Proof. Given the boundary representation (3.8), [35, Theorem 3.1] describing the

behaviour close to the corners holds for Herglotz-type functions, and the assertion

follows by exactly the same arguments as [35, Theorem 3.2].

The estimates above can be rewritten in terms of known parameters using the

following bound.

COROLLARY 3.3. Suppose that uincHerg and Ω− are as in Theorem 3.2. Given the

Herglotz kernel gHerg ∈ L2(0, 2π) of uincHerg we have the following bound

M∞(u) ≤ ‖gHerg‖L2(0,2π)

(√
2π + 2C1

√
π|Γ|1/2

[
2 diam(Ω−) +

1

2k

]
k1/2 log1/2(2 + kL∗)

)
,

where C1 and L∗ are as in Theorem 3.1. Hence, if there exists a β′ > 0 such that

‖gHerg‖L2(0,2π) . kβ
′
, Assumption 2.4(ii) holds.

Proof. The bound on M∞(u) follows by writing

M∞(u) ≤ ‖uincHerg‖L∞(Ω+) + ‖us‖L∞(Ω+) (3.9)

and noting by Definition 1.8 it follows that ‖uincHerg‖H1
k(Γ)

≤ 2
√
π|Γ|1/2k‖gHerg‖L2(0,2π) ,

hence we may use Theorem 3.1 to bound ‖uincHerg‖L∞(Ω+) of (3.9), with ‖uincHerg‖L∞(Ω+) ≤√
2π‖gHerg‖L2(0,2π), which again follows from Definition 1.8.

Through Theorem 3.2 and Corollary (3.3), we have shown that both components

of Assumption 2.4 hold, and thus by Theorem 2.14, exponential convergence of the
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Galerkin method 4.4 for Herglotz-type incidence is guaranteed. We do not present

numerical experiments for problems of Herglotz-type incidence here.

Although the theory was initially developed to integrate HNA methods with the

T-matrix method of [23], we will develop a more efficient method in Chapter 6 which

serves the same purpose, using the theory developed in Chapter 7. To implement the

theory of this section, one may apply the method (2.11) to approximate ∂+n u, noting

that if we choose A = Ak then fully explicit error estimates follow from (2.12) on any

N -dimensional subspace V HNA
N (Γ), by Corollary 3.3 and Remark 2.13.

3.2 Source-type incidence

In this section, we aim to generalise the HNA method to cases for which the incident

field uinc 6∈ C∞(R2). Naturally, some regularity is required for the HNA method to

work. We aim to contain the less regular regions of the incident field, for example a

point at which the incident field is unbounded, inside of a set that is sufficiently far

from the scatterer Ω− such that Assumption 2.4 holds, and therefore (by Theorem

2.14) the HNA method still converges at an exponential rate. We denote by Z a

set inside of which this less regular behaviour is contained. Previous analyses of the

HNA method utilised the boundedness of u when bounding the diffracted waves (see

for example [35, Theorem 3.2 proof]); it follows from (3.2) that v± may be written

as integrals along the extended line Γ±
j . The idea is to take M∞(u) outside of the

integral using Hölder’s inequality with L1(Γ±
j ) and L

∞(Γ±
j ) to obtain a bound on the

diffracted waves. However, we will demonstrate here that if there exists a bounded

open Z ∈ R2 outside of which uinc is smooth, it is sufficient for uinc to be L2 integrable

on Γ±
j ∩ Z, whilst Theorem 3.1 provides a bound on ‖us‖Γ±

j
. To ensure uinc satisfies

these conditions, we define the straight line

ℓc,θ :=
{
(x1, x2) ⊂ R2 : x2 cos θ − x1 sin θ = c

}
, for c ∈ R and θ ∈ [0, π). (3.10)

We will make use of the following norm, which considers the trace on the intersection

of such lines with Z, for a function w

‖w‖L(Z) : H
1/2+ǫ(Z) → R+, ‖w‖L(Z) := sup

c∈R,θ∈[0,π)

‖τℓc,θw‖L2(ℓc,θ∩Z), for ǫ > 0,

(3.11)

where τℓc,θ denotes the trace operator mapping to the line ℓc,θ. Given that w ∈
H1/2+ǫ(Z) we know that w is continuous across ℓc,θ, hence the trace is the same

regardless of the direction in which it is taken. Figure 3.4 depicts the type of lines

considered, for a set Z.
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Figure 3.4: A finite set of lines intersecting some shaded region Z. The L(Z) norm
considers the infinite set of all such lines, and bounds above the L2 norm of a function
restricted to any such straight line.

The following Theorem bounds the L2(ℓc,θ∩Z) norm uniformly for any c ∈ R, θ ∈
[0, π). This is useful given that our definition of M(u) for source-type incidence will

contain the L(Z) norm.

THEOREM 3.4. If uinc|Z ∈ Hs(Z) for s ∈ (1/2, 3/2), where Z is a finite union of

convex bounded sets open in R2, then

‖uinc‖L(Z) ≤ Cτ‖uinc‖Hs(Z),

where Cτ > 0 depends only on Z.

Proof. Initially we consider the case for Z convex. We consider a line ℓc,θ which

intersects Z, and consider the two (also convex) sets formed via the bisection of the

set Z by ℓc,θ. Denote by one of these two sets Ẑ, chosen to be the set inside of which

the largest ball can be constructed, and assume for now that diam(Ẑ) = 1. Denote

by ∂Ẑ the boundary of Ẑ. It follows by [36, Lemma 4.4] that

‖w‖2
L2(∂Ẑ)

≤ Ĉτ

(
‖w‖2

L2(Ẑ)
+ |w|2

W s(Ẑ)

)
, for w ∈ Hs(Z),

where Ĉτ depends on Ẑ and | · |W s(Ẑ) denotes the Sobolev–Slobodeckij semi-norm,

order s over Ẑ (see e.g. [42, p74] for a definition). As ℓc,θ ∩ Z ⊂ ∂Ẑ, and Ẑ ⊂ Z we

have

‖w‖2L2(ℓc,θ∩Z) ≤ Ĉτ

(
‖w‖2L2(Z) + |w|2W s(Z)

)
, for w ∈ Hs(Z).

Given the conditions of [36, Lemma 4.4], we may choose Ĉτ to be the constant cor-

responding to the ℓc,θ which minimises the radius of the largest open ball that can

be constructed inside of the set Ẑ. Given Z, this choice will produce the maximal
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value of Ĉτ . Combining this maximal constant with the equivalence of the Sobolev–

Slobodeckij and Bessel potential norms (see [42, Theorem 3.30(ii)]) we may write

‖w‖2L(Z) ≤ Cτ‖w‖2Hs(Z), for w ∈ Hs(Z),

where Cτ depends only on Z. Repeated applications of the above steps extend this

result to finite unions of convex sets. Likewise, scaling arguments can be used for the

case diam(Ẑ) 6= 1.

Now we may define the space of source-type incident waves which we will solve

via the HNA method.

DEFINITION 3.5 (Source-type incidence). Given a bounded open Z ⊂ R2 such

that dist(Z,Ω+) ≥ 1/k, we define the set of source-type incidences as

Hsrc(Ω+;Z) := {ϕ ∈ L2
loc(R

2) : ϕ|Z ∈ Hs(Z), for s > 1/2, ϕ|R2\Z ∈ C∞(R2\Z)}.

The above definition takes into consideration the result of Theorem 3.4; by re-

stricting to ϕ|Z ∈ Hs(Z) this ensures that ‖ϕ‖L(Z) <∞ for all functions in the space.

We note also that classical C∞(R2) incidences, for example plane or Herglotz-type

waves, are accommodated by the above definition, in which case Z may be chosen to

be empty.

Intuitively, the set Z can be thought of as the region in which the incident wave

may be less regular, and all weakly singular behaviour should be strictly inside of Z.

Given that we still have smoothness inside a neighbourhood of Γ, we can obtain the

required bounds on |v±| of Assumption 2.4, for a carefully chosen M(u).

3.2.1 Leading order behaviour for scattering by point and beam source
incidence

We now restrict our attention to a particular class of source-type incident fields, so

that the leading order behaviour can be separated, as is required to represent the

solution in the form (3.2)

DEFINITION 3.6 (Localised source). The localised source uinc ∈ Hsrc(Ω+, Z) is

defined as

uinc(x) = 〈ϕ̃,Φ(x, ·)〉 , for x ∈ R2 \ Z,

where ϕ̃ is a distribution, and the values of Z for which x is defined depends on the

particular choice of ϕ̃, as discussed in Remark 3.7 below. We are interested in two

particular cases:
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(i) The point source emanating from s ∈ Z, corresponding to ϕ̃ = δs, where δs is

the Dirac Delta function translated to s, for which

uinc(x) = uincPS(x; s) := Φ(x, s), for x ∈ R2 \ {s}.

(ii) The beam source emanating from a Lipschitz curve γ of Hausdorff dimension

one, with density ϕ ∈ L2(γ),

uinc(x) = uincBS(x;ϕ) :=

∫

γ

Φ(x,y)ϕ(y) ds(y), for x ∈ R2.

See Figure 3.6 for examples of typical Z for source type waves. Hereafter we shall

often make the second arguments s and ϕ of uincPS and uincBS implicit, writing uincPS(x)

and uincBS(x) instead.

REMARK 3.7 (Dependence on regularity of ϕ̃). We now explain in more detail

the values of x ∈ Z for which uinc(x) is defined, given ϕ̃, noting the regularity of the

fundamental solution,

Φ(x, ·) ∈ H1−ǫ(R2), for all ǫ > 0, for all x ∈ R2. (3.12)

(As we could not locate a derivation of the regularity (3.12) in the literature, we

present an argument in Appendix A.4.) Given that the inner product is well defined

between any space and its dual, it follows from (3.12) that uinc(x) = 〈ϕ̃,Φ(x, ·)〉 is

defined for all x ∈ Z (and therefore all x ∈ R2) if ϕ̃ ∈ H−1+ǫ(R2), as is the case

for the beam source of Definition 3.6(ii). However, this is not the case for the point

source, as we have taken the less regular ϕ̃ = δs ∈ H−1−ǫ(Z) ∩ (C(Z))∗, for s ∈ Z

and ǫ > 0, yielding Φ(x, s), for which x is undefined at s. However, for the point

source case, it follows from (3.12) that Φ(·, s) ∈ Hs(R2) for s ∈ (1/2, 1), hence by

Definition 3.5 we have that Φ(·, s) ∈ Hsrc(Ω+;Z) for s in a suitable Z containing s.

This is sufficient to prove the bounds on |v±|, as required by Assumption 2.4(i).

Now we derive a representation for ∂+n u which explicitly separates the leading

order (reflected) terms in terms of known components of uinc, for the case of the

beam source and the point source. The general rule is that if the side Γj can see the

source, then the leading order term Ψ is equal to 2∂+n u
inc, otherwise it is equal to

zero.
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THEOREM 3.8. For a point source incidence uinc = uincPS (as in Definition 3.6(i)),

the leading order behaviour of (3.2) is

Ψ = ΨPS(x) :=

{
2∂+nΦ(x, s), s ∈ Uj ,

0, otherwise,
for x ∈ Γj, (3.13)

where Uj denotes the upper half plane relative to Γ∞
j (as defined at the start of this

Chapter, depicted in Figure 3.1).

Proof. Define the half-plane Dirichlet Green’s function

Gj(x,y) := Φ(x,y)− Φ(x̃j,y), x 6= y,

where x̃j is the reflection of x in the line Γ∞
j , as defined at the beginning of this

chapter. We split into three cases, depending on the position of the source point s:

(i) For s in Uj, we apply Green’s second identity to uincPS and Gj(x, ·) in Uj∩BR(0)∩
Bǫ(s), where BR is a ball chosen sufficiently large that Γj and Bǫ(s) are inside

it, for ǫ > 0. Taking the limit as ǫ→ 0 and R → ∞ yields the result

uincPS(x) = Gj(x, s) + 2

∫

Γ∞

∂Φ(x,y)

∂n(y)
uincPS(y) ds(y), x ∈ Uj. (3.14)

Taking the Neumann trace gives the result

∂uincPS

∂n
(x) = 2

∂Φ(x, s)

∂n(x)
+ 2

∫

Γ∞

∂2Φ(x,y)

∂n(x)∂n(y)
uincPS(y) ds(y), x ∈ Γj, (3.15)

as claimed.

(ii) For s ∈ Γ∞
j , the same approach as (i) holds, although the factor of 2 in (3.14)

is replaced by a 1, as only half of the ǫ-ball is in Uj . This makes no difference

however, as ∂n + Φ(x, s) = 0 for s ∈ Γ∞
j , so the leading order term Ψ is zero in

this case.

(iii) For a source in the relative lower-half plane, s ∈ R2\Uj, the representation (3.1)

may be used, as uincPS is smooth in the upper half plane Uj, hence

uincPS(x) = 2

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
uincPS(y) ds(y), x ∈ Uj ,

and taking the Neumann trace yields

∂uincPS

∂n
(x) = 2

∫

Γ∞
j

∂2Φ(x,y)

∂n(x)∂n(y)
uincPS(y) ds(y), x ∈ Γj,
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Γj Γ−
jΓ+

j

Uj

R2 \ Uj

γa

γbγr

Figure 3.5: Depiction of the imaging argument used in the proof of Theorem 3.9. Here
γa := γ ∩ Uj , γb := γ \ Uj and γr := {x̃j ∈ R2 : x ∈ γa}. Physically, γr corresponds
to the reflection of γa in the line γ∞j := Γ−

j ∪ Γj ∪ Γ+
j . The wave uinca emanates from

γa, u
inc
b emanates from γb, and u

r
a may be interpreted as a wave emanating from γr

(although it is formulated differently in (3.20)).

Combining each case, summing with the representation (3.19) of the Neumann trace

of the scattered field us yields

∂u

∂n
(x) = ΨPS(x) + 2

∫

Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γj,

as claimed

THEOREM 3.9. For a beam source incidence uinc = uincBS with density ϕ ∈ L2(γ)

(as in Definition 3.6(ii)), the leading order behaviour of (3.2) is

ΨBS(x) = 2

∫

Uj∩γ

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y), for x ∈ Γj. (3.16)

Proof. We will use a method of images style argument (depicted in Figure 3.5). We

split uincBS into two components, corresponding to the contribution to the intensity at

x from the components of the incident field above and below the extended line Γ∞
j ,

uinca (x) :=

∫

γ∩Uj

Φ(x,y)ϕ(y) ds(y), and uincb (x) :=

∫

γ\Uj

Φ(x,y)ϕ(y) ds(y),

(3.17)

noting that uinc = uinca +uincb . Given that uincb |Uj
∈ C2(Uj)∩C(Uj), we can apply (3.1)

to obtain the representation

uincb (x) =

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
uincb (y) ds(y), x ∈ Uj . (3.18)
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We note that the same representation holds for us, hence

us(x) =

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
us(y) ds(y), x ∈ Uj. (3.19)

For ϕ ∈ L2(γ), it follows from [13, Theorem 2.15] that uinca |Uj
∈ H

3/2
loc (Uj) 6⊂

C2(Uj) ∩ C(Uj), hence we cannot apply (3.1). Instead we make use of ura(x) :=

−uinca (x̃j) ∈ C2(Uj) ∩ C(Uj), which physically corresponds to the reflection of uinca in

the extended line Γ∞
j (See Figure 3.5). Applying (3.1) yields

ura(x) = 2

∫

Γ∞
j

∂Φ(x̃j,y)

∂n(y)
uinca (y) ds(y) = −2

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
uinca (y) ds(y), (3.20)

for x ∈ Uj. We may now add both sides of (3.20) to u = uinc + us, and split the

incident field uinc = uinca + uincb to obtain

u(x) =

uinc

︷ ︸︸ ︷
uinca (x) + uincb (x)+us(x) + ura(x) +

−ur(x)︷ ︸︸ ︷
2

∫

Γ∞
j

∂Φ(x,y)

∂n(y)
uinca (y) ds(y), x ∈ Uj .

Substituting the representation for uinca of (3.17) and (3.19), we obtain

u(x) = uinca (x) + ura(x) + 2

∫

Γ+
j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Uj.

Taking the Neumann trace to Γj yields

∂u

∂n
(x) = 2

∫

γ∩Uj

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y) + 2

∫

Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γj,

as claimed.

The definition of Ψ for a point source may be easily extended to multiple point

sources by taking a linear combination of the leading order behaviour for each indi-

vidual point source. Recalling that the beam source may become a useful concept

in iterative multiple scattering methods, we remark that the case of a more general

density ϕ ∈ H−1/2(γ) must be well understood for an iterative solution of a config-

uration of multiple screens, as this is the solution space of the screen problem. We

hypothesise that a similar result holds in such a case, however one must be careful

when splitting the beam source into uinc = uinca + uincb (as in the proof of Theorem

3.9), as the integral now must be understood in the sense of distributions.

We will see in (4.1) that the leading order for beam source incidence (3.16) is

closely related to our multiple scattering operator (4.12); the key difference is that ϕ

becomes an unknown density in the multiple scattering case.
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Γj

Γ+
j

Uj

Γ−
j

Ω−

n

γ

s

∂BR

Figure 3.6: Example of components used for half-plane representation, in which the
shaded region(s) denote(s) the choice of Z. This diagram may be used to explain the
point source (at s) or beam source (at γ) case, or the incident wave corresponding to
the combination of both.

3.2.2 Regularity of v± for source-type terms

In the previous subsection we separated the leading order behaviour for a large class

of source-type incidences, of the form stated in Definition 3.6. We now relax further,

to the entire space Hsrc(Ω+;Z), inside of which we prove the required bounds on the

diffracted waves.

THEOREM 3.10. For incident field uinc, if there exists Z such that uinc ∈ Hsrc(Ω+;Z)

(as in Definition 3.5), then Assumption 2.4 holds with M(u) =MZ(u), that is

MZ(u) := ‖uinc‖L∞(Ω+\Z) + ‖us‖L∞(Ω+) +

√
k

8
‖uinc‖L(Z). (3.21)

Hence the functions v±j , for j = 1, . . . , nΓ, are analytic in the right half-plane Re[s] >

0, where they satisfy the bounds

|v±j (s)| ≤
{
C±

j MZ(u)k|ks|−δ±j , 0 < |s| ≤ 1/k,

C±
j MZ(u)k|ks|−1/2, |s| > 1/k,

where δ+j , δ
−
j ∈ (0, 1/2) are given by δ+j := 1 − π/ωj and δ−j := 1 − π/ωj+1. The
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constant C+
j depends only on c∗, and ωj, whilst the constant C−

j depends only on c∗,

and ωj+1.

Proof. The analyticity of the functions v±j (s) in Re[s] > 0 follows from their definition

(2.3) and the analyticity of µ(s) in the same set, which is shown in [35, Lemma 3.4].

Firstly we deal with the case of |s| > 1/k. It follows that k(s+ t) > 1, hence the

bound [35, (3.7)] can be simplified and we may write

|v+j (s)| ≤
k2

2

∫ ∞

0

|µ (k(s+ t))|−3/2
∣∣∣u
(
yj(L̃j−1 − t)

)∣∣∣ dt (3.22)

≤ k2

2

∫ ∞

0

k(|s|+ t)−3/2
∣∣∣u
(
yj(L̃j−1 − t)

)∣∣∣ dt. (3.23)

We now split the integral, separating the set Z ′ ⊂ (1/k,∞) containing all t such that

yj(L̃j−1 − t) ∈ Z. It follows that

|v+j (s)| ≤
k2

2

[∫

(0,∞)\Z′

+

∫

Z′

]
k(|s|+ t)−3/2

∣∣∣u
(
yj(L̃j−1 − t)

)∣∣∣ dt,

≤k
2

2

(
‖u‖L∞(D\Z)

) ∫

(0,∞)\Z′

k(|s|+ t) dt

+
k2

2

∫

Z′

k(|s|+ t)−3/2
∣∣∣u
(
yj(L̃j−1 − t)

)∣∣∣ dt

≤k
2

2

(
‖u‖L∞(D\Z)

) ∫

(0,∞)\Z′

k(|s|+ t) dt+
k2

2
‖us‖L∞(Z)

∫

Z′

k(|s|+ t)−3/2 dt

+
k2

2

∫

Z′

(k(|s|+ t))−3/2
∣∣∣uinc

(
yj(L̃j−1 − t)

)∣∣∣ dt.

Since |s| > 1/k and Z ′ is bounded, we can write

∫ ∞

0

(k(|s|+ t))−3/2 dt ≤ 2k−1|ks|−1/2

and (∫

Z′

|k(|s|+ t)|−3 dt

)1/2

≤ k−1/2

√
2

|ks|−1 ≤ k−1/2

√
2

|ks|−1/2,

hence by the Cauchy-Schwarz inequality

|v+j (s)| ≤MZ(u)k|ks|−1/2 for s >
1

k
.

For |s| ≤ 1/k, the definition (2.3) of v+j gives

|v+j (s)| ≤
k2

2

[∫ 1/k

0

+

∫ ∞

1/k

]
∣∣µ
(
k(s+ t)

)∣∣∣∣u
(
yj(L̃j−1 − t)

)∣∣ dt
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As (0, 1/k) 6⊂ Z ′, it follows from the Definition of Hsrc(Ω+;Z) that uinc is infinitely

differentiable in this region, and satisfies [35, Lemma 3.5], hence

u(x) ≤ C‖u‖L∞(Ω+\Z)(k|x|)π/ωj , for |x| < 1/k,

for C independent of k, and

u(x) ≤ CMZ(u)(k|x|)π/ωj , for |x| < 1/k.

The first integral is bounded as in the proof of [35, Theorem 3.2], hence

∫ 1/k

0

∣∣µ
(
k(s+ t)

)∣∣∣∣u
(
yj(L̃j−1 − t)

)∣∣ dt ≤ ‖u
(
yj(L̃j−1 − t)

)
‖L∞(0,1/k)k|ks|−δ±j

≤ k
(
‖uinc‖L∞(Ω+\Z) + ‖us‖L∞(Ω+)

)
|ks|−δ±j

≤ k
(
‖uinc‖L∞(Ω+\Z) + ‖us‖L∞(Ω+)

)
|ks|−δ±j ,

(3.24)

whilst the second integral is bounded as in the case |s| > 1/k. Combining all bounds

proves the assertion.

Provided thatMZ(u) has only algebraic growth in k, the conditions of Assumption

2.4 are satisfied, and a hp method as described in §2.3 converges exponentially. We

note again that up to this point, the case uinc ∈ C∞(R2) also fits inside of this

framework, by choosing Z empty. We now seek fully explicit bounds on MZ(u) for

the case of point source incidence.

THEOREM 3.11. For point source incidence uinc = uincPS(·; s) with dist(s,Γ) >

1/k, it follows that uincPS ∈ Hsrc(Ω+;Z) (of Definition 3.5) with Z = Br(s) and r =

min(1, 1/(2k)), moreover we have a k-explicit bound on the constant of Theorem 3.10

MZ(u) ≤

C2 +
C1|Γ|1/2

2

[
2 diam(Ω+) +

1

k

]
log1/2(2 + kL∗)

(√
2

π dist(s,Γ)
+

1

π dist(s,Γ)
√
k

)
,

where C1 and L∗ are the constants from Theorem 3.1, and

C2 =
1

2
√
π
+

1√
2

(
1 +

2

π
(1 + γE + e1/4)

)
(5 + log2 2 + log 16)1/2.

Hence Assumption 2.4(ii) holds.
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Proof. Noting the definition (3.21) ofMZ(u), we bound each of the three components

separately.

(i) The bound on

‖uincPS‖L∞(Ω+\Z) ≤
1

2
√
π

follows immediately from (A.7); given the monotonicity of the absolute value of

Hankel functions, the maximal value will occur at the boundary of Z.

(ii) Secondly we prove the bound on ‖us‖L∞(Ω+). By Definition A.4 of the H1
k norm,

we have

‖uincPS‖H1
k(Γ)

=

(∫

Γ

k2|Φ(y, s)|2 + |∇ΓΦ(y, s)|2 ds(y)
)1/2

,

which we can bound using (a+ b)1/2 ≤ a+ b for a and b non-negative, hence

‖uincPS‖H1
k(Γ)

= |Γ|1/2
(
sup
y∈Γ

k2|Φ(y, s)|2 + sup
y∈Γ

|∇ΓΦ(y, s)|2 ds(y)
)1/2

.

Given the definition of Φ, and that H
′(1)
0 (kz) = −kH(1)

1 (kz) for z > 0, using

(A.7) and (A.8) to bound these yields

‖uincPS‖H1
k(Γ)

≤ |Γ|1/2
2

(√
2k

π dist(s,Ω+)
+

1

π dist(s,Ω+)

)
.

Combining with Theorem 3.1, we obtain

‖us‖L∞(Ω+)

≤ C1|Γ|1/2
2

[
2 diam(Ω+) +

1

k

]
log1/2(2 + kL∗)

(√
2

π dist(s,Γ)
+

1

π dist(s,Γ)
√
k

)

(iii) Thirdly we prove the bound on ‖uincPS‖L(Z). We choose ℓ∗ to be a line of the form

(3.10) containing s; given the monotonicity of |Φ(·, s)|, this line will maximise

the norm. By definition of Φ and the L2 norm,

‖uincPS‖2L2(ℓ∗∩Z) = 2

∫ 1
2k

0

∣∣∣∣
1

4
H

(1)
0 (kt)

∣∣∣∣
2

dt.

Using (A.10) we can write

‖uincPS‖2L2(ℓ∗∩Z) ≤
1

8

∫ 1
2k

0

ĉ2 (1 + | log(kt)|)2 dt
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=
1

8k
ĉ2(5 + log2 2 + log 16),

hence

‖uincPS‖L2(ℓ∗∩Z) ≤
1

2
√
2k
ĉ(5 + log2 2 + log 16)1/2.

Noting the definition (3.21), it follows from (i) and (iii) that

C2 = ‖uincPS‖L∞(Ω+\Z) +

√
k

8
‖uincPS‖L2(ℓ∗∩Z),

the result follows, with (ii) contributing the k-dependent components of the bound.

Now we prove a similar result for the beam source case.

THEOREM 3.12. Suppose uincBS is a beam source incidence (in the sense of Def-

inition 3.6(ii)) with density ϕ ∈ L2(γ), emanating from γ with dist(γ,Ω+) ≥ 1/k.

If M(u) = MZ(u) where Z is a bounded open neighbourhood containing γ, or if

M(u) =M∞(u), then given k0 > 0 we have the bound

M(u) . log1/2(k)‖ϕ‖L2(γ), for k ≥ k0.

Hence if there exists a β′ > 0 such that ‖ϕ‖L2(γ) . kβ
′
, then Assumption 2.4(ii) holds.

Proof. Noting the Definition (3.21) ofMZ(u), we bound each of the three components

separately.

(i) Firstly, the bound on ‖uincBS‖L∞(Ω+\Z),

‖uincBS‖L∞(Ω+\Z) ≤ inf
x∈Ω+\Z

∫

γ

|Φ(x,y)ϕ(y)| ds(y)

and using (A.7) we can bound

‖uincBS‖L∞(Ω+\Z) . inf
x∈Ω+\Z

∫

γ

∣∣∣∣
1

(k|x− y|)1/2ϕ(y)
∣∣∣∣ ds(y),

from which it follows that

‖uincBS‖L∞(Ω+\Z) . k−1/2‖ϕ‖L2(γ). (3.25)
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(ii) Secondly, the bound on ‖us‖L∞(Ω+). We start by rewriting the k-weighted norm

‖uincBS‖H1
k(Ω+) =

(∫

Γ

k2|uincBS|2 + |∇Γu
inc
BS|2 ds

)1/2

=

(∫

Γ

k2|Sγ�Γϕ|2 + |Dγ�Γϕ|2 ds
)1/2

.
(
k‖S‖L2(γ)�L2(Γ) + ‖D‖L2(γ)�L2(Γ)

)
‖ϕ‖L2(γ).

We may bound further using Lemma 5.14(i) and (ii), to obtain

‖uincBS‖H1
k(Ω+) . (k1/2 + 1)‖ϕ‖L2(γ),

which when combined with Theorem 3.1(ii) yields

‖us‖L∞(Ω+) . log1/2 k‖ϕ‖L2(γ), (3.26)

for k ≥ k0.

(iii) Thirdly, the bound on ‖uincBS‖L(Z). Using the definition (3.11) of the L(Z) norm,

we may write

sup
c,θ

(∫

ℓc,θ∩Z

|uincBS|2 ds
)1/2

= sup
c,θ

(∫

ℓc,θ∩Z

∣∣∣∣
∫

γ

Φ(x,y)ϕ(y) ds(y)

∣∣∣∣
2

ds(x)

)1/2

≤ sup
c,θ



∫

ℓc,θ∩Z

(∫

γ

1

4

√
2

kπ|x− y| |ϕ(y)| ds(y)
)2

ds(x)




1/2

using the bound on the Hankel function (A.7) once more. It then follows by [7,

Lemma 3.2(a)] that

‖uincBS‖L(Z) . k−1/2‖ϕ‖L2(γ). (3.27)

Combining (3.25)-(3.27) with the definition (3.21) yields the result for MZ(u). The

result for M∞(u) follows by taking the limit as the region Z shrinks towards a set of

measure zero.

We note that Theorems 3.11 and 3.12 imply M(u) = MZ(u) . log1/2 k for suf-

ficiently large k, which is sharper in its k-dependence than the plane wave case of

Remark 2.5, for which the corresponding bound is M(u) =M∞(u) . k1/2 log1/2 k. It

should be noted that this bound is not believed to be sharp, as numerical experiments

suggest M(u) = O(1) for for plane wave incidence (see [35, §6]). These theorems,

coupled with Theorem 3.10 show that Assumption 2.4 holds for the point source

and beam source incidence, therefore exponential convergence of the HNA method is

predicted by Theorem 2.14.
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3.2.3 Numerical experiments for the point source

We now demonstrate via numerical examples the effectiveness of the Hybrid Numer-

ical Asymptotic method for the point source problem. Specifically we consider the

problems where Ω− is an equilateral triangle (nΓ = 3) with Lj = 2π for j = 1, . . . , nΓ,

with incident field uincPS(x; s) for a range of s which will be introduced shortly. Figure

3.10 plots the approximation u to both problems, whilst Figure 3.12 plots the bound-

ary solution νp of §2.3 for the triangle and regular pentagon (nΓ = 5). In both cases

the absolute value of the boundary solution is largest at the point of the boundary

which is closest to the source. This is largely accounted for by the geometrical optics

component ΨPS.

We solve using the classical combined formulation (Definition 1.2) using the Galerkin

method outlined in §2.3, on a single mesh, hence (referring to (2.11)) we seek vN ∈
V

HNA

N (Γ) such that

(Ak,ηvN , ϕ)L2(Γ) =
1

k
(f −Ak,ηΨPS, ϕ)L2(Γ) , for all ϕ ∈ V

HNA

N (Γ), (3.28)

where ΨPS is as in (3.13). For the mesh parameters of §2.2 we introduce some poly-

nomial dependence on αj (of (2.7)), choosing αj = min((1 + (pj)i)/8, 2), where i

corresponds to the ith mesh element on the jth side. The result of Theorem 2.9 still

holds, given that αj is bounded above by a constant independent of the polynomial

degree. We choose cj = 2 (of Theorem 2.9), and we choose the polynomial degree

vectors pj in accordance with Remark 2.10. We compute all inner products in the

Galerkin method using the quadrature routines discussed in Appendix B. We note

also that the set Z discussed throughout this section is not a parameter of the numer-

ical method; we require only that such a Z exists. Convergence analysis was run for

k ∈ {5, 10, 20, 40, 80, 160} with p ∈ {1, . . . , 7}, taking p = 8 as the reference solution.

The approximation was also validated by means of comparison against a standard

BEM solution, we do not give these results here. For the triangle, the vertices are

P1 =

(
2π/

√
3

0

)
, P2 =

(
−π/

√
3

π

)
, P3 =

(
−π/

√
3

−π

)
,

whilst the point sources we consider are emanating from

s1 =

(
1
4

)
, s2 =

(
4
0

)
, s3 =

(
−π/

√
3

−4

)
.

Figures 3.8 and 3.9 show the convergence of the HNA Galerkin method for each

of the three cases for the triangle, which are depicted in Figure (3.7). In each case
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Figure 3.7: Schematic of triangular scatterer Ω− with position of each source point
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Figure 3.8: Relative L2(Γ) errors for the triangle, for source point s1.
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Figure 3.9: Relative L2(Γ) errors for the triangle, for source point s2 and s3.
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Figure 3.10: Real part of uN for p = 8 in Ω+ for the regular triangle and the pentagon,
with wavenumber k = 20. The source point s is covered by a set Z = B1/k(s) inside
which we do not evaluate u. This was done for aesthetic reasons; the colourbar scale
would be skewed for large values of Φ(x, s), when x is close to s.
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we observe similar rates of exponential convergence. Moreover, for fixed p the error

does not increase with k, indeed it can be seen to decrease, which demonstrates the

frequency independence of our approach. For a source point s1, we observe the lowest

relative errors, which can be explained as the source is furthest away from Ω− in

this case. Theorem (3.11) suggests that MZ(u) of (3.21) grows with 1/
√

dist(s,Ω−).

The point s2 is closer to Ω− than s1, with distance |s2 − P1| ≈ 0.372, for which

the rate of convergence appears to be shifted by a multiplicative constant which

further justifies the hypothesis that convergence is weaker for source point closer to

Γ. The point s3 was chosen to lie on the extended line Γ+
2 , such that the integrand of

(3.2) is unbounded, as the path of integration contains a singularity. This confirms

the theoretical result that the HNA method will converge exponentially, even if the

solution u is unbounded on the extended line (as previous analyses of HNA methods

would not explain this). The method can be seen to converge similarly for s3, which

is to be expected given the distance is |s3 −P3| ≈ 0.858, s3 is a similar distance from

Ω− as s2.

Figure 3.11 shows how the conditioning of the discrete system grows with p and k.

Recall from §2.2 that the conditioning of the discrete system depends closely on the

choice of αj, which here is chosen to be min((1+(pj)i)/8, 2). It is difficult to determine

trends in the conditioning from this plot, for lower wavenumbers k = 5, 20, 40 the

conditioning appears to peak, and then drop for higher p. If poor conditioning causes

the system to become unstable, a larger value of αj should be chosen, removing

unnecessary basis elements. This can be done without computation of any further

inner products; carefully selected rows and columns from the discrete system can be

removed to achieve this.

Implementation of the beam source problem follows similarly, although we do not

present any results here. In such a case, the right hand side will contain a triple

integral (AΨBS, φ)L2(Γ) for basis function φ, as in this instance ΨBS itself contains an

integral.

3.3 Conclusions and further work

In this chapter we have developed theory that proves the HNA method converges

exponentially for Herglotz-type, point and beam source incidence. This was demon-

strated by numerical examples for the case of the point source.

A key development for future work is to generalise the density of the beam source

term to H−1/2(γ), rather than H−1/2+ǫ(γ) for ǫ > 0 that has been explored here.

This would be essential for analysis of iterative HNA methods for multiple screen
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triangle problem.
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Figure 3.12: Plot of real part of boundary solution, for the problems depicted in
Figure 3.10 (a) and (b).
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problems, which we plan to address in future work (see Chapter 8). Alternatively,

the methods in this Chapter may be combined with non-convex polygons of [15], or

the penetrable obstacles of [31].
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Chapter 4

HNA BEM for multiple scattering
problems

The results produced in this chapter will appear in [27], and were summarised in [11].

The multiple scattering formulation that we will present in this chapter may be

considered a natural extension of the beam source problem of Definition 3.6(ii). The

key difference is that the density ϕ, which is a known parameter for the beam source

single scattering problem, becomes the unknown −(∂+n u)|γ , where the source γ be-

comes the boundary of the other scatterer(s) in the multiple obstacle scattering prob-

lem. This can be easily demonstrated via two alternate interpretations of the following

example. Considering the BVP (1.4)–(1.6) of plane wave incidence, we let Γ denote

the boundary of a bounded Lipschitz open set ΩΓ. Now we extend this problem twice,

to two different but related problems, and let γ be either the boundary of another

Lipschitz open set disjoint from ΩΓ, or the source line of a beam source, which is

an additional source of incidence to the plane wave, hence the sum of both sources

makes up the incident field. We consider the two problems,

(i) Single scattering by a sound-soft obstacle with Lipschitz boundary Γ = ∂Ω by

a beam emanating from γ with density ϕ ∈ L2(γ) and a plane wave eikd·x with

incident direction d.

(ii) Multiple scattering by two sound soft obstacles, with Lipschitz boundaries Γ

and γ, scattering by a plane wave with incident direction d.

Taking note of the representation (1.10), which applies to either case, we have

u = uinc − Sk∂
+
n u, in Ω+,

where in problem (i) the integral operator Sk of (1.11) is over Γ, and in problem (ii)

Sk is over Γ ∪ γ. Writing the integrals in full illustrates the equivalence of these two
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problems, we see that the equation is the same, but the meaning of its terms changes,

u(x) =

=uinc(x) for problem (i), ϕ known︷ ︸︸ ︷
eikx·d +

∫

γ

Φ(x,y)ϕ(y) ds(y)

=us=−Sk∂
+
n u for problem (i)︷ ︸︸ ︷

−
∫

Γ

Φ(x,y)
∂u

∂n
(y) ds(y)

︸ ︷︷ ︸
=us(x)=−Sk∂

+
n
u for problem (ii), with unknown ϕ=−[∂u/∂n]|γ

, x ∈ Ω+, (4.1)

whilst the first right-hand side term eikx·d is the incident field for problem (ii). The

interpretation depends on whether ϕ is a known or unknown density. It follows that

every multiple scattering problem (ii) has an associated single obstacle beam source

problem (i), with ϕ = −(∂+n u)|γ .
In this chapter, we consider the problem of scattering by multiple sound-soft

scatterers, at least one of which is a convex polygon. The aim is to use the HNA

basis of §2.2 on the convex polygon, coupled with a standard basis on the other

scatterers, to reduce the dimension of the approximation space that is required to

solve the problem. To do this, in §4.3 we extend our ansatz (2.2), such that leading

order behaviour from other obstacles is also accounted for. As was the requirement

for extensions of the HNA method in Chapter 3, we show that the diffracted waves

satisfy Assumption 2.4, to guarantee exponential convergence of our scheme. In §4.4
we outline the procedure for a Galerkin BEM, and present numerical results in §4.5.

4.1 Specific problem statement

Here we have more than one scattering obstacle, which we denote by Ω− := ΩΓ ∪Ωγ ,

where ΩΓ is a convex polygon with boundary Γ, remaining consistent with other

polygonal parameters of Definition 2.3. The other obstacle(s) Ωγ :=
⋃Nγ

i=1 Ωi consist

of Nγ ∈ N connected Lipschitz open sets Ωi, each pairwise disjoint with piecewise C1

boundary γi. Denote the interior of the convex polygon by ΩΓ ⊂ R2 and its boundary

by Γ := ∂ΩΓ. We denote the combined Lipschitz boundary of Ωγ by γ := ∂Ωγ . We

assume that the distance between Γ and γ is positive, so that ∂Ω is Lipschitz.

Given the scattering obstacles Ω−, we aim to solve the BVP (1.4)-(1.6) with the

incident field

uinc(x) = uincPW (x;α) := eikdα·x, where dα := (cosα, sinα),

x ∈ R2 and k > 0 is the wavenumber. Although plane wave incidence is considered

in this chapter, we believe that it would be straightforward to combine the incident

fields of Chapter 3 with the multiple obstacle configurations considered here. This is

discussed further in Remark 4.6.
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4.2 Boundary representation

The aim of this section is to extend the representation of [16, eq. (3.5)] for ∂+n u on Γ to

account for the contribution from other scatterer(s) Ωγ. Proceeding as in [16, §3], and
in §3.2.1 and §3.1, extending a side Γj and solving the resulting half-plane problem,

we can obtain an explicit representation for ∂+n u on Γj in terms of known oscillatory

functions on Γj and ∂
+
n u on γ. This representation will form the ansatz used for the

boundary element method. Although parallels were drawn at the start of this chapter

between the beam source and the multiple scattering problem, a different derivation

to the boundary representation of §3.2.1 is required to ensure the boundary conditions

(1.5) are satisfied.

Considering a single side Γj of ΩΓ, 1 ≤ j ≤ nΓ, we define Γ
+
j and Γ−

j as the infinite

extensions of Γj in the clockwise and anti-clockwise directions (about the interior ΩΓ)

respectively (see Figure 4.1). As defined at the start of Chapter 3, for j = 1, . . . nΓ

we define Γ∞
j := Γ+

j ∪ Γj ∪ Γ−
j with Uj the half-plane with boundary Γ∞

j , always

chosen such that ΩΓ does not lie inside Uj. In addition, when u or us is on Γ ∪ γ, it
is assumed that the exterior trace has been taken. We construct an open ball BR of

radius R centred at the origin, with R chosen sufficiently large that Uj ∩ Ωγ ⊂ BR,

i.e. all the scatterers in the relative upper half-plane lie inside the ball.

Γj

Γ+
j Γ−

j

ΩΓ

nj nj

∂BR

γ1

Ω1

nγ

γ2

Ω2 nγ

Ω3

γ3
nγ

Figure 4.1: Configuration with (at least) four scatterers. The relative upper-half
plane Uj is the area above the line Γ∞

j = Γ−
j ∪ Γj ∪ Γ+

j . Note the intersection of
Ω3 (the right-hand scatterer) with Γ−

j ⊂ Γ∞
j ; nj points into Ω3 ∩ Uj whilst nγ on γ3

points out of Ω3 ∩ Uj and into Ω+ ∩ Uj.
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Green’s second identity can now be applied to Gj(x, ·) and us on Ω+ ∩Uj ∩BR to

obtain for x ∈ Uj

us(x) =

∫

∂(Ω+∩Uj∩BR)

[
∂Gj(x,y)

∂n(y)
us(y)−Gj(x,y)

∂us

∂n
(y)

]
ds(y)

= 2

∫

Γ∞
j ∩BR\Ωγ

∂Φ(x,y)

∂nj(y)
us(y) ds(y)

+

∫

γ∩Uj

[
∂Gj(x,y)

∂nγ(y)
us(y)−Gj(x,y)

∂us(y)

∂nγ

]
ds(y)

−
∫

∂BR∩Uj

[
∂Gj(x,y)

∂r
us(y)−Gj(x,y)

∂us(y)

∂r

]
ds(y). (4.2)

Throughout this derivation, we often replace ∂/∂n by the more specific ∂/∂nj or

∂/∂nγ , to make clearer which direction the normal derivative is being taken. Note

that ∂/∂nj = nj ·∇ and ∂/∂nγ = nγ ·∇, where nj and nγ are the unit normal vector

fields pointing into Ω+∩Uj∩BR from Γ∞
j ∩BR\Ωγ and from γ∩Uj, respectively, whilst

∂/∂r = y

|y|
·∇ denotes the normal derivative on ∂BR∩Uj pointing out of Ω+∩Uj∩BR.

We have used that ∂Gj(x,y)/∂nj(y) = 2∂Φ(x,y)/∂nj(y) and G(x,y) = 0 for y ∈
Γ∞
j . As R → ∞, the third integral vanishes by the same reasoning as, e.g., [17,

Theorem 2.4]. The representation (4.2) then becomes

us(x) =2

∫

Γ∞
j \Ωγ

∂Φ(x,y)

∂nj(y)
us(y) ds(y) (4.3)

+

∫

γ∩Uj

[
∂Gj(x,y)

∂nγ(y)
us(y)−Gj(x,y)

∂us(y)

∂nγ

]
ds(y), (4.4)

for x ∈ Uj \ Ωγ . We apply Green’s second identity to uincPW and Gj(x,y) in Ωγ ∩ Uj

and obtain, for x ∈ Ω+ ∩ Uj,
(∫

γ∩Uj

−
∫

Γ∞
j ∩Ωγ

)[
∂Gj(x,y)

∂n(y)
uincPW (y)−Gj(x,y)

∂uincPW

∂n
(y)

]
ds(y)

=

∫

Ωγ∩Uj

[
∆Gj(x,y)u

inc
PW (y)−Gj(x,y)∆u

inc
PW (y)

]
dV (y) = 0, (4.5)

as uincPW and Φ(x, ·) satisfy the Helmholtz equation (1.4) in Ωγ for x ∈ Ω+∩Uj. The sign

of the boundary integral differs on the two parts of ∂(Ωγ ∩Uj) = (γ ∩Uj)∪ (Ωγ ∩Γ∞
j )

because the normal derivative ∂/∂n involves the outward-pointing normal vector nγ

on γ ∩ Uj and the inward-pointing normal nj on Ωγ ∩ Γ∞
j , as depicted in Figure 4.1.

We use us = u− uincPW to expand the last term in (4.4): for x ∈ Ω+ ∩ Uj

∫

γ∩Uj

[
∂Gj(x,y)

∂nγ(y)
us(y)−Gj(x,y)

∂us

∂nγ

(y)

]
ds(y)
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=

∫

γ∩Uj

[
∂Gj(x,y)

∂nγ(y)

(
u(y)︸︷︷︸
=0

−uincPW (y)
)
−Gj(x,y)

∂(u− uincPW )

∂nγ

(y)

]
ds(y)

(4.5)
= −

∫

γ∩Uj

Gj(x,y)
∂u

∂nγ

(y) ds(y)

+

∫

Γ∞
j ∩Ωγ

[
−∂Gj(x,y)

∂nj(y)
uincPW (y) +Gj(x,y)

∂uincPW

∂nγ

(y)

]
ds(y).

Substituting this expression in (4.4) and using again

∂Gj(x,y)

∂nj(y)
= 2

∂Φ(x,y)

∂nj(y)

and Gj(x,y) = 0 on Γ∞
j we obtain a representation for us,

us(x) = 2

∫

Γ∞
j \Ωγ

∂Φ(x,y)

∂nj(y)
us(y) ds(y)−

∫

γ∩Uj

Gj(x,y)
∂u(y)

∂nγ

ds(y)

− 2

∫

Γ∞
j ∩Ωγ

∂Φ(x,y)

∂nj(y)
uincPW (y) ds(y), x ∈ Ω+ ∩ Uj . (4.6)

The final term of (4.6) will be non-zero only if Γ∞
j ∩ Ωγ 6= ∅, namely, in case one of

the components of γ is aligned with one of the sides of Γ (see Figure 4.1).

This integral representation must be combined with one for uinc = uincPW to con-

struct a useful representation for ∂+n u on Γj. The half-plane representation of (3.1)

can be applied to upward propagating plane waves (see [10, §3]). We consider first

the case nj · d ≥ 0, where Γj is in shadow: from [16, eq. (3.3)]

uincPW (x) = 2

∫

Γ∞
j

∂Φ(x,y)

∂nγ(y)
uincPW (y) ds(y), x ∈ Uj .

Adding this to (4.6) and taking the Neumann trace on Γj, we obtain a representation

for the solution

∂u

∂n
(x) = 2

∫

Γ∞
j \Ωγ

∂2Φ(x,y)

∂nj(x)∂nj(y)
u(y) ds(y)

− 2

∫

γ∩Uj

∂Φ(x,y)

∂nj(x)

∂u

∂nγ

(y) ds(y), x ∈ Γj, nj · x ≥ 0. (4.7)

For a downward-propagating wave nj · d < 0, we can apply the same result to the

lower half-plane R2 \ U j (where the direction of the normal is reversed)

uincPW (x) = −2

∫

Γ∞
j

∂Φ(x,y)

∂nj(y)
uincPW (y) ds(y), x ∈ R2 \ U j.
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Now define ur(x) := −uincPW (x̃j) for x ∈ Uj. Intuitively, ur may be considered the

reflection of uincPW by a sound-soft line at Γ∞
j . It follows that

ur(x) = 2

∫

Γ∞
j

∂Φ(x̃j,y)

∂nj(y)
uincPW (y) ds(y) = −2

∫

Γ∞
j

∂Φ(x,y)

∂nj(y)
uincPW (y) ds(y),

rearranging this and adding uincPW gives

uincPW (x) = uincPW (x) + ur(x) + 2

∫

Γ∞
j

∂Φ(x,y)

∂nj(y)
uincPW (y) ds(y).

Summing with (4.6) and taking the Neumann trace gives the representation for ∂+n u

on Γj:

∂u

∂n
(x) = 2

∂uincPW

∂n
(x) + 2

∫

Γ∞
j \Ωγ

∂2Φ(x,y)

∂nj(x)∂nj(y)
u(y) ds(y)

− 2

∫

γ∩Uj

∂Φ(x,y)

∂nj(x)

∂u

∂nγ

(y) ds(y), x ∈ Γj, nj · x < 0. (4.8)

It is interesting to compare (4.7) and (4.8) with the single scattering representation

(3.2). Here we have an extra term, arising from the presence of additional scatterers

Ωγ inside Uj.

We now write more explicitly the integral representation (4.7)–(4.8) in terms of the

parametrisations of the segments Γj and of their extensions Γ∞
j . We use (4.7)–(4.8)

to represent the solution on a single side Γj, extending the ansatz (2.2) to multiple

scattering problems

∂u

∂n

(
xΓ(s)

)
= ΨPW

(
xΓ(s)

)
+ v+j (s− L̃j−1)e

iks + v−j (L̃j − s)e−iks + Gγ�Γj

∂u

∂n

∣∣∣∣
γ

(xΓ(s)),

for s ∈
[
L̃j−1, L̃j

]
, j = 1, . . . , nΓ. (4.9)

Here ΨPW is the Geometrical Optics Approximation (of §2.1) for a plane wave and a

single scatterer,

ΨPW(x) =

{
2ikn(x) · deikx·d, d · n(x) < 0,
0, d · n(x) ≥ 0,

(4.10)

for x ∈ Γ. In (4.9), the envelopes of the diffracted waves on each side are defined

(slightly differently to (2.3) ) by

v+j (s) :=
ik2

2

∫

(0,∞)\Z+
j

µ
(
k(s+ t)

)
eik(t−L̃j−1)u

(
yj(L̃j−1 − t)

)
dt, s ∈ [0, Lj ],
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v−j (s) :=
ik2

2

∫

(0,∞)\Z−
j

µ
(
k(s+ t)

)
eik(L̃j+t)u

(
yj(L̃j + t)

)
dt, s ∈ [0, Lj ], (4.11)

where Z+
j := {t ∈ R : yj(L̃j−1 − t) ∈ Ωγ} and Z−

j := {t ∈ R : yj(L̃j + t) ∈ Ωγ}
are used to exclude the points inside γ from the integral, to remain consistent with

(4.7)–(4.8). The interaction operator Gγ�Γj
: L2(γ) → H1(Γj) is defined by

Gγ�Γj
ϕ(x) := −2

∫

γ∩Uj

∂Φ(x,y)

∂nj(x)
ϕ(y) ds(y), x ∈ Γj ⊂ Γ, (4.12)

for ϕ ∈ L2(γ) (see Theorem 5.16(ii) for a bound on this mapping). We extend this

definition to Gγ�Γ : L2(γ) → L2(Γ) as (Gγ�Γϕ)|Γj
:= Gγ�Γj

ϕ for j = 1, . . . , nΓ and

ϕ ∈ L2(γ). Bounds on this map are given in Lemma 4.2.

If γ is taken to be empty, this reduces to the single scattering case (2.2) as Z±
j

are empty so the representation (2.3) is equivalent to (4.11), also Gγ�Γϕ = 0 if γ is of

measure zero.

REMARK 4.1. The ansatz (4.9) is an extension of [16], [35], with an additional

term which relates the solution on Γ to the solution on γ. It is important to note

that this additional term is not the only term influenced by γ and that one cannot

solve for v± on a single scatterer and then add the Gγ�Γ[∂u/∂n|γ ] term. The reason

for this is clear from (4.11): even if Z±
j were of measure zero, so that the equation

for the diffracted envelope (4.11) is identical to the case of a single scatterer, the

integral contains u, which depends on the configuration ∂Ω. Intuitively this makes

sense as diffracted waves emanating from the corners of Γ will also be influenced by

the presence of additional scatterers.

Some of the error estimates in §4.4 require the following bound on the operator

Gγ�Γ.

LEMMA 4.2 (Bounds on the interaction operator Gγ�Γ). For ∂Ω = Γ ∪ γ with Γ

and γ disjoint, we have the following bound on the interaction operator Gγ�Γ defined

in (4.12):

‖Gγ�Γ‖L2(γ)�L2(Γ) ≤
√
LΓLγ

(√
k

2π dist(Γ, γ)
+

1

π dist(Γ, γ)

)
, (4.13)

where LΓ and Lγ are the perimeter of ΩΓ and Ωγ respectively.
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Proof. For 0 6= ϕ ∈ L2(γ), using the Cauchy–Schwarz inequality, we can write

‖Gγ�Γϕ‖L2(Γ)

‖ϕ‖L2(γ)

=
1

‖ϕ‖L2(γ)




nΓ∑

j=1

∫

Γj

∣∣∣∣∣2
∫

γ∩Uj

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y)

∣∣∣∣∣

2

ds(x)




1/2

≤ 2

‖ϕ‖L2(γ)

(∫

Γ

∥∥∥∥
∂Φ(x, ·)
∂n(x)

∥∥∥∥
2

L2(γ)

‖ϕ‖2L2(γ) ds(x)

)1/2

= 2

(∫

Γ

∫

γ

∣∣∣∣
∂Φ(x,y)

∂n(x)

∣∣∣∣
2

ds(y) ds(x)

)1/2

≤ 2

(∫

Γ

ds

∫

γ

ds

)1/2

sup
x∈Γ,y∈γ

∣∣∣∣
∂Φ(x,y)

∂n(x)

∣∣∣∣ .

The result follows from H
(1)
0

′
(z) = −H(1)

1 (z) and (A.7), which states that |H(1)
1 (z)| ≤√

2/(πz) + 2/(πz) for z > 0.

We remark that the above proof of Lemma 4.2 is a special case of the more general

Lemma 5.13 of Chapter 5.

4.3 Regularity estimates

Notational definitions for the parameters of the convex polygon ΩΓ which are used

in this section can be found in Definition 2.3, and remain the same as the single

scattering case. As in previous HNA methods for scattering by a plane wave, we

choose our constant M(u) of Assumption 2.4 to be

M(u) =M∞(u) := sup
x∈Ω+

|u(x)| (4.14)

and as in Chapter 3, we are primarily interested in how M∞(u) depends on k, and

this is shown in Corollary 4.7.

We now aim to show, as in [16,35] and Chapter 3 (where no additional scatterers

were present), that the functions v±j are complex-analytic, and can be approximated

much more efficiently than ∂+n u|Γ. This is a key result of [35] for scattering by a single

convex polygon, which we update to our multiple scattering formulation by adapting

the intermediate results of [35, §3]. We first consider the solution behaviour near the

corners.

LEMMA 4.3. Suppose that x ∈ Ω+ satisfies r := |x − Pj| ∈ (0, 1/k], and r <

dist(Pj, γ). Then there exists a constant C > 0, depending only on ∂Ω and c∗ of

Definition 2.3, such that (with M∞(u) as in (4.14)),

|u(x)| ≤ C(kr)π/ωjM∞(u).
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Proof. Follows exactly the same arguments as [35, Lemma 3.5], with the slight modi-

fication to the definition Rj := min{Lj−1, Lj , π/(2k), dist(Pj, γ)}, which ensures only

areas close to the corner Pj inside Ω+ are considered.

THEOREM 4.4. Assume that cr ∈ (0, 1] is chosen such that

dist({Pj, j = 1, . . . , nΓ}, γ) > cr/k,

and that uinc ∈ C∞(R2). Then the functions v±j , for j = 1, . . . , nΓ, are analytic in

the right half-plane Re[s] > 0, where they satisfy the bounds

|v±j (s)| ≤
{
C±

j M∞(u)
(
k|ks|−δ±j + k(k|s|+ cr)

−1
)
, 0 < |s| ≤ 1/k,

C±
j M∞(u)k|ks|−1/2, |s| > 1/k,

(4.15)

where M∞(u) is as in (4.14), δ+j , δ
−
j ∈ (0, 1/2) are given by δ+j := 1 − π/ωj and

δ−j := 1−π/ωj+1. The constant C
+
j depends only on c∗, cr and ωj, whilst the constant

C−
j depends only on c∗, cr and ωj+1.

Proof. The analyticity of the functions v±j (s) in Re[s] > 0 follows from their definition

(2.3) and the analyticity of µ(s) in the same set, which is shown in [35, Lemma 3.4].

The estimate of |v±j (s)| for |s| > 1/k follows as in the proof of [35, Theorem 3.2]. For

|s| ≤ 1/k, the definition (2.3) of v+ gives

|v+j (s)| ≤
k2

2

∫

(0,cr/k)

∣∣µ
(
k(s+ t)

)∣∣∣∣u
(
yj(L̃j−1 − t)

)∣∣ dt

+
k2

2

∫

(cr/k,∞)\Z+
j

∣∣µ
(
k(s+ t)

)∣∣∣∣u
(
yj(L̃j−1 − t)

)∣∣ dt.

Since cr ≤ 1 and thanks to Lemma 4.3, the first integral is bounded as in the proof

of [35, Theorem 3.2], leading to the term M∞(u)k|ks|−δ±j in the assertion. Using the

bound on µ from [35, Lemma 3.4], we control the second integral as

k2

2

∫

(cr/k,∞)\Z+
j

∣∣µ
(
k(s+ t)

)∣∣∣∣u
(
yj(L̃j−1 − t)

)∣∣ dt

≤ CM∞(u)k2
∫ ∞

cr/k

∣∣k(s+ t)
∣∣−3/2

(∣∣k(s+ t)
∣∣−1/2

+ (π/2)1/2
)
dt

≤ CM∞(u)k2
(
k−2(|s|+ cr/k)

−1 + k−3/2(|s|+ cr/k)
−1/2

)

= CM∞(u)k
(
(k|s|+ cr)

−1 + (k|s|+ cr)
−1/2

)
.

The bound in the assertion follows by noting that k|s|+ cr < 2 and proving a similar

estimate for v−.
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The constant cr is small when the scatterers are close together, relative to the

wavelength of the problem. Thus the terms containing cr in the bound of Theorem 4.4

control the effect of the separation between Γ and γ on the singular behaviour of v±j .

However, the method we present is designed for high-frequency problems, and to

maintain cr = O(1) as k increases, the separation of the scatterers is allowed to

decrease inversely proportional to k. Hence, for the configurations that we consider

of practical interest in the high-frequency regime, the condition (4.16) of the following

corollary will hold.

COROLLARY 4.5. Suppose that

dist(ΩΓ, γ) ≥ 1/k (4.16)

and uinc ∈ C∞(R2). It follows that Assumption 2.4(i) holds with M(u) =M∞(u).

Proof. Due to the geometrical constraint, we can choose cr = 1 in Theorem 4.4, and

thus the second bound of (4.15) can be simplified to

|v±j (s)| ≤ C±
j M∞(u)k|ks|−δ±j , for 0 < |s| ≤ 1/k, j = 1, . . . , nΓ,

thus aligning the bounds of Theorem 4.4 with those of those of Assumption 2.4.

It follows immediately that the best approximation estimates of Corollary 2.11

hold for the diffracted waves emanating from Γ even if other obstacles Ωγ are present,

provided that they are sufficiently far away from Γ that (4.16) holds.

REMARK 4.6. The approach of Theorem 4.4 could be extended to any source-type

uinc ∈ Hsrc(Ω+;Z), provided that Z does not intersect Ωγ, by combining with the

proof of Theorem 3.10. This would enable us to develop multiple scattering HNA for

a broader class of incident fields. For the remainder of this section, we focus on the

simpler plane wave case.

We now aim to understand how the constant M∞(u) depends on k, which is key

for Assumption 2.4 to hold and for exponential convergence of our HNA method, via

Theorem 2.14. Unlike the case for star shaped Ω−, we do not provide a fully explicit

bound on M∞(u), as the following corollary is sufficient for our needs.

COROLLARY 4.7 (Bound on M∞(u) for non-trapping polygon). Suppose that Ω−

is a non-trapping polygon (in the sense of Definition 2.2), with plane wave incidence

uinc = uincPW . Then given k0 > 0, we have that

M∞(u) . k1/2 log1/2 k, for k ≥ k0,

where M∞(u) is defined as in (4.14). Hence Assumption 2.4(ii) holds.
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Figure 4.2: An example of a non-convex, non-star-shaped, non-trapping polygon as
in [15] for which corollary 4.7 provides a k-explicit bound on M∞(u).

Proof. Follows immediately from Theorem 3.1 and the definition (2.5) of uincPW .

We have now shown (via Corollary 4.5 and 4.7 ) that for polygonal multiple

scattering configurations with plane wave incidence, both components of Assumption

2.4 hold, hence exponential convergence of our HNA approximation of the diffracted

waves on Γ is predicted by Theorem 2.14.

To the best knowledge of the author, Corollary 4.7 represents the only avail-

able k-explicit bound on M∞(u) for multiple scatterers. We do not expect such

a bound to hold for the most general configurations and incident fields, since it

was shown in [7, Theorem 2.8] that there exist trapping configurations for which

‖(A′
k,η)

−1‖L2(∂Ω)�L2(∂Ω) is bounded below by a term which grows exponentially with

k, suggesting there exist incident fields for which M∞(u) may grow similarly. In

particular, Theorem 4.7 is immediately applicable to the case of polygons which are

non-convex, non-star-shaped and non-trapping, considered in [15] (see Definition 3.1

therein, or Figure 4.2), for which the stronger result M∞(u) = O(1) for k → ∞
was conjectured, in the (then) absence of any available algebraic bounds. The bound

of Corollary 4.7 is sufficient to guarantee exponential convergence of such polygons

without this conjecture.

4.4 Galerkin method

In what follows, using the parametrisation of Γ and γ we make the obvious identi-

fication between L2(Γj) and L2(0, Lj), and between L2(γ) and L2(0, Lγ), when no

confusion can arise.
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We first choose an NΓ-dimensional approximation space V HNA
NΓ

(Γ) to be either

V
HNA

NΓ
(Γ) or V

HNA

NΓ
(Γ) from §2.2 to approximate

vΓ(s) :=
1

k

(
v+j (s− L̃j−1)e

iks + v−j (L̃j − s)e−iks
)
, s ∈

[
L̃j−1, L̃j

]
, j = 1, . . . , nΓ.

To account for the contribution from γ, we parametrise xγ : [0, Lγ ] → γ and

construct an appropriate Nγ-dimensional approximation space V hp
Nγ

(γ) ⊂ L2(0, Lγ)

for

vγ(s) :=
1

k

∂u

∂n

∣∣∣∣
γ

(
xγ(s)

)
, s ∈ [0, Lγ ]. (4.17)

Whilst a representation analogous to (4.9) on γ holds when Ωγ is a convex polygon,

this approach is not suitable for our multiple scattering approximation. If such a

representation is used on multiple polygons, the system to solve must be written as a

Neumann series before it can be solved, and other difficulties arise from such a formu-

lation. This alternative approach is outlined briefly in 4.4.1. Hence we approximate

the entire solution vγ, rather than any of its individual components as listed in (4.9).

An advantage of this approach is that the only restriction imposed on γ is that it

must be Lipschitz and piecewise analytic. For V hp
Nγ

(γ) we use a standard hp-BEM

approximation space consisting of piecewise polynomials to approximate vγ, where

the mesh and degree vector chosen will depend on the geometry of Ωγ . If Ωγ is a

convex polygon (as in the examples of §4.5), the same geometric grading is used as

for Γ. For the remainder of the chapter, we make the following assumption about the

rate of convergence on γ.

ASSUMPTION 4.8. The sequence of nested sequence of approximation spaces

(
V hp
Nγ

(γ)
)
Nγ∈N

is such that

inf
wNγ∈V

hp
Nγ

(γ)

‖vγ − wNγ‖L2(γ) ≤ Cγe
−τγpγ ,

where the constants Cγ, τγ > 0 may depend on k.

Now we outline a procedure for implementation of the key ideas discussed up to

this point. It follows the same principles as the single scattering Galerkin method

of §2.3, we solve using a BIE of the form (1.14) with either choice of A discussed

in §1.1.2. We will also use the notation introduced in Definition 1.6 to split the

behaviour of the operator A to individual obstacles. However, due to the combination

71



of approximation spaces on different scatterers, the method is more complex, so we

describe it in full. We simplify the notation by writing ‖Gγ�Γ‖ := ‖Gγ�Γ‖L2(γ)�L2(Γ).

Our approximation space VN is based on the representation of the Neumann trace

∂+n u =

{
ΨPW + kvΓ + kGγ�Γvγ, on Γ,

kvγ , on γ,
(4.18)

where vΓ and vγ are the unknowns we solve for.

Inserting (4.18) into the BIE (1.14), we can write the problem to solve in block

form: Find v ∈ L2(Γ)× L2(γ) such that

A�G�v =

[
f |Γ −AΓ�ΓΨPW

f |γ −AΓ�γΨPW

]
, where A� :=

[
AΓ�Γ Aγ�Γ

AΓ�γ Aγ�γ

]

and G� := k

[
IΓ Gγ�Γ

0 Iγ

]
, (4.19)

f |Γ and f |γ denote the restriction of f to Γ and γ respectively. From the invertibility

of A� (equivalent to invertibility of A) and invertibility of G� (which follows from

the triangular structure of G�), it is clear that (4.19) has a unique solution. Our

approximation is designed to approximate the unknown components of the solution

on Γ and γ, that is

vN :=

(
vNΓ
Γ

v
Nγ
γ

)
≈
(
vΓ
vγ

)
= v, (4.20)

where v is the solution to (4.19). Recall that we use an HNA approximation space

V HNA
NΓ

(Γ) (single- or overlapping- mesh) on Γ, with a standard hp-approximation space

V hp
Nγ

(γ) on γ. The solution vN to the discrete problem therefore lies inside of the space

V HNA∗

N (Γ, γ) := V HNA
NΓ

(Γ)× V hp
Nγ

(γ),

where the total number of degrees of freedom is N = Nγ + NΓ. In the theory that

follows we make use of the norm

‖(·, ·)‖L2(Γ)×L2(γ) :=
(
‖ · ‖2L2(Γ) + ‖· ‖2L2(γ)

)1/2
. (4.21)

We will make the obvious identification between ‖ · ‖L2(Γ)×L2(γ) and ‖ · ‖L2(∂Ω). Our

discrete problem to solve is: find vN ∈ V HNA∗

N (Γ, γ) such that

(
AΓ�Γv

NΓ
Γ , wN

)
L2(Γ)

+
(
[Aγ�Γ +AΓ�ΓGγ→Γ]v

Nγ
γ , wN

)
L2(Γ)

=
1

k
(f −AΓ�ΓΨPW, wN)L2(Γ) ,

(
AΓ�γv

NΓ
Γ , wN

)
L2(γ)

+
(
[Aγ�γ +AΓ�γGγ�Γ]v

Nγ
γ , wN

)
L2(γ)

=
1

k
(f −AΓ�γΨPW, wN)L2(γ) ,

(4.22)
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for all wN ∈ V HNA∗

N (Γ, γ).

Concerning the stability of the discrete problem (4.22), we now present a lemma

which may be applied to Galerkin or collocation BEM. We use the positive con-

stants Cq and N0, which are analogous to their use single scattering Galerkin method

discussed in §2.3.

LEMMA 4.9 (Quasi-optimality of projection methods). There exist positive con-

stants Cq and N0 such that vN exists, for N ≥ N0

‖v − vN‖L2(∂Ω) ≤ Cq min
wN∈V HNA∗

N (Γ,γ)
‖v − wN‖L2(∂Ω),

where both Cq and N0 may depend on k.

Proof. It can be shown that A� is a compact perturbation of a coercive operator, for

either choice of A. We have from [16, p620] that A = AΓ�Γ is a compact perturbation

of a coercive operator (namely the identity), and the same arguments can be applied

to each Aγi�γi for i = 1, . . . nγ . As the kernels of AΓ�γi and Aγi�Γ are continuous for

i = 1, . . . , nγ , these operators are also compact, hence Ak,η is a compact perturbation.

Similar arguments can be made for A = Ak.

Let PN be an orthogonal projection operator from L2(Γ)×L2(γ) onto V HNA∗

N (Γ, γ).

Applying [16, Theorem 5.1] separately to vΓ and vγ shows convergence in L2(∂Ω).

Then [16, Theorem 5.2] shows existence of a solution via a bound on

‖(I + PNK)−1‖L2(∂Ω)�L2(∂Ω) =: Cq <∞, (4.23)

where

K := A�G� − I with I :=

[
IΓ 0
0 Iγ

]
.

We also note that

PN(I +K)v = PN

[
f |Γ −AΓ�ΓΨPW

f |γ −AΓ�γΨPW

]
,

which we combine with (4.19) to obtain

vN + PNKvN = PN(I +K)v,

rearranging and adding v to both sides yields

(I + PNK)(v − vN) = (I − PN)v,

hence we can bound

‖v − vN‖L2(∂Ω)�L2(∂Ω) ≤
∥∥(I + PNK)−1

∥∥
L2(∂Ω)�L2(∂Ω)

‖v − PNv‖L2(∂Ω)�L2(∂Ω)

and the bound follows from the definition of PN and (4.23).
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Recalling that we are actually approximating the (dimensionless) diffracted waves

on Γ and the (dimensionless) Neumann trace of the solution on γ; the full approxi-

mation to the Neumann trace follows by inserting vN into (4.18), and is denoted

νN :=

{
ΨPW + kvNΓ

Γ + kGγ�Γv
Nγ
γ , on Γ,

kv
Nγ
γ , on γ,

(4.24)

and the following theorem can be used to determine the error in the full approxima-

tion.

THEOREM 4.10. Suppose (4.16) and Assumption 4.8 hold. For N ≥ N0 (of

Lemma 4.9), we have the bound

∥∥∂+n u− νN
∥∥
L2(∂Ω)

≤ Cqk
(
1 + ‖Gγ�Γ‖2

)1/2 ((
CΓM∞(u)k−1/2J(k)e−τΓpΓ

)2
+
(
Cγe

−τγpγ
)2)1/2

,

where CΓ and τΓ are is as in Corollary 2.11, M∞(u) is as in Theorem 2.4 with τγ and

Cγ as in Assumption 4.8.

Proof. From the definition (4.24) we can split the norm over ∂Ω and rewrite in terms

of vN of (4.20),

∥∥∂+n u− νN
∥∥
L2(∂Ω)

≤ k
(
‖vΓ − vNΓ

Γ ‖2L2(Γ) + (‖Gγ�Γ‖2 + 1)‖vγ − vNγ
γ ‖2L2(γ)

)1/2

≤ k(‖Gγ�Γ‖2 + 1)1/2‖v − vN‖L2(∂Ω),

≤ k(‖Gγ�Γ‖2 + 1)1/2Cq inf
wN∈V HNA∗

N (Γ,γ)
‖v − wN‖L2(∂Ω)

= k(‖Gγ�Γ‖2 + 1)1/2Cq


 inf

wN
Γ ∈V HNA

NΓ
(Γ)

‖vΓ − wNΓ
Γ ‖2L2(Γ) + inf

w
Nγ
γ ∈V hp

Nγ
(γ)

‖vγ − wNγ
γ ‖2L2(γ)




1/2

,

where the penultimate step follows from Lemma 4.9. The result then follows from

Corollary 2.11 and Assumption 4.8.

REMARK 4.11 (The constants of Theorem 4.10). There may seem to be a certain

amount of ambiguity about the value or k-dependence of the constants of 4.10 in

practice, as these depend on Assumption 4.8 and 2.4(ii). Here we summarise the

cases where each constant is known.

(i) In Chapter 5 we will see that if the constellation combined operator Ak is used

with a configuration for which the conditions of Theorem 5.7 are satisfied, we

have that Cq ≤ ‖Ak‖L2(∂Ω)�L2(∂Ω)/ζ and N0 = 1, where ζ is the coercivity con-

stant from Theorem 5.7.
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(ii) If Ω is a non-trapping polygon (in the sense of Definition 2.2), then we may

obtain a k-explicit bound on M∞(u), by Corollary 4.7.

(iii) Theorem 5.10 shows that an h-BEM approximation on γ will result in the con-

stants τγ = 0 and Cγ . (k/Nγ) + hk3/2, where h is the largest element of a

suitably graded mesh, with Nγ elements. As τγ = 0, we cannot guarantee ex-

ponential convergence of the scheme if an h-BEM discretisation is used on γ.

Whilst we expect that it may be possible to obtain a bound on Cγ and τγ > 0 for

an hp-BEM using techniques of [41], this would be considerably more complex

and we do not investigate this here.

In summary, if an h-BEM approximation were used on γ, for non-trapping polygonal

constellation shaped Ω−, with each star-shaped obstacle sufficiently far apart, then we

have k-explicit bounds on the error in our solution.

Our approximation νN can be used to obtain estimates for quantities of practical

interest, such as the total field u and the far-field pattern of (1.16). The approximation

uN to the solution u of the BVP (1.4)–(1.5) is obtained by combining νN with (1.10),

uN(x) := uinc(x)−
∫ LΓ

0

Φ (x,yΓ(s))
(
kvNΓ

Γ (s) + ΨPW (yΓ(s)) + k[Gγ�Γv
Nγ
γ ](s)

)
ds

− k

∫ Lγ

0

Φ (x,yγ(s)) v
Nγ
γ (s) ds, for x ∈ Ω+.

Here the parametrisation yΓ is defined exactly as in (2.1), whilst yγ is the analogous

parametrisation of γ, as was defined for (4.17). Expanding further, we can extend

our definition of Gγ�Γ to a parametrised form by

Gγ�Γv
Nγ
γ (s) :=

∫ Lγ

0

χj(t)
∂Φ(yΓ(s),yγ(t))

∂n(yΓ(s))
vNγ
γ (t) dt, y ∈ Γj, (4.25)

where the indicator function

χj(t) :=

{
1, yγ(t) ∈ Uj,
0, otherwise,

is used to ensure the path of integration remains inside the upper half-plane Uj.

COROLLARY 4.12. Suppose (4.16) and Assumption 4.8 hold. Using the constants

of these assumptions, Lemma 4.9 and Theorem 4.10,

‖u− uN‖L∞(Ω+)

≤ ‖Sk‖L2(∂Ω)�L∞(Ω+)k
(
1 + ‖Gγ�Γ‖2

)1/2 ((
CΓM∞(u)k−1/2J(k)e−τΓp

)2
+
(
Cγe

−τγp
)2)1/2

,

for N ≥ N0.
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Proof. The result follows from the bounds on ‖Sk‖L2(∂Ω)�L∞(Ω+) given by Lemma [35,

Lemma 4.1], Theorem 4.10, and

‖u− uN‖L∞(Ω+) =
∥∥Sk

(
∂+n u− νN

)∥∥
L∞(Ω+)

≤ ‖Sk‖L2(∂Ω)�L∞(Ω+)

∥∥∂+n u− νN
∥∥
L2(∂Ω)

Similarly, we may approximate the far-field pattern by inserting νN into (1.16).

COROLLARY 4.13. Suppose (4.16) and Assumption 4.8 hold. Using the constants

of these assumptions, Lemma 4.9 and Theorem 4.10, we have the following bound on

the far-field approximation

‖u∞ − u∞N ‖L∞(0,2π)

≤ Cqk
(
1 + ‖Gγ�Γ‖2

)1/2
(LΓ + Lγ)

1/2
((
CΓM∞(u)k−1/2J(k)e−τΓp

)2
+
(
Cγe

−τγp
)2)1/2

,

for N ≥ N0.

Proof. By the Cauchy–Schwarz inequality

|u∞(θ)− u∞N (θ)| ≤ k

∫

∂Ω

∣∣∂+n u− νN
∣∣ ds

≤ k(LΓ + Lγ)
1/2
∥∥∂+n u− νN

∥∥
L2(∂Ω)

,

and the result follows by Theorem 4.10.

Now we briefly outline the implementation of the Galerkin method which is used

to produce the results in §4.5.
We choose suitable bases ΛΓ and Λγ, with

spanΛΓ = VΓ and spanΛγ = Vγ.

To determine vN we seek a ∈ CN which solves the block matrix system Ba = b,

where

B :=

ϕ∈ΛΓ ϕ∈Λγ[
(AΓ�Γϕ, φ)L2(Γ) ([Aγ�Γ +AΓ�ΓGγ→Γ]ϕ, φ)L2(Γ)

(AΓ�γϕ, φ)L2(γ) ([Aγ�γ +AΓ�γGγ�Γ]ϕ, φ)L2(γ)

]
φ∈ΛΓ

φ∈Λγ

(4.26)

and

b :=
1

k

[
(f −AΓ�ΓΨPW, φ)L2(Γ)

(f −AΓ�γΨPW, φ)L2(γ)

]
φ∈ΛΓ

φ∈Λγ

. (4.27)
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4.4.1 An alternative Galerkin method

Here we briefly outline the formulation which follows if the HNA representation (4.9)

is used on two convex scatterers, hence for this example we assume that both ΩΓ

and Ωγ are convex polygons. This method has not been implemented, and despite

the seemingly intuitive approach of using the HNA representation (4.9) on multiple

obstacles, this leads to less intuitive issues with implementation, which will become

evident shortly. Define GΓ�γ in the obvious way, which is the analogous interaction

operator from Γ to γ, such that the position of Γ and γ in (4.12) are swapped. For

consistency, we define ΨΓ := ΨPW of (4.10), whilst Ψγ is as (4.10) with Γ replaced

by γ. For simplicity, we define the diffracted waves on Γ and γ to be wΓ and wγ

respectively, as in the definition (2.6) (it follows that kwΓ = vΓ of Definition (2.6)).

Writing the HNA representation (4.9) on both scatterers, we obtain




∂u

∂n

∣∣∣∣
Γ

∂u

∂n

∣∣∣∣
γ


 =




ΨΓ + wΓ + Gγ�Γ
∂u

∂n

∣∣∣∣
γ

Ψγ + wγ + GΓ�γ
∂u

∂n

∣∣∣∣
Γ


 ,

which we may re-arrange to

[
I −Gγ�Γ

−GΓ�γ I

]



∂u

∂n

∣∣∣∣
Γ

∂u

∂n

∣∣∣∣
γ


 =

[
ΨΓ + wΓ

Ψγ + wγ

]
. (4.28)

Assuming the inverse of the 2 × 2 operator matrix of (4.28) can be written as a

convergent Neumann series, we obtain the representation




∂u

∂n

∣∣∣∣
Γ

∂u

∂n

∣∣∣∣
γ


 =

∞∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n [
ΨΓ + wΓ

Ψγ + wγ

]
. (4.29)

By (1.14) we may write

A
∞∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n [
ΨΓ + wΓ

Ψγ + wγ

]
=

[
f |Γ
f |γ

]
(4.30)

and moving all known data to the right-hand side, we obtain an equation to solve

where the unknown is just the diffracted waves wΓ and wγ

A
∞∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n [
wΓ

wγ

]
=

[
f |Γ
f |γ

]
−A

∞∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n [
ΨΓ

Ψγ

]
. (4.31)
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Now we may approximate the unknown diffracted waves wΓ and wγ. We define an

alternative approximation space

V HNA†

N (Γ, γ) := V HNA
NΓ

(Γ)× V HNA
Nγ

(γ),

Where N = Nγ + NΓ. Applying the BIE representation (1.14), truncating the Neu-

mann series after T terms and moving known data to the right-hand side, we can

write an alternative discrete problem: find vN ∈ V HNA†

N (Γ, γ) such that

αm

(
A

T∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n
vN , ϕ

)

L2(Γ)×L2(γ)

=

([
f |Γ
f |γ

]
−A

T∑

n=0

[
0 Gγ�Γ

GΓ�γ 0

]n [
ΨΓ

Ψγ

]
, ϕ

)

L2(Γ)×L2(γ)

,

for all ϕ ∈ V HNA†

N (Γ, γ). Intuitively this method may be interpreted as tracing re-

peated reflections and diffractions of each basis function, up to T reflections. Hence

we are not just approximating the diffracted waves, but every subsequent reflection of

the diffracted waves. We do not present numerical results or analysis for this method,

largely because it is significantly more difficult to implement and analyse than the

main method we present. This is due to the repeated application of the interaction

operators, resulting in (T + 2)-dimensional integrals. Moreover, convergence of the

Neumann series (4.29) is not guaranteed. The condition ‖G‖γ�Γ < 1 is sufficient for

convergence of the Neumann series, although given that the bound (4.13) grows like

O(
√
k), we have no guarantee of convergence for problems beyond a certain frequency

range.

This method should not be considered iterative in the same sense as traditional

iterative methods, such as those in [25]. Whilst it does contain a Neumann series, only

one linear system must be solved unlike classical iterative approaches which requires

a solve at each iteration, for each term in the truncated Neumann series.

4.5 Numerical results

Here we present numerical results for the solution of the problem (4.22), with the

classical combined layer formulation A = Ak,η. The configuration tested consists of

two equilateral triangles, separated by dist(Γ, γ) =
√
3π/5, with LΓ = 6π and Lγ =

3π/5 (as in Figure 4.3). It follows that there are exactly k wavelengths on each side of

Γ and k/10 on each side of γ. Experiments were run for k ∈ {5, 10, 20, 40, 80, 160} for

a range of incident directions d. In terms of observed error, each d gave very similar
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results. Here we focus on the example d = (1, 1)/
√
2, which has some re-reflection,

partial illumination and is asymmetric, (see Figure 4.3). Our error analysis examines

convergence on the boundary ∂Ω = Γ∪ γ. To construct our approximation space, we

first choose V HNA
NΓ

(Γ) = V
HNA

NΓ
(Γ), the single-mesh approximation space of §2.2, with

pj = p for each side j = 1, . . . , nΓ = 3, and choose the degree vector p in accordance

with Remark 2.10. A grading parameter of σ = 0.15 is used, with cj = 2 (where cj is

the constant from Theorem 2.9), for j = 1, . . . , nΓ. We choose αj = min{(pj)i)/4, 2},
introducing some dependence on the polynomial degree on the ith mesh element of

the jth side. This ensures that αj is bounded independently of pj. We will see

shortly that the method converges exponentially, despite this dependence on (pj)i

requiring that fewer elements of the approximation space are used, than as required

for Theorem 2.9, which predicted exponential convergence.

For the standard hp-BEM space V hp
Nγ

(γ), we use the same parameters p, σ and cj

to grade towards the corners of γ, so the construction of the mesh on γ is much the

same as on Γ. The key difference is the inclusion of meshpoints distributed evenly

between each xn−1 and xn; ensuring that no mesh element is longer than Nλ ∈ N

wavelengths. The intention here is to resolve the oscillations on γ, by increasing

the degrees of freedom linearly with k. The maximum polynomial degree p remains

the same across every such subdivision. Therefore, the degrees of freedom Nγ for a

general polygon γ is given by

Nγ =

Nγ∑

j=1

2

(
(pj)nj

⌈
Nλ

xjnj+1 − xjnj

2π/k

⌉
+

nj−1∑

ℓ=1

(pj)ℓ

⌈
Nλ

xjℓ+1 − xjℓ
2π/k

⌉)

where nγ,s is the number of sides of γ (for these examples nγ,s = 3), xjℓ is the ℓth

meshpoint of the jth side of γ, and Nλ is the minimum number of wavelengths per

mesh element.

The integrals (4.26) and (4.27), and the L2 norms used to estimate the error in

Figure 4.4 are computed using the quadrature rules discussed in Appendix B. Many of

these consist of double or triple integrals, which are difficult to compute. The markers

correspond to the increasing polynomial degree p = 0, . . . , 8, whilst the horizontal axis

represents the total degrees of freedom N , which depends on both p and k. These are

compared against a reference solution, which is taken to be the p = 8 approximation,

in which case we write N = N∗. Additional checks were performed against a high

order standard BEM approximation to validate the reference solution, although we

do not give the results of this here. The increased number of oscillations appear to be

handled by the increase in Nγ for each k, (here NΓ remains fixed as k increases, whilst
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Nγ increases linearly) with exponential convergence observed in each case (see Figure

4.4(a)), as is predicted by Theorem 4.10. Figure (4.3) depicts the domain solution

uN∗ , whilst Figure 4.5 plots νN∗ on Γ and γ.

We note that for k = 20 the rate of convergence is not as consistent as for other

wavenumbers. Following this unexpected result, we adjusted the value of αj and Nλ

(details above each plot in Figure 4.4). This resulted in a larger number of basis

functions included in the space V HNA∗

N (Γ, γ), as it can be seen from Figure 4.4(a)

that the region of inconsistent convergence of k = 10 has the same number of degrees

of freedom as for k = 5, however this should be slightly higher to account for the

increased oscillations. This adjustment appears to have fixed the problem, as is visible

from Figure 4.4(b), however this suggests that the choice of αj for the single-mesh

space has a sensitive effect on the convergence of the method.

In summary, assuming a suitable choice of parameters, for fixed k we observe

exponential convergence of the method with respect to p. The error does not increase

significantly as k increases, if the degrees of freedom N remains fixed. We note also

that we have chosen NΓ = O(1) and Nγ = O(k), but Nγ is relatively small compared

to N = NΓ + Nγ for the examples considered here. However as k → ∞ we have

N = O(k). This is why the method is particularly well suited to the type of example

we present here, with one large polygon (for which the high frequency asymptotics are

well understood), and one (or many) small polygon(s) on which the high frequency

asymptotics do not need to be known.
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Figure 4.3: Re(u) in Ω+, scattering by two triangles. LΓ = 6π, Lγ = 3π/5, k = 10,
d = (1, 1)/

√
2.
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Figure 4.4: Convergence plots for varying choices of αj, suggesting that the conver-
gence depends sensitively on this choice.
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Figure 4.5: Plots of real component of the boundary solution on Γ (a) and γ (b), for
k = 20 problem depicted in Figure 4.3.
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4.6 Further work

Whilst the composite quadrature approach (discussed in §B.3) used for these results

is sufficient to demonstrate the effectiveness of our method, it becomes expensive as

k grows, in particular for the triple integral (AΓ�γGγ�Γv, w)L2(γ), which contains a

singular integrand in certain cases, care must be taken to ensure enough memory is

available to compute this. Practical implementations of the method should instead

incorporate oscillatory quadrature and further generalised Gaussian quadrature to

handle the near singularities (see for e.g. [38] and [37] respectively) with a computa-

tional cost which does not increase with k. Such quadrature routines can be difficult

to implement for double or triple integrals, however the dimension of integration may

be reduced by one if a collocation approach (1.19), is used. Indeed, a key advantage

of a Galerkin method is that it can (sometimes) provide more information about the

error of the approximation. However, when the problem to be solved is not one listed

in Remark 4.11, we cannot obtain k-explicit bounds on our approximation, so there

is no advantage of using the Galerkin method, and the Collocation method (with

one fewer dimension per integral, as discussed in Remark 2.12) may be preferable,

if stability issues observed in the investigation into collocation HNA of [47] can be

avoided.

As demonstrated by this example, our method is best suited to cases where γ has

a size parameter no larger than one wavelength, in which case there is no need to

increase Nγ to resolve the oscillations. We re-emphasise that our choice of Ωγ could

be generalised considerably, to any two-dimensional bounded Lipschitz obstacle (pro-

vided a suitable mesh is chosen), although we have not exploited this generalisation

in this particular example. Furthermore, Ωγ may comprise of many such objects.

Similarly, γ and Γ may be connected, such that Γ ∪ γ is the boundary of a single

connected obstacle. This would require more sophisticated bounds on ‖Gγ�Γ‖, and
would result in even more computationally demanding triple integrals, which may

contain an integrand which is the product of two singular kernels. Likewise, Γ may

be generalised to any surface for which the high frequency asymptotics are under-

stood, and so may be penetrable (using theory of [31]) or non-convex (using [15]). In

the case of penetrable ΩΓ, this extension would not be trivial, and would require the

beam tracing algorithm to incorporate the leading order behaviour emanating from

γ. A more trivial extension would be to generalise the incident field to any of the

types considered in Chapter 3, as discussed in Remark 4.6.
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Chapter 5

Well-posedness of Galerkin BEM
for high frequency multiple
obstacle problems

The results produced in this chapter will appear in [29].

Previous HNA methods (Chapter 3, [35], and [15]) have utilised the coercivity

of the star-combined operator to construct a k-independent Galerkin method with

a unique solution for any approximation space, with k-explicit bounds on the quasi-

optimality constant. However in Chapter 4, we are generally (aside from the cases

discussed in Remark 4.11, some of which are proved in this chapter) forced to assume

that N ≥ N0 without knowledge of N0, and have no bounds on our stability constant

Cq. In this case, we cannot predict how accurate our Galerkin method is, or even if

a solution exists for a given N . More generally, the question of k-, h- or p- explicit

conditions for uniqueness of the Galerkin equations and quasi-optimality estimates

for any multiple scattering BEM is very much unanswered. In this chapter, we answer

this question for two classes of multiple scattering domains. Given the complexity of

hp-error analysis (investigated for single obstacles in, for example, [41]), we restrict

our attention to h-BEM approximations.

The main result of this chapter (Theorem 5.5) is a condition for uniqueness of

the Galerkin equations and bound on the stability constant for a mildly trapping

(see Definition 5.4) multiple scattering configuration, which we believe to be the first

result of its type for multiple scattering problems. We also provide new h-BEM best

approximation estimates for polygonal configurations (Theorem 5.9) and show that

the constellation combined operator of Definition 1.3 is coercive for a certain class of

multiple scattering configurations (Theorem 5.7). Moreover, we prove fully explicit

bounds on its coercivity constant.
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Due to the lengthy proofs that follow, this chapter is structured differently to the

others in this thesis, so we outline this structure here. In §5.1 we specify the type

of problem considered in this chapter. In §5.2 we summarise the main results, which

are subsequently proved in §5.3–§5.5. Further work is summarised in §5.6.

5.1 Specific problem statement

In this chapter we will consider the more general configuration of nγ pairwise disjoint

obstacles Ωi with boundary γi, for i = 1, . . . , nγ . The majority of results hold for any

incidence field (in the sense of Definition 1.1) and do not require polygonal obstacles,

indeed some are for multiple smooth obstacles. In terms of the notation of the general

problem statement §1.1.1, we have Ω− =
⋃nγ

i=1 Ωi with boundary ∂Ω = γ =
⋃nγ

i=1 γi.

Additional restrictions on the geometry shall be specified as they are required.

Reformulating as a BIE (1.14), we will consider approximations on the following

type of space.

DEFINITION 5.1 (h-refined spaces). For Lipschitz boundary γ we denote by V h
N(γ)

the h-refined space of piecewise constant functions defined over a one-dimensional

mesh

Mh(γ) := (xi)
N
i=0 on [0, |γ|),

with xN = x0 (the parametrisation of the boundary is periodic), and xi > xi−1 for

i = 1, . . . , N . We also define the mesh width on the ith element to be hi := xi − xi−1,

and the parameter

h := max
i=1,...,N

{hi}.

We say that a mesh Mh(γ) is quasi-regular if there exists a t ∈ (0, 1] such that

h

t
≤ hi ≤ h, for i = 1, . . . , N.

The above definition implies that h → 0 as N → ∞. The Galerkin h-BEM

problem we seek to solve is the following: Find vh in V h
N(γ) such that

(Avh, ϕ)L2(γ) = (f, ϕ)L2(γ) , for all ϕ ∈ V h
N(γ), (5.1)

where A and f may be of either formulation, Definition 1.2 or 1.3.

In this chapter, we seek N0 > 0 such that vh exists and is unique for all N ≥ N0.

Given existence and uniqueness of vh, we are also interested in k- and h- explicit

bounds on the quasi-optimality constant Cq ≥ 1, for which

‖∂+n u− vh‖L2(γ) ≤ Cq min
wh∈V

h
N (γ)

‖∂+n u− wh‖L2(γ), for N(h) ≥ N0 (5.2)
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Bounds on the stability constant Cq and N0 are guaranteed by the following prop-

erty.

DEFINITION 5.2 (Coercivity). We say A is coercive if there exists a constant

ζ > 0 such that
∣∣∣(Aϕ, ϕ)L2(γ)

∣∣∣ ≥ ζ‖ϕ‖2L2(γ), for all ϕ ∈ L2(γ),

and we call ζ the ‘coercivity constant’ of A. We note that equivalent definitions of

coercivity exist, see [49, Remark 2.1.55]

When the operator A is coercive, it follows from Cea’s Lemma and the Lax–

Milgram Theorem that (5.1) has a unique solution on any subspace V h
N(γ) ⊂ L2(γ),

i.e. N0 = 1, with quasi-optimality constant Cq = ‖A‖L2(γ)�L2(γ)/ζ.

REMARK 5.3 (Known coercive formulations for single scattering configurations).

To the best knowledge of the authors, there currently exist no coercive formulations for

the boundary element formulation of multiple scattering problems (excluding Theorem

5.7, which we present shortly). However, there have been a handful of results for single

scattering (nγ = 1) problems.

(i) In the case of a single star-shaped obstacle (see Definition 1.3) γ, the star-

combined operator of Definition 1.4 is coercive ( [52]), with coercivity constant

ζ = ess inf
x∈γ

{n(x) · (x− xc
i)}.

(ii) It is shown in [53] that the standard combined operator is coercive for sufficiently

large k when γ is piecewise analytic and C3 with strictly positive curvature, with

ζ = 1−O(k−1/2), for k ≥ k0.

(iii) The problem of scattering by a screen (and more generally, a fractal screen) is

uniquely solvable (in the continuous case) with A = Sk, which is shown to be

coercive with ζ = 1/(2
√
2) in [14, Theorem 5.3].

(iv) For sufficiently large k, the standard combined-layer operator has been shown to

be coercive for a range of obstacles, via an investigation of the numerical range

in [8].

There are a range of other results available regarding the quasi-optimality constant Cq

for h-BEM in the single scattering case, these can be found in [30] and [20], and are

not stated here. The coercivity results we list above are more relevant in what follows,

as we extend these to obtain bounds on Cq for multiple scattering cases.
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It should be noted that the above remark is closely related to Remark 2.13, in

which stability constants were discussed for single scattering problems.

5.2 Summary of main results

The ideas behind the two key results of this chapter, Theorems 5.5 and 5.7, share the

same starting point. This is to take an operator A defined over multiple obstacles

with combined boundary γ, and separate the coercive components corresponding to

the single scattering cases. To do this and more generally focus on the interactions

between individual pairs of scatterers, the following construction will be necessary.

Given A of (1.14), we are interested in cases where Aγi�γi is coercive, with co-

ercivity constant ζi for i = 1, . . . , nγ . This is equivalent to the operator A being

coercive for the single scattering cases (as discussed in Remark 5.3), i.e. with γ = ∂Ω

replaced by γi in (1.14). To handle the non-diagonal terms separately, we define the

operator of cross terms A× : L2(γ) → L2(γ),

A×ϕ :=

nγ∑

ℓ=1,ℓ6=i

Aγℓ�γiϕ, on γi, for i = 1, . . . , nγ . (5.3)

We now define the operator of diagonal terms AD : L2(γ) → L2(γ)

ADϕ :=

nγ∑

i=1

Aγi�γiϕ, on γi, for i = 1, . . . , nγ . (5.4)

Hence we have split the operator

A = AD︸︷︷︸
nγ single scattering components,

+ A×︸︷︷︸
nγ(nγ−1) multiple obstacle interactions.

.

If each single scattering component Aγi�γi is coercive, then AD is coercive, and we

may write

∣∣∣(Aϕ, ϕ)L2(γ)

∣∣∣ ≥
nγ∑

i=1

ζi‖ϕ‖2L2(γi)
−
∣∣∣(A×ϕ, ϕ)L2(γ)

∣∣∣ , for ϕ ∈ L2(γ).

For the cases we are interested in, the kernel of the operator A× is smooth, and

we shall see in Theorem 5.16 that A× has useful regularising properties. Under the

assumption that A× : H−s(γ) 7→ Hs(γ) for s ∈ [0, 1/2], we may write

∣∣∣(Aϕ, ϕ)L2(γ)

∣∣∣ ≥ min
i=1,...,nγ

{ζi}‖ϕ‖2L2(γ) −
∣∣∣〈A×ϕ, ϕ〉Hs(γ)×H−s(γ)

∣∣∣ , for ϕ ∈ L2(γ),

(5.5)
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where we have appealed to the duality of the spaces Hs(γ) and H−s(γ), for s ≥ 0.

Theorem 5.5 takes (5.5) with A = A′
k,η (of Definition 1.2, constants ζi discussed in

Remark 5.3(i)) with A× : H−1/2(γ) → H1/2(γ) to construct a G̊arding inequality,

from which k- and h- explicit estimates can be obtained. Theorem 5.7 takes (5.5)

and chooses A = Ak (see Definition 1.4, constants ζi discussed in 5.3(ii)) with A× :

L2(γ) → L2(γ), from which we obtain a fully explicit condition for coercivity.

5.2.1 Well posedness and quasi-optimality

Before we can state our first condition for quasi-optimality (5.2), we specify the type

of configuration to which it applies.

DEFINITION 5.4 (Mild trapping). We say a configuration Ω− is ‘mild trapping’

[57, §2] if

(i) each γi is C
∞ with strictly positive curvature,

(ii) for any γi and γj, there exists a convex set containing γi ∪ γj that does not

intersect γ \ (γi ∪ γj).

The result that follows is based on the properties of the Dirichlet to Neumann

map for mildly trapping configurations, which depends intimately on the resonances

of the resolvent operator (∆+ k2)−1. The proof is quite lengthy and is given in §5.4.

THEOREM 5.5. If γ is mild trapping (in the sense of Definition 5.4) with nγ = 2,

then given k0 ≥ e there exist positive constants C and η0, both independent of k and

h, such that if η is chosen with

η0k ≤ η . k

and N is chosen such that

h ≤ C

k2(1 + k7/6 log k)2(1 + k log k)2
, for k ≥ k0, (5.6)

the Galerkin equations (5.1) with the standard combined operator (of Definition 1.2)

A = A′
k,η have a unique solution vh ∈ V h

N(γ) defined on a uniform mesh (in the sense

of Definition 5.1), which satisfies the stability condition

‖∂+n u− vh‖L2(γ) . (1 + k7/6 log k) inf
wh∈V

h
N (γ)

‖∂+n u− wh‖L2(γ), (5.7)

for all k ≥ k0.
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Hence in terms of the quasi-optimality condition (5.2), by Theorem 5.5 we have a

condition (5.6) on h such that N ≥ N0 (recalling that h is inversely proportional to

N), and a bound (5.7) on the stability constant Cq. We emphasise that there is no

condition on the separation of the obstacles, the only restriction is on the smoothness

and convexity of the boundary of each obstacle γi. To the best knowledge of the

author, this is the first k-explicit stability result for multiple scattering BEM, and is

one of the more general results of this thesis.

5.2.2 Results concerning the constellation combined operator

As discussed in Remark 5.3, the star combined operator of [52] is coercive for star-

shaped obstacles. Harnessing the coercive properties of the single obstacle problem,

we are able to construct geometries such that the interaction between the obstacles

is sufficiently small that the coercivity property still holds. The results that follow

apply to any operator which is coercive on a singe scatterer, although here we focus on

the example of our extension of the star-combined of [52], as this is the only operator

coercive on L2 for which we have an explicit bound on the coercivity constants in the

single scattering case.

We now collect some fundamental results about the constellation combined oper-

ator.

THEOREM 5.6. For constellation-shaped (in the sense of Definition 1.3) γ, the

constellation-combined operator Ak of Definition 1.4 is bounded and invertible on

L2(γ), and there exists a k0 > e such that

‖Ak‖L2(γ)�L2(γ) . k1/2, for k ≥ k0

and

‖A−1
k ‖L2(γ)�L2(γ) .

{
k3/2 log k, for γ a non-trapping polygon,
k2/3 log k, for γ mild trapping,

for k ≥ k0.

Proof. Invertibility: Using the notation of Definition 1.4, by [13, Theorem 2.41]

the nγ (homogeneous) oblique impedance problems on each γi have only the trivial

solution. It then follows from [13, Corollary 2.40] that Ak is invertible.

Bound on ‖Ak‖L2(γ)�L2(γ): Follows immediately from [52, Theorem 4.2].

Bound on ‖A−1
k ‖L2(γ)�L2(γ): Proved in §5.5.

We now state a restriction on the geometry of γ for which the constellation com-

bined operator Ak is coercive. The proof relies on a series of intermediate results,

which are in §5.3.

90



50 100 150 200 250

1

2

3

4

5

6

7

8

9

10
x 10

4

k

m
in

i6=
ℓ
d
is
t(
γ
i,
γ
ℓ)

Ak coercive

?

Figure 5.1: Separation required to ensure coercivity of a configuration of Nγ ≥ 2
circles of radius 1, against wavenumber k. The upper-left region indicates the config-
urations for which a coercive formulation is possible using Theorem 5.7.

THEOREM 5.7 (Condition for coercivity of constellation-combined operator). Sup-

pose γ is constellation-shaped (in the sense of Definition 1.3), with the separation of

each obstacle γi large enough that ζ > 0, where

ζ := ess inf
x∈γ

{Z(x) · n(x)}

−
nγ∑

i=1

√
|γi|(|γ| − |γi|)
π dist(γi, γ \ γi)

[
3max

ℓ6=i
{diam(γℓ)}

(
√
2k +

1√
π dist(γi, γ \ γi)

)
+

1√
8k

]

holds, then the constellation-combined operator Ak (of Definition 1.4) is coercive (in

the sense of Definition 5.2) with coercivity constant ζ. Here | · | represents the one-

dimensional Hausdorff measure.

Whilst Theorem 5.7 represents the first coercive formulation for any class of multi-

ple scattering configurations, it is important that we illustrate the extent of the above

restriction. Suppose we consider the problem of scattering by Nγ circles of radius 1,

Figure 5.1 represents the required minimal distance of the circles to ensure that the

condition of Theorem 5.7 is satisfied.

5.2.3 Best approximation error for h-BEM

To complement the quasi-optimality results, we now present some best approximation

results for the h-BEM case. We do not expect these estimates to be sharp, but they
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are required for a complete analysis of the h-BEM method. Best approximation

estimates depend on the incident wave, those we present in this section §5.2.3 are for

plane waves, hence uinc = uincPW of (2.5). The first best approximation result is not

new, but is complementary to the problem of Theorem 5.5, so is included here.

THEOREM 5.8. For a mildly trapping (in the sense of Definition 5.4) domain Ω−

with plane wave incidence (2.5), given k0 > 0, a uniform (in the sense of Definition

5.1) h-BEM enjoys the following best approximation property:

inf
wh∈V

h
N (γ)

‖v − wh‖L2(γ) . hk7/6 log k‖v‖L2(γ), for k ≥ k0.

Proof. Follows immediately from [20, Theorem 1.14(b)], as mild trapping domains

can be written as a finite union of compact subsets of curved C∞ hypersurfaces.

We will shortly present the following best approximation result for configurations

of multiple convex polygons, which is an extension of the single scattering case of [30,

Theorem 1.2].

DEFINITION 5.9 (V h
N(γ) on a graded mesh). Suppose that Γj is a single side of

length Lj of a polygonal obstacle. We define a quasi-regular (in the sense of Definition

5.1) graded mesh (sℓ,j)
2Nj

ℓ=1 by

sℓ,j =
Lj

2

(
ℓ

Nj

)qj

, and sNj+ℓ,j := Lj −
Lj

2

(
Nj − ℓ

Nj

)qj

, for ℓ = 0, . . . , Nj,

where qj is the grading parameter, chosen such that

qj >
2ω∗

j

2π − ω∗
j

, (5.8)

where ω∗
j = max{ωj, ωj+1}, with ωj the internal angle of the jth corner, as in Defini-

tion 2.3. It follows that the diameter of the largest mesh element (of Definition 5.1)

is

h = max
j

max
ℓ=1,...,2Nj−1

{sℓ,j+1 − sℓ,j}.

We note that the definition of the graded mesh we consider here is different to

that of §4.4 used for the HNA methods.

THEOREM 5.10. Suppose we have plane wave incidence, with a multiple scattering

configuration with combined boundary γ containing at least one convex polygon with

boundary Γ. Suppose further that the condition (4.16) holds, with

M∞(u) := sup
x∈Ω+

|u(x)| . 1,
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where u is the solution to the BVP (1.4)–(1.6). Suppose further that a quasi-regular

graded mesh (of Definitions 5.1(i) and 5.9) is used with O(N) mesh points. Then

given k0 > 0 we have

inf
wh∈V

h
N (γ)

‖v − wh‖L2(Γ) .
k

N
‖v‖L2(Γ) + hk3/2‖v‖L2(γ), for all k > k0,

where h is as in Definition 5.9. If Ωγ consists entirely of convex polygons, then the

same result applies with Γ replaced by γ on the left-hand side.

Proof. Recall we have the representation (4.9) on Γj,

v(s) = ΨPW(xΓ(s)) + v+(s− L̃j−1)e
iks + v+(L̃j − s)ei−ks + Gγ′

�Γj
v|γ′(xΓ(s)), (5.9)

for s ∈ [L̃j−1, L̃j ], where γ
′ := γ \ Γ denotes the union of all other scatterers. We

begin by bounding the final term of (5.9).

inf
wh∈V

h
N (γ)

∥∥Gγ′
�Γj

v − wh

∥∥
L2(Γj)

. h
∥∥Gγ′

�Γj
v
∥∥
H1(Γj)

,

from classical results on h-approximation theory (see e.g. [49, Theorem 4.3.22(b)]).

Looking ahead to Theorem 5.16(ii) we obtain ‖Gγ′
�Γj

‖L2(γ′)�H1(Γj) . k−1/2 + k3/2,

choosing k0 ≥ 1 yields

inf
wh∈V

h
N (γ)

∥∥Gγ′
�Γj

v − wh

∥∥
L2(Γj)

. hk3/2 ‖v‖L2(γ′) . hk3/2 ‖v‖L2(γ) . (5.10)

It is shown in §4.3 that the diffracted waves v± of (2.3) satisfy bounds analogous

to the single scattering problem when (4.16) holds, which is the case provided that

we choose k0 ≥ 1/dist(Γ, γ′) , hence the best approximation of the first three terms

of (5.9) satisfy the same bounds as [30, Theorem 1.2], and are thus asymptotically

bounded by k/N .

We remark briefly that the above requirement does not require the polygons to

be non-trapping (in the sense of Definition 2.2), only that the individual polygons

are convex. Any trapping will be reflected in the size of ‖v‖L2(γ). Moreover, we

hypothesise that the constraint may be relaxed to any polygonal domain, provided

that similar bounds on ‖Gγ�Γj
‖L2(γ)�H1(Γj) for non-convex Γ can be obtained, though

this would require further work. The key difference is that neighbouring sides of

Γj may lie in the relative upper half plane Uj of Γj, in which case the integrand of

‖Gγ�Γj
‖L2(γ)�H1(Γj) is singular at the corner point between the two sides.
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5.3 Proof of Theorem 5.7, conditions for coercivity of Ak

If the separation between the obstacles increases, the interaction between them and

therefore A× tends to zero. Here we aim to find a finite threshold beyond which the

interaction between the obstacles is insufficient to beat the coercivity property. This

idea is captured by the following lemma, which may be applied to operators other

than the constellation-combined.

LEMMA 5.11. Suppose an operator A : L2(γ) → L2(γ) is such that the restriction

(in the sense of Definition 1.6) Aγi�γi is coercive (in the sense of Definition 5.2) with

coercivity constant ζi for i = 1, . . . , Nγ. If

ζ := min
i=1,...,Nγ

{ζi} −
nγ∑

i=1

‖A‖L2(γi)�(γ\γi) > 0, (5.11)

then the operator A is coercive with
∣∣∣(Aϕ, ϕ)L2(γ)

∣∣∣ ≥ ζ‖ϕ‖2L2(γ), for all ϕ ∈ L2(γ).

Proof. For ϕ ∈ L2(γ) we may split the operator A× into obstacle-wise components

using Definition 5.3

(A×ϕ, ϕ)L2(γ) =

nγ∑

i=1

(A×ϕi, ϕ)L2(γ\γi)
,

which we can bound using the continuity of A and the triangle inequality

∣∣∣(A×ϕ, ϕ)L2(γ)

∣∣∣ ≤
nγ∑

i=1

‖A‖L2(γi)�L2(γ\γi)‖ϕ‖L2(γi)‖ϕ‖L2(γ\γi).

Noting that both ‖ϕ‖L2(γi) and ‖ϕ‖L2(γ\γi) ≤ ‖ϕ‖L2(γ), we may bound further

∣∣∣(A×ϕ, ϕ)L2(γ)

∣∣∣ ≤ ‖ϕ‖2L2(γ)

nγ∑

i=1

‖A‖L2(γi)�L2(γ\γi).

The result follows immediately from (5.5), choosing s = 0.

REMARK 5.12 (Positive-definiteness analogy). When comparing integral opera-

tors with matrices, coercivity is often interpreted as a generalisation of positive-

definiteness. In the same way Lemma 5.11 may be interpreted as a generalisation of

strict diagonal dominance; the restriction (5.11) ensures that the off-diagonal terms of

A× are sufficiently small when compared with the diagonal terms of AD that the ma-

trix of operators remains coercive. This is analogous to the case with square matrices,

for which strict diagonal dominance ensures positive definiteness.
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For constellation-shaped (in the sense of Definition 1.3) γ, if we choose A = Ak

then (Ak)γi�γi is coercive (in the sense of Definition 5.2) with coercivity constant

ζi = ess inf
x∈γi

{(x−xi) ·n(x)} for i = 1, . . . , Nγ . Our aim now is to bound explicitly the

constant ζ of (5.11) in this case, motivating the following lemma. For simplicity, we

will use the shorthand of Definition 1.6 in this lemma, and for much of this chapter.

LEMMA 5.13. For X, Y ⊂ γ with relatively open X and Y with disjoint closure, if

T : L2(γ) → L2(γ) is an integral operator with kernel κ(x,y) essentially bounded for

x 6= y, then

‖T ‖L2(Y )→L2(X) ≤
√

|X||Y | ess sup
x∈X,y∈Y

|κ(x,y)| <∞,

where | · | denotes the one-dimensional Hausdorff measure.

Proof. For 0 6= ϕ ∈ L2(Y ),

‖T ϕ‖L2(X)

‖ϕ‖L2(Y )

=
1

‖ϕ‖L2(Y )

(∫

X

∣∣∣∣
∫

Y

κ(x,y)ϕ(y) ds(y)

∣∣∣∣
2

ds(x)

)1/2

. (5.12)

Using the Cauchy–Schwarz inequality, we can write
∣∣∣∣
∫

Y

κ(x,y)ϕ(y) ds(y)

∣∣∣∣ ≤
∫

Y

|κ(x,y)ϕ(y)| ds(y) ≤ ‖κ(x, ·)‖L2(Y )‖ϕ‖L2(Y ),

for x ∈ X. Combining this with (5.13),

‖T ϕ‖L2(X)

‖ϕ‖L2(Y )

≤ 1

‖ϕ‖L2(Y )

(∫

X

‖κ(x, ·)‖2L2(Y )‖ϕ‖2L2(Y ) ds(x)

)1/2

=

(∫

X

∫

Y

|κ(x,y)|2 ds(y) ds(x)
)1/2

≤
(∫

X

ds

∫

Y

ds

)1/2

sup
x∈X,y∈Y

|κ(x,y)|

and the result follows.

This result can now be used to derive bounds on cross terms of integral operators.

LEMMA 5.14. For X, Y ⊂ γ with X and Y disjoint, we have the following bounds

on

(i) the single layer operator Sk

‖Sk‖L2(Y )�L2(X) ≤
√

|X||Y |
2πk dist(X, Y )

,
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(ii) the double layer operator Dk and its adjoint D′
k

‖Dk‖L2(Y )�L2(X)

‖D′
k‖L2(Y )�L2(X)

}
≤
√
|X||Y |

(√
k

2π dist(X, Y )
+

1

π dist(X, Y )

)
,

(iii) the product of z ∈ (L∞(X))2 with the surface gradient operator ∇γSk

‖z·∇γSk‖L2(Y )�L2(X) ≤ ess sup
x∈X

|z(x)|
√
|X||Y |

(√
2k

π dist(X, Y )
+

2

π dist(X, Y )

)
,

(iv) the Standard Combined operator

‖A′
k,η‖L2(Y )�L2(X) ≤

√
|X||Y |

[√
k

2π dist(X, Y )
+

1

π dist(X, Y )
+

|η|√
2π dist(X, Y )

]
,

(v) the Constellation Combined operator with X and Y the boundaries of star-shaped

obstacles,

‖Ak‖L2(Y )�L2(X) ≤
√

|X||Y |
π dist(X, Y )

[
3max

x∈X
{|Z(x)|}

(
√
2k +

√
1

π dist(X, Y )

)
+

√
1

8k

]
.

Here z may be any z ∈ (L∞(X))2, whilst Z refers specifically to the vector Z of

Definition 1.4.

Proof. (i): Single-layer

We take κ(x,y) = i
2
Φ(x,y) = i

2
H

(1)
0 (k|x − y|) in the statement of Lemma 5.13.

From A.7 we have that |H(1)
0 (z)| ≤

√
2/(πz) for z > 0, from which it follows that

|κ(x,y)| ≤
√
1/(2πk|x− y|)), whilst from the disjointedness of X and Y , we have

|κ(x,y)| ≤
√

1/(2πk dist(X, Y ))), and the result follows.

(ii): Double-layer

We prove only the bound on Dk. For this case κ(x,y) = i
2
∂Φ(x,y)/∂n(y) =

ik
2
H

(1)
1 (k|x − y|)n(x) · (x − y)/|x − y|, we combine with A.8, which states that

|H(1)
1 (z)| ≤

√
2/(πz) + 2/(πz) for z > 0, and the result follows.

(iii): Surface gradient of single-layer

In this case we have the kernel κ(x,y) = 2z(x)·∇Φ(x,y)−2(z(x)·n(x))∂Φ(x,y)/n(x).
By applying the triangle inequality and the discrete Cauchy Schwarz inequality to

z, we obtain |κ(x,y)| ≤ |z(x)||H(1)
1 (k|x − y|)|, and the result follows by the same
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reasoning as the previous cases.

(iv): Standard combined

Combine (i) and (ii), follows by the definition of A′
k,η (see Definition 1.2).

(v): Constellation-combined

All notation is as in Definition 1.4. We first note that

ess sup
x∈X

|Z(x) · n(x)| ≤ sup
x∈X

|Z(x)| ≤ diam(X) and ‖η̂‖L∞(X) ≤ k diam(X) +
1

2
,

since X is star shaped. Applying the triangle inequality yields

‖Ak‖L2(Y )�L2(X)

≤ diam(X)‖D′
k‖L2(Y )�L2(X) + ‖Z · ∇γSk‖L2(Y )�L2(X) + ‖η̂‖L∞(X)‖Sk‖L2(Y )�L2(X).

Combining this with the above bounds on Sk, D′
k and z · ∇γSk choosing z = Z,

‖Ak‖L2(Y )�L2(X) ≤ diam(X)
√

|X||Y |
(√

k

2π dist(X, Y )
+

1

π dist(X, Y )

)

+2diam(X)
√

|X||Y |
(√

k

2π dist(X, y)
+

1

π dist(X, Y )

)

+
√
|X||Y |

(
k diam(X) +

1

2

)√
1

2πk dist(X, Y )
,

the bound follows.

Lemma 5.14 suggests that there exist configurations γ ⊂ R2 with wavenumbers k

such that ‖Ak‖L2(γi)�L2(γj) is small enough to satisfy the conditions of Lemma 5.11

for γi and γj two disjoint obstcales of the configuration γ, and the result of Theorem

5.7 follows.

Proof of Theorem 5.7. We apply Theorem 5.11 to A = Ak on γ. The diagonal terms

are coercive by [52] and the first term on the right-hand side of (5.5) simplifies since

ζi := ess inf
x∈γi

{n(x) · (x− xi)}, hence min
i
{ζi} = ess inf

x∈γ
{Z(x) · n(x)},

by the definition of Z. The cross terms ‖A‖L2(γi)�(γ\γi) can be bounded using Lemma

5.14(v), and the result follows from Lemma 5.11.
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5.4 Proof of Theorem 5.5, stability for multiple smooth obstacles

This proof depends on the fact that if γ is the combined boundary of multiple C1,1

obstacles, then the regularity of A× : γ → γ is stronger than that of A : γ → γ, from

which it can be shown that A satisfies a G̊arding inequality. Whilst it is a standard

result (see, e.g., [13]) that for |s| ≤ 1/2, A : Hs−1/2(γ) → Hs−1/2(γ), we show here (for

γ consisting of C1 obstacles) that A× : Hs−1/2(γ) → Hs+1/2(γ). Here, the improved

regularity is a consequence of the smooth kernel of either choice of A×, a property

not enjoyed by A, and a bound on ‖A×‖H−1/2(γ)�H1/2(γ) enables us to write (5.5) as

a G̊arding inequality. As norms in Hs−1/2(γ) and Hs+1/2(γ) are difficult to compute,

we interpolate via the following Lemma, which enables us to work in Sobolev spaces

of integer order. We parametrise X by x(tX) and Y by y(tY ) in the natural way, with

a piecewise continuous vector valued map, such that |ẋ| = 1 for tX ∈ [0, |X|) and

|ẏ| = 1 for tY ∈ [0, |Y |). This will simplify the integrals which must be computed to

bound the operator norms we are interested in. Indeed, we will make use of the norm

‖κ‖H1(X×Y )

:=

(∫ |X|

0

∫ |Y |

0

|κ(x(tX),y(tY ))|+
∣∣∣∣
∂κ(x(tX),y(tY ))

∂tX

∣∣∣∣+
∣∣∣∣
∂κ(x(tX),y(tY ))

∂tY

∣∣∣∣

)1/2

(5.13)

LEMMA 5.15. For relatively open X, Y ⊂ ∂D with disjoint closures, if T is an

integral operator with kernel κ ∈ H1(X×Y ) then the following mappings are bounded:

(i)

‖TY �X‖H−1(Y )�L2(X) ≤
(∫ |X|

0

‖κ(x(tX), ·)‖2H1(Y ) dtX

)1/2

.

(ii)

‖TY �X‖L2(Y )�H1(X) ≤
(∫ |X|

0

‖κ(x(tX), ·)‖2L2(Y ) +

∥∥∥∥
dκ (x(tX), ·)

dtX

∥∥∥∥
2

L2(Y )

dtX

)1/2

.

(iii) For s ∈ [−1/2, 1/2],

‖TY �X‖H−1/2+s(Y )�H1/2+s(X) ≤ ‖κ‖H1(X×Y ).

Proof. (i): The definition of the operator norm states:

‖T ‖2H−1(Y )�L2(X) := sup
ϕn∈H−1(Y )

ϕ 6=0

‖Tϕ‖L2(X)

‖ϕ‖H−1(Y )

(5.14)
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As ϕ may not be integrable, we instead consider the sequence (ϕn)n∈N in C∞(Y ),

such that

lim
n→∞

‖ϕn‖H−1(Y ) = ‖ϕ‖H−1(Y ).

We may now write

‖T ϕn‖2L2(X) := sup
ϕn∈H−1(Y )

ϕ 6=0

∫ |X|

0

|TY �Xϕn(tX)|2 dtX ,

≤
(∫ |Y |

0

|κ(x(tX),y(tY ))ϕn(y(tY ))|
)2

dtX ,

≤
∫ |X|

0

‖κ(x(tX), ·)‖2H1(Y ) ‖ϕn‖2H−1(Y ) dtX ,

hence considering the limit as n � ∞, noting the density of C∞(Y ) in H−1(Y ), we

obtain

‖T ϕ‖2L2(X) ≤ ‖ϕ‖2H−1(Y )

∫ |X|

0

‖κ(x(tX), ·)‖2H1(Y ) dtX , for all ϕ ∈ H−1(Y ). (5.15)

The result follows by combining (5.14) with (5.15).

(ii) Similarly,

‖T ‖2L2(Y )�H1(X)

= sup
ϕ∈L2(Y )

ϕ 6=0

∫ |X|

0

[
|TY �Xϕ(x(tX))|2 +

∣∣∣∣
d

dtX
TY �Xϕ(x(tX))

∣∣∣∣
2
]
dtX/‖ϕ‖L2(Y )

≤ sup
ϕ∈L2(Y )

ϕ 6=0

∫ |X|

0

[(∫ 2π

0

∣∣∣κ
(
x(tX),y(tY )

)
ϕ
(
y(tY )

)∣∣∣ dtY
)2

+

(∫ |X|

0

∣∣∣∣
∂κ

∂tX
(x(tX),y)ϕ(y(tY )) dtY

∣∣∣∣

)2

 dtX / ‖ϕ‖L2(Y )

≤ sup
ϕ∈L2(Y )

ϕ 6=0

∫ |X|

0

[∥∥∥κ(x(tX), ·)
∥∥∥
2

L2(Y )
‖ϕ‖2L2(Y ) +

∥∥∥∥
∂κ

∂tX
(x(tX), ·)

∥∥∥∥
2

L2(Y )

‖ϕ‖2L2(Y )

]
dtX / ‖ϕ‖L2(Y ),

again, the result follows immediately.

(iii) Taking the maximum of (i) and (ii) and interpolating (see for example [49, §2.1.7])
for s ∈ (−1/2, 1/2)

‖TY �X‖2H−1/2+s(Y )�H1/2+s(X) ≤ max
{
‖TY �X‖2H−1(Y )�L2(X) , ‖TY �X‖2L2(Y )�H1(X)

}
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≤ ‖κ‖2L2(X×Y ) +

∥∥∥∥
∂κ

∂tX

∥∥∥∥
2

L2(X×Y )

+

∥∥∥∥
∂κ

∂tY

∥∥∥∥
2

L2(X×Y )

= ‖κ‖2H1(X×Y ),

by definition (5.13) of the H1(X × Y ) norm.

The following theorem applies Lemma 5.15 to integral operators of interest, con-

cerning bounds on the individual elements of A×. As is the case throughout this

thesis, the bounds in the following Lemma are of the form a . b, to denote a ≤ cb,

where c depends only on the geometry of the problem. In each case, the dependence

of c on the geometry is clear from the proof, although the results of the theorem state

only the k-dependence, which is all that is required for what follows.

THEOREM 5.16. For X, Y ⊂ ∂D disjoint with X ∈ C1,1, there exist the following

bounds on H−1/2+s(Y ) → H1/2+s(X), for s ∈ [−1/2, 1/2]:

(i) For the single-layer operator Sk,

‖Sk‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k.

(ii) For the adjoint double-layer operator D′
k,

‖D′
k‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k3/2.

Moreover, if X is a straight line segment, we have a bound on the interaction

operator (4.12)

‖GY �X‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k3/2.

(iii) For the product of Z (as in Definition 1.4) with the surface gradient operator

∇γSk,

‖Z · ∇γSk‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k3/2.

(iv) For the Standard Combined operator A′
k,η

‖A′
k,η‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k3/2 + |η|(k−1/2 + k).

(v) For the Constellation Combined operator Ak

‖Ak‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k2.
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Proof. In this proof, a bound on the derivative of the gradient of the fundamental

solution is required, so we derive it here:

∂

∂tX
[∇γΦ(x(tX),y)] = − ik

4

(
ẋ

|x− y| + (x− y)
ẋ · (y − x)

|x− y|3
)
H

(1)
1 (k|x− y|)

− ik2

4
ẋ · (y − x)

|x− y|
(x− y)

|x− y|H
(1)′

1 (k|x− y|),

namely

∣∣∣∣
∂

∂tX
[∇γΦ(x(tX),y)]

∣∣∣∣ ≤
k

2 dist(X, Y )

∣∣∣H(1)
1 (k|x− y|)

∣∣∣+
k2

4

∣∣∣H(1)′

1 (k|x− y|)
∣∣∣ , (5.16)

and by symmetry, we have the same bound for the derivative in tY ,

∣∣∣∣
∂

∂tY
[∇γΦ(x,y(tY ))]

∣∣∣∣ ≤
k

2 dist(X, Y )

∣∣∣H(1)
1 (k|x− y|)

∣∣∣+
k2

4

∣∣∣H(1)′

1 (k|x− y|)
∣∣∣ . (5.17)

Each of the bounds (i)-(iii) seeks to obtain an upper bound on ‖κ‖2H1(X×Y ) for the ker-

nel κ of the given integral operator T , from which a bound on ‖Tk‖Hs−1/2(Y )�Hs+1/2(X)

follows immediately by Lemma 5.15 part (iii).

(i): The single-layer operator Sk has kernel

κ1(x,y) := Φ(x,y) =
i

4
H

(1)
0 (k|x− y|). (5.18)

Bounding the derivatives, we obtain

∣∣∣∣
∂κ1
∂tX

(x(tX),y)

∣∣∣∣ =
∣∣∣∣
ik

4

ẋ · (x− y)

|x− y| H
(1)
1 (k |x− y|)

∣∣∣∣ ≤
k

4

∣∣∣H(1)
1 (k|x− y|)

∣∣∣ (5.19)

and ∣∣∣∣
∂κ1
∂tY

(x,y(tY ))

∣∣∣∣ =
k

4

∣∣∣H(1)
1 (k |x− y|)

∣∣∣ . (5.20)

Bounding (5.18) using (A.7), and bounding (5.19) and (5.20) using (A.8), then inte-

grating yields,

‖Sk‖2Hs−1/2(Y )�Hs+1/2(X)

≤
∫

X

∫

Y


 1

16k dist(X, Y )
+
k2

8

(√
2

πk dist(X, Y )
+

2

πk dist(X, Y )

)2

 ds ds

≤ |X||Y |
16k dist(X, Y )

+
k2

8
|X||Y |

(√
2k

π dist(X, Y )
+

2

π dist(X, Y )

)2
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. k−1 + k2,

from which the result follows.

(ii): The adjoint double-layer operator D′
k has kernel

κ2(x,y) :=
∂Φ(x,y)

∂n(x)
= − ik

4

n · (x− y)

|x− y| H
(1)
1 (k|x− y|),

which is straightforward to bound using (A.7)

|κ2(x,y)| ≤
k

4

∣∣∣H(1)
1 (k|x− y|)

∣∣∣ ≤ k

4

√
2

πk dist(X, Y )
. k1/2. (5.21)

To bound the tX derivative, we use the identity,

∣∣∣∣
dn

dtX
(x(tX))

∣∣∣∣ =
∣∣∣∣
d

dtX

[
ẋ2(tX)
−ẋ1(tX)

]∣∣∣∣ =
∣∣∣∣
[

ẍ2(tX)
−ẍ1(tX)

]∣∣∣∣ = |ẍ|, (5.22)

in a distributional sense, justifying the requirement that the first derivative of x must

be Lipschitz. To bound the derivative of the product, using (5.21), (5.22) and (5.16),

∣∣∣∣
∂κ2
∂tX

(x(tX),y)

∣∣∣∣ ≤
∣∣∣∣
dn(x(tX))

dtX

∣∣∣∣
∣∣∣∇γΦ(x(tX),y)

∣∣∣+
∣∣∣n(x(tX))

∣∣∣
∣∣∣∣
∂

∂tX
[∇γΦ(x(tX),y)]

∣∣∣∣ ,

≤ k

( |ẍ|
4

+
1

2 dist(X, Y )

) ∣∣∣H(1)
1 (k|x− y|)

∣∣∣+
k2

4

∣∣∣H(1)′

1 (k|x− y|)
∣∣∣ ,

and from this,

∫

X

∫

Y

∣∣∣∣
∂κ2
∂tX

∣∣∣∣
2

ds ds

≤k2|Y |
(
‖ẍ‖2L2(X)

16
+

|X|
4 dist(X, Y )2

+
|X|‖ẍ‖L2(X)

4 dist(X, Y )

)
|H(1)

1 (k dist(X, Y ))|2

+
|X||Y |k3

4

(‖ẍ‖L2(X)

4
+

1

2 dist(X, Y )

)
|H(1)

1 (k dist(X, Y ))||H(1)′

1 (k dist(X, Y ))|

+
|X||Y |k4

16
|H(1)′

1 (k dist(X, Y ))|2.

We can bound using (A.8) and (A.9), focusing on the k dependence,

∫

X

∫

Y

∣∣∣∣
∂κ2
∂tX

∣∣∣∣
2

ds ds

≤k2|Y |
(
‖ẍ‖2L2(X)

16
+

|X|
4 dist(X, Y )2

+
|X|‖ẍ‖L2(X)

4 dist(X, Y )

)
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×
(√

2

πk dist(X, Y )
+

4

πk dist(X, Y )

)2

+
|X||Y |k3

4

(‖ẍ‖L2(X)

4
+

1

2 dist(X, Y )

)(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )

)

×
(√

2

πk dist(X, Y )
+

4

πk dist(X, Y )
+

2

πk2 dist(X, Y )2

)

+
|X||Y |k4

16

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )
+

2

πk2 dist(X, Y )2

)2

. k−1 + k3. (5.23)

The terms involving derivatives of x are properties of the geometry of X, and so are

absorbed into the constant. Similar but simpler calculations using (A.8) and (A.9)

to bound (5.17) show ∫

X

∫

Y

∣∣∣∣
∂κ2
∂tY

∣∣∣∣
2

ds ds . k−1 + k3. (5.24)

Combining (5.21), (5.23) and (5.24) yields

‖D′
k‖Hs−1/2(Y )�Hs+1/2(X) . k−1/2 + k3/2,

as required. The special case for the operator GY �X , where X is a subset of a straight

line segment, follows identical arguments as the kernel is either zero, or the equal to

κ2.

(iii): Here for simplicity we assume that X is star shaped. This is sufficient for

every immediate use of this Theorem, although the asymptotic result is unaffected.

The kernel for the surface potential operator is

κ3(x,y) := Z(x) ·
(
∇γΦk(x,y)− n(x)

∂Φk(x,y)

∂n(x)

)

= (Z(x)− (Z(x) · n(x))n(x)) · ∇γΦk(x,y) (5.25)

and it is straightforward to show that

|Z(x)− (Z(x) · n(x))n(x)| ≤ diam(X). (5.26)

Hence we can bound (5.25) using (5.26),

|κ3(x,y)| ≤
k diam(X)

2

∣∣∣H(1)
1 (k|x− y|)

∣∣∣ ≤ k diam(X)

2

√
2

πk dist(X, Y )
. k1/2.

(5.27)
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Before the tX derivative can be bounded, an intermediate bound is required. We

begin by differentiating the vector components of the operator,

d
dtX

[Z(x)− (Z(x) · n(x))n(x)]

= ẋ−
(
ẋ · n(x) + Z(x) ·

[
ẋ2
−ẋ1

])
n(x)− (Z(x) · n(x))

[
ẍ2
−ẍ1

]
.

This can be bounded in terms of geometric parameters,

∣∣∣∣
d

dtX
[Z(x)− (Z(x) · n(x))n(x)]

∣∣∣∣ ≤ 1 +
(
1 + |ẍ|

)
diam(X). (5.28)

By the product rule

∣∣∣∣
∂κ3
∂tX

(x,y)

∣∣∣∣ ≤
∣∣∣∣
∂

∂tX

[(
Z(x)−

(
Z(x(tX)) · n(x(tX))

)
n(x(tX))

)
· ∇γΦ(x(tX),y)

]∣∣∣∣

≤
∣∣∣∣
d

dtX

[
Z(x(tX))−

(
Z(x(tX)) · n(x(tX))

)
n(x(tX))

]
· ∇γΦ(x(tX),y)

∣∣∣∣

+

∣∣∣∣
(
Z(x)−

(
Z(x) · n(x)

)
n(x)

)
· ∂

∂tX

[
∇γΦ(x(tX),y)

]∣∣∣∣

≤ diam(X)

(
k

dist(X, Y )

∣∣∣H(1)
1 (k|x− y|)

∣∣∣+
k2

2

∣∣∣H(1)′

1 (k|x− y|)
∣∣∣
)

+
k

4

(
1 +

(
1 + |ẍ|

)
diam(X)

) ∣∣∣H(1)
1 (k|x− y|)

∣∣∣ ,

using the bounds (5.26), (5.28) and (5.16). We can therefore bound

∫

X

∫

Y

∣∣∣∣
∂κ3
∂tX

∣∣∣∣
2

ds ds

≤|X||Y | diam(X)2
(

k

dist(X, Y )

∣∣∣H(1)
1 (k|x− y|)

∣∣∣+
k2

2

∣∣∣H(1)′

1 (k|x− y|)
∣∣∣
)2

+ |Y ||H(1)
1 (k|x− y|)

× | diam(X)

(
k

dist(X, Y )
|H(1)

1 (k|x− y|)|+ k2

2
|H(1)′

1 (k|x− y|)|
)

× k|X|
2

(
1 +

diam(X)

2

(
1 + diam(X)‖ẍ‖L2(γ)

))

+
k2|Y |
16

(
4|X|+ diam(X)

(
|X|+ ‖ẍ‖2L2(X) + |X|(1 + ‖x‖L2(X))

))

×
∣∣∣H(1)

1 (k|x− y|)
∣∣∣
2

≤|X||Y | diam(X)2

(
k

dist(X, Y )

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )

)
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+
k2

2

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )
+

2

πk2 dist(X, Y )2

))2

+ |Y |
(√

2

πk dist(X, Y )
+

4

πk dist(X, Y )

)

× diam(X)

(
k

dist(X, Y )

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )

)

+
k2

2

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )
+

2

πk2 dist(X, Y )2

))

× k|X|
2

(
1 +

diam(X)

2

(
1 + diam(X)‖ẍ‖L2(γ)

))

+
k2|Y |
16

(
4|X|+ diam(X)

(
|X|+ ‖ẍ‖2L2(X) + |X|(1 + ‖x‖L2(X))

))

×
(√

2

πk dist(X, Y )
+

4

πk dist(X, Y )

)2

. 1 + k3/2. (5.29)

The bound on the derivative in tY is simpler to compute, following from (5.17) and

(5.26),

∣∣∣∣
∂κ3
∂tY

(x,y(tY ))

∣∣∣∣ ≤

diam(Y )

(
k

dist(X, Y )
H

(1)
1 (k|x− y|) + k2

2
H

(1)′

1 (k|x− y|)
)

≤ diam(Y )

(
k

dist(X, Y )

(√
2

πk dist(X, Y )
+

4

πk dist(X, Y )

))

+ diam(Y )
k2

2

((√
2

πk dist(X, Y )
+

4

πk dist(X, Y )
+

2

πk2 dist(X, Y )2

))

. 1 + k3/2. (5.30)

Combining (5.27), (5.29) and (5.30) proves the claim. The bounds (iv) and (v) follow

directly from the bounds (i)-(iii).

Although the previous bound is for multiple C1,1 obstacles, we could apply the

single obstacle coercivity result of Remark 5.3(ii) to the diagonal operator (Ak,η)D,

to rewrite (5.5) as the following G̊arding inequality for C3 obstacles,

〈Aϕ, ϕ〉L2(γ)×L2(γ) ≥ ζD‖ϕ‖2L2(γ) − ζ×‖ϕ‖2H−1/2(γ), for all ϕ ∈ L2(γ), (5.31)

105



where A = A′
k,η or Ak, with ζ× = ‖A×‖H−1/2(γ)�H1/2(γ) and ζD = mini{ζi}, whilst ζi

are the coercivity constants from the corresponding single scattering cases (discussed

in Remark 5.3). At this stage, one may apply standard results for G̊arding inequalities

of (for example), [51, Theorem 5.21], to obtain a condition on h which will guarantee

there exists a unique solution of (5.2) and provide a bound on the constant Cq.

However, this condition is in terms of quantities which we cannot bound using results

in the current literature, so we will require a slightly different approach if we are to use

best approximation bounds currently available to us. In particular, we will restrict

our attention to the case A = A′
k,η for multiple C∞ obstacles, as we shall require

results regarding the adjoint of A, which has not been studied for the constellation

combined operator. Hereafter we use the notation

〈·, ·〉γ := 〈·, ·〉Hs(γ)×H−s(γ) , for s ∈ [−1, 1],

justified by the duality pairing betweenH−s(γ) andHs(γ). Denote by S0 : H
−1/2(γ) →

H1/2(γ) the single-layer operator for the Laplace problem,

S0ϕ(x) :=
−1

2π

∫

γ

log |x− y|ϕ(y) ds(y), for ϕ ∈ H−1/2(γ).

It is well known that S0 is coercive (see for example [51, (9.15)]);

〈S0ϕ, ϕ〉γ ≥ ζ0‖ϕ‖2H−1/2(γ), for all ϕ ∈ H−1/2(γ), (5.32)

for some ζ0 > 0. We shall now adapt the classical quasi-optimality result which

follows from a G̊arding inequality, using quantities associated with S0.

THEOREM 5.17 (Modified G̊arding inequality). Let a : L2(γ)×L2(γ) be a contin-

uous, injective bilinear form satisfying a G̊arding inequality, i.e. there exist positive

constants ζD and ζ× such that

|a(ϕ, ϕ)| ≥ ζD‖ϕ‖2L2(γ) − ζ×‖ϕ‖2H−1/2(γ), for all ϕ ∈ L2(γ). (5.33)

Given f ∈ H−1/2(γ), define A∗f ∈ L2(γ) as the solution to the variational problem

a(ϕ,A∗f) = 〈ϕ,S0f〉γ , for all ϕ ∈ L2(γ), (5.34)

where S0 : H−1/2(γ) → H1/2(γ) denotes the single-layer operator for the Laplace

problem. Let (VN)N∈N be a dense sequence of finite-dimensional nested subspaces of

L2(γ), and let

E(VN) := sup
f∈H−1/2(γ)

min
vh∈VN

‖A∗f − vh‖L2(γ)

‖f‖H−1/2(γ)

. (5.35)
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If

E(VN) ≤
ζ0
Ca

(
ζDζ0

2ζ×‖S0‖H−1/2(γ)�H1/2(γ)

)1/2

, (5.36)

where Ca is the continuity constant of a, then the Galerkin equations (5.1) have a

unique solution vh, which satisfies

‖v − vh‖L2(γ) ≤
2Ca

ζD
min

wh∈VN

‖v − wh‖L2(γ). (5.37)

Proof. We begin by assuming the solution vh exists. Given that a satisfies a G̊arding

inequality (5.33), we can use the coercivity result (5.32) to write

ζD‖ϕ‖2L2(γ) −
ζ×
ζ0

〈S0ϕ, ϕ〉γ ≤ |a(ϕ, ϕ)|, for all ϕ ∈ L2(γ). (5.38)

The modified G̊arding inequality (5.38) applied to ϕ = v − vh implies that

ζD‖v − vh‖2L2(γ) −
ζ×
ζ0

‖S0‖H−1/2(γ)�H1/2(γ)‖v − vh‖2H−1/2(γ) ≤ |a(v − vh, v − vh)|.

By Galerkin Orthogonality, the right-hand side of this inequality can be replaced by

|a(v − vh, v − wh)| for any wh ∈ VN Using this along with continuity constant Ca of

a(·, ·), we find that

ζD‖v−vh‖2L2(γ)−
ζ×
ζ0

‖S0‖H−1/2(γ)�H1/2(γ)‖v−vh‖2H−1/2(γ) ≤ Ca‖v−vh‖L2(γ)‖v−wh‖L2(γ),

(5.39)

for all vh ∈ VN . Therefore, quasi-optimality (5.37) follows if we can show

(
ζ×
ζ0

‖S0‖H−1/2(γ)�H1/2(γ)

)1/2

‖v − vh‖H−1/2(γ) ≤
(
ζD
2

)1/2

‖v − vh‖L2(γ), (5.40)

by squaring both sides, substituting into (5.39) and dividing by ‖v − vh‖L2(γ).

Choosing f = v− vh in the definition of A∗ (5.34), by Galerkin orthogonality and

continuity of a, we can write

〈S0(v − vh), v − vh〉γ = a (v − vh,A∗(v − vh))

= a (v − vh,A∗(v − vh)− wh)

≤ Ca‖v − vh‖L2(γ)‖A∗(v − vh)− wh‖L2(γ). (5.41)

Now the definition of E(VN) (5.35) implies that there exists a wh ∈ VN such that

‖A∗(v − vh)− wh‖L2(γ) ≤ E(VN)‖v − vh‖H−1/2(γ).
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Using this to bound the right-hand side of (5.41) and the coercivity (5.32) to bound

the left-hand side of (5.41), we divide through by ‖v − vh‖H−1/2(γ) to obtain

‖v − vh‖H−1/2(γ) ≤
Ca

ζ0
E(VN)‖v − vh‖L2(γ).

Therefore (5.36) implies that (5.40) and thus also (5.37) holds.

Existence of vh follows identical arguments to the proof of [51, Theorem 5.21].

We will use this Theorem with a(·, ·) = (A′
k,η[·], ·)L2(γ). We note that the operator

A∗ is closely related to an adjoint problem, and we will thus require bounds on the

adjoint of the Standard Combined Formulation (1.2)

Ak,η := I +D′
k − iηSk. (5.42)

In particular we will require ‖A−1
k,η‖H1/2(γ)�H1/2(γ) for a mildly trapping domain, in

order to bound the solution of the adjoint problem (5.34). To do this, we will first

bound the DtN map of Definition 1.7. This uses the result of [57] for mild trapping

domains, which provides a resonance free strip in the complex plane for the operator

χ(∆ + k2)−1χ, where χ is a compactly supported C∞(Ω+) function.

LEMMA 5.18. For a mildly trapping (in the sense of Definition 5.4) domain Ω−

with boundary γ consisting of nγ = 2 obstacles, and us the scattered field of the

solution to the BVP (1.4)–(1.6), given k0 ≥ e we have the following bound on the

Dirichlet to Neumann map

‖∂+n us‖L2(γ) . k log k‖τ+us‖H1(γ), for k ≥ k0.

Proof. Define the cut-off function χ to be smooth with compact support, such that

χ = 1 in a neighbourhood of γ. We have the mild trapping result from [57], if

ũ ∈ H1
loc(Ω+) satisfies (∆+ k2)ũ = f in Ω+, where f ∈ L2(Ω+) has compact support,

and ũ satisfies the radiation condition (1.6) and boundary condition τ+ũ = 0, then

we have the resolvent estimate

‖χũ‖H1
k(Ω+) . log k‖f‖L2(Ω+), for k ≥ k0. (5.43)

For gD ∈ H1(γ), we define

(i) us such that (∆ + k2)us = 0 in Ω+ with τ+u
s = gD on γ, also us satisfies the

radiation condition (1.6). This term is intended to represent the scattered field

of the problem (1.4)-(1.6).
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(ii) w such that (∆ + k2 + i|k|)w = 0 in Ω+ with τ+w = gD on γ, also w satisfies

the radiation condition (1.6).

(iii) v := ũ− χw

(iv) h := i|k|χw − w∆χ− 2∇w · ∇χ

It follows from these definitions that v ∈ H1
loc(Ω+), satisfies the Sommerfeld radiation

condition and (∆+ k2)v = h in Ω+ and τ+v = 0 on γ. Since h has compact support,

we can use (5.43) to write

‖χv‖H1
k(Ω+) . log k‖h‖L2(Ω+), for k ≥ k0. (5.44)

By the definition (iv) of h we can write

‖h‖L2(Ω+) . ‖w‖H1
k(Ω+), for k ≥ k0, (5.45)

hence we can bound (5.44) using (5.45) to write

‖χv‖H1
k(Ω+) . log k‖w‖H1

k(Ω+), for k ≥ k0. (5.46)

It follows from the definition (iii) of v that

‖χũ‖H1
k(Ω+) . ‖χv‖H1

k(Ω+) + ‖χw‖H1
k(Ω+), (5.47)

hence combining with (5.46) with (5.47) we can write for k ≥ k0

‖χũ‖H1
k(Ω+) . log k‖w‖H1

k(Ω+) + ‖χw‖H1
k(Ω+)

. log k‖w‖H1
k(Ω+), (5.48)

where we have combined the norms under the assumption that k0 ≥ e, to force

log k ≥ 1. We now collect two further results from [6] which will enable us to obtain

the result as claimed. Firstly, [6, Lemma 3.3] gives the result

‖w‖H1
k(Ω+) . ‖gD‖H1

k(γ)
, for k ≥ k0, (5.49)

combining the above (5.49) with (5.48) gives

‖χũ‖H1
k(Ω+) . log k‖gD‖H1

k(γ)
, for k ≥ k0. (5.50)

Secondly, applying [6, Lemma 2.3(i)] to us gives us

‖∂+n us‖L2(γ) . ‖∇γτ+u
s‖L2(γ) + ‖χus‖H1

k(Ω+), for k ≥ k0. (5.51)
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Now we piece everything together. Applying (5.50) choosing ũ = χus and adding

‖∇γτ+u
s‖L2(γ) to both sides yields for k ≥ k0

‖∇γτ+u
s‖L2(γ) + ‖χus‖H1

k(Ω+) . ‖∇γτ+u
s‖L2(γ) + log k‖us‖H1

k(γ)

. log k‖us‖H1
k(γ)

, (5.52)

where we have again combined the norms under the assumption that k0 ≥ e, and

we have written τ+u
s instead of gD (they are equal by the definition (i)). Bounding

(5.52) below using (5.51) yields

‖∂+n us‖L2(γ) . log k‖τ+us‖H1
k(γ)

, for k ≥ k0,

from which the result follows by the definition (A.4) of the H1
k(γ) norm.

Lemma 5.18 may be interpreted as the following bound on the Dirichlet to Neu-

mann operator of §1.7: given k0, for mild trapping domains (in the sense of Definition

5.4) of two obstacles with boundary γ we have

‖P+
DtN‖L2(γ)�H1(γ) . k log k, for k ≥ k0.

Despite being closely related to our problem, the bound on the Dirichlet to Neu-

mann map of Lemma 5.18 is not sufficient to bound A−1. We must consider also the

interior impedance problem, which is:

Given ψ ∈ H−1/2(γ) and η ∈ R \ {0}, find u− ∈ C2(Ω−) ∩ H1(Ω−) such that

(∆ + k2)u− = 0 holds in Ω− and ∂−n u
− − iητ−u− = ψ on γ.

We will also make use of bounds on the interior impedance to Dirichlet map

P−,η
ItD : H1/2(γ) → H−1/2(γ) which takes interior impedance data ψ to the interior

Dirichlet trace of the solution τ−u
−. Further details can be found in [13, §2.7].

THEOREM 5.19. For a mild trapping (in the sense of Definition 5.4) two obstacle

domain, given k0 ≥ e we have a bound on the inverse of the adjoint of the Standard

Combined Layer Operator:

‖A−1
k,η‖H1/2(γ)�H1/2(γ) . 1 + |η|+ k log k, for k ≥ k0.

Proof. We use the representation [13, (2.89)] to write

A−1
k,η = I − P−,η

ItD(P
+
DtN − iη), (5.53)
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which we can bound

‖A−1
k,η‖H1/2(γ)�H1/2(γ)

≤ 1 + ‖P−,η
ItD‖H−1/2(γ)�H1/2(γ)‖P+

DtN‖H1/2(γ)�H−1/2(γ) + |η|‖P−,η
ItD‖H1/2(γ)�H1/2(γ).

(5.54)

Combining Lemma 5.18 with [50, Lemma 2.3] we obtain

‖P+
DtN‖H1/2(γ)�H−1/2(γ) ≤ k log k, for k ≥ k0. (5.55)

We now consider two separate interior impedance problems, for data ϕ and ψ ∈
H1/2(γ),

(∆ + k2)v = 0 in Ω−, with (∂−n − iη)v = ϕ on γ (5.56)

and

(∆ + k2)w = 0 in Ω−, with (∂−n − iη)w = ψ on γ. (5.57)

By application of Green’s second identity to v and w in Ω− we can write

∫

γ

v(∂−n − iη)w =

∫

γ

w(∂−n − iη)v,

and from the condition on γ of (5.56) and (5.57)

∫

γ

vψ =

∫

γ

wϕ.

Since the choice of ϕ and ψ in H1/2(γ) was arbitrary, we may write

〈PItDϕ, ψ〉′γ = 〈ϕ, PItDψ〉′γ , for all ϕ, ψ ∈ H1/2(γ),

where 〈·, ·〉′γ denotes the real L2 inner product. Hence by the same arguments as [50,

Lemma 2.3] we can write

‖P−,η
ItD‖H−1/2(γ)�H1/2(γ) ≤ ‖P−,η

ItD‖L2(γ)�H1(γ), for k ≥ k0,

which may be combined with [6, Corollary 1.9] to obtain

‖P−,η
ItD‖H−1/2(γ)�H1/2(γ) . 1. (5.58)

Finally we note, since H1/2(γ) ⊂ H−1/2(γ), that

‖P−,η
ItD‖H1/2(γ)�H1/2(γ) ≤ ‖P−,η

ItD‖H−1/2(γ)�H1/2(γ). (5.59)

Combining (5.54), (5.55), (5.58) and (5.59) proves the assertion.
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This bound on A−1
k,η enables us to prove the main result of this section, Theorem

5.5.

Proof of Theorem 5.5. It follows immediately from (5.5) with s = 1/2 that A′
k,η sat-

isfies a G̊arding inequality (5.33), choosing ζD to be the minimum of the coercivity

constant for the single scattering problems on γ1 and γ2 (these follow from [53, Theo-

rem 1.2], conditions are explained in (5.64)), separating the diagonal terms as before

with ζ× = ‖(A′
k,η)×‖H1/2(γ)�H−1/2(γ). Hence Theorem 5.17 can provide us with con-

ditions to prove the assertion, but we must bound each constant of Theorem 5.17

appropriately, given the context in which we are applying it. We choose the bilin-

ear form of Theorem 5.17 to be a(φ, ϕ) =
(
A′

k,ηφ, ϕ
)
L2(γ)

, with approximation space

VN = V h
N(γ) of Definition 5.1. The problem (5.34) to solve becomes

(
A′

k,ηφ,A∗f
)
L2(γ)

= 〈φ,S0f〉H−1/2(γ)×H1/2(γ) , for φ ∈ L2(γ), (5.60)

hence

(φ,Ak,ηA∗f)L2(γ) = 〈φ,S0f〉H−1/2(γ)×H1/2(γ) , for φ ∈ L2(γ),

and thus a solution to (5.60) is

A∗f = A−1
k,ηS0f, (5.61)

so we chooseA∗ = A−1
k,ηS0. Standard h-space approximation theory from, for example,

[54, Theorem 10.4] tells us that

min
vh∈V

h
N (γ)

‖A∗f − vh‖L2(γ) ≤ h1/2 ‖A∗f‖H1/2(γ) . (5.62)

Combining (5.62) with (5.61) and bounding the right-hand side yields

min
vh∈V

h
N (γ)

‖A∗f − vh‖L2(γ) ≤ h1/2
∥∥A−1

k,η

∥∥
H1/2(γ)�H1/2(γ)

‖S0‖H−1/2(γ)�H1/2(γ) ‖f‖H−1/2(γ) ,

and hence by (5.35) we may write

E(V h
N(γ)) ≤ h1/2

∥∥A−1
k,η

∥∥
H1/2(γ)�H1/2(γ)

‖S0‖H−1/2(γ)�H1/2(γ) .

Substituting the relevant parameters into (5.35), it follows that a sufficient condition

for (5.36) to hold is

h ≤
(

ζ0∥∥A−1
k,η

∥∥
H1/2(γ)�H1/2(γ)

‖A′
k,η‖L2(γ)�L2(γ)

)2
ζDζ0

2‖(A′
k,η)×‖H−1/2(γ)�H1/2(γ)‖S0‖3H−1/2(γ)�H1/2(γ)

.

(5.63)
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To obtain the condition (5.6) on the mesh width h, we now bound each term on

the right-hand side of (5.63) below, to ensure that h is chosen sufficiently small such

that this bound holds. It is therefore equivalent to bound above the terms in the

denominator of (5.63). The Laplacian single layer operator does not depend on k,

hence

ζ0 = O(1), and ‖S0‖H−1/2(γ)�H1/2(γ) = O(1).

From [53, Theorem 1.2] and [53, (1.15a)] we know that given δ > 0, there exists a

k0 > 0 and an η0 > 0 such that

1− δ . ζD, for k ≥ k0, (5.64)

for η0k . η, (noting the scaling adjustment discussed in Remark 1.5) where ζD the

coercivity constant for the single scattering case. Henceforth we assume this condition

on η holds, and we can write 1 . ζD for k ≥ k0.

Now we focus on the remaining operator norms contained in (5.63).

• We have ‖(A′
k,η)×‖H−1/2(γ)�H1/2(γ) . k2 for k ≥ k0, from Theorem 5.16(iv),

choosing η = O(k).

• We have ‖A−1
k,η‖H1/2(γ)�H1/2(γ) . 1 + k log k for k ≥ k0, from Theorem 5.19,

choosing η = O(k).

• Applying the triangle inequality to the definition of ‖A′
k,η‖L2(γ)�L2(γ), we may

bound using [20, (1.32)], to obtain ‖A′
k,η‖L2(γ)�L2(γ) . 1 + k7/6 log k for k ≥ k0,

choosing η = O(k).

For the bound on the quasi-optimality constant (5.37), we must bound (5.7) above,

first we use (5.64) to write ζ−1
D . 1, which combined with the above bound on

‖A′
k,η‖L2(γ)�L2(γ), gives us the bound

2
Cα

ζD
. 1 + k7/6 log k, for k ≥ k0,

completing the proof.

With further work, this proof may be extended to configurations of nγ ≥ 3 ob-

stacles. The key component is the bound (5.43), which may be extended to mild

trapping domains of an arbitrary number of obstacles, provided that Definition 5.4

still holds, using results of [40] and [46] on trapping for several convex bodies.
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5.5 Proof of Theorem 5.6, bounds on inverse of constellation combined

We now turn our attention to the bounds on A−1
k of Theorem 5.6. A further con-

struction is required to do this. Our interior oblique impedance problem [13, (2.6)]

is:

Given ψ ∈ L2(γ) with Z and η̂ as in Definition 1.4, find u− ∈ C2(Ω−) ∩H1(Ω−)

with τ−u
− ∈ H1(γ), such that (∆ + k2)u− = 0 holds in Ω− and n · Z∂−n u− + Z ·

∇γτ−u
−iη̂τ−u

− = ψ on γ.

We denote the corresponding oblique impedance to Dirichlet map by P−,η̂,Z
ItD .

LEMMA 5.20. We have the following bound on the oblique interior impedance to

Dirichlet map, for k > k0

‖P−,η̂,x
ItD ‖L2(γi)�H1

k(γi)
.

{
k1/2 log k, γi star-shaped and piecewise smooth,
k1/3, γi ∈ C∞ with strictly positive curvature.

Proof. The interior oblique impedance problem may be split into nγ disjoint prob-

lems, as there is no interaction between the obstacles. Without loss of generality, we

consider the problem on one obstacle with boundary γi, and translate the obstacle

such that xc
i = 0, where xc

i is the central point of Definition 1.4. Hence we consider an

arbitrary Ωi, inside which ũ is the solution to the interior oblique impedance problem,

such that

(∆ + k2)ũ = 0, inside Ωi,

(x · ∇ − iη̂)ũ = w, on γi.

By [13, Corollary 2.41], for η̂ defined as in Definition 1.3, this has a unique solution

with

τ−ũ = Skφ = P−,η̂,x
ItD w, (5.65)

where φ := A−1
k w. additionally we have that

‖φ‖L2(γi) ≤
2

ess inf
x∈γi

{x · n(x)}‖w‖L2(γi). (5.66)

By the definition of the operator norm, we can write

‖P−,η̂,x
ItD ‖L2(γi)�H1

k(γi)
≤ sup

w∈L2(γi)

‖P−,η̂,x
ItD w‖H1

k(γi)

‖w‖L2(γi)

,
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by (5.65) we have that

‖P−,η̂,x
ItD ‖L2(γi)�H1

k(γi)
≤ sup

w∈L2(γi)

‖Skφ‖H1
k(γi)

‖w‖L2(γi)

,

and by (5.66) it follows that

‖P−,η̂,x
ItD ‖L2(γi)�H1

k(γi)
≤ sup

w∈L2(γi)

‖Skφ‖H1
k(γi)

‖φ‖L2(γi)

,

hence

‖P−,η̂,x
ItD ‖L2(γi)�H1

k(γi)
≤ ‖Sk‖L2(γi)�H1

k(γi)
.

The result then follows from the bounds on the single layer operator given in [20,

Theorem 1.4].

We are now ready to prove the bounds on A−1
k .

Proof of Theorem 5.6. If γ is constellation shaped, it follows immediately from [13,

Theorem 2.42] that

‖A−1
k ‖L2(γ)�L2(γ) ≤

1

ess inf
x∈γ

{Z(x) · n(x)}

[
1 +

‖η̂‖L∞(γ)

k
+ ‖Z‖L∞(γ)

]
‖P−,η̂,Z

ItD ‖L2(γ)�H1
k(γ)

+ ‖P+
DtNP

−,η̂,Z
ItD ‖L2(γ)�L2(γ),

which we can simplify further using Definition 1.4 of Z and η̂, and splitting the second

norm

‖A−1
k ‖L2(γ)�L2(γ) .

(
1 + ‖P+

DtN‖H1
k(γ)�L2(γ)

)
‖P−,η̂,Z

ItD ‖L2(γ)�H1
k(γ)

,

as η̂/k ∼ 1. For star-shaped and piecewise smooth polygons, the result follows after

bounding the DtN map using [6, Theorem 1.4(6)] and bounding the ItD map using

Lemma 5.20.

5.6 Further work

In this chapter we have presented two key theorems on the stability of high frequency

multiple scattering BEM. They appear to be the first of their kind, hence there are

many areas in which they could be developed further. It does not appear difficult

to extend both theorems to three-dimensional obstacles, as the underlying coercivity

results for single scattering problems have three dimensional analogues.

Moreover, the result of Theorem 5.5 may be extended to nγ ∈ N obstacles, as

discussed at the end of §5.4. Extension of Theorem 5.5 to non-trapping polygonal
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constellation-shaped domains may be possible, via the Constellation Combined op-

erator, because in the single scattering case the Star Combined operator is coercive

for star-shaped domains, whereas the Standard Combined operator is (known to be)

coercive only when the domain to has a C3 boundary. This would require a repre-

sentation of the adjoint of the Constellation Combined operator that is analogous to

(5.53), written in terms of Dirichlet-to-Neumann and Interior Impedance-to-Dirichlet

maps (following similar steps to [13, Theorem 2.33]), which could then be bounded us-

ing the results for non-trapping polygons of [6]. This may then be used with Theorem

5.17 to provide a result analogous to Theorem 5.19, where the (stronger) coercivity

result for star-shaped obstacles of [52] may be used to bound ζD.
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Chapter 6

Numerically stable implementation
of Embedding Formulae

The results produced in this chapter will appear in [28], and were summarised in [27].

For problems of time harmonic scattering by polygonal obstacles, Embedding

Formulae provide a useful means of computing the far-field pattern (of (1.16)) of

any incident wave for which the Herglotz kernel (in the sense of Definition 1.8) is

known, given the far-field pattern of a set of canonical problems. The number of such

problems to be solved depends only on the geometry of the scatterer. The motivation

for this chapter comes from the Tmatrom method for multiple scattering problems,

described in the next chapter. The Tmatrom method requires O(k) single scattering

problems to be solved, each with a different incident field, however the Herglotz

kernel is known for each of these incidences. Using the Embedding Formulae, we aim

to reduce the number of problems to be solved to O(1), as we can obtain the solution

of many problems using the solution of a small number (as few as eight), depending

only on the geometry of ΩΓ. Given an approximation to the far-field pattern of

the canonical problems, it is possible to implement the Embedding Formulae (as are

stated in [9]) in just four or five lines of additional code, yet little research has been

published which applies the Embedding Formulae in a practical sense. Whilst the

formulae themselves are in principle exact, any implementation will inherit numerical

error from the method used to solve the canonical problems. This error can lead to

numerical instabilities. Here, we present a method to regulate these instabilities, via

a careful combination of three methods, two of which use a Taylor expansion of the

far-field pattern of the canonical problems. Estimates of the truncation error in this

expansion are derived.

An outline of this chapter is as follows. In §6.1, we introduce Embedding Formulae,

and the problems to which they apply. We also explain why and where numerical
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instabilities can occur when the formulae are implemented in practice. In §6.2 we

derive an alternative formulation of the Embedding Formulae which are numerically

stable, and in §6.3 we analyse the error in this alternative formulation. Finally, in

§6.4 we extend the Embedding Formulae to Herglotz-type incidence (previously these

formulae had only been applied to problems of plane wave incidence).

6.1 Specific problem statement

We seek the solution of the BVP (1.4)–(1.6) a quasi-regular nΓ-sided polygon ΩΓ with

boundary ∂Ω = Γ, where quasi-regular means that all external angles ωj = Qπ for

j = 1, . . . nΓ for some Q ∈ Q+, i.e. all angles are equal to the same rational multiple

of π. In such a case we have the elementary formula

ωj = π
nΓ + 2

nΓ

. (6.1)

In [9], this is extended to all rational polygons (for which each angle is a rational

multiple of π, but the angles need not be equal), hence similar extensions may be

in principle applied to the techniques we present here. In terms of the notation of

the general problem statement §1.1, Ω− = ΩΓ, and Ω+ = R2 \ ΩΓ. We choose our

coordinate system so that at least one side of Γ is aligned with the horizontal x1-axis,

and that the origin lies inside ΩΓ.

For an incident plane wave approaching from angle α (measured anti-clockwise

from the horizontal axis), the incident direction vector is dα := (cosα,− sinα),

uinc(x) = uincPW (x;α) := eikx·dα , x ∈ R2.

We use the following notation to denote the far-field pattern induced by uincPW (·;α) at
observation angle θ

D(θ, α) := F∞u
inc
PW (θ) . (6.2)

In this Chapter, we denote the total solution for plane wave scattering by uα :=

uincPW (·;α) + usα, where u
s
α denotes the scattered field. We are primarily interested in

efficient and numerically stable approximation of D(θ, α) over a large range of points

(θ, α) ∈ [0, 2π)2. We will make use of the following representation of the far-field

coefficient,

D(θ, α) = −
∫

Γ

e−ik[y1 cos(θ)+y2 sin(θ)]
∂uα
∂n

(y) ds(y), (6.3)

which is nothing more than the far-field coefficient of (1.16) written in our new no-

tation (6.2).
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Throughout the Chapter, some Greek letters are to be interpreted as a point on

the unit circle, so for example θ identifies with θ + 2π, whilst we say that θ1 is close

to θ2 if |eiθ1 − eiθ2 | < ǫ for some ǫ > 0 small.

6.1.1 Embedding Formulae

Suppose we want to compute the far-field coefficient D(θ, α) for a range of α ∈ [0, 2π).

The Embedding Formulae of [9, (3.4)] can do this for quasi-regular polygons, given the

solution for a relatively small number of canonical problems. We choose parameters

p and q to be the smallest integers such that q/p = (nΓ + 2)/nΓ and solve (1.4)-

(1.6) and compute (6.3) for canonical incident angles {α1, . . . , αMω} =: AMω (the

parameter Mω depends on q, and is discussed in Remark 6.1 below). We note that in

previous Chapters p was used to describe polynomial degree, which is not a quantity

of interest in this Chapter. However, p has been used to describe this parameter in

wider literature on Embedding Formulae, with which we are aiming to be notationally

consistent. It follows from [9, (3.4)] that.

D(θ, α) =

∑Mω

m=1Bm(α)Λ(θ, αm)D(θ, αm)

Λ(θ, α)
, for (θ, α) ∈ [0, π)2, (6.4)

where

Λ(θ, α) := cos(pθ)− (−1)p cos(pα) (6.5)

and [Bm]
Mω
m=1 ∈ CMω solves the system of equations

Mω∑

m=1

Bm(α)Λ(αn, αm)D(αn, αm) = (−1)p+1Λ(α, αn)D(α, αn), (6.6)

for n = 1, . . . ,Mω. For (θ, α) ∈ [0, 2π)2 such that Λ(θ, α) 6= 0, the representation (6.4)

can be evaluated explicitly to obtain the far-field coefficient D(θ, α). As explained

in [9], for the case Λ(θ, α) = 0, L’Hopitâl’s rule may be applied to obtain D(θ, α),

with a second application in the sub-case [∂Λ/∂θ](θ, α) = 0. Put formally, (at least)

one application of L’Hopitâl’s rule is required for θ in the set

Θα := {θ ∈ [0, 2π) : Λ(θ, α) = 0}

=

{
{θ ∈ [0, 2π) : θ = ±α + (2n+ 1)π/p, n ∈ Z}, p odd,
{θ ∈ [0, 2π) : θ = ±α + 2nπ/p, n ∈ Z}, p even,

(6.7)

with a second application if [∂Λ/∂θ](θ, α) = cos(pθ) = 0, i.e. if

θ ∈ Θ∗ := π(2N− 1)/(2p) (6.8)
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also. The set Θα usually contains 2p elements, except for p special values of α where

α ∈ (2N + 1)π/p for p odd and α ∈ 2πN/p for p even, for which Θα contains p

elements (in such a case these elements are also in Θ∗). We will also make use of a

closely related set A∗, consisting of all α∗ such that Θα∗ ⊂ Θ∗. It follows for even p

that A∗ = Θ∗ and for odd p that A∗ = Θ∗+π/p = Θ∗; hereafter we shall just refer to

Θ∗ instead of A∗, as they are equal. Note that this does not imply that Λ(θ∗, α∗) = 0

for all (θ∗, α∗) ∈ Θ∗ × A∗.

We now summarise the process of implementing Embedding Formulae.

(i) Given the geometry of the obstacle ΩΓ, compute p, q andMω (details in Remark

6.1).

(ii) Compute the far-field coefficient D(·, αm) for Mω distinct incident angles αm.

(iii) Given an incident angle α, solve the Mω ×Mω system (6.6) to determine the

coefficients Bm(α).

(iv) Obtain D(θ, α) using (6.4), using (6.7) and (6.8) to determine if application(s)

of L’Hopitâl’s rule is/are required.

(v) For a different incident angle α, steps (i) and (ii) need not be repeated.

REMARK 6.1. In [9, §3] the number of distinct incident angles required for quasi-

regular polygons is stated as Mω = nΓ(nΓ + 1). This is based on the idea that q − 1

canonical solutions are needed for each corner of the polygon, hence if we take the

obvious choice (considering (6.1)) of q = nΓ + 2, this yields the choice.

Mω = nΓ(q − 1) = nΓ(nΓ + 1) (6.9)

However, the obvious choice of q = nΓ + 2 may not be the best choice. Noting (6.1)

for even nΓ, we may instead choose q = (nΓ + 2)/2 and p = nΓ/2 and thus (6.9)

becomes

Mω = nΓ(q − 1) = nΓ

(
nΓ + 2

2
− 1

)
=
nΓ

2

2
.

This sharpens the choice of [9, (3.3)], reducing the number of solves required by more

than half, for even nΓ. Although the choice suggested by [9] still holds, the system

(6.1.1) may become under-determined when implemented numerically. Moreover, in

[9], no constraint is placed on the incident angles AMω , other than that they are

distinct. Numerical experiments have shown that close clustering of these incident

angles may cause the Embedding Formulae to become inaccurate. Given that the
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Embedding Formulae for polygons extend naturally from those of a rational wedge,

one would expect that if at least q − 1 incident angles can ‘see’ any given corner

of Γ that is n(x) · (cos(α), cos(θ)) > 0, then the Embedding Formulae would hold.

Numerical experiments suggest that this is sufficient, and we will assume that this

constraint holds for the remainder of the Thesis.

Example

We briefly demonstrate the power of Embedding Formulae with the simple geometry

of a square (nΓ = 4), fixing the wavenumber k = 1. It follows by Remark 6.1

that q = 3, p = 2 and hence Mω := nΓ(q − 1) = 8, which is the smallest M for

any polygon. We solve for Mω = 8 randomly chosen (in accordance with Remark

6.1) incident angles, as depicted in Figure 6.1. These angles AMω = {α1, . . . , α8}
correspond to the canonical problems.

Γ

Figure 6.1: Schematic diagram of the randomly selected incident angles used for the
Embedding Formulae.

We solve these using MPSpack (developed in [4], although here we use the version

adapted for Tmatrom [23] which can output the far field pattern) with 60 degrees of

freedom, to obtain an approximation to D(θ, α) for (θ, α) ∈ [0, 2π)×AMω (two of the

far-field patterns are plotted in Figure 6.2). A few extra lines of code can be used to

implement the embedding formula (6.4) and we obtain (an approximation to) D(θ, α)

for all (θ, α) ∈ [0, 2π)2, (as in Figure 6.3).
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Figure 6.2: Example of two of eight far-field patterns required for embedding formula:
α1 and α8.
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Figure 6.3: Full range of values of D(θ, α) obtained from embedding formula.
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6.1.2 Naive implementation of Embedding Formulae

Henceforth, we shall simplify the notation via D̂(θ, α) := Λ(θ, α)D(θ, α). This chap-

ter is primarily concerned with efficient and stable approximation of the far-field

coefficient D(θ, α). We now motivate this by demonstrating cases when a naive im-

plementation of (6.4) can become unstable. Any numerical approximation to uα will

not be exact, and this can cause significant numerical instabilities close to Θα. To

see why, we denote by PFD(θ, α) some numerical approximation to D(θ, α), adopting

the notational convention PF D̂ := ΛPFD, and define the embedding formula coupled

with our numerical solver as

D(θ, α) ≈ EPF
D(θ, α) :=

∑Mω

m=1 bm(α)PF D̂(θ, αm)

Λ(θ, α)
, (6.10)

where [bm]
Mω
m=1 ≈ [Bm]

Mω
m=1 solves the system of equations

Mω∑

m=1

bm(α)PF D̂(αn, αm) = (−1)p+1PF D̂(α, αn), for n = 1, . . . ,Mω. (6.11)

A key component of implementation rests on the following assumption.

ASSUMPTION 6.2 (Unisolvence for modified far-field basis). We assume both of

the following:

(i) The system (6.6) is uniquely solvable for any α ∈ [0, 2π), hence the coefficients

Bm(α) exist, are unique and satisfy

Bmax := max
α∈[0,2π)

m∈{1,...,Mω}

|Bm(α)| <∞.

(ii) The system (6.11) is uniquely solvable for any α ∈ [0, 2π), hence the coefficients

bm(α) exist, are unique and satisfy

bmax := max
α∈[0,2π)

m∈{1,...,Mω}

|bm(α)| <∞.

To the best knowledge of the author, the question of Assumption 6.2(i), and hence

the more difficult question Assumption 6.2(ii), are still open. We do not specify the

projection operator PF here, the choice of PF makes no difference to the points

at which the Embedding Formulae become numerically unstable. An example of a

suitable choice would be the HNA approximation to the far-field (2.13), however for

the majority of this Chapter we use MPSpack, a MATLAB package introduced in [5].
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It then follows that the error in the embedding formula is

|D(θ, α)− EPF
D(θ, α)| = 1

|Λ(θ, α)|

∣∣∣∣∣

Mω∑

m=1

[
Bm(α)D̂(θ, αm)− bm(α)PF D̂(θ, αm)

]∣∣∣∣∣
(6.12)

It is clear from (6.12) that for any amount of numerical error, a naive implementation

of the embedding formula can lead to arbitrarily large error at points (θ, α) such

that Λ(θ, α) ≈ 0. In the context of Embedding Formulae, this is what is meant by

numerical instability: if a solver PF has a relatively small amount of numerical error,

we observe a relatively large amount of error when coupled with the corresponding

Embedding Formula EPF
D. The following lemma bounds the scaling of this error in

terms of known parameters. A simple interpretation of the lemma is that 1/Λ(θ, α) ∼
|θ− θ0|−1 when θ0 is far from θ∗, but 1/Λ(θ, α) ∼ |θ− θ0|−2 when |θ0 − θ∗| ∼ |θ− θ0|.

LEMMA 6.3. The following bounds hold for all (θ, α) ∈ [0, 2π)2:

p2

8
|θ − θ0||θ0 − θ∗| ≤ |Λ(θ, α)| ≤ p2|θ − θ0|

(
1

2
|θ − θ0|+ |θ0 − θ∗|

)
,

for p ∈ N and Λ as in (6.5), where θ0 is the element of Θα closest to θ, and θ∗ is the

element of Θ∗ closest to θ0.

Proof. Firstly, by the definition (6.7) of Θα we have

Λ(θ, α) = cos(pθ)− cos(pθ0), for θ0 ∈ Θα, (6.13)

(for p even or odd) and from standard trigonometric identities it follows that

|Λ(θ, α)| = |Λ(θ, θ0)| = 2 |sin (p(θ − θ0)/2)| · |sin (p(θ + θ0)/2)|. (6.14)

We focus on the lower bound. Due to the distribution of Θα and Θ∗, if θ0 is the

element of Θα closest to θ, we can be certain that |θ + θ0|/2 ≤ |θ + θ0|/2, hence

|Λ(θ, α)| ≥ 2 |sin (p(θ − θ0)/2)| · |sin (p(θ∗ + θ0)/2)|
= 2 |sin (p(θ − θ0)/2)| · |sin (p(2θ∗ + (θ0 − θ∗))/2)|
= 2 |sin (p(θ − θ0)/2)| · |sin(pθ∗) cos(p(θ0 − θ∗)/2) + sin(p(θ0 − θ∗)/2) cos(pθ∗)|.

By the definition (6.8) of Θ∗, we have that sin(pθ∗) = 0 and | cos(pθ∗)| = 1, hence

|Λ(θ, α)| ≥ 2 |sin (p(θ − θ0)/2)| · |sin(p(θ0 − θ∗)/2)|. (6.15)

From the definitions of Θα (6.7) and Θ∗ (6.8), it follows that the furthest θ can be

from the nearest θ0 or θ∗ is π/(2p). Hence the argument of both sines of (6.15) is at
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most π/4, so we may use the identity | sin(x)| ≥ |x/2| for 0 ≤ |x| ≤ π/4 (twice) to

obtain the lower bound on |Λ(θ, α)| as claimed.

Now we focus on the upper bound. Writing θ + θ0 = (θ + θ∗) + (θ0 − θ∗) and

applying elementary trigonometric addition formulae gives

sin
(p
2
(θ + θ0)

)
= sin

(p
2
(θ + θ∗)

)
cos
(p
2
(θ0 − θ∗)

)
+sin

(p
2
(θ0 − θ∗)

)
cos
(p
2
(θ + θ∗)

)

which we can bound using the triangle inequality and cos(x) ≤ 1 to obtain

∣∣∣sin
(p
2
(θ + θ0)

)∣∣∣ ≤
∣∣∣sin

(p
2
(θ + θ∗)

)∣∣∣+
∣∣∣sin

(p
2
(θ0 − θ∗)

)∣∣∣

Since | sin(px/2)| is symmetric about the points x ∈ Θ∗, it follows that | sin (p(θ∗ + θ)/2) | =
| sin (p(θ∗ − θ)/2) |, hence

∣∣∣sin
(p
2
(θ + θ0)

)∣∣∣ ≤
∣∣∣sin

(p
2
(θ − θ∗)

)∣∣∣+
∣∣∣sin

(p
2
(θ0 − θ∗)

)∣∣∣ .

We may use this to bound (6.14), at which point the identity | sin(x)| ≤ |x| may be

used to obtain

|Λ(θ, α)| ≤ 2
p

2
|θ − θ∗|

p

2
(|θ − θ∗|+ |θ0 − θ∗|) ,

finally we use the triangle inequality to write |θ− θ∗| ≤ |θ− θ0|+ |θ0 − θ∗| and obtain

the lower bound as claimed.

The upper bound of Lemma 6.3 can be used to identify and quantify cases where

the error from the solver PF becomes significantly exaggerated by the term 1/Λ(θ, α).

Conversely, we observe |θ0 − θ∗| ≪ 1 is not a sufficient condition for instability, but

when coupled with the additional condition of |θ − θ0| ≪ 1 we observe a stronger

instability than before, as demonstrated by Figure 6.4. The lower bound of Lemma

6.3 will be used in §6.3 for error analysis. It is also clear from Figure 6.4 that

increasing the number of degrees of freedom (DOFs) of the solver PF will reduce the

region of instability. However, for any degree of accuracy there will always be θ at

which the error is arbitrarily large, and as we shall see, increasing DOFs may be an

unnecessarily expensive approach to reducing width of the unstable region.
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Figure 6.4: Two plots showing relative error in the naive embedding approximation
(6.10), with α = 1 (not close to θ∗ ∈ Θ∗) depicted in (a), and α = 0 ∈ Θ∗ depicted in
(b). Note that there are half as many unstable points in (b), as α = 0 ∈ Θ∗.
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6.2 Numerically stable implementation

We now begin to reformulate the naive implementation (6.10), and develop a numer-

ically stable approximation for any (θ, α) ∈ [0, 2π)2.

6.2.1 Single variable Taylor expansion

A large portion of the instability can be overcome by Taylor expanding around the

θ0 ∈ Θα to which θ is closest. This point is special, because although we do not know

the exact values of D(θ0, αm), we know that

Mω∑

m=1

Bm(α)D̂(θ0, αm) = 0, despite
Mω∑

m=1

bm(α)PF D̂(θ0, αm) 6= 0,

due to approximation error of the solver PF . Hence we can remove the first (n = 0)

term from the Taylor expansion, the exact representation becomes

D(θ, α) =
θ − θ0
Λ(θ, α)

Mω∑

m=1

Bm(α)
∞∑

n=1

(θ − θ0)
n−1

n!

∂nD̂

∂θn
(θ0, αm), for θ close to θ0 ∈ Θα

(6.16)

and truncating after NT terms in the Taylor expansion, we can define a second ap-

proximation

D(θ, α) ≈ E0
PF
D(θ, α; θ0, NT ) :=

θ − θ0
Λ(θ, α)

Mω∑

m=1

bm(α)

NT∑

n=1

(θ − θ0)
n−1

n!

∂n

∂θn
PF D̂(θ, αm).

(6.17)

Whilst we have added an additional source of error in the form of the Taylor re-

mainder, the Taylor coefficients regulate the numerical instability present in (6.12). It

follows immediately from Lemma 6.3 that the singular behaviour of (6.17) is bounded

by
|θ − θ0|
|Λ(θ, α)| ≤

8

p2|θ∗ − θ0|
, for θ∗ 6∈ Θ∗,

hence we now have stability when θ is close to θ0 ∈ Θα, provided that θ0 is sufficiently

far from any θ∗ ∈ Θ∗. Figure 6.5 provides visual representation of this. Here the error

measured on the colourbar in plots (a) and (b) is

|PFD(θ, α)− EPF
D(θ, α)|

‖PFD‖L2([0,2π)2)

and

∣∣PFD(θ, α)− E0
PF
D(θ, α; θ0, 10)

∣∣
‖PFD‖L2([0,2π)2)

(6.18)

respectively, choosing NT = 10, where the threshold for close is any point such that

|θ−θ0| < 0.25, for θ0 ∈ Θα. For the far-field solver PF , a modified version of MPSpack
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of [5] has been used, such that derivatives of the far-field pattern may be computed

(see §C.1 for more details of how this can be done). Whilst the relative error in

both cases appears to peak below 10−8, this is only due to a lack of granularity;

these plots contain 1000 × 1000 points but close to the unstable points the relative

error is observed to become arbitrarily large in Figure 6.6(a), which focuses on an

unstable point from Figure 6.5(b). We observe that whilst most of the instabilities

are handled in Figure 6.5(b) using (6.17), there are points at which instabilities still

exist. However, it is important to note that with a naive implementation (6.10),

for every α ∈ [0, 2π) there are at least two θ0 ∈ Θα for which the approximation

is unstable, totalling an infinite number of unstable points (θ, α) in [0, 2π)2 (these

form the unstable lines in Figure 6.5(a)). In contrast when using the approximation

(6.17), instabilities occur only close to θ ∈ Θ∗ for each α ∈ Θ∗, so (6.17) reduces the

instabilities to a finite set of points, also in Θ∗ ×Θ∗ (these are the unstable points in

Figure 6.5(b)).
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(a)

(b)

Figure 6.5: Two plots of relative error for different implementation of Embedding For-
mulae for scattering by a regular four sided square by incident waves with wavenumber
k = 1. Plot (a) depicts accuracy for a naive implementation (6.10), whilst Plot (b)
depicts accuracy using an NT = 10 degree Taylor expansion approximation (6.17).
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6.2.2 Multivariate expansion - first order

This approach will require the following result (see e.g. [17, Theorem 3.15]):

THEOREM 6.4 (Reciprocity Relation). For a plane wave incidence approaching

from angle α, and a sound-soft obstacle ΩΓ, we have the identity

D(θ, α) = D(α, θ).

Until now, we have been able to choose the canonical incident angles AMω rela-

tively freely (as discussed in Remark 6.1). Contrary to the approach for standard

Embedding Formulae, it can be advantageous to choose these such that AMω ⊂ Θ∗.

Supposing we are close to a source of instability (θ∗, α∗), which as suggested by Figure

6.5(b) is not regulated by (6.17), and that the canonical incident waves have been

chosen such that θ∗ =: αm1 ∈ AMω and α∗ =: αm2 ∈ AMω (see Figure 6.8). We can

then use the Reciprocity Relation (Theorem 6.4) to obtain a first order multi-variate

Taylor series approximation in terms of quantities that require only the canonical

solutions,

D(θ, α) ≈ D(θ∗, α∗) + (θ − θ∗)
∂D

∂θ
(θ∗, α∗) + (α− α∗)

∂D

∂α
(θ∗, α∗)

= D(θ∗, αm2) + (θ − θ∗)
∂D

∂θ
(θ∗, αm2) + (α− α∗)

∂D

∂θ
(α∗, αm1)

≈ PFD(θ∗, αm2) + (θ − θ∗)
∂PFD

∂θ
(θ∗, αm2) + (α− α∗)

∂PFD

∂θ
(α∗, αm1)

=: E∗
PF
D(θ, α; θ∗, α∗), (6.19)

where the derivative of each far-field pattern follows from the representation (6.3).

Figure 6.6 shows that the error in (6.17) is unbounded close to (0, 0). We have relative

error measured by

∣∣PFD(θ, α)− E0
PF
D(θ, α; 10)

∣∣
‖PFD‖L2([0,2π)2)

and

∣∣PFD(θ, α)− E∗
PF
D(θ, α)

∣∣
‖PFD‖L2([0,2π)2)

(6.20)

for Figure 6.6 and 6.7 respectively. To implement the approximation (6.19), we choose

αm1 = 0, and for ‖(θ, α)− (0, 0)‖∞ < 7.5× 10−4; replacing the single variable Taylor

expansion (6.17) with the first order two-variable Taylor expansion (6.19), which is

observed to stabilise the error at around 10−5. To improve on this, a higher order

Taylor expansion is required, which is discussed in Remark 6.5. The diagonal region of

high accuracy in Figure 6.6(a) is along the line θ = θ0 ∈ Θα, where L’Hopital’s rule is

used, hence there is no amplified error term due to 1/Λ featuring in the representation.
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Figure 6.6: Image focusing on Figure 6.5(b) at an unstable point (θ, α) = (0, 0).
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Figure 6.7: Image focusing on the an unstable point (θ, α) = (0, 0) of Figure 6.5(b)
and 6.6, having chosen incident angles in accordance with Figure 6.8 and used the
approximation (6.19)

Γ

Figure 6.8: Diagram of incident angles chosen for a square, when implementing (6.19).
Incident angles αm ∈ AMω∩Θ∗ are dashed, whilst other incident angles αm ∈ AMω \Θ∗

are chosen randomly, in accordance with the conditions suggested in Remark 6.1.

REMARK 6.5. The key reason that (6.19) cannot be easily extended to even a
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second order approximation for all (θ, α) ∈ [0, 2π)2 is that the cross derivative terms

are very difficult to compute. Considering the far-field representation (6.3), it is not

clear how to compute mixed derivatives in both α and θ. Derivatives purely in θ follow

by taking the derivative inside the integral sign, whilst differentiation purely in α may

then be obtained via the Reciprocity Relation (Theorem 6.4). We propose that higher

order cross derivatives may be computed using the embedding representation 6.4, for

which derivatives in α require derivatives of the right hand side of 6.6. This gets

messy very quickly, and for most practical applications would not be necessary, given

the error observed in Figures 6.9(b) and 6.6(b). Further details are given in Appendix

C.3.

6.2.3 Combined approach

We are now able to construct a numerically stable (over all [0, 2π)2 method using an

appropriate combination of the approximations (6.10), (6.17) and (6.19).

DEFINITION 6.6 (Combined Embedding Approximation). Given thresholds T0 >

0 and T∗ > 0, we choose the parameters of our approximation PF to ensure Assump-

tion 6.2 holds and that the canonical set of incident waves AMω is chosen such that

Θ∗ ⊂ AMω . We define the Combined Embedding Approximation by

E⊛
PF
D(θ, α;NT ) := (6.21)




[
Mω∑

m=1

bm(α)
∂PF D̂

∂θ
(θ, αm)

]/[∂Λ
∂θ

(θ, α)

]
, for θ ∈ Θα and min

θ∗∈Θ∗

|θ − θ∗| > T∗,

[
Mω∑

m=1

bm(α)
∂2PF D̂

∂θ2
(θ, αm)

]/[∂2Λ
∂θ2

(θ, α)

]
, for θ ∈ Θα and θ ∈ Θ∗,

E0
PF
D(θ, α; θ0, NT ), for θ0 ∈ Θα : 0 < |θ − θ0| ≤ T0 and min

θ∗∈Θ∗

|θ − θ∗| > T∗,

E∗
PF
D(θ, α; θ∗, α∗), for |θ − θ0| < T∗ and |θ0 − θ∗| < T∗, for some θ∗ and α∗ ∈ Θ∗

EPF
D(θ, α), otherwise,

,

(6.22)

for (θ, α) ∈ [0, 2π)2, where θ0 is chosen to be the element of Θα closest to θ, and θ∗

is chosen to be the element of Θ∗ closest to θ0 with α∗ ∈ Θ∗ such that θ∗ ∈ Θα∗.

Results for the combined approach are depicted in Figure 6.9. The relative error is

determined by comparing against the MPSpack approximation to the far-field, PFD.

The error for this is greater in Figures 6.9(b) and 6.10 (which is a close-up version

of 6.9(b)) than for 6.9(a). This is due to the use of the first order expansion (6.19)
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Figure 6.9: Two plots showing relative error when using the Combined Embedding
Approximation, with α = 1 (not close to θ∗ ∈ Θ∗) depicted in (a), and α = 0 ∈ Θ∗

depicted in (b). Figure 6.10 is a close-up of the spike in the centre of Figure (b),
demonstrating that the unbounded error observed in Figure 6.4 is no longer present.
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Figure 6.10: A close up of the spike of Figure 6.9(b).

instead of the tenth order expansion used for 6.9(a). When compared against the

results of Figure 6.4, a significant improvement is visible.

There are a few developments which may improve the accuracy and efficiency of

the Combined Embedding Approximation. We present one here in Remark 6.7, the

others can be found in Appendix C.

REMARK 6.7. In the special case where

(θ, α) ∈ (Θ∗ × [0, 2π)) ∪ ([0, 2π)×Θ∗) ,

it is possible to easily compute higher order terms in the multi-variate Taylor ex-

pansion (contrary to the general case discussed in Remark 6.5). The multivariate

expansion reduces to a single variable expansion since (α− α∗) = 0, and we have the

representation

D(θ, α∗) =
∞∑

n=0

(θ − θ∗)
n

n!
D(θ∗, α∗),

which can be easily computed in terms of known terms if we choose θ∗, α∗ ∈ AMω . A

similar representation holds if (θ − θ∗) = 0. We do not absorb this into our method,

as it only fixes the error for a small number of special cases. The error in Figures

6.9(b) and 6.10 could be reduced via these Taylor expansions, as α ∈ Θ∗ in this case.
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However, the error displayed in this plot is more representative of the general (and

much more common) case of points in a small neighbourhood of Θ∗.

6.3 Error analysis

In this section we assume that an approximation to the Neumann trace ∂+n uα is

available. The Neumann trace approximation PN [∂uα/∂n] is related to the far-field

approximation via

PFD(θ, α) = −
∫

Γ

e−ik(y1 cos θ+y2 sin θ)PN

[
∂uα
∂n

]
(y) ds(y), (6.23)

and we denote the error in this approximation by

ǫN := ‖(I − PN)∂
+
n uα‖L2(Γ) (6.24)

We now bound the error of the Combined Embedding Approximation, given the

choice of thresholds T0 and T∗ (of Definition 6.6). We do this by bounding the error

of five terms: the naive embedding (6.4), single L’Hopitâl’s rule, double L’Hopitâl’s

rule, single variable Taylor expansion of §6.2.1 and first order multi-variate Taylor

expansion of §6.5.

THEOREM 6.8. The Combined Embedding Approximation of Definition 6.6

E⊛
PF
D(θ, α;NT ) ≈ D(θ, α)

is numerically stable for all (θ, α) in [0, 2π)2. Moreover, we have the global error

bound ∣∣E⊛
PF
D(θ, α;NT , NT

∗)−D(θ, α)
∣∣ ≤ max {I0, I1, I2, I3, I4} ,

where each Ii is bounded and corresponds to a different component of the Combined

Embedding Approximation (6.21)

I0 :=8ǫ
(0)
⊛ /(p2T0T∗),

I1 :=ǫ
(1)
⊛ /(p2T∗),

I2 :=ǫ
(2)
⊛ /p2,

I3 :=
32

p2T∗

[
NT∑

n=1

T n−1
0

n!
ǫ
(n)
⊛

]
,

+MωBmax
32

p2T∗

TNT+1
0

(NT + 1)!

∥∥∥∥∥
∂NT+1D̂

∂θNT+1

∥∥∥∥∥
L∞([0,2π)2)

,
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I4 :=‖(I − PF )D‖L∞([0,2π)2) + 2T∗

∥∥∥∥(I − PF )
∂D

∂θ

∥∥∥∥
L∞([0,2π)2)

+ max
nθ+nα=2

T 2
∗

2

∥∥∥∥
∂2D

∂θnθ∂αnα

∥∥∥∥
L∞([0,2π)2)

,

for θ0, T0, α∗ and T∗ chosen as in (6.21), with

ǫ
(n)
⊛ :=Mω

[
(Bmax + ǫb)

∥∥∥∥
∂n

∂θn
(PF − I)D̂

∥∥∥∥
L∞([0,2π)2)

+ ǫb

∥∥∥∥
∂n

∂θn
D̂

∥∥∥∥
L∞([0,2π)2)

]
,

where Bmax is the constant from Assumption 6.2 and

ǫb := max
α∈[0,2π)

m∈{1,...,Mω}

|Bm(α)− bm(α)|. (6.25)

Proof. Proof of the global error bound is sufficient to show numerical stability. We

split the proof into five parts, based on the five conditions of (6.21). We do not prove

these bounds in the order they appear in the set (6.21).

On multiple occasions we will require the bound

∣∣∣
Mω∑

m=1

[
Bm

∂nD̂

∂θn
(θ, α)− bm

∂nPF D̂

∂θn
(θ, α)

]∣∣∣

=

∣∣∣∣∣

Mω∑

m=1

[
Bm

∂nD̂

∂θn
(θ, α)− [Bm + (bm −Bm)]

∂n

∂θn
[I + (PF − I)] D̂(θ, α)

]∣∣∣∣∣

≤Mω

[
(Bmax + ǫb)

∥∥∥∥
∂n

∂θn
(PF − I) D̂

∥∥∥∥
L∞([0,2π)2)

+ ǫb

∥∥∥∥
∂n

∂θn
D̂

∥∥∥∥
L∞([0,2π)2)

]
(6.26)

which is precisely the definition ǫ
(n)
⊛ .

(i)

We combine the bound (6.26) (taking n = 0) and the representation (6.23) to

obtain

|EPF
D(θ, α)−D(θ, α)| ≤

Mω

[
(Bmax + ǫb)ǫN |Γ|+ ǫb ‖D‖L∞([0,2π)2)

]

|Λ(θ, α)| , (6.27)

by Lemma 6.3 and (6.26) we obtain

|EPF
D(θ, α)−D(θ, α)| ≤ 8ǫ

(0)
⊛

p2|θ − θ0||θ0 − θ∗|
,
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and since |θ − θ0| > T0 and |θ0 − θ∗| > T∗ we have

|EPF
D(θ, α)−D(θ, α)| ≤ 8ǫ

(0)
⊛

p2T0T∗
.

(ii)

Following the same ideas as (i), we obtain
∣∣∣∣∣D(θ0, α)−

∑Mω

m=1 bm(α)
∂PF D̂
∂θ

(θ0, αm)
∂Λ
∂θ
(θ0, α)

∣∣∣∣∣ ≤
ǫ
(1)
⊛

|p sin(pθ0)|
.

From the condition |θ0 − θ∗| > T∗ we can write

|p sin(pθ0)| ≥p| sin(p(θ∗ ± T∗))|
=p| sin(pθ∗) cos(pT∗)± sin(pT∗) cos(pθ∗)|

=p| sin(pT∗)| ≥
p2T∗
2

,

and the bound follows immediately.

(iii)

Again, following the ideas of (i) and (ii), we are in the simpler case where
∣∣∣∣
∂2Λ(θ∗, α)

∂θ2

∣∣∣∣ = p2| cos(pθ∗)| = p2,

hence
∣∣∣∣∣D(θ∗, α)−

∑Mω

m=1 bm(α)
∂2PF D̂
∂θ2

(θ0, αm)
∂2Λ
∂θ2

(θ0, α)

∣∣∣∣∣ ≤Mω

(Bmax + ǫb)ǫN |Γ|+ ǫb ‖D‖L∞([0,2π)2)

p2
,

and the result follows from (6.26).

(iv) From Lemma 6.3,
∣∣∣∣
θ − θ0
Λ(θ, α)

∣∣∣∣ ≤
8|θ − θ0|

p2|θ − θ0||θ0 − θ∗|
≤ 8

p2T∗
.

where we have used T∗ < |θ0 − θ∗|. Bounding the Taylor coefficients using the

threshold T0 ≥ |θ − θ0|,
∣∣∣D(θ, α)− E0

PF
D(θ, α; θ0, NT )

∣∣∣

≤ 8

p2T∗
Mω

NT∑

n=1

T n−1
0

n!

[
(Bmax + ǫb)

∥∥∥∥
∂n

∂θn
(PF − I)D

∥∥∥∥
L∞([0,2π)2)

+ ǫb

∥∥∥∥
∂n

∂θn
D

∥∥∥∥
L∞([0,2π)2)

]

+MωBmax
8

p2T∗

TNT
0

(NT + 1)!

∥∥∥∥∥
∂NT+1D̂

∂θNT+1

∥∥∥∥∥
L∞([0,2π)2)
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(v) Taking maximal values of the representation of (6.19)

|D(θ, α)− E∗
PF
D(θ, α; θ∗, α∗, NT

∗)| ≤

‖(I − PF )D‖L∞([0,2π)∞) + 2T∗

∥∥∥∥(I − PF )
∂D

∂θ

∥∥∥∥
L∞([0,2π)∞)

+ max
nθ+nα=NT

∗+1

TNT
∗+1

∗

(NT
∗ + 1)!

∥∥∥∥
∂NT

∗+1D

∂θnθ∂αnα

∥∥∥∥
L∞([0,2π)2)

The error bound in the above theorem contains a few components which we have

not yet bounded. For the remainder of this section, we supplement the above error

bound by bounding the terms using known data. Bounding the derivatives of the

far-field pattern provides a gauge on the truncation error of the Taylor expansion.

LEMMA 6.9. For nθ, nα ∈ N0 and n = nθ +nα, we have the following bound on the

derivatives of the far-field pattern

(i)

∥∥∥∥∥
∂nD̂

∂θn

∥∥∥∥∥
L∞([0,2π)2)

≤ |Γ|k


 1 + 4 diam(Γ)

ess inf
x∈Γ

(x · n(x))




n∑

n′=0

[(
n
n′

)
max{2, pn−n′}ξn′

]
,

(ii) ∥∥∥∥
∂nD

∂θnθ∂αnα

∥∥∥∥
L∞([0,2π)2)

≤ 2|Γ|
ess inf
x∈Γ

(x · n(x))ξnθ

nα∑

n′
α=0

(
nα

n′
α

)
ζnα−n′

α
ξn′

α
,

where

ζi =

{ (
4k2 diam(Γ)2 + 1

4

)1/2
, for i = 0,

k diam(Γ), otherwise.

and ξi :=
∏i

ℓ=0(ℓ+k diam(Γ)). Similarly, there is a bound on the approximation error

(iii) ∥∥∥∥∥
∂n(I − PF )D̂

∂θn

∥∥∥∥∥
L∞([0,2π)2)

≤ |Γ|ǫN
n∑

n′=0

[(
n
n′

)
max{2, pn−n′}ξn′

]
.

(iv) ∥∥∥∥
∂n(I − PF )D

∂θn

∥∥∥∥
L∞([0,2π)2)

≤ |Γ|ǫNξn
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Proof. We are interested in derivatives of the kernel K(θ,y) := e−ik(y1 cos θ+y2 cos θ) of

the integral far-field representation (6.3), in terms of the observation angle θ. This

kernel is a plane wave, and so we seek the nth derivative in θ of the plane waveK(θ,y),

which can be written as ∂nK/∂θn = gn ·K where gn can be defined iteratively,

g1(θ,y) := −ik[−y1 sin(θ) + y2 cos(θ)], (6.28)

and

gn(θ,y) = gn−1(θ,y)g1(θ,y) +
∂gn−1

∂θ
(θ,y), for n ≥ 2

by repeated application of the product and chain rules. We can then write a general

formula for gn,

gn(θ,y) =
(
g1(θ,y) +

∂

∂θ

)n
[g1](θ,y), for n ≥ 2

Hence, for y ∈ Γ

|gn(θ,y)| ≤
i∏

ℓ=0

(ℓ+ k|y|) ≤
i∏

ℓ=0

(ℓ+ k diam(Γ)) =: ξi. (6.29)

The ℓ arises from each differentiation, and the k|y| comes from multiplication by g1.

(i) Writing the generalised product of the derivative

∂NT+1D̂

∂θNT+1
(θ, α) =

NT+1∑

i=0

(
NT + 1

i

)[
∂NT+1−iΛ

∂θNT+1−i
(θ, α)

] [
∂i

∂θi

∫

Γ

K(θ,y)PN
∂uαm

∂n
(y) ds(y)

]
,

recalling that K(θ,y) := e−ik(y1 cos θ+y2 cos θ). We use Cauchy–Schwarz to bound the

integral representation for the far-field pattern, combining (6.29) with [35, Lemma 4.2]

(which provides a bound on ‖∂+n uαm‖L2(Γ)), to obtain

∣∣∣∣∣
∂NT+1D̂

∂θNT+1
(θ, α)

∣∣∣∣∣ ≤ |Γ|


 1 + 4 diam(Γ)

ess inf
x∈Γ

(x · n(x))




NT+1∑

i=0

[(
NT + 1

i

)
max{2, pNT+1−i}ξi

]
.

(ii) We now make use of the coercive star-combined operator of Definition 1.4,

and denote by

fk(x;α) := 2 [x · ∇ − i(k|x|+ i/2)] eik(x1 cosα−x2 sinα)

the corresponding data for an incident plane wave of angle α, such thatAk[∂uα/∂n](x) =

fk(x;α) for almost all x on Γ, noting that the operator Ak is independent of α. Using

the generalised product rule once more, we can write
∥∥∥∥
∂nαfk(x;α)

∂αnα

∥∥∥∥
2

L2(Γ)

≤
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∫

Γ

∣∣∣∣∣∣

n′
α∑

nα=0

(
nα

n′
α

)
∂nα−n′

α

∂αnα−n′
α
[ik(−x1 sinα + x2 cosα)− i(k|x|+ i/2)]

∂n
′
α

∂αn′
α
e−ik(x1 cosα+x2 sinα)

∣∣∣∣∣∣

2

ds(y).

We may make a second use of (6.29) for the plane wave uincPW (·;α), whilst it is straight-
forward to show that the other derivatives are bounded by ζn′

α−nα , hence

∥∥∥∥
∂nαfk(·;α)
∂αnα

∥∥∥∥
L2(Γ)

≤ |Γ|1/2
n′
α∑

nα=0

(
nα

n′
α

)
ζnα−n′

α
ξn′

α
. (6.30)

We may write

∂nD(θ, α)

∂θnθ∂αnα
= −

∫

Γ

∂nθK(θ,y)

∂θnθ

[
A−1

k

∂nαfk
∂αnα

]
(y;α) ds(y),

and we can bound via Cauchy–Schwarz to obtain

∣∣∣∣
∂nD(θ, α)

∂θnθ∂αnα

∣∣∣∣ ≤ ‖gn(θ, ·)‖L2(Γ)

∥∥A−1
k

∥∥
L2(Γ)�L2(Γ)

∥∥∥∥
∂nαfk(·;α)
∂αnα

∥∥∥∥
L2(Γ)

The coercivity constant [52, (1.17)] gives a bound on A−1
k : L2(Γ) → L2(Γ). Combin-

ing this with (6.30) and (6.29) we obtain the result.

The bound (iii) follows the same reasoning as (i) and (ii) respectively, we simply

replace ∥∥∥∥
∂uα
∂n

∥∥∥∥
L2(Γ)

with

∥∥∥∥(I − PN)
∂uα
∂n

∥∥∥∥
L2(Γ)

≤ ǫN .

The bound (iv) follows the same logic as (iii), without the term Λ(θ, α).

In order to make the bounds of Theorem 6.8 fully explicit, bounds on ǫb of (6.25)

are required. These depend on the stability of the system (6.1.1), which is closely

related to the open question of Assumption 6.2(i).

6.4 More general incident waves

We now demonstrate how Embedding Formulae may be used to approximate the far-

field pattern of a far broader class of incident waves than just plane waves, by means

of a general formula, followed by some numerical examples.

Suppose that the Herglotz kernel (see Definition 1.8) gHerg ∈ L2(0, 2π) is known

for an incident field uinc, hence we can write

uinc(x) = uincHerg(x; gHerg) =

∫ 2π

0

gHerg(α)u
inc
PW (x;α) dα, for all x ∈ R2,
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for gHerg ∈ L2(0, 2π) and uincPW as in (2.5). For Herglotz uincHerg, we define

HgHerg(θ) := F∞[uincHerg(·; gHerg)](θ),

hence we can write the far-field pattern of the corresponding scattered field as

HgHerg(θ) :=

∫ 2π

0

gHerg(α)D(θ, α) dα ≈
∫ 2π

0

gHerg(α)E⊛
PF
D (θ, α;NT ) dα. (6.31)

In practice, the integral may be approximated by a quadrature rule, in which [wi]
NQ

i=1

and [αi]
NQ

i=1 are NQ ∈ N suitably chosen weights and nodes (see Appendix B for a

summary of relevant quadrature rules), sufficient to resolve oscillations and singular-

ities of the integrand to any desired accuracy. We may now generalise our Combined

Expansion approximation to any Herglotz type functions, via

HgHerg(θ) ≈ E⊛
PF
HgHerg

(
θ, gHerg;NT , (wi)

NQ

i=1, (α̃i)
NQ

i=1

)
:=

NQ∑

i=1

wigHerg(α̃i)E⊛
PF
D(θ, α̃i).

where E⊛
PF
D denotes the Combined Emebdding Approximation (6.2.3).

6.4.1 Numerical example: Regular Wavefunctions

We now compute numerical results for the particular example of a Regular Wavefunc-

tion, defined as

uinc(x) = ψinc
ℓ (x) := J|ℓ|(k|x|)eiℓθx , (6.32)

where Jn corresponds to the nth Bessel function of the first kind and θx is the angle

that x makes with the x1-axis. The function ψ10 for k = 40 is depicted in Figure

3.2(b). The Herglotz kernel for (6.32), which follows by the Jacobi-Anger expansion

(e.g. [17, (3.89)]) is given by

gℓ(α) :=

{
e−iℓα/(2πiℓ), ℓ ≥ 0,

(−1)ℓe−iℓα/(2πiℓ), ℓ < 0,
(6.33)

hence we have ψinc
ℓ = uincHerg(·; gℓ). We now consider the case in which Γ is a regular

hexagon, with wavenumber k = 1. In our approximation we choose NQ = 20 ×
max(k, ℓ) equally spaced quadrature points, to ensure there are 10 quadrature points

per wavelength of the integrand of Hgℓ of (6.31), over the integral [0, 2π). These are

positioned such that

min
α∗∈Θ∗

i∈{1,...,NQ}

|α̃i − α∗| (6.34)
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is maximised, to avoid points where the error in the far field approximation is signifi-

cantly amplified (as observed in the peaks of Figure 6.9(c), and quantified by Lemma

6.3).

Γ

Figure 6.11: Schematic diagram of Hexagonal scatterer used for this section. For the
Hexagon, it follows that p = 3 and q = 4, hence Mω = nΓ(q − 1) = 18. The incident
angles A18 of canonical plane waves are shown, whilst those chosen to coincide with
Θ∗ are dashed. Each side length is 1.

Whilst the DOFs per side of the scatterer is the same as for the smallest errors

observed in Figure 6.9(b), in Figure 6.13 we observe global errors lower than were seen

in the peaks of Figure 6.9(c). This is most likely because of the careful choice (6.34).

Figure 6.14 demonstrates how a naive approach is less stable, with much larger errors.

Even in the semi-naive case of Figure 6.15, where the quadrature points are chosen

far from points of Θ∗ (in accordance with (6.34)), there is no improvement. This

suggests that the method we present here is not only a means of removing numerical

instability at certain points, but is essential for this generalised implementation of

Embedding Formulae, which can compute the far-field coefficient for Herglotz-type

incident fields. Naturally as k grows, the quadrature rule will require more points,

and it will become harder to avoid the regions in which the error is largest.
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Figure 6.12: Far-field approximation of different Regular Wavefunctions, indexed by
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Figure 6.13: Error estimates using MPSpack with 90 DOFs as a reference solution,
taking same DOFs per wavelength as for the square examples.
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Figure 6.14: A completely naive embedding approach, with no careful selection of
AMω or weights and nodes for the integral, and no Taylor expansion.

146



10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
l=0
l=1
l=2

θ

∣ ∣ (P
F
−

E⊛ P
F
)H
g ℓ
(θ
)∣ ∣
/‖
H
g ℓ
‖ L

2
(0
,2
π
)

0 π/2 π 3π/2 2π

ℓ = 0, 1, 2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
l=3
l=4
l=5

θ

∣ ∣ (P
F
−

E⊛ P
F
)H
g ℓ
(θ
)∣ ∣
/‖
H
g ℓ
‖ L

2
(0
,2
π
)

ℓ = 3, 4, 5

0 π/2 π 3π/2 2π

Figure 6.15: A semi-naive approach, in which quadrature weights are chosen as in
Figure 6.13 to avoid Θ∗, at which the instability is largest.

This example demonstrates how, once the canonical problems have been solved,
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and certain derivatives of the far-field solutions are obtained, that the far-field pattern

of any Herglotz-type incident field can be computed relatively easily. Moreover, in

certain cases, the global error can be reduced as part of this process.

6.5 Conclusions and extensions

We have demonstrated for a certain class of polygons, that the ideas of [9] can be

implemented efficiently in a numerically stable manner for all (θ, α) ∈ [0, 2π)2. More-

over, if an approximation to Neumann boundary data is known, bounds on the error

can be obtained. These bounds could be made explicit with bounds on ǫb of (6.25),

which would require an answer to the more general open question of Assumption

6.2(i).

Extension to the broader class of polygons with rational angles would be the next

logical development of this method. As explained in [9, §3.2], for a general polygon Γ

with rational angles, we instead require p and q to be integers such that pπ/q divides

exactly pjπ/qj = ωj for each corner j. Then we chooseMω =
∑nΓ

j=1(qj−1). It appears

that extension to such polygons would be straightforward.

There may also be further possible refinements to the theory. Numerical results

suggest that Mω = nΓ(q − 1) becomes more than is required for certain nΓ. For

example, the system (6.1.1) becomes ill-conditioned for such a choice when nΓ =

8, and numerical experiments suggest that in fact Mω = 16 < nΓ(q − 1) = 32 is

sufficient in this case. Currently there is no theoretical explanation for this. But a

poorly conditioned system could be another source of instability; understanding the

reasoning behind this unexpected behaviour is key if the methods of this Chapter are

to be applied to all rational geometries.

Alternative approaches to remedy the numerical instabilities may also be explored.

Given that we know exactly where these instabilities occur, rather than approximating

the unstable region with a Taylor expansion which converges to the exact value, it

might be more efficient to use an alternative approximation over the unstable region.
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Chapter 7

A numerically robust T-matrix
method for multiple polygons

Here we introduce the Transmission Matrix (T-matrix) T-matrix methods for single

(§7.1) and multiple obstacles (§7.2), for which the results and derivations are based

on [22–24, 55]. We focus in particular on a relatively recent approach (of [23]). The

novel contribution of this chapter is the combination with the Embedding Formulae

of Chapter 6, in §7.3, which significantly reduces the computational cost required.

Hence, it should be noted that the derivations and results of §7.1–7.2 are not new.

7.1 T-matrix methods for single scattering

Initially we focus on the T-matrix method for single obstacles. The construction of

the T-matrix will be identical for the multiple scattering formulation of the problem

of §7.2, in which each obstacle will have a single T-matrix, independent of the incident

field. We are interested in the T-matrix because it extends easily to multiple scattering

problems. The single scattering method has other applications, in particular for

modelling moving obstacles. We do not explore this here.

7.1.1 Specific problem statement

Here we assume that the origin lies inside of a bounded open set Ω− ⊂ R2 with

boundary ∂Ω, such that the ball BR− with radius R− ≥ diam(Ω−)/2, is centred at

the origin and contains Ω−. We do not impose the requirement that Ω− is connected,

i.e., this obstacle can consist of many obstacles, and all of the following will still hold,

provided a method to approximate the problem on Ω− is available. For the purpose of

understanding the T-matrix method, it is simpler to consider Ω− as a single connected

set. We consider the expansion of the incident field in terms of regular wavefunctions
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ψinc
ℓ , that is

uinc(x) =
∑

ℓ

bℓψ
inc
ℓ (x) in B−, where ψinc

ℓ (x) := J|ℓ|(k|x|)eiℓθx , (7.1)

where Jn is the Bessel function of the first kind order n and θx ∈ [0, 2π) is the angle

that x ∈ R2 makes with the x1-axis. We expand the scattered field in terms of

radiating wavefunctions ψs
ℓ , that is

us(x) =
∑

ℓ

aℓψ
s
ℓ (x) in R2 \B− where ψs

ℓ (x) := H
(1)
|ℓ| (k|x|)eiℓθx , (7.2)

where H
(1)
n is the Hankel function of the first kind, order n. At this stage, we consider

the infinite dimensional case, for which both sums (7.1) and (7.2) are over all ℓ ∈ Z.

The T-matrix is the matrix T that maps a := (aℓ)ℓ to b := (bℓ)ℓ, hence

Ta = b. (7.3)

For incident fields such as plane wave and point source incidence, the coefficients bℓ

are known and can be written explicitly (see [24]).

7.1.2 Computing the entries of the T-matrix

Given (7.3) and the coefficients a, if we can compute (and invert) T then we have a

representation for the scattered field from (7.2). The original formulation of T-matrix

of [55] contains two methods to compute T , via the representation

T = −BA−1. (7.4)

The first method requires

(A)mn =
i

4

(
∂+n ψ

inc
n , ψs

m

)
L2(∂Ω)

, and (B)mn =
i

4

(
∂+n ψ

inc
n , ψinc

m

)
L2(∂Ω)

, (7.5)

whilst the second approach takes

(A)mn =
i

4

(
ψinc
n , ∂+n ψ

s
m

)
L2(∂Ω)

, and (B)mn =
i

4

(
ψinc
n , ∂+n ψ

inc
m

)
L2(∂Ω)

. (7.6)

Both approaches are commonly referred to as the Null Field Method, which along

with other approaches (not mentioned here), can become numerically unstable for

certain geometries Ω− due to the singular nature of the Hankel functions (for more

details see [23, §3]). This motivated the Tmatrom method of [21], for which

Tmn =
1

4

k

π
i|m|(1 + i)

∫ 2π

0

[F∞ψ
inc
n ](θ)e−imθ dθ, (7.7)
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where F∞ denotes the far-field map of (1.16). It follows that the Tmatrom method

does not suffer from the same stability issues as other T-matrix methods, since the

integrand of (7.7) is smooth. Tmatrom has the additional requirement that a solver,

by which we loosely mean a numerical method which maps the Regular Wavefunction

ψinc
n to an approximation of the far-field pattern F∞ψ

inc
n , must be incorporated into the

Tmatrom method. A suitable solver may involve the space V HNA
N (∂Ω) as introduced

in Chapter 2, although there are many suitable choices. In the numerical example

that follows we use MPSpack of [4].

7.1.3 Truncation of the T-matrix

In practice, we must truncate the T-matrix so that it is finite dimensional, summing

over indices ℓ = −N̂ to ℓ = N̂ , for N̂ ∈ N0. The finite dimensional case with

truncated T results in an approximation to us via (7.2) and (7.3), and as N̂ increases,

this approximation improves. We define the truncated T-matrix as

T̂ := (T )N̂
n,m=−N̂

∈ C(2N̂+1)×(2N̂+1), for N̂ ∈ N0.

The number of dimensions N̂ is typically chosen to satisfy the condition of [56]:

N̂ =
⌈
kR− + 4(kR−)

1/3 + 5
⌉
, (7.8)

which is justified for the case (7.7) with point source or plane wave incidence in [24,

Theorems 3.6 and 3.7]. This is another advantage over the null field method, which

does not have this theoretical validation. Given that we sum over negative and

positive indices of the wavefunctions, we require the far-field pattern and hence the

solution, of 2N̂ + 1 problems with different radiating wavefunction incidence. It is

clear from (7.8) that k . N̂ as k → ∞, hence the number of solves required by the

Tmatrom method grows more than linearly with the wavenumber k, posing potential

difficulties at large wavenumbers.

Given the truncated vector of coefficients

â := T̂−1(bℓ)
N̂
ℓ=−N̂

,

we can construct an approximation to the far-field pattern (1.16), by expanding each

term in the truncated series (7.2) as r → ∞ using [18, (10.2.5)],

u∞(θ) ≈ û∞
N̂
(θ) :=

N̂∑

ℓ=−N̂

i−|ℓ|−1âℓe
i(ℓθ). (7.9)

We have the following error estimate from [24, Theorem 3.9].
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THEOREM 7.1. For scattering of a plane wave by a single obstacle Ω−, if N̂ >

kR−/2 + 1 then the following error bound holds:

‖u∞ − u∞
N̂
‖2L2(0,2π) ≤ CN̂2

(
R−ke

2N̂

)2N̂

+ C ′ǫ2F , (7.10)

where C and C ′ are positive constants independent of k and N̂ , ǫF denotes the error

in the far-field approximation of the solver used, and û∞
N̂

is the approximation (7.9)

to the far-field pattern u∞ of (1.16).

7.2 T-matrices for multiple scattering

In this section we outline the procedure to extend any T-matrix method to multiple

obstacles, which is based on the derivation of [22, §2.2]. Everything in this section

holds for the infinite dimensional or truncated T-matrix case. Suppose now that

Ω− consists of nγ pairwise disjoint obstacles, which we denote Ωi for i = 1, . . . , nγ ,

hence Ω− = ∪nγ

i=1Ωi. For each obstacle, we denote by xc
i a point inside of Ωi, and

denote by T(i) the T-matrix corresponding to the obstacle Ωi with a coordinate system

translated by −xc
i in each case, so that the origin is inside of the obstacle. We

impose the additional constraint that there exists a collection of pairwise disjoint

balls BRi
(xc

i) ⊃ Ωi, Ri > 0 for i = 1, . . . , nγ . Recalling the example (4.1), we now

formulate the multiple scattering T-matrix method by considering a single scattering

problem on each obstacle, where the sum of the scattered fields emanating from all

other obstacles is absorbed into the incident field of a single scattering T-matrix

problem on the ith obstacle Ωi:

uinci := uinc +
∑

i′ 6=i

usi′ , in Bi (7.11)

where usi′ is the (also unknown at this stage) contribution to the scattered field from

the obstacle i′. Recalling that each single scattering problem requires the origin to

be positioned inside of the scatterer, we will make use of the Translation Addition

Theorem of [19] to translate xc
i′ to xc

i . Proceeding as in [22, §2.2], we define the

two-dimensional analogue of translation addition matrix of [19, (51)] as

(S(i′�i))ℓ,ℓ′ := wℓ,ℓ′ρ
(i′)
ℓ,ℓ′e

i(ℓ−ℓ′)θ(xc
i′
−xc

i )H
(1)
|ℓ−ℓ′|(k|xc

i′ − xc
i |)wℓ′,ℓ

where

ρ
(i′)
ℓ,ℓ′ :=

√
πk

(−i)|ℓ|(1−i)H
(1)
ℓ′ (kRi′)
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and

wℓ′,ℓ :=
1√
2π

(−i)|ℓ|−|ℓ′|−|ℓ−ℓ′|

∫ 2π

0

ei(|ℓ|−|ℓ′|−|ℓ−ℓ′|)θ dθ.

Denote by a(i) the vector a of (7.1), corresponding to the solution to the single obstacle

problem (7.1.1) on Ωi. We seek to determine the vector b(i), which corresponds to

the field scattered by Ωi, given that additional terms have been absorbed into the

incident field (7.11), emanating from the other scatterers. We may expand the terms

in (7.11) to obtain a representation for the incidence

uinci (x) =
∑

ℓ

(b(i))ℓψ
inc
ℓ (x) +

∑

i′ 6=i

∑

ℓ

(S(i′�i)a(i′))ℓψ
s
ℓ (x− xc

i′), x ∈ Bi. (7.12)

Now multiplying (7.12) by T(i), the T-matrix for the obstacle Ωi, we obtain the

contribution to the scattered field from Ωi,

us(i)(x) =
∑

ℓ

(T(i)b(i))ℓψ
s
ℓ (x) +

∑

i′ 6=i

∑

ℓ

(T(i)S(i′�i)a(i′))ℓψ
s
ℓ (x− xc

i′), x in R2 \Bi,

(7.13)

hence to determine the coefficients b(i) of the scattered field for each Ωi, the system

to solve is

a(i) −
∑

i 6=i′

T(i)S(i′�i)a(i′) = T(i)b(i′), for i = 1, . . . , nγ . (7.14)

As in the single scattering case, in practice each T-matrix (and consequently each

translation addition matrix S(i′�i)) must be truncated in accordance with (7.8).

7.3 Reducing the number of solves required

Here we extend the Tmatrom method by combining it with the Embedding Formulae

used in Chapter 6. The theory here is for a single obstacle, but is equally adaptable to

multiple obstacles using the ideas discussed in §7.2. We suppose now that our obstacle

Ω− is a rational (in the sense of §6.1) polygon. First we introduce the Herglotz kernel
(of Definition 1.8) for the far-field pattern of the ℓth Regular Wavefunction ψinc

ℓ , which

follows by the Jacobi-Anger expansion (e.g. [17, (3.89)]) and the definition (7.1):

gℓ(θ) :=

{
e−iℓθ/(2πiℓ), ℓ ≥ 0,

(−1)ℓe−iℓθ/(2πiℓ), ℓ < 0,
(7.15)

hence we can write (as in §6.4.1)

ψinc
ℓ (x) =

∫ 2π

0

gℓ(α)u
inc
PW (x;α) dα.
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Using this, we may use our HNA method for Herglotz type incidence of §3.1 with

Herglotz kernel gℓ, and solve for ℓ = −MT , . . . ,MT . Using results computed in this

thesis, we can determine the error in the approximation.

COROLLARY 7.2. Suppose the conditions of Theorem 7.1 are satisfied, and the

Herglotz-type HNA method of §3.1 is chosen as the solver to be used in conjunction

with Tmatrom. Then the constant ǫF of Theorem 7.10 is bounded by

ǫF ≤ Ck−1/2Cq(k)M∞(u)J(k)e−pτΓ ,

where C, J, p and τΓ are the constants from Corollary 2.11, Cq is the stability constant

from Remark 2.13, whilst

M∞(u) ≤
(√

2π + 2C1

√
π|Γ|1/2

[
2 diam(Ω−) +

1

2k

]
k1/2 log1/2(2 + kL∗)

)
,

where C1 and L∗ are as in Theorem 3.1.

Proof. Follows immediately from (2.12), whilst the bound on M∞(u) follows from

Theorem 3.3, noting that the required bound on the Herglotz kernel is ‖gℓ‖L2(0,2π) = 1,

by (7.15).

When solving high frequency problems, Tmatrom with Herglotz-type HNA clearly

provides a numerically robust approximation, with explicit error bounds available in

the specific case of single scattering by a plane wave. The key advantage is that once

the T-matrix has been computed, it can be re-used for different incident waves, and

problems can be solved very quickly, as the coefficients are given explicitly. This is

exactly the same benefit of using the Embedding Formulae in Chapter 6; once the

canonical problems were solved, we can solve easily for any incident angle, and bound

the error in doing so. We do not compare the efficiency of the two methods here,

instead we combine them.

We now provide a brief example to motivate integration of the Embedding For-

mulae with a numerical solver, before incorporating with Tmatrom. Suppose that

we are solving the problem of scattering of a plane wave with wavenumber k = 1000

by multiple (identical) squares, of identical orientation. The same T-matrix may be

used for each square. Given that the total number of solves is 2MT +1, and we must

satisfy the condition (7.8), we must solve for ℓ ∈ {−1045, . . . , 1045} incident fields, a

total of 2091 solves. Although it is only necessary to recompute the right-hand side

of the Galerkin system (2.11) in each instance, as k grows the number of solves grows

faster than 2k, clearly introducing a k-dependence to the method. However, from
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Remark 6.1, one can implement an embedding formula for a square by solving for

only eight plane waves, after which we can use the Embedding Formulae to produce

the far-field pattern for Herglotz kernel gℓ of 7.15 for ℓ ∈ {−1045, . . . , 1045}, enabling
us to compute the T-matrix without the need for further solves. This number does

not increase with frequency, and depends only on the geometry of the obstacle.

We may write this idea generally for any rational (in the sense of §6.1) polygonal
obstacle Ω−. Using embedding theory

F∞ψ
inc
ℓ (θ) =

∫ 2π

0

gℓ(α)F∞

[
eik(·)·dα

]
(θ) dα, where dα := (cosα,− sinα)

=

∫ 2π

0

gℓ(θ)D(θ, α) dα,

where F∞ is the far-field map (1.17). Inserting into (7.7) and substituting (6.4) we

obtain an extension to the Tmatrom method, for which the entries are computed via

Tjℓ =
1

4

k

π
i|j|(1 + i)

∫ 2π

0

∫ 2π

0

gℓ(α)

∑Mω

m=1Bm(α)Λ(θ, αm)D(θ, αm)

Λ(θ, α)
e−ijθ dα dθ. (7.16)

Hence only Mω solves are required for the Tmatrom algorithm, where Mω depends

only on the geometry of Ω−. In §6.1.2 it was shown that the representation (6.4)

breaks down when implemented numerically, hence in practice the matrix entries

should be computed using

Tjℓ =
1

4

k

π
i|j|(1 + i)

∫ 2π

0

∫ 2π

0

gℓ(α)E⊛
PF
D(θ, α;NT )Λ(θ, α)e

−ijθ dα dθ, (7.17)

where E⊛
PF
D(θ, α;NT ) is the Combined Expansion Approximation of Definition 6.6,

with NT the parameter corresponding to the degree of the Taylor expansion taken.

The integral (7.17) must be computed using a quadrature rule, as discussed in Ap-

pendix B. Where possible, these points should be chosen in the same spirit as (6.34),

with α nodes as far as possible from the points in [0, 2π) at which only a first order

Taylor approximation is used.

Tmatrom is in some ways superior to traditional T-matrix methods (such as the

Null Field approaches (7.5) and (7.6)), in that it is provably stable for any configu-

ration. This comes at the cost of the requirement to solve O(k) scattering problems

before the T-matrix can be computed, which is not a requirement of the other (less

stable) T-matrix methods. By coupling Tmatrom with the Embedding Formulae

of Chapter 6, this O(k) dependence becomes O(1), and the cost of computing the

more stable Tmatrom T-matrix has the same k-dependence as a traditional T-matrix

method, such as (7.5) or (7.6). Therefore this combined approach offers stability, at
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no extra k-dependent cost. Justifying this claim with numerical results is a key area

for future work. Figure 7.1 shows the output of the combination of Tmatrom with

our embedding solver and the MPSpack solver. This required 8, 12 and 30 solves

on the triangle, square and pentagon respectively, a total of 50 solves, a number

independent of k. For wavenumber k = 5, using MPSpack without solving via the

Embedding Formulae results in a total of 27 solves on each scatterer, hence a total

of 81 solves. So even at a relatively low wavenumber using a non-HNA solver, the

Embedding Formulae can reduce the number of solves required.

Figure 7.1: Real part of total field u for a configuration of multiple polygons, with
incident field uincPW (·; π/2) solved using MPSpack as the solver used for the embedding
implementation, which in turn is used as the solver for Tmatrom. The expansion is
only valid outside of the balls Bi containing the obstacle Ωi, for i = 1, 2, 3.

We conclude this chapter with a summary of the k-dependency of different T-

matrix methods. We first note that the matrix T is in principle the same regardless

of if a null-field method (7.5), (7.6) or Tmatrom method (7.7) is used, hence it is rec-

ommended that the size of the truncated T-matrix grows like O(k) (specifically (7.8))

for any approach. For cases where they are robust, traditional T-matrix methods
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may be performed relatively quickly at low k, requiring two integrals for each entry

of the T-matrix ((7.5) and (7.6)). This suggests an advantage over Tmatrom, which

(i) requires a new scattering problem to be solved for each of the O(k) columns of

T , whilst (ii) each column in turn may require O(k) such integrals if (for example) a

standard Galerkin BEM solver is used. However, for polygons an HNA solver may be

used to reduce the dependency of the Galerkin system to O(1) (as discussed in §2.3)
which overcomes (ii), and we have shown that Embedding formulae may be used to

reduce the number of scattering problems to O(1), which overcomes (i). Moreover,

for large k and hence large T-matrices, numerical cost of the inverted matrix of (7.4)

will increase for standard T-matrix methods, whilst Tmatrom does not require the

inversion of any large matrices, so at large k a method combining HNA BEM and Em-

bedding formulae with Tmatrom is advantageous over a standard T-matrix method.

Investigating this combination is a key area for future work; the only k-dependence

with such a method would take the form of O(k2) integrals used to compute T , which

contain smooth integrands, and may be computed using sophisticated quadrature

routines of [38]. The purpose of this chapter was to lay the ground work for such an

implementation.
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Chapter 8

Conclusions and future work

In this thesis we have presented a number of new developments. Some may be applied

to general multiple scattering methods, whilst others represent advances to HNA sin-

gle scattering methods (with subsequent potential contribution to multiple scattering

problems). We now recap the most significant (in the opinion of the author) new

results.

• Chapter 2 analysed the best approximation error of single-mesh HNA BEM

(Theorem 2.9), providing estimates comparable to [35, Theorem 5.5].

• Chapter 3 generalised HNA methods to a Herglotz and source-type incident

fields. Error estimates for source-type incidence required an alternative ap-

proach (Theorem 3.10) to [35], to handle the singular behaviour of the incident

field. These estimates were backed up by numerical experiments in §3.2.3.

• Chapter 4 presented the first extension of HNA methods to multiple obstacles,

generalising the ansatz (4.9). As a necessary component of the error estimates,

we required a new bound on the solution in the domain for non-trapping poly-

gons (Corollary 4.7). This bound may also be applied to non-convex obstacles

of [15], for which the solution in the domain was assumed to be bounded, but

not proved. Numerical results demonstrated exponential convergence of the

approximation in 4.5.

• Chapter 5 presented the first k-explicit stability estimates for any multiple scat-

tering BEM. The first of these, Theorem 5.5, requires that the obstacles are

sufficiently smooth and strictly convex. The second, Theorem 5.7, guarantees

stability via a geometric condition which is sufficient for the multiple scattering

problem to be coercive. This holds for more general (than the other key stability
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result of the chapter) star-shaped obstacles, but requires that these obstacles

are sufficiently far apart. New best approximation estimates for scattering by

multiple convex polygons were presented in Theorem 5.10, whilst estimates for

the inverse of the Constellation Combined operator were presented in Theorem

5.6.

• Chapter 6 identified previously undocumented stability issues that arise when

implementing Embedding Formulae for polygons, quantified by Theorem 6.3

and demonstrated by numerical examples in §6.1. A numerically stable alter-

native was proposed in Definition §6.2.3, which was subsequently analysed in

§6.3. This analysis made use of Lemma 6.9, which provides a bound on arbitrary

derivatives of the far-field coefficient in terms of incident angle and observation

angle. In §6.4 Embedding Formulae were extended from incident plane waves

to Herglotz-type functions, supplemented by numerical examples.

• Chapter 7 showed how the Embedding Formulae can be used to reduce the

number of solves required for Tmatrom from O(k) to O(1), demonstrating with

a single numerical example that even at low wavenumber, this approach can

offer a saving in computational cost.

We also remark that whilst the work of Chapter 3 is based on single scattering

problems, such general incident fields may be equally adapted to HNA methods for

multiple scattering problems; the method of Chapter 4 can easily be generalised to

cases where the incident field is not a plane wave.

8.1 Single vs. overlapping mesh

We have seen in §2.2 that the HNA method can be applied to single or overlapping

meshes, and Theorem 2.9 showed that the best approximation behaves similarly for

either choice. In terms of practical implementation, the numerical experiments in

Chapters 3 and 4 shed additional light on the effectiveness of the single mesh space.

Whilst no overlapping mesh approximations were used for the numerical experiments

of this thesis, comparison against the numerical results of [35] suggests that the

overlapping mesh space is more accurate, for the same number of degrees of freedom.

Moreover, as was observed in Figure 4.4, the accuracy of the approximation is very

dependent on the choice of the parameter αij of (2.7). The advantage is that the

single-mesh space space is readily adaptable from a standard hp space, only the basis

functions must be changed. Although the collocation HNA BEM was not investigated
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in this thesis, the discussion of Remark 2.12 suggests it would be better suited to the

single-mesh space.

8.2 HNA methods for multiple obstacles

The primary aim of this thesis was to generalise HNA BEM to multiple obstacles,

and all of the work of Chapters 3–7 may be partitioned into (roughly) two distinct

ways to do this:

(i) Hybrid-Standard BEM basis coupling (we will call this H-S for short), in which

an HNA basis is used on a polygonal obstacle, and a standard basis is used on

the other obstacle(s).

(ii) Tmatrom with Embedded HNA-BEM (we call this T-E-H for short), in which

a HNA basis is used to solve a small number of plane wave single scattering

problems, which can then be converted to a multiple scattering solution using

the Embedding Formulae and Tmatrom software.

A third approach would be to use the beam source method of §3.2 to construct an

iterative multiple scattering formulation, similar to that discussed in (for example) [1].

We do not consider this here, although it is a key area for future research. We now

summarise both methods (H-S and T-E-H ) in detail, from a practical and theoretical

point of view, in terms of what has been done in this thesis, and possible future work.

Hybrid-Standard BEM basis coupling (H-S)

In Chapter 4, the ansatz of the HNA method of Chapter 2 was extended to multiple

obstacles (4.9), by combining the HNA space with a standard hp-BEM approximation

space on the additional obstacle(s). As a consequence of this new ansatz, we require

that a standard BEM approximation space must be used on the other obstacle(s).

This is advantageous in that we do not require these to be polygonal, and there is

minimal restriction (4.16) on the separation of the obstacles, but disadvantageous in

that the size of the standard hp BEM basis here must grow like O(k) to maintain

accuracy. We observe exponential convergence of the method in the numerical exper-

iments tested, which is predicted under Assumption 4.8 that the standard hp BEM

basis converges exponentially.

From a practical point of view, we expect this method to be best suited to prob-

lems for which the scatterer(s) with the standard basis has a size parameter close to

one wavelength, or generally speaking when there is a polygonal obstacle which is
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much larger than all of the others. Given that the current a priori bounds depend

on Assumption 4.8 and the unknown conditions for Lemma 4.9, the Galerkin HNA

method offers no (theoretical) advantage over the (easier to implement) collocation

approach (see Remark 2.12). In practical applications, oscillatory quadrature should

be implemented to reduce the k-dependence of the computational cost of the inner

products, another key area for future work.

From a theoretical point of view, a useful development would be to bound the sta-

bility constants for more general multiple obstacle configurations, including polygons.

The work of Chapter 5 makes significant progress towards this, for cases where the

obstacles are sufficiently smooth, or sufficiently far apart. Whilst there are cases (see

Remark 4.11) for which we can provide fully explicit error bounds for the solution of

the Galerkin method (4.22), this is not yet possible for the general problem considered

in Chapter 4, and does not predict exponential convergence. Further work to prove

that the standard hp-BEM basis converges exponentially would also be beneficial, we

expect that this would involve the ideas developed in [41].

Tmatrom solved using Embedding formulae with HNA-BEM (T-E-H)

This method does not require an extension of the HNA ansatz, but is based on a

reformulation of the BVP (1.4)–(1.6) which combines many single scattering prob-

lems. The T-matrix formulation of Chapter 7 may be combined with the Embedding

Formulae of Chapter 6, using the plane wave HNA solver of [35] (this solver fits inside

of the general framework of Chapter 2). As was shown in §7.3, this extension of the

Tmatrom algorithm maintains numerical stability, whilst requiring an O(1) number

of solves. As with the previous method, a standard approximation space may be used

on obstacles for which an HNA basis is not appropriate, but here we do not need to

relate these obstacles via an operator such as Gγ�Γj
. The main physical constraint is

that the obstacles must be sufficiently far apart such that pairwise disjoint balls can

be constructed around each of them.

The current version of the embedding code we have developed only works for

quasi-regular polygons, the next extension should be to generalise this to rational

polygons. Moreover, the cost of this algorithm may be reduced, as discussed at the

end of §6.5. A software package incorporating the ideas of Chapter 6 would be a useful

extension to the Tmatrom package. From a practical point of view, implementing

this method requires the construction of a plane wave HNA solver, then combining

this with the Embedding Formulae ideas of Chapter 6. As discussed earlier in this

chapter, we propose that the easiest HNA solver to implement would use a single mesh
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with collocation BEM. Our embedding software package requires identical inputs to

the Tmatrom software, an object-oriented solver class, so may be used as an optional

extra to Tmatrom.

From a theoretical point of view, if an HNA basis can be used on every scattering

obstacle, and each obstacle is star-shaped, we can guarantee that the method will

have a unique solution, given that Assumption 6.2 holds. This can be achieved by

choosing the star-combined formulation and solving via the Galerkin method, such

that the approximations to the canonical solutions for the Embedding Formulae exist

and are unique. The bounds of [24] provide a range of theory which may be readily

applied to obtain best approximation estimates, which may be combined with the

solver error which follows Theorem 6.8. The key areas in which the theory may be

improved depend on the embedding component of the method. This is unsurprising

as almost no work has been published discussing its numerical implementation. For

fully explicit error bounds in this method, we require bounds on the constant ǫb of

Theorem 6.8, as these are still implicit and are closely related to the (currently open)

question of Assumption 6.2(i).
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Appendix A

Fundamental definitions and
results

Here we define function spaces, trace spaces and key operators that may map between

them. As in Chapter 1, Ω denotes a general open subset of R2 with boundary ∂Ω,

whilst Ω+ denotes the exterior domain, and Ω− denotes the bounded interior domain.

All definitions are in two-dimensions, with trace spaces of Hausdorff dimension one.

A.1 Function spaces

DEFINITION A.1 (Spaces of continuous functions). First we define the two di-

mensional multi-index derivative

∂α :=
∂

∂xα1
1

∂

∂xα2
2

,

for α ∈ N2
0. For open Ω ⊂ R2, we define the following space of p-differentiable

continuous function

Cp(Ω) := {ϕ : Ω → C : ∂αϕ is continuous, for α1 + α2 ≤ p}.

Now we define the space of continuous functions.

DEFINITION A.2 (Lp spaces). The Lp norm is defined as

‖ϕ‖Lp(Ω) :=





(∫

Ω

|ϕ|p
)1/p

, p ∈ (1,∞),

ess sup
x∈Ω

|ϕ(x)|, p = ∞.

We define the space of p-integrable functions defined on Ω to be

Lp(Ω) :=
{
ϕ : ‖ϕ‖Lp(Ω) <∞

}
,
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and the space of locally integrable functions on Ω is

Lp
loc(Ω) := {ϕ : χϕ ∈ Lp(Ω) for every compactly supported χ ∈ C∞(Ω)}, (A.1)

(this definition only makes sense for unbounded Ω).

The space L2(Ω) is an inner product space, with inner product

(ϕ, ψ)L2(Ω) :=

∫

Ω

ϕψ,

which induces the norm ‖ϕ‖L2(Ω) = (ϕ, ϕ)
1/2

L2(Ω). Sobolev spaces introduce a notion

of differentiability to L2 spaces. Our first definition of a Sobolev space requires the

Fourier transform of any given function ϕ, which we define as

ϕ̂(ξ) :=
1

2π

∫

R2

e−ix·ξϕ(x) dx, ξ ∈ R2. (A.2)

The Bessel potential space Hs(R2) has the inner product

(ϕ, ψ)Hs(R2) :=

∫

R2

(
1 + |ξ|2

)s
ϕ̂(ξ)ψ̂(ξ) dV (ξ), (A.3)

which induces the norm ‖ϕ‖Hs(R2) := (ϕ, ϕ)
1/2

Hs(R2). Here dV denotes the standard

volume measure; dV (x) = dx1 dx2. It is straightforward to show that ‖ϕ‖L2(R2) =

‖ϕ̂‖L2(R2), hence by the definition (A.3) we have that H0(R2) = L2(R2), for the special

case s = 0. Moreover, for the case s = 1 it follows that

‖ϕ‖H1(R2) =

(∫

R2

|ϕ|2 + |∇ϕ|2 dV
)1/2

,

by transferring derivatives to ξ using the Fourier transform (A.2). We will mostly

be interested in Sobolev spaces on the boundary ∂Ω, which requires the concept of

a Lipschitz hypograph. For Lipschitz open Ω, by the definition of a Lipschitz open

set (see for example [13, Definition A.2]) there exists g : R � R in C0,1(R) (the set

of Lipschitz continuous functions) such that Ω = {x := (x1, x2) ∈ R2 : x1 ∈ R, x2 >

g(x1)}. The boundary of Ω can thus be defined as ∂Ω := {(x1, g(x1)) : x1 ∈ R}.
This concept enables us to extend our definitions of Lp integrable spaces and Sobolev

spaces to the boundary ∂Ω, via the surface measure ds, which we define as

∫

∂Ω

ϕ ds :=

∫

R

ϕ
(
(x1, g(x1))

)√
1 + |∇g(x1)|2 dx1.
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We now define the Lp norm on the boundary ∂Ω as

‖ϕ‖Lp(∂Ω) :=





(∫

∂Ω

|ϕ|p
)1/p

ds, p ∈ (0,∞),

ess sup
x∈∂Ω

|ϕ(x)|, p = ∞,

from which the space Lp(∂Ω) follows in the same way as (A.1). Likewise, we may

also define the boundary Sobolev norm by

‖ϕ‖Hs(∂Ω) :=
∥∥∥ϕ
((

·, g(·)
))∥∥∥

Hs(R)
, s ∈ R

from which the boundary Sobolev space Hs(∂Ω) follows in the natural way.

Some of the results in this thesis make use of the k-weighted space H1
k(R

2), with

norm

‖ϕ‖H1
k(∂Ω) :=

(∫

∂Ω

k2|ϕ|2 + |∇γϕ|2 dV
)1/2

, (A.4)

for k > 0. The k-weighted norm on ∂Ω analogous to A.4 follows in the same way,

with Ω replaced by ∂Ω, using the surface measure ds. A more general definition can

be found in [6, §2], whilst physical justification for the H1
k(Ω) norm can be found

in [43, Remark 3.8].

A.2 Trace operators

A further modification to the our standard Sobolev space, required for definition the

Neumann trace (A.6), is the following:

Hs(Ω;∆) :=
{
ϕ ∈ Hs(Ω) : there exists a w ∈ L2(Ω)

such that

∫

Ω

wv dV =

∫

Ω

ϕ∆v for all v ∈ C∞(Ω)
}
, for s < 2.

A non-tangential approach set Θ± is required to define trace operators, a precise

definition can be found in [13, A.4]. For almost every x ∈ ∂D, the Dirichlet traces

τ± : Hs(Ω±) → Hs−1/2(∂Ω) for s ∈ (1/2, 3/2) are defined by

τ±ϕ(x) := lim
y�x,y∈Θ±(x)

u(y), (A.5)

whilst the Neumann traces ∂±n : H1(Ω±; ∆) → H−1/2(∂Ω) are defined by

∂±n ϕ(x) = ±∂u
∂n

(x) := lim
y�x,y∈Θ±(x)

n(x) · ∇ϕ(y). (A.6)

For a more detailed discussion of these operators, we refer to [13, p112 and §A.3-§A.5]
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A.3 Bounds on the Hankel functions

Here we collect bounds on the Hankel functions which are used throughout this thesis.

The first, from [12, 1.22] is

|H(1)
0 (z)| ≤

√
2

πz
, for z > 0, (A.7)

whilst the second from [12, 1.23] is

|H(1)
1 (z)| ≤

√
2

πz
+

2

πz
, for z > 0. (A.8)

The third bound, on |H(1)′

1 (z)|, requires a little work. Starting with the representation

[12, 1.21],

H
(1)
1 (z) =

2i

π
eiz
∫ ∞

0

(i− r)e−rz

r1/2(r − 2i)1/2
dr, for z > 0,

differentiating with respect to z,

H
(1)′

1 (z) = − 2

π
eiz
∫ ∞

0

(i− r)e−rz

r1/2(r − 2i)1/2
dr − 2i

π
eiz
∫ ∞

0

r1/2(i− r)e−rz

(r − 2i)1/2
dr, for z > 0,

= iH
(1)
1 (z)− 2i

π
eiz
∫ ∞

0

r1/2(i− r)e−rz

(r − 2i)1/2
dr, for z > 0,

bounding using (A.8) for the first term, whilst noting that |(i − r)/(r − 2i)1/2| ≤
(1 + r)/r1/2 for r > 0,

|H(1)′

1 (z)| ≤
√

2

πz
+

2

πz
+

2

π

∫ ∞

0

(1 + r)e−rz dr,

≤
√

2

πz
+

4

πz
+

2

πz2
, for z > 0. (A.9)

Finally, we will make use of the following bound for small argument, which was

first derived in [35, Proof of Lemma 4.1] using [18, (10.2.2), (10.8.2) and (10.17.5)]:

|H(1)
0 (z)| ≤ ĉ(1 + | log z|) , for 0 < z ≤ 1, (A.10)

where ĉ = (1 + 2/π(1 + γE + e1/4)).

A.4 Regularity of fundamental solution

Here we justify the statement made in (3.12), that is

Φ(·, s) ∈ H1−ǫ
loc (R2), for all ǫ > 0, s ∈ R2,
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as we have been unable to find a derivation of this in the literature.

A quick explanation can be obtained from [13, Theorem 2.15]; from which it

follows that

Sk : H
s−1/2
loc (∂Ω) � Hs+1(R2), for s ∈ [−1/2, 1/2],

where ∂Ω is some Lipschitz boundary containing a point s. Considering δs ∈ H
−1/2−ǫ
loc (∂Ω)

for all ǫ > 0, it then follows from Definition 1.10 of Sk that for s ∈ ∂Ω,

Skδs = Φ(·, s) ∈ H1−ǫ(R2), for ǫ > 0,

and the choice of ∂Ω is arbitrary, so can be chosen to contain any s. As an alternative

justification, we may derive the same result from first principles, making use of the

following Lemma.

LEMMA A.3. If

(∆− 1)v = f in R2, for f ∈ Hs(R2), s ∈ R, (A.11)

then

‖v‖Hs+2(R2) = ‖f‖Hs(R2).

Proof. Taking Fourier Transforms (A.2) of both sides we obtain

v̂(ξ) =
f̂(ξ)

1 + |ξ|2 , for ξ ∈ R2,

and by the definition of the fractional Sobolev norm in §A.1 it follows that

‖v‖Hs+2(R2) =

∫

R2

(1 + |ξ|2)s+2 |f̂(s)|2
(1 + |ξ|2)2 dV (ξ) = ‖f‖Hs(R2).

We may bound Φ(·, s) for small argument using (A.10), hence it follows that

Φ(·, s) ∈ L2
loc(R

2), and

∇Φ(·, s) ∈ H−1
loc (R

2), s ∈ R2. (A.12)

We denote by χ some compactly supported function in C∞(R2). Expanding the

left-hand side of (A.11) by the product rule yields

(∆− 1)[χv] = v∆χ+ 2∇χ · ∇v + χ(∆− 1)v (A.13)

= v∆χ+ 2∇χ · ∇v + χ(∆ + k2 − 1− k2)v. (A.14)
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Now choosing v = Φ(·, s) we may write

(∆− 1) [χΦ( ·, s)] = Φ(·, s)∆χ+ 2∇χ · ∇Φ(·, s) + χδs − (1 + k2)Φ(·, s).

We may now consider the regularity of each term on the right-hand side. It is known

that δs ∈ H−1−ǫ(R2) for all ǫ > 0, and given (A.12) we can deduce that the right-

hand side is in H−1−ǫ(R2), for all ǫ > 0. Hence, by Lemma A.3 it follows that

χΦ(·, s) ∈ H−1−ǫ+2(R2), and Φ(·, s) ∈ H1−ǫ
loc (R2) for all ǫ > 0, as claimed.
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Appendix B

Some notes on quadrature

The subject of quadrature is not discussed in detail in the main body of the thesis.

It is an integral component of the boundary element method, so we devote some time

to it here, although this is not a complete account. Whilst many of the results in this

appendix can be found elsewhere (possibly with the exception of the phenomenon

discussed in Remark B.6 and B.7, which we have not seen in other literature), it may

be useful to have all such results written in one place.

Many of the inner products that occur when implementing the boundary element

method are singular and/or oscillatory, and efficient computation of such integrals

is a significant area of research in its own right. When dealing with trace spaces on

polygonal shapes, these singularities may be decoupled into products of one dimen-

sional integrals, which enables us to use Generalised Gaussian Quadrature, requiring

no grading, with far less quadrature points than with a standard routine.

B.1 One dimensional quadrature routines

Firstly, we list the the quadrature routines that we use for integrating a one-dimensional

integral,
∫ b

a

ϕ ≈
NQ∑

i=1

ϕ(si)wi, (B.1)

with weights (wi)
NQ

i=1 and nodes (si)
NQ

i=1 in [a, b].

DEFINITION B.1 (Classical Gaussian Quadrature). Let Pi denote the ith Legendre

Polynomial (see [18, 14.5(ii), 14.10]). To approximate the integral (B.1) over [−1, 1]

with NQ ≥ 1 quadrature points, we choose nodes QC(−1, 1;NQ) = (si)
NQ

i=1 defined by

si ∈ [0, 1] : PNQ
(si) = 0,
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sorted in ascending order of value and indexed by i, with weights WC(−1, 1;NQ) =

(wi)
NQ

i=1

wi :=
2

(1− s2i )(L
′
NQ

(si))2
, for i = 1, . . . , NQ.

This may be mapped to any [a, b] ⊂ R, defining QC(a, b;NQ) as the nodes

s′i := a+ (si + 1)(b− a)/2, for i = 1, . . . , NQ

and weights WC(a, b;NQ) given by

w′
i = (wi + 1)(b− a)/2,

where si and wi are the nodes and weights of QC(−1, 1) and WC(−1, 1;NQ) respec-

tively.

The fundamental theorem of Gaussian quadrature states that if the integrand ϕ of

(B.1) is a polynomial of degree 2NQ−1 or less, and Gaussian weightsWC(a, b;NQ) and

nodes QC(a, b;NQ) are used, then the approximation (B.1) is exact (see for example

[48, §4.2]). It follows that Gaussian quadrature is ideal for approximating the integrals

of smooth functions, which can be well approximated by a low degree polynomial.

For singular functions, we use the following alternative approach, which splits the

interval into geometrically graded subintervals of increasingly small width close to

the singularity.

DEFINITION B.2 (Layered Gaussian Quadrature). We split the interval [a, b] into

n ∈ N layered subintervals, using the grading parameter σ ∈ (0, 1), such that the

endpoints of the subintervals are given by

t0 = a, tj = a+ (b− a)σn−j, for j = 1, . . . , n,

noting that by this definition we have that tn+1 = b. The layered quadrature nodes

QG(tj, tj+1;NQ, σ, n) are then defined as

(si)
(NQ+1)j
i=NQj+1, given by QL(tj, tj+1;NQ), for j = 0, . . . , n− 1,

likewise, the weights are WG(tj, tj+1;NQ, σ, n)

(wi)
(NQ+1)j
i=NQj+1, for i = 1, . . . , NQ as in WL(tj, tj+1;NQ), for j = 0, . . . , n− 1.

Layered quadrature is a useful multi-purpose tool for singular integrals. When

information about the singularity is known, alternative quadrature routines may be

used which significantly reduce the number of weights and nodes required. As we shall

see shortly (in B.2), we will need to integrate functions with a logarithmic singularity.
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DEFINITION B.3 (Generalised Gaussian Quadrature for logarithmic singulari-

ties). For our generalised Gaussian quadrature rule (see e.g. [37]), the NQ weights

WG(0, 1) and nodes QG(0, 1), are chosen to satisfy the non-linear system of 2NQ

equations generated by

NQ∑

i=1

ϕ(si)wi =

∫ 1

0

ϕ, ∀ϕ ∈ Tm, (B.2)

Tm :=

{
{xρ, xρ log(x), for ρ = 0, . . . , NQ − 1, xNQ}, m = 2NQ is even

{xρ, xρ log(x), for ρ = 0, . . . , NQ}, m = 2NQ + 1 is odd

This definition is easily extended to QG(0, b;NQ) and WG(0, 1;NQ), by multiplying

the weights and nodes of (B.2) by b.

REMARK B.4. Such weights and nodes are typically generated iteratively (see e.g.

[37]), for example using a 2NQ-dimensional Newton iteration, seeking to minimise the

error in (B.2), choosing the composition of classical nodes QC(0, 1;NQ) and weights

WC(0, 1;NQ) as a starting point in [0, 1]2NQ. This need not reduce the efficiency of

our numerical method; once the weights and nodes have been generated for a given

NQ, they may be stored and reused.

Definition B.3 ensures that a linear combination of polynomials and products of

logarithms with polynomials up to order NQ can be integrated exactly, given 2NQ

quadrature points. The non-linear system (B.2) is shown to be uniquely solvable

in [37]. When comparing the basis Tm with the Fundamental Theorem of Gaussian

quadrature, it is worth noting that the polynomials which can be integrated exactly

by Generalised Gauss are around half the order which can be integrated exactly using

Classical Gauss. Hence, for consistency we typically choose the number of quadrature

points NQ to be twice as large for Generalised Gauss than Classical Gauss. We

note that this is still a significant improvement on the accuracy of Layered Gaussian

Quadrature if the same the number of points were used.

A nearly logarithmic singular integral is an integral of the following form:

∫ 1

0

ϕ(x) log(x+ δ) dx, (B.3)

where δ > 0 is small (clarity will follow shortly, via (B.5) and Figure B.1). Classical

Gaussian Quadrature works well for sufficiently smooth functions, so a sensible start-

ing point is to test exactly how near the singularity must be (i.e. how small δ must
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be) before the classical approach breaks down, by considering

E(δ,NQ) :=

∣∣∣∣∣∣

∫ 1

0

ϕ(x) log(x+ δ) dx−
NQ∑

i=1

ϕ(si)wi

∣∣∣∣∣∣
, (B.4)

where the weights (wi)
NQ

i=1 and nodes (si)
NQ

i=1 are generated using WC(0, 1;NQ) and

QC(0, 1;NQ) respectively. The results of this test are visualised in figure B.1. Using

this as a guide, given NQ, one should aim to choose a threshold

δ∗(NQ) = inf{δ > 0 : E(δ,NQ) ≤ desired precision}, (B.5)

such that for δ < δ∗ Layered Gaussian Quadrature is used, and for δ ≥ δ∗ Classical

Gaussian Quadrature is used.
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Figure B.1: Testing the error (measured as the absolute difference between the integral
and its approximation) when using classical Gaussian quadrature to compute (B.3)
with ϕ ≡ 1 for a range of δ for varying numbers of quadrature points (NQ).

REMARK B.5. Whilst it is possible to generate a set of Generalised Gaussian

weights and nodes to compute integrals of the form of (B.3) exactly (using a tech-

nique similar to that discussed in Remark B.4), a new set of weights and nodes must

be computed for each value of δ, so this is very impractical to do during on-the-fly

computation. For a given NQ, a third approach1, which we have not implemented,

might be to generate weights and nodes for δj ∈ (0, δ∗), for j = 1, . . . , NQ
′. The

ith weight and node may be interpolated using Chebyshev polynomials, taking δ as a

variable. The Chebyshev coefficients may then be stored, and (for this choice of NQ)

1As suggested by Daan Huybrechs of KC Leuven.
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weights and nodes can be produced for any given δ. Naturally, the larger the choice of

NQ, the larger the number of interpolation points will be, and the more accurate the

resulting quadrature routines will be.

B.2 Computing inner products

Here we outline the procedure to compute a typical entry of the stiffness matrix of a

standard Galerkin BEM for two basis functions φn and φm, supported on suppφn and

suppφm respectively. Other inner products that occur in standard and HNA methods

are discussed in §B.2.4. Here we assume that both basis functions are polynomial over

their support, and that their support is less than one wavelength long. With a (non-

standard) HNA basis such as those discussed in 2.2, there will typically be elements

which are many wavelengths long, methods for such a case are discussed in §B.3.
Everything we write here assumes the choice A = Ak,η, although a similar approach

would be required for the constellation combined operator.

A typical BEM inner product will take the form

(Kφn, φm)L2(∂Ω) =

∫

suppφn

∫

suppφm

K(x,y)φn(x)φm(y) ds(x) ds(y), (B.6)

where φn and φm are basis functions of the approximation space, K := Ak,η − I,

K(x,y) := 2

(
∂Φ(x,y)

∂n(x)
− iηΦ(x,y)

)
, (x,y) ∈ [c, d]× [a, b],

which by the definition (1.7) of the fundamental solution, we can write the kernel in

full

K(x,y) = − ikn(x) · (x− y)

2|x− y| H
(1)
1 (k|x− y|) + η

2
H

(1)
0 (k|x− y|). (B.7)

The integrals that require the most care will be those for which K is singular. We

note that the second term on the right-hand side of (B.7) only exists when x and y

are on different sides of Γ, and is smooth as |x − y| � 0, despite |H(1)
1 (z)| ∼ 2/|πz|

(from [18, 10.7.3]). To see why, we assume that x and y are on neighbouring sides

(otherwise the argument of H
(1)
1 cannot approach zero), and let Pj denote the vertex

between these two sides. It follows that n(x) · (x− y)/|x− y| ∼ |Pj − y| as Pj � y,

balancing the singular behaviour of the Hankel function. Hence, it follows by [18,

10.7.3] that

K(x,y) ∼ 2η

π
log(k|x− y|), |x− y| → 0. (B.8)
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We parametrise x(s) and y(t) as in (2.1), with s and t in [0, LΓ], hence we can rewrite

(B.6) as

(Kφn, φm)L2(∂Ω) =

∫ b

a

∫ d

c

K̃(s, t)φ̃n(s)φ̃m(t) ds dt. (B.9)

where

x([c, d]) = suppφn, y([a, b]) = suppφm, K̃(s, t) := K(x(s),y(t)),

φ̃n(s) := φn(x(s)), φ̃n(t) := φm(x(t)).

We want to separate explicitly the singular components of (B.9), hence we can write

(Kφn, φm)L2(∂Ω) =

∫ b

a

∫ d

c

log(kr(s, t))v(s, t) ds dt, (B.10)

where r is chosen such that r(s, t) = |x(s)−y(t)|, and v(s, t) := φ̃n(s)φ̃m(t)K̃(s, t)/ log(kr(s, t))

is smooth, given (B.8). The type of singularities that occur can be split into four dis-

tinct types:

(i) [a, b] = [c, d], diagonal singularity

(ii) b = c, (or) a = d, point singularity

(iii) b / c, (or) a ' d, near singularity

(iv) No singularity

Case (i)-(iii) can be made simpler by splitting the square into two triangles along

the hypotenuse, and using the Duffy Transformation (e.g. [44]) to transform these

domains into two squares, which yields the following identity:

∫ b

a

∫ d

c

g(x, y) dx dy = (b− a)(d− c)

∫ 1

0

∫ 1

0

G(ξ, ξτ)x dξ dτ, (B.11)

where

G(x, y) := g(c+ (d− c)x, a+ (b− a)y) + g(c+ (d− c)y, a+ (b− a)x). (B.12)

If the integration domain [a, b]×[c, d] is considered as a rectangle, this moves singular

behaviour from the diagonal (case (i)) or corner (case (ii) and (iii)) to the edge(s) of

a square, enabling us to treat the singularity more effectively (see Figure B.2). We

now explain the approach to do this in the cases (i)-(iii).
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→ + → +

Figure B.2: Representation of the Duffy transform, mapping a function defined on
a square domain with a diagonal singularity (represented by a dashed line) to two
squares, each with a singularity at two edges. Such a transform makes grading towards
the singularity more straightforward when implementing quadrature. A similar ap-
proach works for corner/point singularities, although this results in two squares each
with one singular edge.

B.2.1 Diagonal singularity

We are in the setting [c, d] = [a, b], hence we consider

(Kφn, φm)L2(∂Ω) =

∫ b

a

∫ b

a

log(kr(s, t))v(s, t) ds dt, (B.13)

with r(s, t) = |s− t| (this follows by the parametrisation of x and y). Choosing g of

(B.11) to be log(kr(s, t))v(s, t), we obtain

G(ξ, ξτ) = log(k(b− a)|ξ(1− τ)|)V (ξ, ξτ)− log(k((b− a)|ξ(τ − 1)|))V (ξτ, ξ)

= log(k(b− a)|ξ(1− τ)|) (V (ξ, ξτ)− V (ξτ, ξ))

= (log(k(b− a)) + log(ξ) + log(1− τ)) (V (ξ, ξτ)− V (ξτ, ξ)) , (B.14)

where V (s, t) = v(c + (d − c)s, a + (b − a)t) is a combination of sums, compositions

and products of smooth functions, and is therefore smooth. Hence we can decouple

the singularities of the inner product to obtain the representation

(Kφn, φm)L2(∂Ω) = log(k(b− a))

∫ b

a

∫ b

a

(V (ξ, ξτ)− V (ξτ, ξ)) ξ dξ dτ

+

∫ 1

0

log(1− τ)

∫ b

a

(V (ξ, ξτ)− V (ξτ, ξ)) ξ dξ dτ

+

∫ 1

0

log(ξ)ξ

∫ b

a

(V (ξ, ξτ)− V (ξτ, ξ)) dτ dξ

The approach taken in our routine is to approximate the integral using Generalised

Gaussian Quadrature of Definition B.3, grading towards zero in the ξ direction and

towards one in the τ direction (by subtracting the nodes in the definition from 1). It

follows that the logarithmic singularities are handled by this routine, and no grading

is necessary.

175



B.2.2 Point singularity

We now consider (assuming WLOG a < c)

(Kφn, φm)L2(∂Ω) =

∫ b

a

∫ c

b

log(kr(s, t))v(s, t) ds dt (B.15)

and a slightly different approach is required here. We adjust our integration variables

so they are in terms of the distance from b, and choose g of (B.11) to be g(s, t) =

log(kr(s, t))v(s, t), yielding

(Kφn, φm)L2(∂Ω)

=(b− a)(c− b)

∫ 1

0

∫ 1

0

[log(kR(ξ, ξτ))V (ξ, ξτ) + log(kR(ξτ, ξ))V (ξτ, ξ)] ξ dξ dτ.

(B.16)

where V (s, t) = v(b+ s(c− b), b− t(b−a)), and we use two alternate definitions for R

(which is related to the function r), the second of which is only applicable when the

two basis functions are supported on neighbouring sides, touching at a corner of Ω−,

R(s, t) :=

{
s(c− b) + t(b− a), same side,

(s2(c− b)2 + t2(b− a)2 − 2st(c− b)(b− a) cos(θ))
1/2
, neighbouring sides,

where θ denotes the internal angle at the corner between the neighbouring sides.

Henceforth assume that we are in the same side case, the case of neighbouring sides

follows similarly. Focusing on the first singular term of (B.16), we observe

log(kR(ξ, ξτ)) = log(k(ξ(c− b) + τξ(b− a)))

= log k + log ξ + log((c− b) + τ(b− a)). (B.17)

Using the representation (B.17),

(Kφn, φm)L2(∂Ω) = log k

∫ 1

0

∫ 1

0

V (ξ, ξτ)ξ dξ dτ +

∫ 1

0

ξ log ξ

∫ 1

0

V (ξ, ξτ) dτ dξ

+

∫ 1

0

log((c− b) + τ(b− a))

∫ 1

0

V (ξ, ξτ)ξ dξ dτ.

This breakdown of the integral shows that the integrand is only singular as ξ � 0, but

the singularity does not depend on τ (assuming that (b − a) and (c − b) are similar

in length, the case when they are not is discussed below in Remark B.6). Similar

arguments apply to the second singular term of (B.13). Hence, we approximate the

integral using Generalised Gaussian quadrature for ξ ∈ (0, 1) and Classical Gaussian

quadrature for τ ∈ (0, 1). The Generalised Gauss will handle the logarithmic singu-

larity, and as V (ξ, ξτ)ξ and V (ξτ, ξ)ξ consist of sums, products and compositions of

smooth functions, both are therefore smooth.
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REMARK B.6. For a sufficiently elongated (long and thin) domain, the approach

we present here breaks down. Such integrals occur frequently in Galerkin BEMs with

an approximation space on a graded mesh, when basis functions supported on large

elements are integrated against basis functions on small elements. To see why, we

must consider the final term in the integral of (B.17), which may be rewritten as

log((c− b) + τ(b− a)) = log(b− a) + log

(
c− b

b− a
+ τ

)
,

hence if (b−a) ≫ c−b, the integrand has a near singularity (in the sense of Definition

B.3) with δ = (c− b)/(b− a). Similar arguments to (B.17) follow for the second

singular term of (B.13), yielding near singularities with δ = (b− a)/(c− b). We

choose the same parameter δ∗ as in (B.5), and treat these near singularities in the

same way, with layered Gaussian quadrature.

B.2.3 Near point singularity

These integrals may be considered to be of the form

(Kφn, φm)L2(∂Ω) =

∫ b−

a

∫ c

b+

K(x,y)φn(x)φm(y) ds(x) ds(y), (B.18)

for a < b− < b+ < c, with b− near to b+. If φn and φm are supported on different

sides of Γ, we define b ∈ (b−, b+) such that xΓ(b) = Pj (using the parametrisation

(2.1)) is the corner between the two sides. Reformulating the integral as in §B.2.2,
we may write

(Kφn, φm)L2(∂Ω) = (b−a)(c−b)
∫ 1

0

∫ 1

0

[log(kR(ξ, ξτ))V (ξ, ξτ) + log(kR(ξτ, ξ))V (ξτ, ξ)] ξ dξ dτ.

(B.19)

where V (s, t) = v(b+ − s(c− b+), b− + t(b− − a)), whilst either

R(s, t) = s(c− b+) + t(b− − a) + (b+ − b−),

if φn and φm are supported on the same side of Γ, or

R(s, t) :=
(
(s(c− b+) + b+ − b)2 + (t(b− − a) + b− b−)

2

− 2(s(c− b+) + b+ − b)(t(b− − a) + b− b−) cos(θ)
)1/2

,

if φn and φm are supported on neighbouring sides of Γ, where θ is the internal angle

at Pj.

Due to two-dimensional analogue of reasons discussed in Remark B.5, we used

Layered Gaussian Quadrature (of Definition B.2) in ξ and τ .
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REMARK B.7. In the case of near singularities, an (unstable) approach is to in-

tegrate fully up the singularity, and subtract off the difference, i.e.

∫ 1

0

log(x+ δ)ϕ(x) dx =

∫ 1+δ

δ

log(x)ϕ(x− δ) dx

=

∫ 1+δ

0

log(x)ϕ(x− δ) dx−
∫ δ

0

log(x)ϕ(x− δ) dx,

provided that ϕ is smooth and is defined on [−δ, 1] ⊃ [0, 1]. Theoretically, this works

for one-dimensional near singularities such as (B.3). However, in two dimensions this

approach corresponds to the subtraction of thin strips along the edge of the rectangle

[a, b]× [b, c] for some b ∈ [b−, b+]. These thin strips are inherently long and thin with

singularities at the corner, and as discussed in Remark B.6, Generalised Gaussian

quadrature breaks down in such a case.

B.2.4 Other inner products

We note that the representation (B.6) does not cover all inner products, one dimen-

sional integrals, following from the identity component of A and the right-hand side

(f, φm)L2(∂Ω) are more straightforward to compute efficiently, and may be handled

using techniques described in the previous section §B.1. Other integrals that do not

follow this structure are (AΨ, φm)L2(∂Ω) when u
i is the beam source of Definition 3.6,

as Ψ takes the form of a triple integral, similarly (AGγ�Γj
φn, φm)L2(∂Ω) of §4.4. The

latter of these may be handled by considering Gγ�Γj
φn as a separate function, which

will require one-dimensional quadrature to compute (in particular, layered quadra-

ture will be required when suppφn ⊂ γ), but is itself smooth on Γ; and techniques of

this section may be applied, with φn replaced by Gγ�Γj
φn.

B.2.5 Parameter values used

All numerical examples in this thesis were performed in MATLAB, for which standard

machine precision accuracy is 10−16. These parameters were chosen to such that all

integrals were accurate to machine precision.

NQ = 20, n = 16, σ = 0.15, δ∗ = 0.2.

B.3 Oscillatory quadrature

The oscillatory integrals computed in the methods of this thesis are handled using

a basic composite quadrature approach. The domain is split up into rectangles no
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wider or taller than half a wavelength each, and these are integrated separately. As

k gets large, the number of composite integrals will increase asymptotically like k2

(in fact k3 for certain triple integrals). There are oscillatory routines available, such

as Filon, Secant and the Method of Steepest Descent (for a review of these, see [39]

or [13, §4]), which can be used to integrate independently of frequency. These are

difficult to implement as they require an invertible change of integration variables,

which often requires [a, b]× [c, d] to be split into sub-domains to ensure injectivity of

the inverse map. The inclusion of these routines is appealing, for the sake of removing

the frequency dependent quadrature routines from an otherwise (almost) frequency

independent method.

179



Appendix C

Implementation of Embedding
Formulae

This appendix contains efficient techniques and extensions related to the Combined

Embedding Expansion Approximation of Definition 6.21.

C.1 Fast algorithm for computing far-field derivatives

We can represent derivatives of the far-field coefficient as

∂nD

∂θn
(θ, α) = −

∫

Γ

∂nK

∂θn
(θ,y)

∂uα
∂n

(y) ds(y),

whereK(θ,x) := e−ik[x1 cos θ+x2 sin θ]. We require an efficient method to compute deriva-

tives of the kernel K. We can write these derivatives as ∂nK/∂θn = gn ·K where gn

can be defined iteratively as in (6.28),

g1(θ,y) := −ik[−y1 sin(θ) + y2 cos(θ)] (C.1)

and

gn(θ,y) = gn−1(θ,y)g1(θ,y) +
∂gn−1

∂θ
(θ,y), for n ≥ 2,

by repeated application of the product and chain rules. We can then write a general

formula for gn,

gn(θ,y) =
(
g1(θ,y) +

∂

∂θ

)n
g1(θ,y), for n ≥ 2.

In practice, the operation which maps gn−1 to gn can be computed linearly in finite

dimensions on functions expressed in a Fourier basis {eiℓθ}ℓ∈Z, with finitely many

non-zero coefficients. For example, we can rewrite (C.1)

g1(θ,y) := c−1(y)e
−iθ + c1(y)e

iθ,
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where c−1(y) = −ik
y2 − iy1

2
and c1(y) = −ik

y2 + iy1
2

.

For simplicity, we will drop the argument (y) from c−1 and c1 for now. More generally,

if a function can be represented exactly using 2n+ 1 coefficients b−n, . . . , bn, then (in

terms of coefficients) the operation of multiplying by g1 (of (C.1)) is represented by

· × g1 ≃




c−1 0 · · ·
0 c−1

. . .

c1 0
. . .

...

0
. . . . . . . . . 0

...
. . . . . . c−1

. . . . . . 0
0 c1




and

whilst differentiation with respect to θ is represented by

∂

∂θ
≃




−n 0 . . .

0
. . . . . .

...
. . . . . .

...
. . . . . . 0
. . . 0 n



.

Therefore, the operator g1(θ,y) + ∂/∂θ acting on a function of the form ϕ(θ;y) =
∑n

ℓ=−n bℓ(y)e
iℓθ is represented by

Gn :=




c−1 0 · · ·
−n c−1

. . .

c1 −n+ 1
. . .

...

0
. . . . . . . . . 0

...
. . . n− 1 c−1

. . . . . . n
0 c1




,

and the fast computation of the far-field kernel follows by repeated multiplication of

these matrices

gn(θ;y) =

(
g1(θ,y) +

∂

∂θ

)n

g1(θ;y) =
[
Gn × . . .×G1[c−1, c1]

T
]T [

eiℓθ
]n
ℓ=−n

.

Given c−1, c1 and n, arrays of Gn may be computed very easily, allowing for fast

(non-symbolic) computation of far-field derivatives.
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C.2 Avoiding numerical instabilities in computation of Taylor expansion

Practical implementation of (6.17) also requires care when 0 < |θ − θ0| ≪ 1 is small,

although this is easier to remedy than for the naive implementation (6.10). This is

because numerical errors in the denominator of

θ − θ0
Λ(θ, α)

=
θ − θ0

cos(pθ)− (−1)p cos(pα)

can cause the value of the total fraction to become significantly inaccurate. Using the

identity (6.13) and Taylor expanding about θ0 yields the stable (in a region around

θ0) representation, for α 6∈ Θ∗,

θ − θ0
Λ(θ, α)

=

(
∞∑

n=1

(θ − θ0)
n−1

n!
pn cos(pθ0 + nπ/2)

)−1

,

in practice the sum should be truncated after an appropriate number of terms.

C.3 Computing multi-variate expansion to nth order

The Taylor expansion we present in §6.2.2 is first order. Here we outline a procedure

to extend to higher order multi-variate Taylor expansion. This requires computation

of arbitrary mixed derivatives of the far-field coefficient D(θ, α).

Computation of derivatives in θ only is far more straightforward from the integral

representation (6.3), the derivatives in α only follow by reciprocity (Theorem 6.4).

Practically, only half of the non-symmetric mixed derivatives need to be computed,

again thanks to reciprocity, as we have

∂nθ+nα

∂θnθ∂αnα
D(θ∗, α∗) =

∂nθ+nα

∂θnα∂αnθ
D(α∗, θ∗).

But this offers little consolation considering the effort required to compute the mixed

derivatives, which cannot be obtained using the representation (6.3). We can obtain

an exact representation for these using the representation (6.4), for example

∂D

∂α
(θ, α)

=
∂

∂α

[
1

Λ(θ, α)

∑

m

Bm(α)D̂(θ, αm)

]
(C.2)

=

∑
m[Bm(α)

∂Λ
∂α
(θ, α)− B′

m(α)Λ(θ, α)]D̂(θ, αm)

[Λ(θ, αm)]2
, (C.3)
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where the coefficients B′
m (derivatives of Bm of (6.6)) can be determined by solving

the system of equations

NT∑

m=1

B′
mD̂(αn, αm) = (−1)p+1∂D̂

∂θ
(α, αn), for n = 1, . . . , NT . (C.4)

Noting that
∂2Λ(θ, α)

∂θ∂α = 0
,

for all θ, α, it follows from (C.2) that

∂2D

∂α∂θ
(θ, α) =

−∑mB
′
m(α)

[
∂[Λ(θ,αm)2]

∂θ
D̂(θ, αm) + Λ(θ, α)∂D̂(θ,αm)

∂θ
+ 2D̂(θ, αm)

∂Λ(θ,αm)
∂θ

]

[Λ(θ, α)]2
.

(C.5)

In the above case, which is the lowest order mixed derivative, to compute the limit as

(θ, α) → (θ∗, α∗), more applications of L’Hopital’s rule are required, making this ap-

proach less practical.Clearly, whilst any desired accuracy close to problematic points

(θ∗, α∗) is achievable, a significant amount of symbolic work is required beforehand.

Formulae for higher order cross terms will become increasingly arduous to compute,

hence to compute to arbitrary precision may require the use of symbolic solver. We

denote such an approximation by

D(θ, α)

≈

Non-mixed partial derivatives using reciprocity︷ ︸︸ ︷
NT

∗∑

n=0

[
(θ − θ∗)

n

n!

∂nθPFD

∂θn
(θ∗, αm1) +

(α− α∗)
n

n!

∂nθPFD

∂θn
(α∗, αm2)

]

+
∑

nθ+nα≤NT
∗

nθ,nα∈N

(θ − θ∗)
nθ(α− α∗)

nα

nθ!nα!
lim

(θ,α)�(θ∗,α∗)

∂NT
∗

∂θnθ∂αnα

[∑NT

m=1 bm(α)PF D̂(θ, αm)

Λ(θ, α)

]

︸ ︷︷ ︸
Mixed partial derivatives

,

for 0 < |θ− θ0| ≪ 1 and 0 < |θ− θ∗| ≪ 1, with θ0 ∈ Θα and θ∗ ∈ Θ∗, where AMω has

been chosen such that θ∗ = αm1 ∈ Θ∗ and θ∗ = αm2 ∈ Θ∗.
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