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Abstract

Compressible fluid flows governed by the Euler Equations of gasdynamics exhibit sharp fea-

tures such as shocks and expansions which are difficult to capture computationally. In order

to focus efficiently on these features an adaptive facility is required.

A standard numerical scheme is the so-called Lagrange-plus-remap method, otherwise known

as the ALE (Arbitrary Lagrangian Eulerian) scheme, on a refined mesh using AMR (Adaptive

Mesh Refinement). This thesis focuses on the Lagrangian step in the ALE scheme and on an

adaptive strategy based on error estimates. The strategy makes use of truncation errors of

pairs of schemes of the same order of accuracy to monitor the error and to refine the mesh.

Error estimates are obtained for the Isothermal and Euler Equations in both one and two

dimensions. The strategy is shown to be effective in refining areas of compressibility.
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Chapter 1

Introduction

The purpose of this thesis is to develop an error estimate for the Lagrangian phase of an

ALE (Arbitrary Lagrangian Eulerian) scheme, which is used to solve the compressible Euler

Equations of gasdynamics. When used as a refinement monitor it is computationally cost

effective yet retains an accurate numerical solution. In this chapter we discuss the key

ideas used to motivate this work and outline the developments towards obtaining the error

estimates.

It is often required to obtain accurate numerical solutions for large scale fluid flow problems.

Mathematical models of fluids, such as the compressible Euler equations, arise from the

understanding of how fluids behave. Ideally we would like to solve problems analytically.

A problem with simple geometries, initial data and boundary conditions sometimes have an

analytic solution associated to it. However, due to the complexity of such mathematical

models it is not always possible to determine an exact solution, hence a numerical solution

is sought.

Computational Fluid Dynamics (CFD) is the study of numerical techniques applied to such

problems. For compressible flows the solution of the Euler Equations of gasdynamics often

exhibit sharp features which can be difficult to model numerically. Advancements towards

obtaining accurate and efficient numerical solutions include a combination of Adaptive Mesh

Refinement (AMR) and ALE. Although many techniques exist it still remains to obtain a

suitable refinement criteria to incorporate with the AMR.

Before investigating numerical approaches we must understand the behaviour of fluids and

where we can make assumptions about conservation of mass, momentum and energy.

We are interested in large scale fluid flow problems since they are used to obtain solutions

1
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for complex physical problems such as blast waves, gas flows, shock reflections and collisions,

flow around airfoils, and many more.

With the introduction of computers a range of Hydrocodes containing the numerical methods

used to solve such compressible fluid flow problems have been developed. Hydrocodes are

designed to deal with large scale fluid flow problems efficiently.

In order to apply such numerical methods a computational mesh is required, which may move

or remain fixed. The form of the mesh has an effect on computational expense and accuracy

of the solution. The effects of the mesh on accuracy and efficiency is the main motivation

for this thesis.

1.1 Motivation

Compressible fluid flow problems exhibit such features as shocks i.e. the solution varies

rapidly, whereas the solution elsewhere may vary slowly or remain constant. Modeling shocks

numerically is a difficult task. For the sake of efficiency it is desirable to use a fine mesh

around flow features which are difficult to capture numerically. However, using a globally

fine mesh is extremely computationally expensive.

We wish to use a fine mesh only in the areas of rapidly varying solutions and a coarser mesh

elsewhere, where the solution varies less rapidly.

From the motivation the overall aim is to reduce computational expense by keeping the

number of nodes and elements to a minimum whilst still preserving the accuracy of the

solution by using a method which only refines the mesh around specific flow features.

1.2 Techniques

The two main types of refinement considered in this thesis are r -refinement and h-refinement.

We do not consider p-refinement in this work, which is where the numerical scheme is refined

rather than the mesh.

For r -refinement the number of nodes remain fixed and are moved towards the areas of

interest. A disadvantage of this approach is that there will be under-resolved areas of the mesh

which could lead to ambiguities. The ALE method is widely used by the CFD community

and is a type of r -refinement. This method combines the advantages of a fixed mesh and

moving mesh. The details and developments of this method will be discussed further in
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Chapter 2.

It is known as h-refinement when elements are subdivided. This leads to an increase in

elements and nodes. AMR is a type of h-refinement. AMR is used by the CFD community

to detect specific flow features using a monitor, then only these areas are refined. The monitor

could take the form of density gradients or error estimates amongst others. An overview of

refinement monitors is given in Chapter 2.

The requirement of an efficient refinement monitor leads to the aims of this thesis.

1.3 Aims

Although a variety of refinement criteria exist, including monitors which may take the form

of an error estimate, see [77], there is yet to be an error estimate based entirely on the full

form of the truncation error for the utilised schemes. Thus the aim of this thesis is to develop

an error estimate based on truncation errors.

The aim is to obtain an error estimate for a system of two equations then advance to estimate

an error for the Euler equations, which is to be done by developing the approach in 1D then

advancing to 2D. We aim to obtain the error estimate by comparing the truncation error of

a widely used method (called here the Main Scheme) from [64] against the truncation error

of an alternative method of the same order. The difference between the two methods can

then be used to obtain an estimated error using a technique similar to Milne’s approach for

Ordinary Differential Equations (ODEs), this will be discussed further in Chapter 2.

To develop an appropriate error estimate we concentrate on the Lagrangian step of the ALE

approach since this is where the solution initially becomes available.

Since we are dealing with truncation errors and solutions containing discontinuities, we verify

that the method can be applied to problems with steep gradients in Appendix C.

By obtaining a monitor which takes the form of an error estimate we aim to detect rapidly

varying flow features in the solution automatically. Hence, we use the monitor to trigger which

areas of the mesh require refinement. In return we obtain a solution which is computationally

cost effective whilst maintaining the accuracy of the solution.

We now discuss the thesis layout along with the developments towards obtaining an error

estimate for the 2D compressible Euler equations.
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1.4 Developments and Thesis Layout

In Chapter 2 we set up the problem. The equations of interest are described along with

their formulations in Eulerian and Lagrangian reference frames. The numerical schemes used

to solve the system of equations are then discussed. We give an overview of the work that

already exists for different methods of refinement and error estimations. This leads on to the

discussion of how we develop an error estimate in this work.

We discuss the use of two semi-discrete temporal schemes in Chapter 3. Two schemes for

the temporal derivatives are described for systems of two and three equations. We obtain

the truncation errors for each scheme which are then used to determine a computable error

in one step.

The spatial derivatives are investigated in Chapter 4 for the systems of two and three equa-

tions. The Galerkin and Petrov-Galerkin approaches are described in order to obtain two

different semi-discrete schemes in space. The truncation error from each spatial scheme is

obtained, leading to a spatial approximation to the error in one step.

In Chapter 5 we combine the methods from Chapter 3 and Chapter 4. This leads to the

schemes for the two and three systems being expressed in their fully-discrete form, from

which we can derive errors for both the density and velocity.

Chapter 6 consists of the results from the approximated errors compared against a test prob-

lem, Sod’s shock tube, details of which are given in Chapter 6 .

Since the main aim of this work is to investigate error estimates for the system of three

equations in 2D we extend the results from Chapter 5 to the 2D case of the Euler equations

in Chapter 7.

Chapter 8 is dedicated to the results for the 2D case using a variety of test problems, where

the details of such problems are given.

Finally in Chapter 9 we discuss all results, draw some conclusions and highlight areas of

further work.

In Appendix A we define some preliminaries including the timestep and artificial viscosity

calculation. We discuss the odd-even decoupling phenomenon to verify the choice of a stag-

gered grid used in this work, in Appendix B. In Appendix C we demonstrate a test problem

to our approach using the wave equation with a smooth solution of varying gradients in order

to investigate the validity of our approach for steep solutions. Some of the difficulties ob-

served with the numerical solution, namely the contact is discussed in Appendix D. Finally

we give details of the 2D shape functions in order to express the 2D spatial discretisations in

Appendix E.



Chapter 2

Background

In this work we look at the Euler equations of gas dynamics in a Lagrangian reference frame.

To understand how a Lagrangian reference frame works and the form of the equations we

also consider an Eulerian reference frame. Since much of the literature express the Euler

equations in an Eulerian reference frame or a hybrid form we wish to clarify what we mean

by a Lagrangian reference frame. By doing so we distinguish between the Eulerian reference

frame, hybrid form and Lagrangian reference frame.

We begin by discussing the behaviour of fluids in order to understand the mathematical

model in different forms.

Once the mathematical model is described we discuss the use of approximating the mathe-

matical model using hydrocodes. Hydrocodes make use of numerical techniques to obtain an

approximate solution to the mathematical model. Some of the techniques used in this thesis

come from the hydrocode CORVUS, as discussed in [64, 10].

To begin the investigation using numerical methods, we set up the computational mesh. Such

numerical methods are then discussed along with the treatment of shocks using artificial vis-

cosity. Shock treatment is an important aspect in this thesis since we aim to refine around

shocks efficiently. From this we discuss some of the different refinement strategies that exist.

In this thesis we wish to develop a refinement monitor based on error estimates. We dis-

cuss the different techniques used to estimate errors. This leads to the methodology behind

the technique we develop in this thesis, which is initially discussed in Chapter 3, where the

development of an error estimator begins with the semi-discrete in time case.

5
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2.1 Behaviour of Fluids

To formulate the model we use continuum mechanics, this describes the motion of a fluid as

a continuous mass rather than as discrete particles. Solids, gases and liquids are made up of

molecules which are separated by spaces, therefore there are discontinuities in the material.

However, since the molecules are dense the material is often modeled as a continuum, where

the matter within the material is assumed to be continuously distributed over the entire

region.

Problems are characterised by the specific behaviour of the fluid. In this thesis we are par-

ticularly interested in the effects of compressibility. A compressible fluid is one in which a

change in pressure results in a change in density. Fluids can also be viscous, where the fluid

friction has an effect on the motion of the fluid. However, where other features of the fluid are

more significant than viscosity then it can be neglected and the fluid assumed to be inviscid.

In order to derive the equations which describe the material behaviour, the following assump-

tions are made:

• conservation of mass

• conservation of momentum (or momentum balance)

• conservation of energy.

In this thesis the fluid is assumed to be inviscid since compressibility dominates. The com-

pressible nature of the fluid often results in shock waves, where there will be discontinuities

in the flow variables.

Mathematical models have been proposed using the knowledge of the fluid behaviour. Next

we express such models in three forms in order to distinguish between the forms stated in

much of the literature and the form we use in this thesis.

2.2 Eulerian and Lagrangian Specifications

There are two sets of variables which can be used to describe the kinematic deformation of

the continuum. These are known as, Eulerian, which is a spatially based description, and

Lagrangian, which is a material based description.

To visualise the differences between an Eulerian and Lagrangian reference frame consider a
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stationary ball placed on a river bank. The ball is the reference point here and the flow of

the river is described at the point it passes the ball. This ball is in an Eulerian reference

frame. Now consider the ball to be floating on the river as it flows downstream. The ball is

the reference point again, however it is now following the fluid. The ball is in a Lagrangian

reference frame.

In a Lagrangian frame the motion of a continuum moving in Rd, where d denotes the dimen-

sion, is traced using the function

x : Rd × R→ Rd.

We have

x̂ = x(ξ, t) (2.1)

which is the location x of a particle within the continuum described by a fixed co-ordinate ξ

at time t which coincides instantaneously with the Eulerian co-ordinate x̂. We represent the

Eulerian reference point as x̂ and the Lagrangian reference point to be a time independent

vector ξ.

The Lagrangian velocity (or material velocity) is defined as u(ξ, t), where

u(ξ, t) =
∂x(ξ, t)

∂t
(2.2)

and the Eulerian velocity or spatial velocity is defined as û(x̂, t) where in view of eqn. (2.1),

û(x̂, t) = û(x(ξ, t), t) = u(ξ, t). (2.3)

Hence the relationship between Lagrangian and Eulerian velocities can be expressed using

eqn. (2.2) as
∂x(ξ, t)

∂t
= û(x(ξ, t), t) = u(ξ, t) (2.4)

for a smooth x(ξ, t).

We now demonstrate how mathematical models for fluid flow problems can be expressed in

an Eulerian form and a Lagrangian form, additionally, how the Eulerian and Lagrangian

specifications for continuum deformations are connected by the material derivative. This is

done as it is often difficult to find a summary of the three representations. The equations

are usually expressed in terms of the material derivative, see [65, 10, 17, 68].
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2.3 Euler Equations of Gasdynamics

The equations for mass, momentum and specific internal energy in Eulerian form may be

derived for a volume of fluid within a continuum using an Eulerian reference frame, i.e.

a control volume fixed in time. Considering a fixed volume, the equations are derived in

accordance to how fluid flows across this volume in time.

2.3.1 Mass

Under the assumption that the mass of the fixed material volume increases in accordance

with the flux of mass across its boundary, from [40] we have

d

dt

∫
V̂

ρ̂dV̂ = −
∮
∂V̂

ρ̂û · n̂dŜ, (2.5)

where ρ̂ is the density in terms of spatial coordinates, ∂V̂ is the surface enclosing V̂ in the

spatial coordinates and û · n̂ is the outward normal component of the velocity on the surface,

see [60].

Using the divergence theorem we obtain∫
V̂

[ρ̂t +∇ · (ρ̂û)]dV̂ = 0

where ∇ = ∇x̂.

Since V̂ is arbitrary the integrand vanishes, resulting in the conservation of mass equation in

Eulerian coordinates

ρ̂t +∇ · (ρ̂û) = 0. (2.6)

2.3.2 Momentum

Using Newton’s second law for balancing forces where the rate of change of momentum in a

control volume is equal to the forces acting on it, from [40] we have

d

dt

∫
V̂

ρ̂ûdV̂ = −
∮
∂V̂

[ρ̂ûû+ p̂n̂]dŜ, (2.7)
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where p̂ is the pressure in terms of spatial co-ordinates.

Using the divergence theorem this becomes∫
V̂

[(ρ̂û)t +∇ · (ρ̂ûû) +∇p̂]dV̂ = 0.

The integrand vanishes since the limit V̂ is arbitrary, resulting in the momentum balance

equation written in Eulerian coordinates

(ρ̂û)t +∇ · (ρ̂ûû) +∇p = 0. (2.8)

2.3.3 Specific Internal Energy

Using the first law of thermodynamics for energy balance, as stated in [15] the total energy

for a material volume is

d

dt

∫
V̂

ÊdV̂ = −
∮
∂V̂

p̂û · n̂dŜ −
∮
∂V̂

(ûÊ)n̂dŜ, (2.9)

where Ê is the total energy in terms of spatial co-ordinates.

Using the divergence theorem we obtain∫
V̂

[(Ê)t +∇ · û(Ê + p)]dV̂ = 0.

The integrand vanishes due to the arbitrary nature of V̂ , giving

Êt +∇ · (ûÊ) +∇ · (p̂û) = 0. (2.10)

In this case we wish to gain an expression for specific internal energy since this is the variable

used in the Main Scheme from [64]. The internal energy per unit density is expressed as ρ̂ε̂

where the specific internal energy is ε̂.

As stated in [52] we have

Ê =
1

2
ρ̂û2 + ρ̂ε̂,

and by substituting into eqn. (2.10) we have

1

2
(ρ̂û2)t + (ρ̂ε̂)t +∇ · (1

2
ρ̂û3) +∇ · (ûρ̂ε̂) +∇ · (ûp̂) = 0. (2.11)
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Using the identity

∇ · (sv) = s∇ · v + v · ∇s (2.12)

for any scalar s and any vector v, we obtain

1

2
û(ρ̂x̂)t +

1

2
ρ̂ûût + ρ̂tε̂+ ε̂tρ̂+ ρ̂û2∇ · û+

1

2
û2∇ · ρ̂û

+ ε̂∇ · ρ̂û+ ρ̂û · ∇ε̂+ û · ∇p̂+ p̂∇ · û = 0. (2.13)

Simplifying and using eqn. (2.6) and eqn. (2.8) we then obtain

− 1

2
ρ̂û2∇ · û− 1

2
û2∇ · ρ̂û− 1

2
û · ∇p̂+

1

2
û2∇ · ρ̂û

− 1

2
ρ̂û2∇ · û− 1

2
û2∇ · ρ̂û− 1

2
û · ∇p̂

− ε̂∇ · ρ̂û+ ε̂∇ · ρ̂û+ ρ̂û2∇ · û+ ε̂tρ̂+
1

2
û2∇ · ρ̂û

+ ρ̂û · ∇ε̂+ û · ∇p̂+ p̂∇ · û = 0 (2.14)

⇒ ρ̂(ε̂t + û · ∇ε̂) + p̂∇ · û = 0. (2.15)

Therefore the equation for specific internal energy written in terms of the Eulerian coordinates

is

ε̂t + û · ∇ε̂+
p̂

ρ̂
∇ · û = 0. (2.16)

The conservation laws written in Eulerian coordinates are related to the conservation laws in

Lagrangian coordinates through the material derivative, we shall call these expressions the

Hybrid equations.

We now state the derivation of the Hybrid equations in order to distinguish between the

Hybrid equations, which are commonly stated in the literature, and the full Lagrangian

form, which we wish to work with in this thesis.

2.4 Material Derivative

Consider the evolution of a fluid variable when the velocity field is the flow velocity. For

a certain volume of fluid moving along a pathline that follows the velocity of the fluid, the

material derivative will describe the evolution of the density of the volume of fluid in time.

Consider f̂ : Rd × R → R to be a function of space and time coordinates (x̂, t) for some
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physical property, i.e. pressure, density, energy etc.. Then the corresponding function of

f(ξ, t), remembering ξ is the material co-ordinate and f : Rd × R→ R, is defined by

f(ξ, t) = f̂(x̂, t) = f̂(x(ξ, t), t).

The derivative of f with respect to t following a particle path is known as the material time

derivative denoted by D
Dt

. By the chain rule where ∇x̂ = ∇x = ∇ here, we have

Df(ξ, t)

Dt
=

Df̂(x(ξ, t), t)

Dt

=
∂f̂(x(ξ, t), t)

∂t
+
∂x(ξ, t)

∂t
· ∇f̂(x(ξ, t), t)

=
∂f̂(x(ξ, t), t)

∂t
+ û(x(ξ, t), t) · ∇f̂(x(ξ, t), t) using eqn. (2.4)

=
∂f̂(x̂, t)

∂t
+ û(x̂, t) · ∇f̂(x̂, t) using eqn. (2.1). (2.17)

So we have the material time derivative of any physical property in ξ co-ordinates written in

terms of spatial derivative in x̂ co-ordinates as

Df(ξ, t)

Dt
=
∂f̂(x̂, t)

∂t
+ û(x̂, t) · ∇f̂(x̂, t). (2.18)

2.5 Hybrid Equations

The equations written in the material derivative form provides a link between the Eulerian

and Lagrangian descriptions which we demonstrate next.

2.5.1 Mass

From eqn.(2.6) we have the conservation of mass in an Eulerian reference frame,

ρ̂t +∇ · ρ̂û = 0.

Now apply eqn. (2.12) to obtain

ρ̂t + ρ̂∇ · û+ û · ∇ρ̂ = 0. (2.19)
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On comparison with eqn. (2.18) this becomes a hybrid equation of the form

Dρ

Dt
= −ρ̂∇ · û, (2.20)

where the time derivative of ρ is in terms of Lagrangian co-ordinates i.e. ρ = ρ(ξ, t) and the

right hand side is in terms of Eulerian co-ordinates.

Next the conservation of momentum equation is expressed in terms of the material derivative.

2.5.2 Momentum

From eqn. (2.8) we have

(ρ̂û)t +∇ · ρ̂û2 +∇p̂ = 0.

We apply eqn. (2.12) and also use the following identity

∇ · (ρuu) = ρu(∇ · u) + (u · ∇)ρu (2.21)

to obtain

û(ρ̂t +∇ · ρ̂û) + ρ̂(ût + û∇ · û) +∇p̂ = 0.

Noticing that the first bracketed term is 0 from the conservation of mass eqn. (2.6), the

above can be simplified into the hybrid equation as

ρ̂
Du

Dt
= −∇p̂ (2.22)

where the time derivative of u is in terms of Lagrangian co-ordinates i.e. u = u(ξ, t) and

the right hand side is in terms of Eulerian co-ordinates.

Finally the conservation of specific internal energy is expressed in terms of the material

derivative.

2.5.3 Specific Internal Energy

From eqn. (2.16) we have

ε̂t + û · ∇ε̂+
p̂

ρ̂
∇ · û = 0.
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Notice that on comparison with eqn. (2.18) the above becomes

ρ̂
Dε

Dt
= −p̂∇ · û (2.23)

where the time derivative of ε is in terms of Lagrangian co-ordinates i.e. ε = ε(ξ, t).

The equations in their hybrid form are often what is seen in the literature. However, since

we are only interested in the Lagrangian phase, we express the equations entirely in terms of

Lagrangian co-ordinates.

2.6 Lagrangian Form

To link between the total derivative in the hybrid equations we observe that

D

Dt
≡ ∂

∂t
.

To transform from Eulerian coordinates to Lagrangian coordinates we have the instantaneous

mapping

x̂ = x(ξ)→ ξ.

From this mapping we have

dV̂ → |J |dV, (2.24)

where dV̂ is the control volume in terms of x̂, dV is the control volume in terms of ξ, and

|J | is the determinant of the Jacobian which maps between the Eulerian and Lagrangian

coordinates. Additionally, from [13] and [14], we have

∇x̂ → J−1∇ξ =
C

|J |
∇ξ, (2.25)

as a result of the chain rule, where C is the adjoint matrix obtained from the inverse of

the Jacobian. This has been separated out for ease of cancellations when transforming the

equations, as demonstrated later in this work.

All flow variables are now written in terms of Lagrangian co-ordinates, where ρ = ρ(ξ, t),

p = p(ξ, t), u = u(ξ, t) and ε = ε(ξ, t).



CHAPTER 2. BACKGROUND 14

2.6.1 Mass

Under the conservation of mass assumption, for V moving with the fluid velocity, from [40]

we have

0 =

∫
V

D(ρ|J |)
Dt

dV

≡
∫
V

∂(ρ|J |)
∂t

dV.

Since V is arbitrary

∂(ρ|J |)
∂t

= 0

⇒ ∂m

∂t
= 0, (2.26)

where m = ρ|J |. In what follows the mass is expressed in Lagrangian co-ordinates, where it

is verified in [60] that m = m(ξ) = ρ|J |.

2.6.2 Momentum

For the momentum equation we integrate the hybrid form of eqn. (2.22),∫
V̂

ρ̂
Du

Dt
dV̂ = −

∫
V̂

∇x̂p̂dV̂ .

Under the change of variables we obtain∫
V

ρ
∂u

dt
|J |dV = −

∫
V

C

|J |
∇ξp|J |dV.

Since the limits are arbitrary we obtain

ρ|J |∂u
∂t

= −C∇ξp. (2.27)
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2.6.3 Specific Internal Energy

For the specific internal energy equation we integrate the hybrid form of eqn. (2.23),∫
V̂

ρ̂
Dε

Dt
dV̂ = −

∫
V̂

p̂∇x̂ · ûdV̂ .

Under the change of variables we obtain∫
V

ρ
∂ε

∂t
|J |dV = −

∫
V

p
C

|J |
∇ξ · u|J |dV.

Since the limits are arbitrary we obtain

ρ|J |∂ε
∂t

= −pC∇ξ · u. (2.28)

2.7 Systems of Equations

The overall aim of the thesis is to gain an accurate and efficient numerical method for the

Euler Equations of gas dynamics. We begin our investigation by looking at a model problem

involving a system of two equations, namely the Isothermal Equations, which is a simplified

version of the Euler Equations. This system of equations is useful since the algebra is much

simpler whilst maintaining the main features of a hyperbolic system. We investigate the

Isothermal Equations in 1D initially, extend the developments to the Euler Equations in 1D,

and finally develop the method for the 2D Euler Equations.

2.7.1 Isothermal Equations

An isothermal process is used as a model where a tube of gas is considered which is in contact

with a heat reservoir. The changes in the gas occur slowly enough for the temperature of

the gas to be regulated between the gas and the heat reservoir continually by heat exchange.

This ensures that the temperature of the gas remains constant. Isothermal processes occur

frequently in living cells. Phase changes such, as evaporation and melting, are also isothermal

processes.

The ideal gas law from [52] is

p = RρT, (2.29)
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where p is the pressure of the gas, R is the ideal gas constant and T is the temperature. For

the isothermal process, T is constant, therefore the ideal gas law eqn. (2.29) reduces to

p = a2ρ, (2.30)

a is the sound speed.

Due to the heat transfer between the wall of the filled tube and the heat reservoir, energy is

not conserved in this system. However, mass and momentum satisfy conservation laws. Along

with the equation of state, eqn. (2.30), the Isothermal equations written in a Lagrangian

reference frame are:

• From eqn. (2.4) we have
∂x

∂t
= u.

• The conservation of mass from eqn. (2.26) is written as

∂m

∂t
= 0

⇒ m = m(ξ). (2.31)

• Finally the momentum equation from eqn. (2.27) is written as

ρ|J |∂u
∂t

= −C∇p

⇒ ∂u

∂t
= −C∇p

m(ξ)
, (2.32)

where we use eqn. (2.26) and ∇ = ∇ξ.

2.7.2 Euler Equations

The Euler equations of gas dynamics, which are simplifications of the compressible Navier

Stokes equations of fluid dynamics with the viscosity of the fluid neglected, describe com-

pressible inviscid hydrodynamics. They can be used to model many physical phenomena,

such as gas flows and blast waves. It is assumed that the gas is in thermodynamic and

chemical equilibrium, where the internal energy is a function of density ρ and pressure p. In

addition to the Euler equations, an equation of state is specified, which in this case relates
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specific internal energy and density. The ideal gas equation of state is

p = (γ − 1)ρε,

where γ can be modified for different fluids and ε is specific internal energy.

The Euler equations written in a Lagrangian reference frame are,

• From eqn. (2.4) we have
∂x

∂t
= u. (2.33)

• The conservation of mass from eqn. (2.26) is written as

∂m

∂t
= 0 (2.34)

⇒ m = m(ξ).

• The momentum equation from eqn. (2.27) is written as

ρ|J |∂u
∂t

= −C∇p

i.e.
∂u

∂t
= − C

m(ξ)
∇p. (2.35)

• Finally the specific internal energy equation from eqn. (2.27) is written as

ρ|J |∂ε
∂t

= −pC∇ · u

i.e.
∂ε

∂t
= −pC∇

m(ξ)
· u, (2.36)

where ∇ = ∇ξ.

Now the equations are expressed in terms of Lagrangian co-ordinates, we can look at the

numerical methods to solve these systems.
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2.8 Hydrocodes

Due to the complex nature of the systems above, it is not possible to gain an analytic solution

for most problems. Computational methods are employed to obtain approximate solutions.

They are cheaper and quicker than experiments and can be used on a wide variety of geome-

tries and parameters. When numerical methods are applied to fluid flow problems, the area

is known as computational fluid dynamics (CFD). These problems are solved on computers,

often supercomputers, which has led to the ongoing development of the numerical models,

known as hydrocodes, to improve accuracy and efficiency. The results from the hydrocode

must be accurate and stable for meaningful solutions. Once the accuracy and stability of

the hydrocode has been tested against known solutions, it can be used for more complex

numerical experiments without known solutions.

Hydrocodes are typically large computer programs, which in their purest form were developed

for fluids only i.e. no material strength. However, the successful development of hydrocodes

has led to the inclusion of strength, equation of state for solids etc.

Hydrocodes have a range of applications in fluid modeling such as flyer plates, burn waves

through high explosives, stars, cratering from asteroids etc. Most importantly for this thesis,

hydrocodes can be used to simulate shocks [42].

Several hydrocodes exist which include CAVEAT (seen in [1]), DYNA (from [29]), SALE

(from [4]) and SALE-3D (see [5]). CORVUS (from [10]) uses a staggered mesh and a La-

grangian reference frame. Temporal derivatives are approximated with a staggered finite

difference time step, where spatial derivatives are evaluated using a finite element Galerkin

approach. Many aspects of CORVUS form the basis to this work.

2.9 Grid Generation

In order to obtain a numerical solution on a physical region, we require the region to be

discretised into a set of points or cells and the time window to be similarly discretised.

2.9.1 Spatial Grid

In this thesis, non-uniform quadrilateral elements in the physical space (x, y) are mapped

onto the uniform grid in computational space (ξ, η). This is done to make Taylor expansions

easier to manipulate when we use them for truncation errors later on.
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The neighbouring points are identified by taking a unit step of the spatial numbering system

(i, j) in the (ξ, η) direction respectively. The co-ordinate system (ξ, η) is assumed to be

aligned with the physical boundaries.

For the physical space, the coordinates are

(x, y) ∈ [x0, xN ]× [y0, yM ], N,M ∈ Z,

where N and M are the number of points in the x and y direction respectively.

We map from the non-uniform physical space to the square in transformed computational

space,

(x, y)→ (ξ, η),

where for the computational space we have

(ξ, η) ∈ [−1, 1]× [−1, 1].

This gives the uniform grid spacing of h ≡ ∆ξ = 2
N

and l ≡ ∆η = 2
M

.

Each point in (x, y) space is mapped to a single point in the square in (ξ, η) space (see [88]),

where the discrete points on the computational mesh (ξi, ηj) are defined by

ξi = hi, i = 0, · · · , N

ηj = lj, j = 0, · · · ,M.

To implement the mapping the equations are transformed to the computational variables,

thus we will have derivatives in terms of (ξ, η) coordinates, as seen in Section 2.6. These

transformed equations are then solved numerically on the computational grid.

The scenario also holds for one dimensional problems.

2.9.2 Temporal Grid

For the temporal derivatives, the timestep is

k ≡ ∆t.
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The choice of the timestep is discussed in Appendix A.2. Discrete points in time are defined

by

tn = nk, n = 0, 1, 2 · · ·

Next, we describe how the variables of the problem are distributed on the computational

mesh.

2.9.3 Computational Grid

We apply a staggered grid to the transformed Lagrangian equations. The velocity, position

and acceleration are located at the nodes of the elements whereas the density, pressure,

internal energy, element mass and volume are stored at the centres of the elements. The

CFD community often uses a staggered mesh, since material strength can be discretised

easily. The nodal positions along with velocities on a staggered mesh allow for simpler

interface tracking.

In addition, when dealing with spatial derivatives on an unstaggered mesh, we observe the

phenomena of odd-even decoupling. This is overcome by using a staggered mesh.

The staggered grid method was first developed by F. Harlow and J. Welch in 1965 [31],

then known as the Marker and Cell method. One of the advantages they showed was that

staggered grids improve stability and accuracy compared to the unstaggered grid which causes

‘chequerboard’ effects. The odd even decoupling is demonstrated in Appendix B.

In 1D an element is staggered as in Figure 2.1. In 2D, a staggered element looks like Figure

2.2.

x, u ρ, p,
m, V

x, u

Figure 2.1: 1D Staggered Grid.
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x,u

ρ, ε, m, V

Figure 2.2: 2D Staggered Element in Space.

2.10 Numerical Schemes

There is a wide range of numerical schemes available which can be applied to a variety of

fluid flow problems. They can be divided into Finite Difference Methods (FDM), where the

solutions are obtained as point values, see [72], Finite Volume Methods (FVM), where the

solution is an average of the cells see, [53], and Finite Element Methods (FEM), where the

solution is expressed as a linear combination of basis functions, see [100].

For conservation laws these schemes can further be divided into shock capturing schemes,

where any shocks in the solution are dealt with automatically, the correct shock-speed is

obtained, see [26, 32, 33, 76, 81], and shock fitting schemes where the shocks are detected

and the jump condition is imposed to determine the shock speed, see [34].

An excellent overview of different schemes, which are applied to a wide range of fluid flow

test problems in 1D and 2D is given in [57]. It is concluded in [57] that some schemes work

better than others for specific problems however, there is not a particular scheme which works

better universally than any other.

There exists a wide range of schemes applied to staggered grids, as seen in the Marker and

Cell method in [98, 97, 69], initially developed in [31]. The method was extended to finite

differences in [67]. An overview of some staggered grid methods is given in [63]. In this work

a finite element approach is applied to the staggered variables in space, which reduces to a

FDM.

Additionally, there are several numerical schemes used to express temporal derivatives. In

[78], there is a half timestep applied to the velocity and all other variables, which are then

updated to the full timestep from this, whereas in [46] a full timestep predictor step is taken,

these values are then corrected to the same full timestep.

The basis of the approach in this thesis comes from [10], which describes the development
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towards the hydrocode CORVUS. CORVUS uses a two step timestepping scheme where a

predicted step is taken at a half timestep and then corrected at the full timestep, which

has similarities to the MacCormack scheme described in [52]. The spatial derivatives are

evaluated using a Galerkin Finite Element approach.

2.11 Shock Waves

As mentioned above hydrocodes can be used to simulate shocks. Consider pressure to be

a linear smooth curve connecting three points A, B and C. The wave velocity increases as

the pressure increases. Therefore the velocity of point B is greater than the velocity of point

C, and the wave velocity of point A is greater than the wave velocity of point B. Hence the

curve gets steeper and steeper, until it becomes a straight vertical line, known as a shock

wave, see [18].

Due to the discontinuous nature of the material where there is a non-smooth transition

between the material at the front of the shock and to the back, it is difficult to deal with

this feature numerically. In this work, we incorporate artificial viscosity in order to deal with

shock waves which otherwise would lead to oscillations. To improve accuracy further, we

look at refining the mesh in the vicinity of shocks.

2.12 Artificial Viscosity

As already mentioned in Section 2.11, shocks occur in fluid flow problems and prove difficult

to model numerically. Shocks on a staggered grid are traditionally treated by using artificial

viscosity, whereas cell centred grids typically use Riemann solvers and more recently Go-

dunov type methods, see [10, 59]. The comparison between staggered grid artificial viscosity

methods and cell centred Riemann methods is discussed in [68]. We employ a staggered

grid with artificial viscosity in this thesis, since we wish to follow the methodology in [64].

Furthermore, as the methodology is more developed, the results will therefore be applicable

to a wider audience.

The first successful numerical approach to dealing with shocks was given by von Neumann

[95] in the 1950’s. The idea was to smear the shock over several zones in order to decrease

the oscillations around the shock. The method treats shocks automatically, where and when

they occur. Von Neumann makes use of how viscosity and heat conduction are dissipative
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in shocks. Viscosity smears out shocks by replacing the discontinuity with a continuous and

rapidly varying solution. Hence, the idea is to introduce ‘artificial’ viscosity into the problem.

The artificial viscosity increases the mesh distance around the discontinuity but allows it to

remain comparable to what we already have. This allows for numerical techniques to be

applied to the entire domain and improves the stability of the solution.

In this work, we use a combination of the quadratic artificial viscosity term proposed by von

Neumann [95], along with a linear term from [51]. Christensen’s limiting procedure in [16] is

used, as seen in [64], which is not computationally expensive and reduces excessive dissipa-

tion. The full form of the artificial viscosity used in this thesis is described in Appendix A.1.

To further increase accuracy around shocks and other flow features, we look at an appropriate

refinement criteria to resolve the mesh around such features.

2.13 Refinement

It is desirable to gain an accurate numerical solution for fluid flow problems which is well

resolved on the computational mesh throughout the evolution.

An obvious approach to resolving the solution is to refine the entire domain. However, this

results in a large number of nodes and elements and is extremely computationally expensive.

A way to overcome the expense is to resolve only around the areas of interest hence, keeping

the number of nodes and elements to a minimum. In a compressible fluid flow problem, the

areas of interest are in the vicinity of shocks.

The two main types of refinement methods that can be used to resolve the solution around

areas of interest are r -refinement and h-refinement. As mentioned in the Introduction we do

not consider p-refinement in this work.

For r -refinement the number of nodes remains fixed and are moved towards the areas of

interest. A disadvantage of this approach is that there will be under-resolution away from

some areas and an under-resolved solution could lead to ambiguities.

For h-refinement the elements are subdivided in the areas of interest, leading to an increased

number of nodes and elements.

2.13.1 r-refinement

The ALE method developed by Hirt et al. [39] combines the advantages of Lagrangian and

Eulerian formulations, demonstrated in [12]. During the Lagrangian step, the mesh moves
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with the fluid flow, but may become tangled in areas of shocks or high vorticity. A relaxation

technique may then be used to preserve a good quality mesh throughout the computation,

the solution then being remapped to the new mesh. Provided that the Lagrangian nature

of the mesh is preserved in the re-map phase, ALE behaves as an r -refinement method, i.e.

moving the nodes to areas of interest. This can cause disadvantages, such as under-resolution

away from features of interest. Therefore, methods to combine ALE with h-refinement have

been developed in [64] .

2.13.2 h-refinement

AMR is a type of h-refinement, see [11]. There are two practical approaches to h-refinement.

One approach is where elements, which are required to be refined, are clustered together

into separate grids and then refined together, creating a hierarchy of refinement levels. The

alternative method is cell by cell refinement, where individual, or small groups, of elements are

refined. Once elements are subdivided, they are inserted into the mesh. From this the solution

is obtained from the dynamic unstructured mesh. This approach is less computationally

expensive than solving at each level on the hierarchy, but requires extra machinery to deal

with the unstructured mesh.

Cell by cell refinement can also include anisotropic refinement, where the element is divided

in only one direction. Since many of the features of interest only change in one direction,

anisotropic refinement reduces wasted refinement in the other directions. Work has been

carried out on combining ALE with cell by cell refinement, anisotropically and isotropically

in [64].

Density gradients are used in [64] to trigger when and where the refinement should occur.

However, in this work, we are interested in developing alternative refinement criterion. In

[64], the refinement occurs at the end of the Lagrangian step. Due to this, the focus of this

work is on the Lagrangian step.

2.14 Refinement Monitor

The main aim of this thesis is to develop an accurate and efficient method to determine

where and when to refine or derefine elements, leading to the ultimate aim of generating an

automatic technique.

There are several methods used as refinement sensors, with much debate over the variables
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which are best suited in detecting certain flow features.

Pressure or density is used by Anderson et al in [6], where the sensor is the normalised second

difference of these variables.

Aftosmis [2], suggests the necessity of refining both smooth features and shocks for conver-

gence towards the correct solution. It is suggested in [2] that different flow features should

be detected by different sensors, due to the relationship between shocks and element size.

For shocks, Aftosmis suggests using an undivided second difference of pressure. This is nor-

malised by a weighted local average of the pressure to deal with weak and strong shocks.

Smooth features are then detected using undivided differences of total velocity or density.

Undivided differences are also used for shocks by Kallinderis [43], where it is suggested pres-

sure or velocity should be used, since density leads to too much refinement.

Further combinations of refinement sensors are used by Khokhlov [49] and van der Vegt [92].

Three categories, which most refinement criteria fall under, are described by Keats [48];

1. Gradient sensors - where the absolute value of the difference in density between a centre

element and neighbouring elements, based on work by Ripley [74] and Lien [56]. This

is simple but is not sensitive to changes in the second derivative.

2. Higher order sensors - the ratio of the second and first order terms of the Taylor

expansion is used as a sensor, implemented by Sun in [85]. Keats [48] suggests this is

best used for Isotropic refinement as it is noisy when applied to anisotropic refinement.

3. Estimation of optimal cell size - Ham [30], uses first and second order terms from Taylor

series. However, the scheme reduces to first order around shocks when using second

order terms. Therefore, Keats [48] suggests using first order terms from the Taylor

series.

Dannenhoffer [20] also suggests not using second differences as it leads to inappropriate

refinement. It is also suggested in [20], that density is the best flow variable to use with

respect to accuracy, computational time and all flow features of interest being detected.

Previous work by Morrell [64], uses an undivided first order difference due to the simplicity.

It also does not suffer from excessive noise like second differences, as stated in [48] and [20].

The flow variable used by Morrell in [64] is density since it is cell centred, unlike velocity,

and detects contacts as well as shocks. The density change between a centred element and

its neighbours is used. This is compared to a refinement or derefinement tolerance, which

will keep the number of elements to a minimum, whilst still refining around features of
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interest. The user inputs these tolerances, creating a drawback to this method. To overcome

this problem slightly, Morrell manually uses the cumulative frequency of density change at

different times per problem to determine the most accurate tolerance, as suggested in [20].

2.15 Error Estimations

We are ultimately interested in gaining an automatic method to determine where and when

to refine the grid. Refinement methods require an appropriate tolerance to be defined to

compare against refinement criteria.

The first step is to recognise what information we have available from the solution and use

this to define a tolerance. This leads to the investigation of the use of errors in the numerical

solution as a refinement criteria, assuming that the numerical scheme will be less accurate

around the areas we wish to refine.

A variety of techniques to estimate errors is discussed in [77]. These techniques include using

higher order methods and estimates based on the residual of the numerical approximation.

The bound on an error estimate usually relies on a function of various derivatives of the exact

solution. As discussed in [77], this function is difficult to estimate. Therefore, the term is

either eliminated by using the Richardson Extrapolation technique or the Residual Method,

which uses an approximate to the exact solution.

In this thesis, we aim to estimate the term involving derivatives of the exact solution by

using the relationship between two numerical schemes where the approximation to the error

is achieved using a method similar to Milne’s Device for Ordinary Differential Equations

(ODEs), see [27] and [80].

2.16 Choosing a Method to Estimate the Error

It is often impossible to determine an exact solution to CFD problems. Hence, the need

for numerical schemes. Therefore, a true error will be impossible to determine. Here, we

investigate methods to estimate the true error.

There is a considerable amount of work on error estimates, using a variety of techniques.

One area of research is based on using the Hessian matrix to estimate an error, see [86].

Another approach is to use the adjoint for error estimates as discussed in [35, 55, 54, 66]. It

is stated in [66, 93, 23, 44] that the adjoint based method is good for steady CFD problems,
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however for time-dependent problems, as we have here, it is computationally expensive since

it is required to solve the adjoint problem backwards. Aftosmis and Berger [3], also point

out the issue with the adjoint method being computationally expensive, especially when the

Jacobian is not already computed and is only introduced for the sole purpose of adaption.

Energy norms are also used as error estimates as seen in [47, 71, 99]. As originally proposed

by Babus̆ka and Rheinboldt in [8, 9], local residuals would be obtained and the error esti-

mated by the energy norm. Apel et al, see [7], suggest that error estimates based on energy

norms can be used when isotropic or anisotropic refinement should be triggered.

Even with the application of energy norms the question still remains how can we determine

a residual to the numerical scheme. It is suggested in [47], to use local truncation errors

(LTEs). The LTE is obtained from the weak form of the PDE where localised quadratic

B-Splines are used as test functions. The LTE is converted into the local infinity norm, L∞,

following the convergence theory by Tadmor in [87], and then compared to the LTE. From

[47], the LTE and local infinity norm, L∞, exhibit similar behaviour. The outcome of [47]

suggests using the LTE for adaptive methods.

Berger and Colella discuss an alternative method to determine the LTE in [11], where test

functions not B-splines are used, where the ultimate aim is automatic refinement. The

method is based on Richardson extrapolation. The method makes use of an original grid

(at the beginning of a timestep), which is referred to as the fine grid and is then projected

onto a coarser grid. This is achieved by coarsening the fine grid by a factor two in all spatial

directions. The original fine grid is advanced in time by two time steps and the coarse grid is

advanced in time by taking one large timestep. An estimated LTE at time t is obtained, using

the difference of the scheme advanced on the fine grid between the scheme advanced on the

coarse grid. The exact form of the leading terms in the truncation error are not important

in [11], only the order is required. The difference between coarse and fine grid solutions is

obtained from the computation which is proportional to the estimated error. Refinement is

then triggered if the difference values exceed a tolerance, which is set as 0.02 in [11].

In hierarchical AMR every level is refined and solved upon, storing more data and solving

for more cells than an unstructured cell by cell approach, but this can be beneficial to imple-

ment Richardson extrapolation, see [11]. However, since we implement a cell by cell approach,

we would require significant data structure changes therefore, it would be expensive to use

Richardson extrapolation. Since every level must be stored it is wasteful to refine, solve

and store the coarser grids, if it is only used to obtain an error estimate. The hierarchy of

levels can also cause conservation problems at mesh boundaries. The theoretical work may

be simple, since only the order of the scheme is important. However, this only leads to an
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estimate in terms of the order of the error.

As discussed in [77], Richardson Extrapolation is used to eliminate the derivatives to the

exact solution in the leading term of the error, using the ratio of the coarse and fine grids.

This method produces a global error and can be applied to any variable.

Residual based methods are also discussed in [77]. These methods are related to the trunca-

tion error, i.e. the difference between the discrete solution and the mathematical model which

is being discretised. Two approaches in [77], which use the Residual method include; using

an exact solution to substitute into the discrete model or substituting the discrete solution

into the continuous mathematical model.

In this thesis we develop a method which is Residual based. We do substitute the exact

solution into the discrete form of the mathematical model. However, we do not estimate the

exact solution as is done in [77]. The aim here is to estimate the leading terms in which

the derivative to the exact solution are present. We do not use a fine and coarse grid as is

used in the Richardson Extrapolation, instead we use two schemes which are evolved from

the same initial mesh. Thus, only one timestep is required, unlike the Richardson Extrap-

olation in [77]. We also do not need an estimate to the exact solution from a fine grid as

is described in [77]. We use the relationship between the two schemes to solve for the lead-

ing term of the truncation error, which contains the derivatives. The requirement is that

the schemes are related by their order. By doing this, the derivative terms are estimated

from the computable differences between schemes. It is stated in [77] that the Richardson

Extrapolation method will break down around discontinuities. Since we do not neglect the

function containing derivatives, we find our approach does not break down. This is verified in

Appendix C, where the wave equation is used on a curve of varying gradients to demonstrate

this approach holds for steep solutions.

2.17 Milne’s Approach

Milne’s device is a well known method used to estimate local errors for multistep schemes

see [36, 80, 25]. Milne’s device estimates the local truncation error of a predictor-corrector

scheme in ordinary differential equations, by looking at the error in one step, where both

the predictor and corrector are of the same order. It is widely used to control the timestep

of numerical schemes for ODEs. If we use a timestep which is too large, corresponding to a

large truncation error, we may encounter inaccuracies in our solution and, if the timestep is
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too small, this could be extremely computationally expensive, and the accuracy may not be

improved at all. Therefore, the aim of Milne’s device is to adapt the timestep so that the

truncation error is uniform. Similarly, in the present work, we are concerned with how to

adapt our spatial/temporal step size in order to gain an accurate solution around disconti-

nuities, where the time and space steps are related through a CFL condition. An overview

of Milne’s device is given in [27, 80], and is summarised here.

Milne’s device is implemented by comparing two approximations of the same order, as re-

marked in [80, 36, 25]. One of the approximations is denoted here by˜and the other is not.

To apply the method consider the ODE defined as

dx

dt
= u

where x = x(t) and u = u(x, t). Suppose that the numerical solution in one step is quantified

by xn. Let the numerical solution at timestep n+ 1 be

xn+1. (2.37)

Suppose now that the numerical approximation applied to the exact solution in one step is

given by

x(tn + k), (2.38)

where k is the time step. The difference between eqn. (2.37) and eqn. (2.38) is the local

error in one step, given by

x(tn + k)− xn+1 = kτn = Dkσxσ(tn) +O(kσ+1), (2.39)

where τn is the truncation error of the scheme, σ is the order of accuracy and D is the

coefficient of the leading term. Similarly, for the second approximation we have

x(tn + k)− x̃n+1 = kµn = D̃kσ̃xσ̃(tn) +O(kσ̃+1) (2.40)

where D̃ is the coefficient of the leading term.

In order to proceed with Milne’s device it is assumed that the numerical solution is equal to

the approximated solution at time level n , i.e. xn = x(tn) and that σ = σ̃. Under these

assumptions we can obtain the local error in one step by subtracting eqn. (2.40) from eqn.
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(2.39), resulting in

x̃n+1 − xn+1 = (D − D̃)kσxσ(tn) +O(kσ+1). (2.41)

Therefore, we can obtain an estimate of the higher order derivative, which is difficult to

compute, from
x̃n+1 − xn+1

(D − D̃)
= kσxσ(tn) +O(kσ+1). (2.42)

By substituting this into eqn. (2.39) we have

x(tn + k)− xn+1 = D
x̃n+1 − xn+1

(D − D̃)
+O(kσ+1) (2.43)

which is a computable estimate to the local error. We use a similar device in this thesis.

2.18 Truncation Error

Numerical algorithms make use of a finite number of steps, matching as far as possible the

infinite Taylor series. The truncation error is what is left over from truncating the Taylor

series in order to form the finite algorithm. The LTE is the measure of the truncation error

in one step.

Consider the ODE
dx

dt
= u,

and define the operator L as

L(x) =
dx

dt
− u = 0. (2.44)

Define the algorithm approximating the ODE as Lh and the numerical scheme xni applied to

the numerical solution as Lh(x
n
i ) = 0. By applying the numerical algorithm in one step to

the exact solution x(ξi, t
n) sampled at time tn, we have Lh(x(ξi, t

n)).

The local truncation error to the ODE is then defined as the difference between the numerical

scheme applied to the exact solution Lh(x(ξi, t
n), at time tn, using the infinite Taylor series,

and the numerical solution itself, from the finite Taylor series, in one step, i.e.

τn = Lh(x(ξi, t
n))− Lh(xni ). (2.45)
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This definition can be applied to estimate an error along with Milne’s approach mentioned

above.

2.19 The Requirement of Two Schemes

We can use a similar approach to Milne’s device for any two schemes of the same order. We

shall then be able to calculate a computable error estimate for the true error, defined as the

error between the exact solution and the approximation in one step.

We use the scheme given in [64], as our main reference scheme, which we refer to as the

Main Scheme throughout this thesis. It is the true error of this scheme that we are interested

in estimating throughout this work. This scheme uses a staggered finite difference temporal

discretisation, along with a Galerkin finite element approach to the spatial discretisation. The

temporal discretisation is referred to as Scheme 1 and the spatial discretisation is referred to

as Scheme A.

We require a second scheme to compare against our main scheme. We shall investigate

schemes with temporal discretisations from [78, 46], referred to here generically as Scheme

2. For the second spatial discretisation we use a Petrov-Galerkin finite element approach,

giving a scheme which will be referred to as Scheme B in this work.

We shall investigate temporal and spatial errors separately then combined, leading to the

understanding of how temporal and spatial errors behave.

To estimate the error using the available schemes we first calculate the truncation error in

each scheme, for the individual variable that we are interested in estimating. The truncation

errors are then used to calculate an estimated error for the Main Scheme from [64], known

as Scheme 1. This gives an expression for the estimated error of Scheme 1 in terms of the

two schemes, yielding a computable value of the error.

Therefore, the approach we wish to develop will be for an estimate to the true error, not just

the order of the error. The theory will be sightly more complicated than in [11], since we

must determine an exact form for the local truncation error. However, we use a cell by cell

approach where there is only one mesh. This mesh is solved upon and refined, the data being

stored in connectivity arrays and disjoint nodes are used. This will be more cost effective

than solving for every level seen in [11]. Once the exact form of the truncation error is known

we can gain an estimate to the true error in the scheme using a method similar to Milne’s

device.

Since spatial and temporal derivatives exist in the system of equations, we investigate an
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error estimate by considering the truncation errors for time and space separately. We begin

the development of an error estimator with the semi-discrete in time scheme.



Chapter 3

Semi-Discrete Temporal Schemes in

1D

As observed in the previous chapter, the equations of interest contain temporal and spatial

derivatives which require approximation by numerical methods.

The numerical scheme will have an LTE associated with it which includes both time and

space derivatives. Therefore, we will observe truncation errors as a result of the temporal

approximations and as a result of the spatial approximations.

In order to understand the impact each derivative has on the numerical scheme, and hence

the truncation error, we look at the schemes in their semi-discrete form before advancing to

the fully-discrete form.

We begin our investigation by looking at two semi-discrete in time schemes, in 1D. We do

this to initially understand the effect of the time derivative approximations on the LTE and

to demonstrate the strategy used in this thesis.

As we have already mentioned, we shall be using a strategy similar to that of Milne’s device.

We estimate the true error based on a comparison of LTEs from two schemes. This requires

the introduction of a second temporal scheme of the same order.

A system of two equations are studied in order to understand how the variables associated

with the equations have an effect on the truncation errors. The findings are then advanced

to a system of three equations, where specific internal energy is introduced.

For each system we study the temporal scheme used in [64], known as the Main Scheme, and

determine its truncation error. We then introduce a second semi-discrete in time scheme,

which has the same order as the Main Scheme. The LTE of this scheme is also calculated.

33
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The two schemes are then used to determine an approximation to the true error in one step.

This chapter leads to an understanding of how different variables and temporal derivatives

affect the truncation error. This is used later to understand the effect of combining temporal

and spatial derivatives, before advancing to the 2D case.

3.1 System of Two Equations

In the previous chapter we have seen how the equations written in a Lagrangian reference

frame are obtained. Since, in the time dependent semi-discrete case, the spatial dependencies

are not approximated, we can write the system of two equations in 1D formally as;

• Conservation of Mass
dm

dt
= 0, (3.1)

where the mass is expressed as

m = ρxξ, (3.2)

in 1D.

• Momentum Equation
du

dt
= f, (3.3)

where m is the mass which is constant in time, u = u(t) is the velocity and f = f(t) is the

acceleration, expressed in its full form in eqn. (2.27).

We have the connection to the physical mesh through the velocity of the physical nodes on

the Lagrangian mesh
dx

dt
= u, (3.4)

where x = x(t) is the Lagrangian co-ordinate in terms of computational nodes in the semi-

discrete form.

With this system of 1D conservation laws written in Lagrangian form, we now look at ap-

propriate semi-discrete numerical schemes to approximate the solutions to the equations.

Motivated by the scheme expressed in [64, 10], we consider a two step temporal scheme

related to the Verlet scheme.
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3.2 Derivation of the Verlet Schemes

From Newton’s equation of motion for conserved physical systems, we have

d2x

dt2
=
du

dt
= f. (3.5)

To numerically solve eqn. (3.5), a timestep k > 0 is chosen and a single point is considered

at tn = nk. The aim is to obtain a sequence of points xn that closely follow the points x(tn)

which lie on the trajectory of the exact solution.

Verlet in [94, 28], used a central difference scheme to approximate the second derivative i.e.

xn+1 − 2xn + xn−1

k2
= fn. (3.6)

Störmer [28, 78, 94, 24] used eqn. (3.6) to obtain the current position from the previous two

known positions, such that

xn+1 = 2xn − xn−1 + k2fn. (3.7)

This was popularised by Verlet in 1967, see [94], and is often called the Störmer-Verlet

method.

It can be shown that the Störmer-Verlet method is more accurate than the simple Taylor

expansion method. Consider the local error which is obtained by substituting the exact

values x(tn − k), x(tn) and x(tn + k) into eqn. (3.7) and expanding about tn for x(tn ± k)

using Taylor expansions,

x(tn + k) = x+ ku+
k2f

2
+
k3b

6
+O(k4) (3.8)

x(tn − k) = x− ku+
k2f

2
− k3b

6
+O(k4) (3.9)

where x = x(tn) is the position, u = u(tn) = dx
dt

is the velocity, f = f(t) = d2x
dt2

is the

acceleration and b = b(t) is the third derivative of x. Adding and re-arranging eqn. (3.8) and

eqn. (3.9) we obtain

x(tn + k) = 2x(tn)− x(tn − k) + f(tn)k2 +O(k4). (3.10)
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This is the exact solution substituted into the Störmer-Verlet iteration from eqn. (3.7) to

order O(k4). Since the first and third order terms cancel in eqn. (3.10), this makes the

Störmer-Verlet iteration an order more accurate than the approximation directly from eqn.

(3.8).

Velocity is not directly generated from eqn. (3.7), but it is required to determine certain

physical properties. The velocity can be obtained from subtracting eqn. (3.9) from eqn.

(3.8), see [78], resulting in

x(tn + k)− x(tn − k)

2k
= u(tn) +O(k2). (3.11)

In terms of a central difference numerical scheme, eqn. (3.11) becomes

un =
xn+1 − xn−1

2k
(3.12)

The Störmer-Verlet schemes, for position eqn. (3.7) and velocity eqn. (3.12), can be used

to determine two different schemes known as Position Verlet and Velocity Verlet, see [78],

where each scheme makes the transformation from {xn, un} to {xn+1, un+1}. In [21] the

Position Verlet is favoured for larger timesteps, whereas the Velocity Verlet is considered to

be better than the Position Verlet in determining a more accurate velocity. The velocity

approximate in the Velocity Verlet uses old and new values of the position to update the

velocity, i.e. it is implicit, whereas the Position Verlet only uses old values, i.e. it is explicit.

Implicit schemes are more favourable for increased stability, while explicit schemes have more

simplistic algorithms.

The crucial point here is that the Position Verlet scheme is similar to the scheme in [64],

i.e. the Main Scheme, whereas the Velocity Verlet scheme can be used as our additional

scheme for estimating the error. We now look at how the above results are used to obtain

two different numerical schemes in time.

3.2.1 Position Verlet Derivation

The Position Verlet scheme is a numerical method used for time dependent ODEs, which is

a second order finite difference method consisting of a predictor step followed by a corrector

step.

We use the above results and a mapping from {xn, un} to {xn+1, un+1} to define the Position

Verlet Scheme.
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• The scheme begins with a mapping from {xn, un} to
{
xn+ 1

2 , un+ 1
2

}
and uses eqn.(3.8)

for the expansion of x(tn + k
2
) to first order, resulting in

xn+ 1
2 = xn +

kun

2
. (3.13)

• The velocity is now updated to the full timestep using the mapping
{
un, fn+ 1

2

}
to{

un+1, fn+ 1
2

}
. By subtracting un from un+1 and using eqn. (3.12) we get

un+1 − un =
1

2k
(xn+2 − xn − xn+1 + xn−1)

⇒ un+1 = un +
k

2
(fn + fn+1) using eqn. (3.6).

Here the average of the force term, f , is expressed as 1
2
(fn+fn+1) = fn+ 1

2 . The velocity

in one step is then expressed as

un+1 = un + kfn+ 1
2 . (3.14)

• The positions to a full timestep are then updated where the mapping goes from{
xn, un, fn+ 1

2

}
to
{
xn+1, un, fn+ 1

2

}
. The result in eqn. (3.12) is used to obtain

xn+1 − xn

k
= un+ 1

2

⇒ xn+1 = xn + kun+ 1
2 .

where the average of the velocity u is expressed as

un+ 1
2 =

un+1 + un

2
, (3.15)

hence

xn+1 = xn + k

(
un+1 + un

2

)
. (3.16)

From the result in eqn. (3.14) we obtain

xn+1 = xn + kun +
k2

2
fn+ 1

2 . (3.17)
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In [64] and [10] this is precisely the scheme used for the temporal discretisation.

Incidentally, this scheme also exhibits similarities with the MacCormack scheme, [58], due to

the characteristic feature of the MacCormack scheme being outlined in eqn. (3.16), where the

predicted full step velocity is used to determine a half step velocity which in turn is used to

obtain the corrected full step variables. We will see the above results expressed as a scheme

for the system of equations later, where it will be referred to as the Main Scheme.

Our attention now turns to choosing another second order scheme which is different from the

Main Scheme.

3.2.2 Velocity Verlet Derivation

We now consider the Velocity Verlet scheme as a possible alternative. The approach to

determining this scheme is similar to the Position Verlet however, we begin with a half time

step velocity rather than a half time step position.

The Störmer-Verlet method for determining the velocity in eqn. (3.12) is approximated a

timestep behind the position approximation eqn. (3.7). To circumvent this, positions and

velocities are obtained at time tn + k using the same quantities at time tn, i.e. we carry out

the mapping {xn, un} to {xn+1, un+1} as before.

• The half step velocity is obtained by using eqn. (3.12), where

un+ 1
2 =

xn+1 − xn

k
. (3.18)

By using eqn. (3.8) to second order for xn+1, we obtain the approximation

un+ 1
2 =

xn + kun + k2

2
fn − xn

k

= un +
kfn

2
. (3.19)

• Eqn. (3.18) then gives

xn+1 = kun+ 1
2 + xn. (3.20)

To demonstrate the mapping from {xn, un} to {xn+1, un+1}, eqn. (3.19) is used to

obtain

xn+1 = xn + kun +
k2fn

2
. (3.21)
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• To improve stability of the velocity an implicit method is used to determine the full

step velocity. From eqn. (3.12), we have

un+1 =
xn+2 − xn

2k
. (3.22)

Using eqn. (3.21)

xn+2 = xn+1 + kun+1 +
k2fn+1

2
, (3.23)

and from eqn.(3.7)

xn =
xn+1 + xn−1 − k2fn

2
(3.24)

by substituting both into eqn. (3.22), we have

un+1 =
1

2k

(
xn+1 − xn−1

2
+ kun+1 +

k2

2
(fn+1 + fn)

)
. (3.25)

By using eqn. (3.12) and re-arranging the above, we obtain

un+1 = un +
k

2
(fn+1 + fn). (3.26)

The above two schemes are now applied to the Lagrangian system of two equations from

equations (3.1)-(3.4).

3.3 Numerical Schemes for the System of Two Equa-

tions

The semi-discrete numerical schemes in Section 3.2.1 and Section 3.2.2 are applied to the

system of equations (3.1)-(3.4).

3.3.1 Scheme 1

Scheme 1 follows from the Position Verlet scheme, which is the scheme described in [64], i.e.

the Main Scheme. The predictor and corrector steps are as follows.
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Predictor

• Eqn. (3.4) can be approximated using the result in eqn. (3.13). This is used to obtain

the nodal positions at the half timestep

xn+ 1
2 = xn +

k

2
un.

• This result can now be used to gain an approximation to the density at tn + k
2

by using

the conservation of mass from eqn. (3.1),

mn+ 1
2 = mn, (3.27)

where in 1D the mass is expressed as

m = ρxξ, (3.28)

density is updated to

ρn+ 1
2 =

mn

x
n+ 1

2
ξ

. (3.29)

• The pressure can then be determined at the half step by using the equation of state

from Section 2.7.1,

pn+ 1
2 = a2ρn+ 1

2 .

• Full timestep velocities are then calculated from the half step pressures using eqn.

(3.14),

un+1 = un + kfn+ 1
2 . (3.30)

Corrector

• Averaged velocities from eqn. (3.16) are used to update the nodal positions to the full

timestep,

xn+1 = xn + kun +
k2

2
fn+ 1

2 . (3.31)

• Following this the density can be calculated at the full timestep from the conservation
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of mass in eqn. (3.1),

mn+1 = mn

⇒ ρn+1 =
mn

xn+1
ξ

.

• Finally calculate the pressures from the equation of state at the full timestep

pn+1 = a2ρn+1.

This comprises the mapping from {xn, un} to {xn+1, un+1} for the entire system of equations,

where we have used the half timestep, tn+ k
2
, as an intermediate step to achieve this mapping.

3.3.2 Scheme 2

We now approximate the system using the Velocity Verlet Scheme in Section 3.2.2, which is

initiated with the approximation to the velocity at the half timestep as follows.

Predictor

• We apply eqn. (3.19) to the conservation of momentum eqn. (3.3), to obtain the half

timestep velocities

un+ 1
2 = un +

kfn

2
. (3.32)

This result leads to updating the solutions to the full timestep.

Corrector

• We apply eqn. (3.21) to eqn. (3.4) in order to update the nodal positions to the full

timestep by

xn+1 = xn + kun +
k2fn

2
. (3.33)
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• The density is calculated at the full timestep using the conservation of mass equation,

mn+1 = mn

⇒ ρn+1 =
mn

xn+1
ξ

.

• Calculate the pressures at the full timestep from the equation of state,

pn+1 = a2ρn+1.

• Finally update the velocities to the full timestep using eqn. (3.26)

un+1 = un +
k

2
(fn+1 + fn). (3.34)

We have obtained a second scheme which completes the mapping from {xn, un} to {xn+1, un+1}.
Although this scheme differs from Scheme 1 they are both second order schemes.

This leads on to the investigation of an error estimate based on both schemes.

3.4 Local Truncation Error

The definition for the LTE has already been given in Section 2.18, for the general case. Here

we deal with the semi-discrete case where we have the differential equations (3.1)-(3.4).

For the ODE,

dx

dt
= u,

the differential operator for nodal position is expressed as

L(x) =
dx

dt
− u = 0, (3.35)

where x = x(t) and u = u(t). The algorithm approximating the differential equation from

Section 3.2.1 is defined as Lh for eqn. (3.35).

The truncation error in one step for a temporal semi-discrete scheme is defined as

τn = Lh(x(tn))− Lh(xn), (3.36)
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where Lh(x
n) = 0 from eqn. (3.35).

3.4.1 Scheme 1

The differential equation is

L(x(t)) =
dx(t)

dt
− u(t) = 0,

and the scheme used to obtain a numerical approximation to x from eqn. (3.31) is

Lh(x
n) =

xn+1 − xn

k
− un − k

2
fn+ 1

2 = 0. (3.37)

To obtain the LTE apply eqn. (3.37) to the exact solution at time tn, giving

Lh(x(tn)) =
x(tn + k)− x(tn)

k
− u(tn)− k

2
f

(
tn +

k

2

)
. (3.38)

The LTE for position is therefore,

τn(L1) =
x(tn + k)− x(tn)

k
− u(tn)− k

2
f

(
tn +

k

2

)
, (3.39)

where we have used eqn. (3.37) and eqn. (3.38). Where τn(L1) is the truncation error for

eqn. (3.37).

The exact differential equations are;

x′ =
dx(t)

dt
= u(t) (3.40)

x′′ =
d2x(t)

dt2
=
du(t)

dt
= f(t), (3.41)

therefore, eqn. (3.39) becomes

τn(L1) =
x(tn + k)− x(tn)

k
− x′(tn)− k

2
x′′
(
tn +

k

2

)
. (3.42)

Expanding x(tn + k) and x′′(tn + k
2
) in the above about x(tn) = x, by Taylor series,

x(tn + k) = x+ kx′ +
k2

2!
x′′ +

k3

3!
x′′′ + · · · (3.43)

x′′(tn +
k

2
) = x′′ + k

1

2
x′′′ +

k2

22.2!
x′′′′ + · · · (3.44)
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the LTE becomes

kτn(L1) = x+ kx′ +
k2

2!
x′′ +

k3

3!
x′′′ − x− kx′ − k2

2

(
x′′ + k

1

2
x′′′ +

k2

22.2!
x′′′′
)

+ · · ·

=

(
1

6
− 1

4

)
k3x′′′ +O(k4)

⇒ τn(L1) = −k
2

12
x′′′ +O(k3) (3.45)

which is of second order.

3.4.2 Scheme 2

For Scheme 2 the differential equation in eqn. (3.35) is approximated by eqn. (3.33), so

define

Lh(x
n) =

xn+1 − xn

k
− un − k

2
fn = 0. (3.46)

Apply eqn. (3.46) to the exact solution x(tn),

Lh(x(tn)) =
x(tn + k)− x(tn)

k
− u(tn)− k

2
f(tn). (3.47)

Using eqn. (3.46) and eqn. (3.47), along with eqn. (3.40) and eqn. (3.41), where τn(L2) is

the LTE for eqn. (3.46), we obtain

τn(L2) =
x(tn + k)− x(tn)

k
− x′(tn)− k

2
x′′(tn). (3.48)

Using eqn. (3.43) to expand x(tn + k) about x(tn) = x in the above by Taylor series, the

local truncation error becomes

kτn(L2) = x+ kx′ +
k2

2!
x′′ +

k3

3!
x′′′ − x− kx′ − k2

2
x′′ + · · ·

=
k3

6
x′′′ +O(k4) (3.49)

⇒ τn(L2) =
k2

6
x′′′ +O(k3), (3.50)

hence, the scheme is of second order.
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3.5 Error Estimation

We have seen in eqn. (2.43) how the truncation errors can be used to gain an estimated error

in one step. Here we can obtain an estimated error for the nodal positions in a similar way

since the order of the truncation errors for Scheme 1 and Scheme 2 are the same, but the

leading coefficient is different.

3.5.1 Estimated Error for Position in One Step

From Section 3.2.1 and Section 3.2.2 we have the leading terms of the LTE for the nodal

positions as

x(tn + k)− xn+1
1 = kτn(L1) = −k

3

12
xttt(t

n) +O(k4) (3.51)

x(tn + k)− xn+1
2 = kτn(L2) =

k3

6
xttt(t

n) +O(k4), (3.52)

where xn+1
1 and xn+1

2 represent Scheme 1 and Scheme 2 approximations to x respectively.

Now subtract eqn. (3.52) from eqn. (3.51)

xn+1
2 − xn+1

1 = −k
3

4
xttt(t

n) +O(k4),

⇒ k3xttt = 4
(
xn+1

1 − xn+1
2

)
+O(k4). (3.53)

We now have a computable estimate to the uncomputable term, which can be substituted

into the local error term, eqn. (3.51),

x(tn + h)− xn+1
1 =

(
xn+1

2 − xn+1
1

)
3

+O(k4) (3.54)

leading to the truncation error in one step being estimated by

τn(L1) =

(
xn+1

2 − xn+1
1

)
3k

+O(k3). (3.55)

Hence, we now have a computable local error due to the information introduced from both

schemes.
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3.6 Semi-Discrete Error Estimate - Density and Veloc-

ity

From eqn. (3.55) we have the LTE for the differential equation dx
dt

= u, which is

τ(L1) =

(
(x2)n+1 − (x1)n+1

)
3k

+O(k3). (3.56)

Additionally, from this we obtained, in Section 3.5.1, an estimated semi-discrete LTE in one

time-step for the variable x. From eqn. (3.56) this is

x(tn + k)− (x1)n+1 =

(
(x2)n+1 − (x1)n+1)

3
+O(k4), (3.57)

where all values are held the same point on the computational grid.

3.6.1 Semi-Discrete in Time - Density Error Estimate

From eqn. (3.2) we have

m = ρxξ,

and using eqn. (3.1), where mass is conserved, i.e.

dm

dt
= 0

⇒ mn+1(ξ) = mn(ξ),

⇒ ρn+1(ξ) =
mn(ξ)

xn+1
ξ

,

the semi-discrete in time LTE of density in one time step can be expressed by

e[ρ] = ρ(tn + k)− (ρ1)n+1 =
mn

xξ(tn + k)
− mn

(xξ)
n+1

=
mn
(
(xξ)

n+1 − xξ(tn + k)
)

xξ(tn + k) (xξ)
n+1 . (3.58)
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Let e denote the error.

Differentiating eqn. (3.57) with respect to ξ,

e[xξ] = xξ(t
n + k)−

(
(x1)ξ

)n+1

=

((
(x2)ξ

)n+1

−
(

(x1)ξ

)n+1
)

3
+O(k4)

where xξ is just the divided difference of x at two points on the computational mesh, i.e.
(xi−xi−1)

h
. Therefore, for the LTE of density in one timestep, by substituting the above into

eqn. (3.58) we obtain the expression

e[ρ] = ρ(tn + k)− (ρ1)n+1 =

mn

((
(x1)ξ

)n+1

−
(

(x2)ξ

)n+1
)

(
(x1)ξ

)n+1
(

2
(

(x1)ξ

)n+1

+
(

(x2)ξ

)n+1
) . (3.59)

3.6.2 Semi-Discrete in Time - Velocity Error Estimate

Using eqn. (3.55), we have the LTE for the differential equation where dx
dt

= ẋ, such that

e [ẋ] = τ(L1) =

(
(x2)n+1 − (x1)n+1)

3k
+O(k3).

Using the above and eqn. (3.4), where

dx

dt
= u,

we can obtain the LTE for the variable u in one time-step, such that

e[u] = u(tn + k)− (u1)n+1 = τ(L1) =

(
(x2)n+1 − (x1)n+1)

3k
+O(k3) (3.60)

3.7 System of Three Equations

The previous idea is extended to the more complicated system of three equations in 1D. In

addition to the conservation of mass, momentum and the trajectory equation in Section 3.1,
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we introduce the conservation of specific internal energy

dε

dt
= pg, (3.61)

where g = g(t) is defined and expressed in its full form in eqn. (2.28). The pressure p is not

included in g. Later we see p and g expressed at different timesteps.

As before, we wish to investigate two numerical schemes, where the first scheme is as proposed

in Section 3.3.1, the second scheme is an alternative scheme for the system of three equations.

3.7.1 Scheme 1

As already mentioned, the first scheme we introduce for the 1D system of three equations is

as stated in Section 3.3.1, with the addition of a step for the specific internal energy.

The approximation of the specific internal energy occurs after the density update eqn. (3.29)

and before the pressure update. In the predictor step this is given by

εn+ 1
2 = εn +

k

2
pngn.

The specific internal energy is then advanced to the full timestep in the corrector step by

εn+1 = εn + kpn+ 1
2 gn+ 1

2 . (3.62)

We now look at a second scheme for the 1D system of three equations.

3.7.2 Scheme 2

As in Section 3.3.2 a second scheme is chosen which is of the same order as Scheme 1.

The alternative scheme used is stated in [45] and [46]. This scheme is chosen since it is widely

used and published by the Los Alamos National Laboratory (LANL), for the system of three

equations, [46]. It follows the desired characteristics of being of predictor-corrector form and

is of second order. This scheme uses the full timestep as the corrector along with averaged

velocities to correct the results at the full timestep.
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Predictor

We shall use the suffix ∗ to denote the predictor stage here, since the predictor and corrector

are calculated at the same timesteps.

• Full timestep velocities are predicted using the momentum equation in eqn. (3.3),

un+1
∗ = un + kfn. (3.63)

• A predicted average velocity is obtained from,

ū∗ = u
n+ 1

2
∗ =

1

2
(un + un+1

∗ )

= un +
k

2
fn. (3.64)

• Nodal positions are predicted using eqn. (3.4)

xn+1
∗ = xn + kū∗ (3.65)

= xn + kun +
k2

2
fn. (3.66)

• Density can be predicted at the full timestep by using the conservation of mass in eqn.

(3.1).

• The specific internal energy can now be predicted at the full timestep using eqn. (3.61)

εn+1
∗ = εn + kpng

n+ 1
2

∗ . (3.67)

• The equation of state is then used to obtain the pressure at the predicted full timestep.

Corrector

• Corrected full timestep velocities are calculated using the predicted pressures

un+1 = un + kfn+1
∗ . (3.68)
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• Averaged velocities are corrected by

ū = un+ 1
2 =

1

2
(un + un+1)

= un +
k

2
fn+1
∗ . (3.69)

• The averaged velocities are used to update the nodal positions

xn+1 = xn + kū

= xn + kun +
k2

2
fn+1
∗ . (3.70)

• Corrected densities are obtained from the conservation of mass in eqn. (3.1).

• Energies are corrected at the full timestep using

εn+1 = εn + kpn+1
∗ gn+ 1

2 . (3.71)

• Finally full timestep pressures are updated using the equation of state.

Now that we have two schemes, for the system of three equations, we can obtain their

truncation errors.

3.8 Local Truncation Error

The differential operators for nodal position have already been defined in Section 3.4. From

Section 3.4, the truncation error in one step for a semi-discrete scheme is defined as

τn = Lh(x(tn))− Lh(xn), (3.72)

where Lh(x
n) = 0 from eqn. (3.35).

We now obtain the truncation errors to the schemes for the system of three equations.
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3.8.1 Scheme 1

The truncation error of the nodal position as a result of applying Scheme 1 has already been

defined in Section 3.4.1 as

τn(L1) = −k
2

12
x′′′ +O(k3) (3.73)

from eqn. (3.45).

3.8.2 Scheme 2

We have the differential equation

L(x(t)) =
dx(t)

dt
− u(t) = 0

and the scheme used to obtain a numerical approximation to x from eqn. (3.70) is

Lh(x
n) =

xn+1 − xn

k
− un − k

2
fn+1
∗ = 0. (3.74)

To obtain the LTE, apply eqn. (3.74) to the exact solution at time tn, giving

Lh(x(tn)) =
x(tn + k)− x(tn)

k
− u(tn)− k

2
f
(
tn+1
∗
)
. (3.75)

Using eqn. (3.74), and eqn. (3.75) along with eqn. (3.40) and eqn. (3.41), where the

truncation error for eqn. (3.74) is τn(L2), we obtain

τn(L2) =
x(tn + k)− x(tn)

k
− x′(tn)− k

2
x′′
(
tn+1
∗
)
. (3.76)

Expanding x(tn + k) and x′′(tn+1
∗ ) in the above about x(tn) = x, as stated in eqn. (3.43), the

LTE becomes

kτn(L2) = x+ kx′ +
k2

2!
x′′ +

k3

3!
x′′′ − x− kx′ − k2

2

(
x′′ + kx′′′ +

k2

2!
x′′′′
)

+ · · ·

=

(
1

6
− 1

2

)
k3x′′′ +O(k4)

⇒ τn(L2) = −k
2

3
x′′′ +O(k3), (3.77)

the scheme is of second order.
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3.9 Error Estimation

We have already seen in eqn. (2.43) and Section 3.5 how the truncation errors are used to

determine an estimated error in one step. Here, we obtain an estimated error for the nodal

positions. However, we can not obtain an estimated error to the specific internal energy.

This is because the second scheme is only 1st order accurate for the specific internal energy

approximation, where we require second order accuracy in order to use our error estimation.

For now the error estimation for the nodal positions is adequate to continue the investigation

of error estimates.

3.9.1 Estimated Error for Velocity and Density in One Step

From Section 3.8.1 and Section 3.8.2 we have the leading terms of the LTE for the nodal

positions as

x(tn + k)− xn+1
1 = kτn(L1) = −k

3

12
xttt(t

n) +O(k4) (3.78)

x(tn + k)− xn+1
2 = kτn(L2) = −k

3

3
xttt(t

n) +O(k4), (3.79)

where xn+1
1 and xn+1

2 represent Scheme 1 and Scheme 2 approximations to x respectively for

the system of three equations.

Now subtract eqn. (3.79) from eqn. (3.78)

xn+1
2 − xn+1

1 =
k3

4
xttt(t

n) +O(k4)

⇒ k3xttt = 4
(
xn+1

2 − xn+1
1

)
+O(k4). (3.80)

We now have a computable approximation to the uncomputable terms, which can be substi-

tuted into the local error term eqn. (3.78),

x(tn + k)− xn+1
1 =

(
xn+1

1 − xn+1
2

)
3

+O(k4), (3.81)

leading to the truncation error, in one step, of the derivative dx
dt

being estimated by

τn(L1) =

(
xn+1

1 − xn+1
2

)
3k

+O(k3). (3.82)
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Hence, we now have a computable local error due to the information introduced from both

schemes.

3.9.2 Semi-Discrete in Time Estimated Error for x

In Section 3.7 we saw how to approximate the LTE for the differential equation

dx

dt
= ẋ = u,

which is

τ(L1) =

(
(x1)n+1 − (x2)n+1)

3k
+O(k3), (3.83)

from eqn. (3.82). We obtained the computable LTE in one step for the variable x in the

form

x(tn + h)− (x1)n+1 =

(
(x1)n+1 − (x2)n+1)

3
+O(k4). (3.84)

From this result, we are able to gain the LTEs for density and velocity.

3.9.3 Semi-Discrete in Time Estimated Error for Density

Using the result in eqn. (3.58) we are able to obtain the semi-discrete LTE for density using

e[ρ] = ρ(tn + k)− (ρ1)n+1 =
mn
(
(xξ)

n+1 − xξ(tn + k)
)

xξ(tn + k) (xξ)
n+1 . (3.85)

By differentiating eq. (3.84) with respect to ξ we obtain

e[xξ] = xξ(t
n + k)−

(
(x1)ξ

)n+1

=

((
(x1)ξ

)n+1

−
(

(x2)ξ

)n+1
)

3
+O(k4), (3.86)

which can be substituted into eqn. (5.9), resulting in

e[ρ] = ρ(tn + k)− (ρ1)n+1 =

mn

((
((x2)ξ)

n+1
−((x1)ξ)

n+1
)

3

)
((

(x1)ξ

)n+1

+

(
((x1)ξ)

n+1
−((x2)ξ)

n+1
)

3

)(
(x1)ξ

)n+1
+O(k4).

(3.87)
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3.9.4 Semi-Discrete in Time Estimated Error for Velocity

We are able to obtain the LTE approximation to velocity directly from eqn. (3.82). Since

this is the truncation error of the derivative ẋ, using eqn. (3.4) we have

e[ẋ] = e[u] = τ(L1)

hence

e[u] = u(tn + k)− (u1)n+1 =

(
(x1)n+1 − (x2)n+1)

3k
+O(k3). (3.88)

3.10 Chapter 3 Summary

In this chapter we have introduced two schemes to approximate the temporal derivatives.

This has been done for a system of two equations and a system of three equations.

The truncation errors for each scheme have been obtained. These results have been utilised

in a method similar to Milne’s approach. This results in an error estimate for density and

velocity for the Main Scheme, which was described in Section 3.3.1.

We now turn our attention to investigating the error in spatial derivatives by looking at the

different forms of discretising these derivatives and how this can lead to an error estimate.



Chapter 4

Semi-Discrete Spatial Schemes in 1D

Previously we have seen the system of two and three equations in 1D expressed as semi-

discrete in time schemes. The schemes are written in a finite difference form. Now continue

by investigating the spatial derivatives for the two and three system of equations in 1D, where

the spatial derivatives are approximated using a finite element approach.

The Finite Element Method (FEM), has been used for several decades, with its development

accredited to several mathematicians. An overview of these mathematicians and their con-

tributions to the development of the FEM is given by Robinson in [75]. After the initial

development by Courant in 1943, see [19], the next significant advancement came from H. C.

Martin in the 1950’s, [41], as a result of the company Boeing approaching Martin to develop

a solution to the structural analysis problems for aircraft. The success of Martin’s work came

from his academic and industrial experience. Martin’s first publication on the FEM came

out in 1956, see [91], which was followed by two books on his FEM developments, see [62]

and [61].

FEMs are used as an alternative to finite difference methods (FDM), to approximate solu-

tions of partial differential equations (PDEs), in particular where it is difficult to obtain a

solution on a non-rectangular domain. The idea of FEMs is to simplify a complex problem

by using small building blocks, i.e. elements. FEMs are used to solve PDEs over complicated

domains, where boundaries are irregular or moving. This is done by subdividing the region

into smaller elements, yielding problems which are solved in relation to each other.

Due to the flexibility of FEMs there is an extensive list of applications that include mechan-

ical, aerospace, civil and automotive engineering, structural analysis, fluid dynamics and

electromagnetics, amongst many others. Since the discretisation is flexible it allows for more

55



56

detailed visualisations of structures, in particular where awkward features occur, whereas

FDMs are basically restricted to rectangular domains. FEMs have greatly improved the

standard of Engineering designs, since they can be optimised and refined before prototypes

are developed, increasing productivity and reducing manufacturing costs. Although FDMs

may be simpler to implement, it is FEMs that are favoured for structural analysis.

During this chapter we look at the discretisation of spatial derivatives in 1D, for the two

and three system of equations. We begin by looking at the system of two equations where

the spatial derivative arises in the momentum equation. This is discretised using a standard

Galerkin method, as in [64, 10]. We also seek an alternate scheme to estimate the error. For

this we introduce a second test function and use a Petrov-Galerkin method. Both methods

can then be used to determine an estimated error. The method is advanced to the system of

three equations, with the addition of specific internal energy.

4.1 System of Two Equations

In Section 2.6 we saw the system of equations expressed in terms of Lagrangian co-ordinates.

For the system of two equations, the momentum equation contains a spatial derivative. From

eqn. (2.35) and eqn. (2.32), the momentum equation is of the form

m
∂u

∂t
= −C∇ξp, (4.1)

where m = m(ξ), u = u(ξ, t), p = p(ξ, t), C is the adjoint matrix from the inverse of

the Jacobian and ∇ is the spatial derivative, in terms of the reference co-ordinates ξ ∈
[−1, 1]× [−1, 1].

In 1D, the momentum equation is expressed as

mu̇ = −∂p
∂ξ
, (4.2)

since C = I in 1D. We drop the temporal dependencies and use m = m(ξ), u̇ = u̇(ξ) and

p = p(ξ), where ξ ∈ [−1, 1].

To gain a spatial approximation for eqn. (4.2), consider a spatial step h > 0 and a single

point at ξi = ih, where i = 0, 1, · · ·N + 1. The aim is to obtain a sequence of points xi

that closely follow the points x(ξi), which are on the trajectory of the exact solution, where

ξi = ξ.
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To gain an expression for the 1D semi-discrete momentum equation in terms of finite elements,

we follow the scheme in [64, 10] and apply a finite element approach using a weak form of

eqn. (4.2).

4.2 Weak Form of Momentum Equation

A weak form of the momentum equation is obtained by multiplying eqn. (4.2) by a test

function of the form ω(ξ), where ω = ω(ξ) ∈ H1(−1, 1). Integrate over a control volume,

which in 1D is ξ ∈ (−1, 1), resulting in∫ 1

−1

ωmu̇dξ = −
∫ 1

−1

ωpξdξ. (4.3)

The weak form of the momentum equation can be approximated using a variety of test

functions. Here we look at a Galerkin method and a Petrov-Galerkin method.

4.2.1 Elementwise Galerkin Approach

Integration by parts of eqn. (4.3) yields the weak form of the momentum equation, where the

interval [−1, 1] is subdivided into equal elements of size h such that the interior boundaries

are (ξi−1, ξi), therefore, ∫ ξi

ξi−1

ωmu̇dξ = −ωp
∣∣∣ξi
ξi−1

+

∫ ξi

ξi−1

ωξpdξ. (4.4)

We assume m and p to be piecewise constant functions within each element ∈ (ξi−1, ξi). The

acceleration u̇ is approximated by the piecewise linear function,

u̇ =
N+1∑
i=0

u̇iφi(ξ). (4.5)

The basis function φi(ξ) is chosen to be a piecewise linear hat function,

φi(ξ) =


ξ−ξi−1

h
ξi−1 < ξ < ξi

ξi+1−ξ
h

ξi < ξ < ξi+1

0 elsewhere

(4.6)
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for i = 1, 2 · · ·N . We have the end-point basis functions φ0(ξ) and φN+1(ξ) as half hat func-

tions.

4.2.2 Scheme A

For Scheme A we use a Galerkin approach, such that ω(ξ) = φj(ξ) is used in the weak form

eqn. (4.4), where i = 1 · · ·N . Using this and the weak form eqn. (4.4) of the momentum

equation, over an element (ξi−1, ξi) we obtain,

mi− 1
2

∫ ξi

ξi−1

i∑
j=i−1

u̇jφjφidξ = −φip
∣∣∣ξi
ξi−1

+ pi− 1
2

∫ ξi

ξi−1

∂φj
∂ξ

dξ. (4.7)

We have taken mi− 1
2

and pi− 1
2

outside the integral as they are constant across an element.

The integral and sum are interchanged, resulting in

mi− 1
2

i∑
j=i−1

u̇j

∫ ξi

ξi−1

φjφidξ = −φip
∣∣∣ξi
ξi−1

+ pi− 1
2

∫ ξi

ξi−1

∂φi
∂ξ

dξ. (4.8)

Using eqn. (4.8) and including the end nodes of the element, we obtain the following system,

for each element,

mi− 1
2

 ∫ ξi
ξi−1

φi−1φi−1dξ
∫ ξi
ξi−1

φi−1φidξ∫ ξi
ξi−1

φi−1φidξ
∫ ξi
ξi−1

φiφidξ

( u̇i−1

u̇i

)

= −

 φi−1p
∣∣∣ξi
ξi−1

φip
∣∣∣ξi
ξi−1

+ pi− 1
2

( ∫ ξi
ξi−1

(φξ)i−1dξ∫ ξi
ξi−1

(φξ)idξ

)
. (4.9)

On evaluating the integrals in eqn. (4.9), we have,

mi− 1
2
h

 1
3

1
6

1
6

1
3

( u̇i−1

u̇i

)
=

(
pi−1

−pi

)
+

(
−pi− 1

2

pi− 1
2

)
, (4.10)

where h is the distance between two points and is equal to ξi − ξi−1.

Work carried out in [64, 10] deals with the above mass matrix by ‘mass lumping’. Mass
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lumping is a technique used to transfer all the off-diagonal information onto the diagonal.

This only leads to a higher order error. The advantage is we have a diagonal matrix which

is less computationally expensive to solve than the full system. Mass lumping is discussed

further in [96]. For the system in eqn. (4.10), the mass lumped system becomes

mi− 1
2
h

 1
2

0

0 1
2

( u̇i−1

u̇i

)
=

(
pi−1

−pi

)
+

(
−pi− 1

2

pi− 1
2

)
.

In order to gain a solution at node i we require information from both the neighbouring

elements, i− 1
2

and i+ 1
2
, see Figure 4.1.

ii− 1 i+ 1i− 1
2

i+ 1
2

Figure 4.1: Neighbouring Elements to Node i Required for Assembly.

The assembly process overlaps the systems for elements i− 1
2

and i+ 1
2

and preserves the

diagonal nature of the mass matrix, such that

h


m
i− 1

2

2
0 0

0
m
i− 1

2

2
+

m
i+1

2

2
0

0 0
m
i+1

2

2


 u̇i−1

u̇i

u̇i+1

 =

 pi−1

−pi + pi

−pi+1

+


−pi− 1

2

pi− 1
2
− pi+ 1

2

pi+ 1
2

 .

At node i, the solution is extracted easily, resulting in

1

2
(mi− 1

2
+mi+ 1

2
)hu̇i = (−pi + pi) + (pi− 1

2
− pi+ 1

2
). (4.11)

The boundary terms cancel. We define the average of the mass as the nodal mass mi, such

that

mi =
1

2
(mi− 1

2
+mi+ 1

2
).

Therefore, the spatial derivative in the momentum equation in a semi-discrete form is ap-

proximated by

u̇i = −
pi+ 1

2
− pi− 1

2

hmi

, (4.12)

which will be referred to as Scheme A.



60

It is required to develop a second scheme for the spatial derivative, for use later in an error

estimation. Hence, we look at a Petrov-Galerkin method to obtain an alternative to Scheme

A.

4.2.3 Elementwise Petrov-Galerkin Approach for the Momentum

Equation

For the Petrov-Galerkin method, we choose a different test function where ψi 6= φi, see [100],

such that the weak form in eqn. (4.4) becomes∫ ξi

ξi−1

ψimu̇dξ = −ψip
∣∣∣ξi
ξi−1

+

∫ ξi

ξi−1

p
∂ψi
∂ξ

dξ. (4.13)

Previously we have seen the interval [−1, 1] divided into elements and choose u̇ as a piecewise

linear function, such that

u̇ =
N+1∑
j=0

u̇jφj(ξ),

where the basis functions φ(ξ) have previously been defined in eqn. (4.6). For an element

(ξi−1, ξi), eqn. (4.13) becomes

mi− 1
2

i∑
j=i−1

u̇j

∫ ξi

ξi−1

φjψidξ = −ψip
∣∣∣ξi
ξi−1

+ pi− 1
2

∫ ξi

ξi−1

∂ψi
∂ξ

dξ. (4.14)

We take mi− 1
2

and pi− 1
2

outside the integral since they are constant over an element, and

interchange the integral and the sum.

We determine ψ(ξ). To avoid mass lumping, we require ψ(ξ)to be diagonal. Hence, the

integral on the left hand side of eqn. (4.14) is of the form∫ ξi

ξi−1

ψjφidξ = δij, (4.15)

where δij is a matrix of zeros everywhere apart from the diagonal. This is achieved by

multiplying the mass matrix, in eqn. (4.10), by its inverse.
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Using the above and the mass matrix in eqn. (4.10), for an element i− 1
2

we obtain,

(
ψi−1

ψi

)
=

 1
3

1
6

1
6

1
3

−1 1 0

0 1

( φi−1

φi

)
(4.16)

=

 2 −1

−1 2

 1 0

0 1

( φi−1

φi

)
, (4.17)

which gives (
ψi−1

ψi

)
=

(
2φi−1 − φi
2φi − φi−1

)
. (4.18)

Note that the basis function ψ takes a form which is non-zero on the element boundaries, as

illustrated in Figure 4.2.

2 2

i− 1 i+ 1

Figure 4.2: Basis Function ψ±i in Element i− 1
2

4.2.4 Scheme B

The weak form of the momentum equation, for an element, using the Petrov-Galerkin basis

function from [100], is stated in eqn. (4.14). Using the hat basis function, φ, in eqn. (4.6)

and the new basis function, ψ, from eqn. (4.18), the system for an element becomes

mi− 1
2

 ∫ ξi
ξi−1

φi−1ψi−1dξ
∫ ξi
ξi−1

φiψi−1dξ∫ ξi
ξi−1

φi−1ψidξ
∫ ξi
ξi−1

φiψidξ

( u̇i−1

u̇i

)
(4.19)

= −

 p(2φi−1 − φi)
∣∣∣ξi
ξi−1

p(2φi − φi−1)
∣∣∣ξi
ξi−1

+ pi− 1
2

( ∫ ξi
ξi−1

(ψξ)i−1dξ∫ ξi
ξi−1

(ψξ)idξ

)
(4.20)
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giving

mi− 1
2
h

 1
2

0

0 1
2

( u̇i−1

u̇i

)
(4.21)

= −

(
−3

2
pi− 1

2
− pi− 3

2
− 1

2
pi+ 1

2

3
2
pi− 1

2
+ 1

2
pi− 3

2
+ pi+ 1

2

)
+ pi− 1

2

(
−3

3

)
. (4.22)

Note the element mass matrix is diagonal. For the pressures at the element boundaries, we

assume an average of the pressures in neighbouring cells, i.e.

pi−1 =
1

2
(pi− 1

2
+ pi− 3

2
)

and

pi =
1

2
(pi− 1

2
+ pi+ 1

2
).

Compared with the right hand side of the scheme from eqn. (4.12) in Section 4.2.1, this

provides a different stencil for the pressure term expressed as,

mi− 1
2
h

 1
2

0

0 1
2

( u̇i−1

u̇i

)
(4.23)

=

(
−3

2
pi− 1

2
+ pi− 3

2
+ 1

2
pi+ 1

2

3
2
pi− 1

2
− 1

2
pi− 3

2
− pi+ 1

2

)
. (4.24)

After assembly the scheme is

u̇i =
−pi− 3

2
+ 5pi− 1

2
− 5pi+ 1

2
+ pi+ 3

2

2mih
, (4.25)

referenced in this work as Scheme B.

Notice that since the alternative basis function, ψ, does not vanish at boundaries, element

boundary terms are included in the approximation. Other approximations could be gener-

ated using different assumptions of the pressure at the boundaries.

Since we now have an alternative discretisation to the momentum equation it can be used to

estimate an error.

We have obtained a Finite Difference (FD) scheme by applying a FEM. Although this may

seem an elaborate way of obtaining a FD approximation this approach is useful when ex-

tending the problem to 2D.
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4.3 Local Truncation Error

The definition for the LTE has already been given in Section 2.18 for the general case, and

Section 3.4 for the semi-discrete in time case. Here, we deal with eqn. (4.2), which is written

for convenience as

∂p

∂ξ
= −mu̇. (4.26)

The differential operator for the momentum equation is expressed as,

S(p) =
∂p

∂ξ
+mu̇ = 0, (4.27)

where p = p(ξ), u̇ = u̇(ξ) and m = m(ξ). The semi-discrete in space numerical schemes

approximating the differential equation from Section 4.2.1 and Section 4.2.3 are defined as

Sh, for eqn. (4.27).

The truncation error in one step for a spatial semi-discrete scheme is defined as

τi(Sh) = Sh(p(ξi))− Sh(pi), (4.28)

where Sh(pi) = 0 from eqn. (4.27).

4.3.1 Scheme A

From eqn. (4.27), we have the spatial differential equation for p(ξ),

S(p) =
∂p

∂ξ
+mu̇ = 0, (4.29)

while from eqn. (4.12) we have a numerical approximation to pi,

Sh(pi) =
pi+ 1

2
− pi− 1

2

h
+miu̇i = 0. (4.30)

To obtain the LTE apply eqn. (4.30) to the exact solution at the spatial point ξi, giving

Sh(p(ξi)) =
p(ξi + h

2
)− p(ξi − h

2
)

h
+m(ξi)u̇(ξi). (4.31)
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Using the definition of the truncation error, as stated in eqn.(4.28), along with eqn. (4.30)

and eqn. (4.31), where τi(Sa) is the LTE to eqn. (4.30) we obtain,

τi(Sa) =
p(ξi + h

2
)− p(ξi − h

2
)

h
+m(ξi)u̇(ξi). (4.32)

Using the exact differential equation, eqn. (4.26),

m(ξi)u̇(ξi) = −pξ(ξi),

and expanding p(ξi + h
2
) and p(ξi − h

2
) in the above about p(ξi) = p by Taylor series, where

p

(
ξi +

h

2

)
= p+

h

2
pξ +

1

2!

[
h2

4
pξξ

]
+

1

3!

[
h3

8
pξξξ

]
+ .. (4.33)

p

(
ξi −

h

2

)
= p− h

2
pξ +

1

2!

[
h2

4
pξξ

]
− 1

3!

[
h3

8
pξξξ

]
+ .. (4.34)

the local truncation error becomes

hτi(Sa) = p+
h

2
pξ +

1

2!

[
h2

4
pξξ

]
+

1

3!

[
h3

8
pξξξ

]
−

(
p− h

2
pξ +

1

2!

[
h2

4
pξξ

]
− 1

3!

[
h3

8
pξξξ

])
− hpξ + · · ·

=
h3

24
pξξξ +O(h4)

⇒ τi(Sa) =
h2

24
pξξξ +O(h3). (4.35)

Hence, the scheme is of second order.

4.3.2 Scheme B

From eqn. (4.27) we have the spatial differential equation

S(p) =
∂p

∂ξ
+mu̇ = 0.

From eqn. (4.25) we have a numerical approximation to p as

Sh(pi) =
pi− 3

2
− 5pi− 1

2
+ 5pi+ 1

2
− pi+ 3

2

2h
+miu̇i = 0. (4.36)
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To obtain the LTE apply eqn. (4.36) to the exact solution at the spatial point ξi, giving

Sh(p(ξi)) =
p(ξi − 3h

2
)− 5p(ξi − h

2
) + 5p(ξi + h

2
)− p(ξi + 3h

2
)

2h
+m(ξi)u̇(ξi). (4.37)

The LTE of eqn. (4.36) is defined as τi(Sb), when using eqn.(4.28), this becomes

τi(Sb) = Sh(p(ξi))− Sh(pi). (4.38)

Using eqn. (4.36) and eqn.(4.37), eqn. (4.38) becomes

τi(Sb) =
p(ξi − 3h

2
)− 5p(ξi − h

2
) + 5p(ξi + h

2
)− p(ξi + 3h

2
)

2h
+m(ξi)u̇(ξi).

Using the exact differential equation, eqn. (4.26) at ξi, i.e.

m(ξi)u̇(ξi) = −pξ(ξi),

and the expansions from eqn. (4.33) and eqn. (4.34), along with p(ξi + 3h
2

) and p(ξi − 3h
2

) in

the above, expanded about p(ξi) = p by Taylor series, where

p

(
ξi +

3h

2

)
= p+

3h

2
pξ +

1

2!

[
9h2

4
pξξ

]
+

1

3!

[
27h3

8
pξξξ

]
+ .. (4.39)

p

(
ξi −

3h

2

)
= p− 3h

2
pξ +

1

2!

[
9h2

4
pξξ

]
− 1

3!

[
27h3

8
pξξξ

]
+ .., (4.40)
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the local truncation error, τi(Sb), is given by

2hτi(Sb) = p− 3h

2
pξ +

1

2!

[
9h2

4
pξξ

]
− 1

3!

[
27h3

8
pξξξ

]
− 5

(
p− h

2
pξ +

1

2!

[
h2

4
pξξ

]
− 1

3!

[
h3

8
pξξξ

])
+ 5

(
p+

h

2
pξ +

1

2!

[
h2

4
pξξ

]
+

1

3!

[
h3

8
pξξξ

])
−

(
p+

3h

2
pξ +

1

2!

[
9h2

4
pξξ

]
+

1

3!

[
27h3

8
pξξξ

])
− 2hpξ + · · ·

= hpξ

(
−3

2
+

5

2
+

5

2
− 3

2
− 2

)
+ h2pξξ

(
9

8
− 5

8
+

5

8
− 9

8

)
+ h3pξξξ

(
−27

48
+

5

48
+

5

48
− 27

48

)
+O(h4)

= −11

12
h3pξξξ +O(h4)

⇒ τi(Sb) = −11h2

24
pξξξ +O(h3). (4.41)

Hence, this scheme is also of second order.

4.4 Error Estimation

As we have seen in Section 3.5, we can obtain a computable error estimate in one step when

we have two schemes of the same order.

We now obtain a spatial error estimate for the pressure in one step.

4.4.1 Estimated Spatial Error for Pressure in One Step

From Section 4.3.1 and Section 4.3.2, we have the leading terms of the LTE for the pressure

as

p(ξi + h)− (pa)i+1 = hτn(Sa) =
h3

24
pξξξ(ξn) +O(h4) (4.42)

p(ξi + h)− (pb)i+1 = hτn(Sb) = −11h3

24
pξξξ(ξn) +O(h4) (4.43)
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where (pa)i+1 and (pb)i+1 represent Scheme A and Scheme B approximations to p, respectively.

Subtract eqn. (4.42) from eqn. (4.43)

(pb)i+1 − (pa)i+1 =
12h3

24
pξξξ(ξi) +O(h4)

⇒ h3pξξξ(ξi) = 2
(
(pb)i+1 − (pa)i+1

)
+O(h4). (4.44)

Resulting in a computable estimate to the uncomputable third derivative of p, this can be

substituted into the local error term, eqn. (4.42), to give

p(ξi + h)− (pa)i+1 =
(pb)i+1 − (pa)i+1

12
+O(h4), (4.45)

leading to the truncation error, for the derivative pξ. In one step this is estimated by

τn(Sa) =
(pb)i+1 − (pa)i+1

12h
+O(h3). (4.46)

Hence, we have a computable local error due to the information introduced from both

schemes.

4.5 Semi-Discrete in Space Error Estimate for the Den-

sity

In Section 4.4 we obtained an estimation to the LTE for pressure in one spatial step, i.e.

from eqn. (4.45),

e[p] = p(ξi + h)− (pa)i+1 =
(pb)i+1 − (pa)i+1

12
+O(h4). (4.47)

Since pressure and density are related, in the case of the Isothermal equations, by

p = a2ρ,

from eqn. (2.30), we are able to obtain an estimate to the LTE of density in one spatial step,

simply by dividing eqn. (4.47) by a2, resulting in

e[ρ] = ρ(ξi + h)− (ρa)i+1 =
(ρb)i+1 − (ρa)i+1

12a2
+O(h4). (4.48)
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We now look at the additional spatial derivative in the system of three equations.

4.6 System of Three Equations

The Lagrangian system of three equations contains spatial derivatives in the momentum

equation and the specific internal energy equation.

We have seen in, Section 4.1, how we deal with the spatial derivatives in the 1D momentum

equation, see eqn. (4.2).

The specific internal energy equation, written in its 2D full form, in Lagrangian co-ordinates,

from eqn. (2.28) is

ρ|J |dε
dt

= −pC∇ · u, (4.49)

where ε = ε(ξ, t), m = m(ξ), u = u(ξ, t), p = p(ξ, t) and ∇ is the spatial derivative in terms

of the Lagrangian co-ordinates ξ.

In 1D, eqn. (4.49) takes the form

mε̇ = −p∂u
∂ξ
, (4.50)

since C = I in 1D, where m = m(ξ), u = u(ξ), ε̇ = ε̇(ξ) and p = p(ξ).

We now seek a numerical approximation to this equation using a finite element approach.

4.7 Weak form of Specific Internal Energy

We multiply eqn. (4.50) by a test function ω and integrate, which gives∫ ξi

ξi−1

ωmε̇dξ = −
∫ ξi

ξi−1

ωp
∂u

∂ξ
dξ. (4.51)

We look at the discrete form of eqn. (4.51), using the Galerkin method and the Petrov-

Galerkin method.

4.7.1 Specific Internal Energy using a Galerkin Approach

Integrating by parts over a single element, (ξi−1, ξi), we obtain the weak form of the specific

internal energy equation. We choose p to be piecewise constant over the element, such that
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p can be taken outside the integral and ∂p
∂ξ

= 0, hence eqn. (4.51) becomes

∫ ξi

ξi−1

ωmε̇dξ = pi− 1
2

(
−uω

∣∣∣ξi
ξi−1

+

∫ ξi

ξi−1

ωu
∂(ω)

∂ξ
dξ

)
. (4.52)

For the Galerkin approach in eqn. (4.52), we choose ω = φi, and integrate over an element,

(ξi−1, ξi), and let u be a piecewise linear function of the form

u =
N+1∑
j=1

ujφj(ξ). (4.53)

The weak form of the specific internal energy over an element is

∫ ξi

ξi−1

φi− 1
2
mi− 1

2
ε̇i− 1

2
dξ = −pi− 1

2

(
uφ
∣∣∣ξi
ξi−1

)
+ pi− 1

2

∫ ξi

ξi−1

i∑
j=i−1

uiφi
∂φi
∂ξ

dξ, (4.54)

where m and ε̇ are piecewise constant within the element. Interchanging the integral and the

sum,

mi− 1
2
ε̇i− 1

2

∫ ξi

ξi−1

φidξ = −pi− 1
2

(
uφ
∣∣∣ξi
ξi−1

)
+ pi− 1

2

i∑
j=i−1

uj

∫ ξi

ξi−1

φi
∂φj
∂ξ

dξ. (4.55)

The basis functions are chosen from eqn. (4.6), where their derivatives are,

∂φi(ξ)

∂ξ
=


1
h

ξi−1 < ξ < ξi

− 1
h

ξi < ξ < ξi+1

0 elsewhere,

(4.56)

and h = ξi − ξi−1.

Using eqn. (4.6) and eqn. (4.56), the weak form in eqn. (4.55) becomes

hmi− 1
2
ε̇i− 1

2

2pi− 1
2

= −(ui − ui−1)

2
. (4.57)

The boundary terms vanish. Hence eqn. (4.57) can be rewritten as

ε̇i− 1
2

= −
(ui − ui−1) pi− 1

2

hmi− 1
2

. (4.58)
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This is our specific internal energy equation discretised in space using the test function (4.6).

4.7.2 Specific Internal Energy using a Petrov Galerkin Approach

We have developed an alternative basis function in order to carry out a Petrov-Galerkin

method in Section 4.2.3. This basis function can be applied to eqn. (4.52) by using ω = ψi.

We integrate over an element on the interval (ξi−1, ξi) and choose u to be a piecewise linear

function as eqn. (4.53).

The weak form of the specific internal energy equation, using a Petrov Galerkin approach, in

an element becomes

mi− 1
2
ε̇i− 1

2

∫ ξi

ξi−1

ψidξ = pi− 1
2

(
−uψ

∣∣∣ξi
ξi−1

+
i∑

j=i−1

uj

∫ ξi

ξi−1

φi
∂ψj
∂ξ

dξ

)
. (4.59)

The basis function for φi is given by eqn. (4.6), whereas ψj is given by eqn. (4.18), the

derivative is expressed as

∂ψi(ξ)

∂ξ
=


3
h

ξi−1 < ξ < ξi

− 3
h

ξi < ξ < ξi+1

0 elsewhere.

(4.60)

Once computed, the weak form in eqn. (4.59) becomes

h

2
mi− 1

2
ε̇i− 1

2
= pi− 1

2

(
2(ui−1 − ui) +

3

2
(ui − ui−1)

)
⇒ h

2
mi− 1

2
ε̇i− 1

2
= −

pi− 1
2

2
(ui − ui−1)

⇒ ε̇i− 1
2

= −
(ui − ui−1) pi− 1

2

hmi− 1
2

. (4.61)

This is exactly the same discretisation as seen in eqn. (4.58). Since the velocity values u are

already held on the boundary we do not require an averaging process here, as we did for the

momentum case. Therefore the stencil is not spread differently.
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4.8 Semi-Discrete in Space Estimated Error for Pres-

sure

From the previous result eqn. (4.47), we have the approximated LTE of the variable pressure

in one spatial step,

e[p] = p(ξi + h)− (pa)i+1 =
(pb)i+1 − (pa)i+1

12
+O(h4). (4.62)

We do not use this solution to obtain the approximated LTE for density in one spatial step,

as we did previously for the system of two equations. This is because the pressure is related

to the density in a different way for the system of three equations, i.e.

p = (γ − 1)ρε.

Although we have an estimated error for p in one spatial step, we do not have the required

information for ε, due to the two schemes having the same leading term in the LTE, as is

seen in Section 4.7.2. Therefore, we restrict our results to the approximated LTE for pressure

in one spatial step, see eqn. (4.62).

4.9 Chapter 4 Summary

In this chapter we have introduced a semi-discrete form of the spatial derivatives. This has

been done for a system of two and three equations.

The approximations to the spatial derivatives are obtained through a Galerkin approach,

using standard FEMs. Additionally, an alterntive approximation is developed in this work,

which is of a Petrov-Galerkin form.

Using the variation in the approximations, we calculate the LTE for a system of two and

three equations. Along with Milne’s approach, we obtain an error estimate.

An error estimate for density and pressure is obtained for the system of two equations,

whereas only a pressure error estimate is obtained for the system of three equations.

We shall use the above results to progress the investigation onto the fully-discrete form, along

with the results from Chapter 3.



Chapter 5

Fully-Discrete Schemes in 1D

We have seen in Chapters 3 and 4, how truncation errors for the system of two and three

equations in 1D give rise to error estimates for the temporal and spatial derivatives separately.

In Chapter 3, we obtained the LTE for the Lagrangian equation dx
dt

= u for two temporal

schemes, which were then used to obtain the LTE in one time step, for the variable x. From

this, an estimate of the leading term of the LTE for the variable x was found in terms of the

computed x values, obtained from both schemes.

Similarly, in Chapter 4, we obtained the LTE for the two spatial schemes of the momentum

equation. This was used to obtain an estimate of the leading term of the LTE in terms of

computed p values from both schemes.

The results are extended to obtain the fully-discrete case for the system of two equations and

the system of three equations.

5.1 Fully-Discrete Error Estimate System of Two Equa-

tions

As demonstrated in Section 3.6.1, we are able to obtain an estimate to the LTE of density

and velocity using the LTE error of x and dx
dt

respectively.

The fully-discrete form of the differential equation, using eqn. (3.31) and eqn. (4.12), for

Scheme 1 in time and Scheme A in space, is given by

Lh(x
n
i ) =

xn+1
i − xni
k

− uni +
k

2hmi

(
p
n+ 1

2

i+ 1
2

− pn+ 1
2

i− 1
2

)
. (5.1)
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We can make use of the LTE errors obtained in Sections 3.4.1 and 4.3. From eqn.(3.39) we

have

τ(L1) =
x(tn + k)− x(tn)

k
− u(tn)− k

2
f

(
tn +

k

2

)
, (5.2)

once expanded, we see the LTE from eqn. (3.45) becomes

τn(L1) = −k
2

12
x′′′ +O(k3). (5.3)

From eqn. (4.32), we have

τ(Sa) =
p(ξi + h

2
)− p(ξi − h

2
)

h
+m(ξi)u̇(ξi), (5.4)

once expanded from eqn. (4.35), we have

τ(Sa) =
h2

24
pξξξ +O(h3). (5.5)

By substituting eqn. (5.3) and eqn. (5.5) into eqn. (5.1), we obtain the fully-discrete LTE

of the differential equation
∂x

∂t
= u,

For one spatial step the error takes the form

τ(L1) = −k
2

12
x′′′ +

h2k

48m
pξξξ +O(k3) +O(kh3). (5.6)

From eqn. (3.53), an estimate to the LTE error was obtained using

k3xttt = 4
(
(x1)n+1 − (x2)n+1) ,

and from eqn. (4.44), we have

h3pξξξ = 2
(
(pb)i+1 − (pa)i+1

)
.

Therefore, eqn. (5.6) becomes

τ(L1) = −(x2)n+1 − (x1)n+1

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.7)
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From this we obtain an estimated LTE for the variable x in terms of computable values, such

that

e[x] = x(ξi, t
n + k)− (x1)n+1

i = kτ(L1)

= −
(
(x2)n+1 − (x1)n+1)

3
+
k2
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.8)

The information is available to determine an approximated LTE for density and velocity,

from the fully discrete scheme.

5.1.1 Estimated LTE for Density

As previously seen, the LTE for density can be obtained by using eqn. (3.58), where

e[ρ] = ρ(tn + k)i − (ρs1)n+1
i =

mn

xξ(tn + k)
− mn

(xξ)
n+1

=
mn
(
(xξ)

n+1 − xξ(tn + k)
)

xξ(tn + k) (xξ)
n+1 . (5.9)

By differentiating eqn. (5.8) with respect to ξ, we obtain

e[x] = xξ(ξi, t
n + k)−

(
(x1)ξ

)n+1

i
= kτ(L1)

= −

((
(x2)ξ

)n+1

−
(

(x1)ξ

)n+1
)

3
+

k2

((
(pb)ξ

)
i+1
−
(

(pa)ξ

)
i+1

)
24hm

+ O(k3) +O(kh3), (5.10)

this can be substituted into eqn. (5.9) to obtain

e[ρ] = ρi(t
n + k)− (ρ1)n+1

i

= −
mn

(
−

(
((x2)ξ)

n+1
−((x1)ξ)

n+1
)

3
+

k2
(
((pb)ξ)i+1

−((pa)ξ)i+1

)
24hm

)
((

(x1)ξ

)n+1

−
(
((x2)ξ)

n+1
−((x1)ξ)

n+1
)

3
+

k2
(
((pb)ξ)i+1

−((pa)ξ)i+1

)
24hm

)(
(x1)ξ

)n+1
. (5.11)
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5.1.2 Estimated LTE for Velocity

From eqn. (5.7), we have

e [ẋ] = τ(L1)

= −
(
(x2)n+1 − (x1)n+1)

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.12)

Using eqn. (3.4), where
∂x

∂t
= u

we obtain the estimated LTE for the variable u in terms of computable values, such that

e[u] = u(ξi, t
n + k)− (u1)n+1

i

= −
(
(x2)n+1 − (x1)n+1)

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.13)

5.2 Fully-Discrete Estimated Error in a System of Three

Equations

The fully discrete approximated LTE from eqn. (5.6), is

τ(L1) = −k
2

12
x′′′ +

h2k

48m
pξξξ +O(k3) +O(kh3). (5.14)

A computable estimation to the LTE error can be obtained by using eqn. (3.80)

k3xttt = 4
(
(x2)n+1 − (x1)n+1)

and eqn. (4.44)

h3pξξξ = 2
(
(pb)i+1 − (pa)i+1

)
resulting in

τ(L1) = −
(
(x1)n+1 − (x2)n+1)

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.15)
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From this we determine the LTE for the variable x by

kτ(L1) = x(tn+h)−(x1)n+1 = −
(
(x1)n+1 − (x2)n+1)

3
+
k2
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3)+O(kh3).

(5.16)

The above can be used in obtaining an estimation to the LTE, for density and velocity.

5.2.1 Estimated LTE for Density

Using eqn. (3.58), we require eqn. (5.16) differentiated by ξ. Thus, resulting in,

e[xξ] = xξ(t
n + h)−

(
(x1)ξ

)n+1

=

−

((
(x1)ξ

)n+1

−
(

(x2)ξ

)n+1
)

3
+

k2

((
(pb)ξ

)
i+1
−
(

(pa)ξ

)
i+1

)
24hm

+O(k3) +O(kh3). (5.17)

Substituting the above into eqn. (3.58) we obtain

e[ρ] = ρi(t
n + k)− (ρ1)n+1

i

= −
mn

(
−

(
((x1)ξ)

n+1
−((x2)ξ)

n+1
)

3
+

k2
(
((pb)ξ)i+1

−((pa)ξ)i+1

)
24hm

)
((

(x1)ξ

)n+1

−
(
((x1)ξ)

n+1
−((x2)ξ)

n+1
)

3
+

k2
(
((pb)ξ)i+1

−((pa)ξ)i+1

)
24hm

)(
(x1)ξ

)n+1
. (5.18)

5.2.2 Estimated LTE for Velocity

From eqn. (5.7) we have

e [ẋ] = τ(L1)

= −
(
(x1)n+1 − (x2)n+1)

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.19)

Using eqn. (3.4),

ẋ = u,

we obtain the approximated LTE for velocity, such that

e[u] = u(ξi, t
n + k)− (u1)n+1

i
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= −
(
(x1)n+1 − (x2)n+1)

3k
+
k
(
(pb)i+1 − (pa)i+1

)
24hm

+O(k3) +O(kh3). (5.20)

5.3 Chapter 5 Summary

This chapter consists of combining the results from Chapters 3 and 4. The combinations

provide error estimates for the system of equations in their fully-discrete form.

We have successfully obtained error estimates for density and velocity, for both two and three

systems of equations.

Using these results we determine how well the error approximation captures the features of

the solution. Sod’s Shock tube is used as a test problem since an analytic solution is known.



Chapter 6

1D Results

Using the results from Chapter 3, we are able to obtain the results for the semi-discrete

in time case for the system of two equations. The variables we investigate are density and

velocity. Additionally, we have these error estimates for the Euler equations.

In Chapter 4, we determined an error estimate for density and pressure from the semi-discrete

in space case for the system of two equations. We also obtained an error estimate for pressure

in the semi-discrete space case for the Euler equations.

Using the information from Chapters 3 and 4, the error estimates are advanced to the fully-

discrete case form Chapter 5. We obtained an error estimate for density and velocity for the

system of two equations and the Euler equations.

In this chapter, we illustrate the results of the error estimates and determine how well the

error estimates behave against a true error. A test case is chosen for the Isothermal equations

and the Euler equations, which have analytic solutions associated to them. The test case

also exhibits the flow features that we are interested in capturing, i.e. shocks, contacts and

expansions. Since an analytic solution exists for the test problems, we are able to compare

and contrast against the error estimates obtained in the previous chapters and determine

their suitability as a choice of refinement criteria.

6.1 Riemann Problem

As a test problem for the 1D case we use a Riemann problem, see [52], to determine how

well the estimated error behaves. Although the Riemann problem is a simple test it exhibits

all fundamental characteristics of fluid dynamics, i.e. shocks, contact discontinuities and
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rarefactions. This enables hydrocodes to be tested for their suitability in modeling such

features. Since an analytic solution is available for the Riemann problem, for details see [52],

we are able to compare the estimated error against the true error of the Main Scheme from

[64, 10], and defined in Sections (3.3.1) and (4.2.1).

The initial conditions for the test problem consists of piecewise-constant data with a single

discontinuity, which is illustrated in Figure 6.1, with ρl = 1.0, pl = 2.25, ul = 0, ρr = 0.125,

pr = 0.28125 and ur = 0.

ρl = 1.0
pl = 2.25
ul = 0.0

ρr = 0.125
pr = 0.28125
ur = 0.0

Figure 6.1: 1D Riemann Problem

6.1.1 Isothermal Equations

The test case for the Isothermal problem is run to a final time of 0.2 on a mesh of 400 points

for the region [0, 2].

The solution consists of three constant states which are connected by a rarefaction fan and

a shock, see Figures 6.2 and 6.3.

The numerical scheme used to drive the numerical solution in Figure 6.2, is taken from

[64, 10], while the numerical solution in Figure 6.3 is driven by a combination of Scheme 2

and Scheme B. Christensen artificial viscosity has been used with cl = 0.5 and cq = 0.75,

and is added to all pressure terms. The analytic solution is based on the solution to the

Riemann problem taken from [52]. The Rankine-Hugoniot jump condition is used to form a

Hugoniot locus to gather information from the shock waves, and integral curves are used to

obtain information for the rarefaction fan.

In Figures 6.2 and 6.3, the numerical solution is illustrated by a dotted red line and the

analytic by the solid blue line. We see the top of the expansion fan at x = 0.70 and the

bottom is at x = 1.02. These regions are connected to the shock by an intermediate constant
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state, where ρ = 0.35. The shock front spans x ∈ [1.497, 1.499].

In the Main Scheme, Sections (3.3.1) and (4.2.1), see Figure 6.2, the solution is in good

agreement to the analytic solution, apart from the undershoot at the base of the rarefaction,

this is due to “Wall heating”, see [10]. Details of Wall heating are beyond the scope of this

thesis, however it is discussed in [73].

Scheme 2 is in good agreement to the analytic solution. However, Figure 6.3 illustrates an

overshoot before the expansion in the density and an undershoot after shock on the velocity.

This is the opposite to the result for the Main Scheme in Figure 6.2.

Scheme 1 and Scheme 2, from Figures 6.2 and 6.3, are both comparable to the analytic

solution, and each other. Since the analytic solution is available, we further investigate their

suitability, by calculating the error norms, see Table 6.1. The norms are comparable, which

demonstrates they are suitable schemes to use to determine an error estimate.

Now that we have demonstrated the suitability of both schemes to be used in estimating the

error, we wish to explore the results for the variety of estimated errors we have obtained in

the previous chapters.

Figure 6.2: Riemann problem, density, pressure and velocity results at at T = 0.2 using Main
Scheme and analytic solution for the Isothermal Equations on a fine mesh in 1D.
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Figure 6.3: Riemann problem, density, pressure and velocity results at T = 0.2 using a
combination of Scheme 2 and Scheme B against the analytic solution for the Isothermal
Equations in 1D on a fine mesh.

Table 6.1: 1D Error norms comparing Scheme 1 and Scheme 2 for the Sod Shock Tube for
the Isothermal Equations.

Calculation ||e||1 ||e||2 ||e||∞
Scheme 1 0.00296 0.14917 0.08550
Scheme 2 0.00534 0.24900 0.08417

Comparison of the True Error and Estimated Error

We wish to determine the estimated error for density and velocity. We have been able to

obtain a range of these errors by means of a semi-discrete in time scheme, semi-discrete in

space scheme and fully-discrete scheme. Note, since velocity is not a conserved variable in

space, we do not have the information for a semi-discrete in space scheme for the velocity.

The two features that we are interested in resolving in this problem are the rarefaction and

shock. The results below illustrate how well the estimated error captures these features. In

order to compare the entire region for both true error and estimated error we look at the

results plotted on a log scale.
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From Figure 6.4, we see how the semi-discrete in time estimated error in density directly

compares to the true error. The magnitude difference at the top and bottom of the fan is

visible, there is less variation between the two schemes used to evaluate the estimated error

at the top and bottom of the fan, as demonstrated by the two peaks at x = 0.7 and x = 1.02.

The fan is not tracked well by the estimated error. The solution exhibits oscillations before

the shock front. However, as desired, the shock front is detected extremely well in position

and value.

Figure 6.5 demonstrates the semi-discrete in time estimated error for the velocity. The top

and bottom of the fan are detected, where the values are closer to the true error here than

in the density case. Additionally, the fan is detected better than the previous case. In front

of the shock, between x = 1.3 and x = 1.49, oscillations are seen in both the true error and

estimated error.

It is not clear the reason why oscillations are appearing before the shock front in both the

true error and estimated error. Since the oscillations are present in the true error case this

indicates the Main Scheme stated in Sections (3.3.1) and (4.2.1), exhibits oscillations at this

point. One possible cause of the oscillations is the effect of the artificial viscosity. The

artificial viscosity is triggered around the compressible feature where the nodal spacing is

small. The artificial viscosity could have an ‘artificial’ effect on the nodes around the shock,

therefore causing oscillations. The possible causes of the oscillations should be considered

for further work.

The shock front is in excellent agreement in terms of position and strength, once again.

The semi-discrete in space estimated error for density is seen in Figure 6.6. The top and

bottom of the fan are detected, however not as well as for the time semi-discrete case. The

bottom of the fan is detected better than the top. Again, oscillations are shown before the

shock, and yet again the shock is captured extremely well.

The results for the fully-discrete estimated error in density from Figure 6.7, are similar

to the semi-discrete in space density results, in the way the bottom of the fan is captured

better than the top, and the shock being captured extremely well. However, in this case the

estimation lies closer to the true error, especially the oscillations prior to the shock. These

are similar to the semi-discrete time only case.

From Figure 6.8, the fully-discrete estimated error for velocity, we see that the bottom of

the fan is greater than the top of the fan, which is different to the time semi-discrete case.

The fan is not captured well here, in a similar manner to the time semi-discrete case. The

oscillations prior to the shock are further from the true error, than they are in the density

fully-discrete case. The shock is detected and evaluated very well once again.
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Figure 6.4: 1D Isothermal Equations, Semi-Discrete in Time Density Errors.

Figure 6.5: 1D Isothermal Equations, Semi-Discrete in Time Velocity Errors.



84

Figure 6.6: 1D Isothermal Equations, Semi-Discrete in Space Density Errors.

To further investigate how well the estimated errors in density capture the shock we compare

Figure 6.9 against Figures 6.11, 6.15, 6.17. We see that the shock is captured best by using

the fully-discrete estimated error for density, in Figure 6.17. The true error is 0.088 and the

estimated error is 0.078. The estimated error in density captures the shock front least well

in the semi-discrete space case, where the true error is 0.088 and the estimated error is 0.04.

Comparing Figure 6.10 with Figures 6.12 and 6.18 we see that the estimated error in velocity

captures the shock front in the fully-discrete case better than the semi-discrete in time case,

where the true error is 0.63 and the estimated error is 0.25 and 0.2 respectively. The results

indicate that the estimated error in density with the fully-discrete scheme captures the shock

front best.

Note how the shock front true error and estimated errors in all cases are of the same magni-

tude. In order to investigate the expansion we zoom in on Figures 6.11, 6.12, 6.15, 6.17, 6.18.

This is because the magnitude of the estimated error for the expansion is not in agreement

with the true error. In all cases of the estimated error we see that the fan is not captured,

only the top and bottom of the fan is, see Figures 6.13, 6.14, 6.16, 6.19, 6.20. The top of

the fan is captured best by the estimated error of velocity using the semi-discrete in time

scheme, as seen in Figure 6.14. However, this error is still out by two orders of magnitude.
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Figure 6.7: 1D Fully-Discrete Density Errors for the Isothermal Equations.

Figure 6.8: 1D Fully-Discrete Velocity Errors for the Isothermal Equations.
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The bottom of the expansion fan is captured best by the estimated error for velocity in the

fully-discrete case, see Figure 6.20, but this is still out by one order of magnitude.

The density estimated error does not capture the top and bottom of the fan as well as the

velocity. However, the best results for the density case can be seen in the fully-discrete den-

sity, see Figure 6.19, as would be expected. However, in this case the top of the fan is out

by three orders of magnitude, which is worse than any of the velocity results. This suggests

using the velocity error estimate to capture the top and bottom of the fan.

It is still not clear why the magnitude of the error estimate is not in agreement with the

true error around the expansion. One explanation for this could be due to the oscillations.

Since mass is conserved, the mass used around these oscillations has been taken from another

region i.e. around the expansion. If this is the case then the magnitude of the true error

around the fan will be affected. Hence, when comparing the true error and the estimated

error, the magnitude for the true error may be larger because of the oscillations.

To compare the true error and the estimated errors further we calculate the 1−norm,

Figure 6.9: True Error in Density for the Isothermal Equations in 1D.

2−norm and infinity-norm, on a coarse grid of 100 elements and a fine grid of 400 elements.

The error norms for the semi-discrete cases in Tables 6.2-6.4 are significantly different, al-

though, the infinity-norm demonstrates the same magnitude in all the fine cases. The differ-
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Figure 6.10: True Error in Velocity for the Isothermal Equations in 1D.

Figure 6.11: Semi-Discrete in Time Estimated Error for Density for the Isothermal Equations
in 1D.
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Figure 6.12: Semi-Discrete in Time Estimated Error for Velocity for the Isothermal Equations
in 1D.

Figure 6.13: Semi-Discrete in Time Estimated Error for Density for the Isothermal Equations
in 1D Zoomed.
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Figure 6.14: Semi-Discrete in Time Estimated Error for Velocity for the Isothermal Equations
in 1D Zoomed.

Figure 6.15: Semi-Discrete in Space Estimated Error for the Isothermal Equations in 1D for
Density
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Figure 6.16: Semi-Discrete in space Estimated Error for Density for the Isothermal Equations
in 1D Zoomed.

Figure 6.17: Fully-Discrete Estimated Error in Density for the Isothermal Equations in 1D.
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Figure 6.18: Fully-Discrete Estimated Error in Velocity for the Isothermal Equations in 1D.

Figure 6.19: Fully-Discrete Estimated Error for Density for the Isothermal Equations in 1D
Zoomed.
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Figure 6.20: Fully-Discrete Estimated Error for Velocity for the Isothermal Equations in 1D
Zoomed.
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Table 6.2: Norms for Semi-Discrete in Time Density Errors

||e||1 ||e||2 ||e||∞
100 400 100 400 100 400

True Error 0.45066 0.42377 0.13987 0.10548 0.11366 0.08550
Estimated Error 6.21645 0.11256 3.31151 0.06167 2.83615 0.04854

Table 6.3: Norms for Semi-Discrete in Time Velocity Errors

||e||1 ||e||2 ||e||∞
100 400 100 400 100 400

True Error 2.16705 1.81174 0.88916 0.68360 0.81492 0.61086
Estimated Error 1.52606 0.58422 0.70488 0.29341 0.44780 0.20012

Table 6.4: Norms Semi-Discrete in Space for Density Errors

||e||1 ||e||2 ||e||∞
100 400 100 400 100 400

True Error 0.45066 0.42376 0.13987 0.10548 0.11366 0.08550
Estimated Error 0.14150 0.07647 0.08692 0.04326 0.08053 0.03816

Table 6.5: Norms of Fully-Discrete Density Errors

||e||1 ||e||2 ||e||∞
100 400 100 400 100 400

True Error 0.45066 0.42377 0.13987 0.10548 0.11366 0.08550
Estimated Error 0.32961 0.21427 0.15586 0.10567 0.11060 0.07788

Table 6.6: Norms Fully-Discrete Velocity Errors

||e||1 ||e||2 ||e||∞
100 400 100 400 100 400

True Error 2.16705 1.81174 0.88916 0.68360 0.81492 0.61086
Estimated Error 1.27366 0.60981 0.62063 0.30265 0.55336 0.24132
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ence in norms is due to the fact that these errors are estimated using semi-discrete schemes,

whereas the fully-discrete form contributes more information to the estimated error.

The results in Table 6.5 for the fully-discrete estimated error in density give the best agree-

ment, particularly the infinity-norm, however there are still differences due to the fact that

we are using an estimation, and as we have seen in the log plots some features were not

detected with the same magnitude as the true error. Therefore, the 1−norm and 2−norm

will differ significantly even if the infinity-norm is in good agreement.

For the fully-discrete estimated error in velocity, the results in Table 6.6 are not as good

as the density case, where there is a significant difference in the infinity-norms. Since the

infinity-norm is effectively the error at the shock, it appears from this result that if the shock

is not captured well the rest of the solution will suffer.

To conclude the results for the 1D system of two equations, it appears that the shock is

best captured using a temporal error. From Tables 6.2, 6.4 and 6.5 the infinity-norm, which

demonstrates the values for the shock, are in best agreement here. These results are all

density related. In the analytic equation the density is obtained from the conservation of

mass, i.e. eqn. (2.26)
dm

dt
= 0.

Since this only contains a temporal derivative we conclude the shock is captured best by a

temporal error. Additionally in Figures 6.5 and 6.8 we see the expansion is captured best by

the velocity. From the analytic equation, in which the velocity is obtained, as stated in eqn.

(2.27), for the 1D case we have

m
du

dt
= −pξ. (6.1)

Since a spatial derivative is present we conclude that the expansion is related to an error in

space. The shock is also captured in Figures 6.5 and 6.8, which is in agreement the conclusion

that the shock is captured by temporal errors, as there is also a temporal derivative in eqn.

(6.1).

6.1.2 Euler Equations

We use the well known Sod shock tube problem from [83] as a test problem for the Euler

equations. We choose this problem for the same reasons as choosing a Riemann problem in

the Isothermal case. The problem is simple and an analytic solution exists. The Sod shock

tube problem consists of the desired features, i.e. shock, contact and expansion, therefore,

making it is an ideal problem to test the numerical method.
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The initial data for the Euler equations is given in Figure 6.21. The problem consists of a

ρl = 1.0
pl = 1.0
ul = 0.0

ρr = 0.125
pr = 0.1
ur = 0.0

Figure 6.21: Sod Shock Tube Problem in 1D.

rigid walled tube, which contains two phases separated by a membrane. The gas of lower

pressure is called the test gas and the higher pressure gas is the driver. At the beginning of

the problem the membrane is removed and assumed to have no further influence. Once the

membrane is removed a shock wave forms which moves to the right, as a result of the driver

gas being on the left of the test gas. A rarefaction propagates to the left.

The problem is run to a final time of 0.2 on a uniform mesh of 200 points in a region [0, 1].

For the Euler equations, the solution consists of four constant states, which are connected

by a rarefaction fan, a contact discontinuity, and a shock wave.

Christensen artificial viscosity has been used. The analytic solution is based on the Riemann

solver, from [82], which allows for true error to be compared against the estimated error.

In Figures 6.22 and 6.23, the analytic solution is illustrated with the blue solid line, the nu-

merical solution is illustrated with the red dotted line. We can see the top of the expansion

fan at x = 0.26 and the bottom is at x = 0.49, the fan is connected to the contact discon-

tinuity by a constant state at ρ = 0.43. The contact spans the interval x ∈ [0.6795, 0.6866].

There is another constant state at ρ = 0.2656 which connects the contact and the shock.

The shock spans the interval x ∈ [0.8499, 0.8533].

From Figure 6.22, the solutions from the Main Scheme, seen in Sections (3.3.1) and (4.2.1),

and the analytic are in good agreement, as previously stated the undershoot at the bottom

of the fan, due to wall heating is visible. Similarly for Figure 6.23, where a combination of

Scheme 2 and Scheme B is used, the analytic and numerical solutions are in good agreement.

However, the opposite to the result illustrated in Figure 6.22 is demonstrated, where there

is an overshoot at the top of the fan. Additionally, the solution around the shock appears

to be smoothed out. There is also possible evidence of odd-even decoupling, which could

lead to the artificial viscosity behaving badly, hence causing the overshoots. This is an area
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of further work, where the cq and cl coefficients in the artificial viscosity terms should be

investigated.

Since the analytic solution is available we calculated the error norms for Scheme 1 and Scheme

2 on a fine mesh, see Table 6.7. The norms are not as comparable as in the Isothermal case.

However, we must take into consideration that there is an extra feature in the solution here,

i.e. the contact, therefore, it would be expected for the solutions of each scheme to be more

varied. It is promising that the ∞-norm is comparable in magnitude, as this is the main

feature we wish to capture.

Figure 6.22: Density, Pressure and Velocity Results at T = 0.2 using Scheme 1 and the Sod
Shock Tube Problem for the Euler Equations in 1D.
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Figure 6.23: Density, Pressure and Velocity Results at T = 0.2 using Scheme 2 and the Sod
Shock Tube Problem for the Euler Equations in 1D.

Table 6.7: 1D Euler Equations Error Norms Comparing Scheme 1 and Scheme 2 for the Sod
Shock Tube.

Calculation ||e||1 ||e||2 ||e||∞
Scheme 1 0.00262 0.07790 0.04582
Scheme 2 0.00484 0.16845 0.07995

Since both schemes are comparable, they are suitable to be used as the estimated error.

We are now able to investigate the estimated errors obtained in the previous chapters.

Comparison of the True Error and Estimated Error

We have a variety of errors produced from the semi-discrete in time scheme, semi-discrete in

space scheme and the fully-discrete scheme.

We are interested in capturing the flow features i.e. rarefaction, contact and shock with the

estimated errors. The results of the estimated error can be compared against the true error

on a log scale.
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From Figure 6.24, we see that the top and bottom of the expansion are detected well although,

not in size. As we saw in the Isothermal case, the peaks around the top and bottom of the

fan are peaks themselves, suggesting that the two schemes used to estimate the error are

similar to each other in this area, resulting in a lower estimated error, i.e. the peaks.

To the left of x = 0.7 we see the contact is detected as having the same magnitude at the top

and bottom of the fan. Across the contact peaks form in the same manner as the endpoints

of the fan. The top of the shock is detected correctly at x = 0.8499, where the size is also in

good agreement.

The semi-discrete in time estimation for velocity, in Figure 6.25, demonstrates that the top

and bottom of the fan is captured very well, where the magnitude at these locations is better

than the density case. Additionally, the fan itself has been captured.

The contact is captured in the correct location and is of a similar value to the true error.

The shock is also captured well here.

The semi-discrete in space estimated error in pressure is illustrated in Figure 6.26. The

Figure 6.24: 1D Euler Equations, Semi-Discrete in Time Density Errors.

features of the solution are not as distinguished as in previous results. Although, the top and

bottom of the fan are captured, they blend into the results of the fan itself. The contact is

captured at the correct location with a similar value. Again, the top of the shock is in good
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Figure 6.25: 1D Euler Equations, Semi-Discrete in Time Velocity Errors.

agreement. From Figure 6.27, the top and bottom of the fan are detected well, however, they

are not as distinguished as for the semi-discrete in time case. However, the bottom of the fan

is in better agreement than the semi-discrete in time case. There is less variation between

the two schemes at the top of the fan, demonstrated by the peaks. The contact is detected

just as well as the semi-discrete in time case. The shock is again in good agreement.

Figure 6.28 illustrates the fully-discrete estimated error in velocity. The information across

the fan is detected in a similar manner to the semi-discrete in time case, however, this semi-

discrete case has a greater magnitude. Again the contact is detected in the correct position

but there is a greater difference. The shock is again in good agreement here.

For all cases in Figures 6.24-6.28, the shock is captured very well in position and value.

Although, some variables are better than others at detecting the expansion, there is still

a difference in magnitudes between the true error and estimate error, as was also observed

in the Isothermal case. We have discussed the undershoot at the bottom of the fan and

the oscillations before the shock. Due to the conservation of mass, these features will be

counteracted elsewhere in the solution. Therefore, if the two schemes behave equally as poor

around the fan, the true errors will be affected, but there will be no difference seen in the

estimated error. Therefore the true error may be more than anticipated where the estimated
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Figure 6.26: 1D Euler Equations, Semi-Discrete in Space Pressure Errors.

error may be behaving better than appears. This is seen to be illustrated in Figures 6.24-6.28,

since the estimated error is always less than the true error.

On comparison of Figure 6.36 with Figure 6.31, we see that the semi-discrete in space

estimated error for pressure captures the shock best, where the true error reaches 0.072 and

the estimated error is at 0.085. This is closely followed by the fully-discrete approximation

of velocity from Figures 6.39, where the true error is at 0.600 and the estimated error is at

0.724.

The contact is best captured by the semi-discrete in time estimated error in velocity, from

Figure 6.33, Figure 6.35 and Figure 6.30, the true error is at 0.0007 and the estimated error

is at 0.0005.

The top of the rarefaction is best captured by the semi-discrete in time estimated error in

velocity with the true error reaching 0.02 and the estimated error is at 0.005, from Figure

6.33, Figure 6.35 and Figure 6.30. The bottom of the fan is best captured by the semi-discrete

in space estimated error for pressure, from Figure 6.36, Figure 6.31 and Figure 6.37, where

the true error reaches 0.006 and the estimated error is at 0.0015.

We see that the contact appears at x = 0.7 for the true error in Figure 6.29. On comparison

of Figures 6.32 and 6.38, we can not detect the contact, therefore on closer inspection we
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Figure 6.27: 1D Euler Equations, Fully-Discrete Density Errors.

Figure 6.28: 1D Euler Equations, Fully-Discrete Velocity Errors.
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obtain Figures 6.34 and 6.40. The semi-discrete in time and fully-discrete error estimates

for density capture the contact least well. However, for all cases it is difficult to distinguish

whether it is the contact we are detecting or the oscillations. This is discussed further in

Appendix D.

6.2 Chapter 6 Summary

In summary for this problem it is best to use a combination of the semi-discrete in space

approximation of pressure to capture the shock front and bottom of the expansion, whereas

it is best to use the semi-discrete in time approximation of velocity to capture the top of the

fan and contact. Pressure and velocity may be behaving better here since they are natural

variables of the derivatives we gain an estimated error for. Whereas, the estimated error in x

needs to be manipulated to obtain an estimated error for density. It appears that the contact

will always be difficult to detect using this method. It is a difficult task to capture all features

with a single variable, as was discussed in Chapter 2. We also found the overall results for

the error norms in the Euler equation case exhibit a similar pattern to the Isothermal case.

Since the results are promising for detecting the fluid flow features of interest we extended

to the 2D system of Euler equations.
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Figure 6.29: True Error for Density for the Euler Equations in 1D.

Figure 6.30: True Error for Velocity for the Euler Equations in 1D.
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Figure 6.31: True Error for Pressure for the Euler Equations in 1D.

Figure 6.32: Semi-Discrete in Time Estimated Error for Density for the Euler Equations in
1D.



105

Figure 6.33: Semi-Discrete in Time Estimated Error for Velocity for the Euler Equations in
1D.

Figure 6.34: Semi-Discrete in Time Estimated Error for Density for the Euler Equations in
1D Zoomed.
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Figure 6.35: Semi-Discrete in Time Estimated Error for Velocity for the Euler Equations in
1D Zoomed.

Figure 6.36: Semi-Discrete in Space Estimated Error for Pressure for the Euler Equations in
1D.
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Figure 6.37: Semi-Discrete in Space Estimated Error for Pressure for the Euler Equations in
1D Zoomed.

Figure 6.38: Fully-Discrete Estimated Error for Density for the Euler Equations in 1D.
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Figure 6.39: Fully-Discrete Estimated Error for Velocity for the Euler Equations in 1D.

Figure 6.40: Fully-Discrete Estimated Error for Density for the Euler Equations in 1D
Zoomed.
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Figure 6.41: Fully-Discrete Estimated Error for Velocity for the Euler Equations in 1D
Zoomed.



Chapter 7

2D System of Three Equations

In Chapter 5 we saw how to express the 1D system of the Euler Equations in a fully-discrete

form. We now wish to extend the approach to 2D.

The Main Scheme from [64], uses the Position Verlet scheme from Section (3.3.1) for the

temporal discretisations and a Galerkin approach from Section (4.2.1) for the spatial dis-

cretisations.

In Chapters 3 and 4 we developed a method to estimate the error, in the nodal positions in

one step for the Main Scheme in 1D. This was achieved by using the Main Scheme for the

temporal derivatives and an alternative scheme, of the same order, for the spatial derivative,

which produces an estimated computable term for the spatial derivative in the leading term

of the truncation error. Likewise, by using the Main Scheme for the spatial discretisations

and a different temporal scheme, we achieved a computable estimate to temporal derivatives

in the truncation error. Furthermore, by combining a variation in both space and time ap-

proximations an entirely computable estimate to the error in one step was achieved.

We now look at the fully-discrete system of the Euler Equations in 2D. We will first determine

an error estimate in one step for the position x.

The next section will be dedicated to two different temporal schemes in 2D. Following on

from this, two spatial schemes in 2D will be demonstrated.

The fully-discrete truncation errors for the nodal position will be obtained by fixing the tem-

poral scheme and varying the spatial scheme and vice versa. From the truncation errors we

determine an estimation to the error in one step for the fixed temporal scheme and spatial

scheme.

By using different schemes in both space and time we obtain a truncation error in which

110
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both temporal and spatial terms in the truncation error are computable.

We begin the extension by investigating the 2D semi-discrete in time schemes followed by

the 2D semi-discrete in space schemes.

7.1 System of Three Equations

The Lagrangian form of the Euler Equations, which connects the moving point x(ξ, t) to the

velocity, u(ξ, t), is
∂x

∂t
= u. (7.1)

From Section (2.6), we have the Euler Equations written for a general case. In 2D these are

expressed as

• Conservation of Mass
∂m

∂t
= 0, (7.2)

where m = ρ|J |.

• Momentum Balance,
∂u

∂t
= −C∇p

m
. (7.3)

• Specific Internal Energy Balance,

∂ε

∂t
= −pC

m
∇ · u, (7.4)

where ξ = (ξ, η), we have x = x(ξ, t) = (x(ξ, t), y(ξ, t)), u = u(ξ, t) = (u(ξ, t), v(ξ, t)),

m = m(ξ), p = p(ξ, t), ∇ = ∇ξ =
(
∂
∂ξ
, ∂
∂η

)
and ε = ε(ξ, t). Here, C is the adjoint matrix

which is introduced as a result of inverting the Jacobian when transforming the co-ordinates

into (ξ, η) space. It takes the form

C =

(
∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

)
. (7.5)

In order to look at the temporal and spatial schemes separately, the schemes for the system

of three equations will be expressed in their semi-discrete form.
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7.2 Temporal Discretisation

To discretise the system of three equations in a semi-discrete manner, we drop the spatial

dependencies from the Euler Equations, such that

dx

dt
= u (7.6)

From Section 2.6, we have the system of three equations written for a general case. In 2D

this is expressed as;

• Conservation of Mass
dm

dt
= 0, (7.7)

where m = ρ|J |.

• Momentum Equation
du

dt
= f , (7.8)

where f = −C∇p
m

.

• Specific Internal Energy Equation,

dε

dt
= pg, (7.9)

where g = −pC∇·u
ρ|J | .

Since we have eliminated the spatial dependencies, the partial derivatives now become or-

dinary derivatives, where we have x = x(t), u = u(t), f = f(t), g = g(t), p = p(t), and

ε = ε(t). We now look at discretising the temporal derivatives.

7.2.1 Scheme 1

In Section 3.7.1 we saw how the Position Verlet Scheme was extended to the system of three

equations in 1D. By extending this to 2D we obtain the scheme.
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Predictor

• Nodal positions are calculated at a half timestep by the semi-discrete step

xn+ 1
2 = xn +

k

2
un. (7.10)

• The density, ρ, is calculated at the half timestep using the conservation of mass,

mn+ 1
2 = mn

⇒ ρn+ 1
2 |J |n+ 1

2 = mn

⇒ ρn+ 1
2 =

mn

|J |n+ 1
2

. (7.11)

• Half timestep energies can be calculated from,

εn+ 1
2 = εn + k

pngn

2
. (7.12)

• Using the equation of state the pressure is now updated at the half timestep using,

pn+ 1
2 = (γ − 1)ρn+ 1

2 εn+ 1
2 . (7.13)

Corrector

• Full timestep velocities are calculated from the half step densities using

un+1 = un + kfn+ 1
2 . (7.14)

• The averaged velocities over the full timestep is,

ū =
1

2
(un + un+1)

= un +
k

2
fn+ 1

2 , (7.15)

which is used to update the nodal positions at the full timestep by

xn+1 = xn + kun +
k2

2
fn+ 1

2 . (7.16)
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• The density, ρ, can now be calculated at the full timestep using the conservation of

mass,

mn+1 = mn (7.17)

⇒ ρn+1|J |n+1 = mn

⇒ ρn+1 =
mn

|J |n+1
. (7.18)

• Energies are evaluated at the end of the time step by,

εn+1 = εn + kpn+ 1
2 gn+ 1

2 . (7.19)

• Finally, calculate the pressures at tn+1, from the equation of state, where,

pn+1 = (γ − 1)ρn+1εn+1. (7.20)

7.2.2 Scheme 2

We extend the Scheme, from Section 3.7.2, to the 2D case, obtaining the following scheme.

Predictor

We use the suffix ∗, to denote the predictor stage, since the predictor and corrector are

calculated at the same timestep.

• Full timestep velocities are predicted by,

un+1
∗ = un + kfn. (7.21)

• A predicted average velocity is obtained from,

ū∗ =
1

2
(un + un+1

∗ )

= un +
k

2
fn. (7.22)
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• Nodal positions are predicted using,

xn+1
∗ = xn + kū∗

= xn + kun +
k2

2
fn. (7.23)

• The density can be predicted at the full timestep by using the conservation of mass,

mn+1
∗ = mn

⇒ ρn+1
∗ |J∗|n+1 = mn

⇒ ρn+1
∗ =

mn

|J∗|n+1
. (7.24)

• The specific internal energy can now be predicted at the half timestep using,

εn+1
∗ = εn + kpng

n+ 1
2

∗ . (7.25)

• The equation of state is used to obtain the pressure at the predicted full timestep.

Corrector

• Corrected full timestep velocities are calculated using the predicted pressures such that,

un+1 = un + kfn+1
∗ . (7.26)

• Averaged velocities are corrected by

ū =
1

2
(un + un+1)

= un +
k

2
fn+1
∗ . (7.27)

• The averaged velocities are used to update the nodal positions,

xn+1 = xn + kū

= xn + kun +
k2

2
fn+1
∗ . (7.28)
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• Corrected densities are again obtained from the conservation of mass, where,

mn+1 = mn

⇒ ρn+1|J |n+1 = mn

⇒ ρn+1 =
mn

|J |n+1
. (7.29)

• Energies are corrected at the full timestep using

εn+1 = εn + kpn+1
∗ gn+1

∗ . (7.30)

• Finally, full timestep pressures are updated using the equation of state.

Now we have stated the two schemes for the temporal derivatives, we seek two schemes to

approximate the spatial derivatives in the momentum and specific internal energy equation.

7.3 Spatial Discretisation

Spatial discretisations occur in the momentum equation and the specific internal energy

equation. The spatial approximations are obtained using a finite element approach. As we

have seen in Chapter 4, we seek two spatial schemes in order to obtain a computable error

estimate later.

Firstly, we will look at the two different spatial discretisations for the momentum equation,

then these methods will be applied to the specific internal energy equation.

7.3.1 Momentum Equation

Where u̇ = ∂u
∂t

(ξ, t), the momentum equation becomes

mu̇ = −C∇p, (7.31)

where we drop the temporal dependencies, such that m = m(ξ), u̇(ξ), ∇ =
(
∂
∂ξ
, ∂
∂η

)
and

p = p(ξ).

We now express the momentum equation in a weak form.
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7.3.2 Weak Form of Momentum Equation

The momentum equation is multiplied by a test function ω(ξ, η), where ω ∈ H1(Ω), Ω is a

unit square in (ξ, η) space, resulting in∫
Ω

ωmu̇dΩ = −
∫

Ω

ωC∇pdΩ. (7.32)

Using Green’s theorem we obtain,∫
Ω

ωmu̇dΩ = −
∮
S

ωpdS +

∫
Ω

pC∇ωdΩ, (7.33)

where S is the boundary of Ω. This can now be used to obtain two different expressions for

the spatial derivative.

We evaluate the integrals separately in Appendix E.1. To use the weak form of the momentum

(N,M)

(0, 0)

Ωe

Figure 7.1: Computational Element as a Subregion of Transformed Region in 2D.

equation we introduce a mesh of square elements, as in Figure (7.1), and let p and m be

piecewise constant functions within each element. The velocity u, and acceleration u̇ are

taken to be the piecewise bilinear functions,

u =
N+1∑
i=1

uiNi(ξ) , u̇ =
N+1∑
i=1

u̇iNi(ξ), (7.34)
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where the bilinear basis functions are,

N1 =
1

4
(1− ξ)(1− η), (7.35)

N2 =
1

4
(1 + ξ)(1− η), (7.36)

N3 =
1

4
(1 + ξ)(1 + η), (7.37)

N4 =
1

4
(1− ξ)(1 + η). (7.38)

7.4 Galerkin Approach

For the Galerkin approach the test function in the weak form of the momentum equation is

chosen as ω = Nj. Using the above information and substituting into eqn. (7.33), where the

integral is now evaluated over an element Ωe, we have

∫
Ωe

mNj

4∑
i=1

u̇iNidξdη = −
∮
∂Ωe

NjpdSe +

∫
Ωe

pC∇Njdξdη, (7.39)

for j = 1, · · · , 4, where dSe is the side differential vector for each normal direction. From this

we can take m and p outside the integrals, since they are constant within the element. We

interchange the integral and the sum. For the boundary term, we take p outside the integral

as an average of the neighbouring elements, at the mid-point of the relevant side, we call this

pside. This results in,

m
4∑
i=1

u̇i

∫
Ωe

NjNidξdη = −pside
∮
∂Ωe

NjdSe + p

∫
Ωe

C∇Njdξdη. (7.40)

7.4.1 System Assembly

When assembled, the bilinear basis functions all vanish on the internal boundaries. Hence, the

boundary terms disappear in eqn. (7.40). In order to solve the resulting system conveniently,

as in [64, 10], we lump the off-diagonals of the mass matrix adding them to the diagonal,

leading to

mu̇i

∫
Ωe

Nidξdη = p

∫
Ωe

C∇Njdξdη. (7.41)



119

The shape function integrals are evaluated in Appendix (E.1).

The system is assembled by calculating the forcing term for each element. The element

forcing terms are summed for all elements surrounding the required node, as illustrated in

Figure 7.2.

This results in the following solution which we call Scheme A.

7.4.2 Scheme A

Using the labeling system, such that the nodes of an element are labeled in an anticlockwise

manner, as in Figure 7.3, we can obtain the forcing term from the right hand side of eqn.

(7.41).

For a node (i, j) the contribution to the forcing term in the ξ direction is

f ξij = p1

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C11

∂N1

∂ξ
+ C12

∂N1

∂η

)
dξdη + p2

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C11

∂N2

∂ξ
+ C12

∂N2

∂η

)
dξdη

+p3

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C11

∂N3

∂ξ
+ C12

∂N3

∂η

)
dξdη+p4

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C11

∂N4

∂ξ
+ C12

∂N4

∂η

)
dξdη (7.42)

and in the η direction we have

f ηij = p1

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C21

∂N1

∂ξ
+ C22

∂N1

∂η

)
dξdη + p2

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C21

∂N2

∂ξ
+ C22

∂N2

∂η

)
dξdη

+ p3

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C21

∂N3

∂ξ
+ C22

∂N3

∂η

)
dξdη + p4

∫ ηi

ηi−1

∫ ξi

ξi−1

(
C21

∂N4

∂ξ
+ C22

∂N4

∂η

)
dξdη.

(7.43)

On computation in the ξ direction, and using the nodal stencil in the (ξ, η) space, from

Figure 7.4, we obtain

miju̇
ξ
ij = f ξij =

1

2
pi+ 1

2
,j+ 1

2
(yi+1,j − yi,j+1)

+
1

2
pi− 1

2
,j+ 1

2
(yi,j+1 − yi−1,j)

+
1

2
pi− 1

2
,j− 1

2
(yi−1,j − yi,j−1)

+
1

2
pi+ 1

2
,j− 1

2
(yi,j−1 − yi+1,j), (7.44)
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el 1el 2

el 3 el 4

Figure 7.2: Force Contributions From The Elements Surrounding a Node in 2D.

1 2

34

Figure 7.3: Node Labeling in a 2D Element.

the nodal mass mij, is the contribution of mass, me

∫
Ωe
Nidξdη, from each surrounding ele-

ment to the node ij.

Similarly, we can obtain the force term in the η direction.

The discretised forcing terms shall be used later in obtaining an error estimation.

7.5 Petrov-Galerkin Approach

An alternative scheme to the above has been investigated in Section 4.2.3. This idea is now

extended to the 2D problem.

To determine the alternative scheme we seek a different basis function ψ, which still gives a

diagonal matrix due to the orthogonality expressed in∫
ψiNjdΩ = δij, (7.45)
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(i− 1, j) (i, j) (i+ 1, j)

(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)

(i− 1, j − 1) (i, j − 1) (i+ 1, j − 1)

(i− 1
2
, j − 1

2
) (i+ 1

2
, j − 1

2
)

(i+ 1
2
, j + 1

2
)(i− 1

2
, j + 1

2
)

Figure 7.4: Nodal and Element Points Surrounding the Node of Interest in 2D.

where Nj is the bilinear finite element function and δij is a matrix with zeros everywhere

apart from the diagonal.

From the integral on the left hand side of eqn. (7.40) and using, ψ, as a test function over

an element in (ξ, η) space, the left hand side of eqn. (7.40) becomes,∫
Ωe

ψNdξdη.

Let ψi =
∑4

i=1 aikNk and,

ψ = AN, (7.46)

where A is a 4× 4 matrix of constants and N is a vector of N ’s. We obtain∫
Ωe

ANNTdξdη = AMe, (7.47)

where Me =
∫

Ωe
NNTdξdη is the standard element mass matrix. We seek, A such that

AM e = D where D is a diagonal matrix or identity matrix. Hence, A = DM−1
e which
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allows the alternative basis functions to be calculated in a vector as,

ψ = AN = DM−1
e N.

The bilinear finite element functions have been defined above, allowing M−1
e to be calculated

as

M−1
e =


4 −2 1 −2

−2 4 −2 1

1 −2 4 −2

−2 1 −2 4

 . (7.48)

Therefore, we can calculate the alternative basis functions, in terms of the bilinear basis

functions, N, as

ψ = DM−1
e N (7.49)

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




4 −2 1 −2

−2 4 −2 1

1 −2 4 −2

−2 1 −2 4




N1

N2

N3

N4

 , (7.50)

where we use D = I. Therefore, we have
ψ1

ψ2

ψ3

ψ4

 =


4N1 − 2N2 +N3 − 2N4

−2N1 + 4N2 − 2N3 +N4

N1 − 2N2 + 4N3 − 2N4

−2N1 +N2 − 2N3 + 4N4

 =


1
4
(1− 3ξ)(1− 3η)

1
4
(1 + 3ξ)(1− 3η)

1
4
(1 + 3ξ)(1 + 3η)

1
4
(1− 3ξ)(1 + 3η)

 . (7.51)

From eqn. (7.33), the weak form of the momentum equation in an element is

m

∫
Ωe

ωu̇dΩ = −
∮
∂Ωe

ωpdS +

∫
Ωe

pC∇ωdΩ. (7.52)

To evaluate the weak form of the momentum equation, we introduce the alternative basis

function ω = ψj. We still assume m and p to be piecewise constant functions within each

element. The velocity, u, and acceleration u̇ are denoted by the piecewise bilinear functions,

u =
N+1∑
i=1

uiNi(ξ) , u̇ =
N+1∑
i=1

u̇iNi(ξ). (7.53)



123

The integral is now evaluated over an element, giving

m

∫
Ωe

ψj

4∑
i=1

u̇iNidξdη = −
∮
∂Ωe

ψjpdS +

∫
Ωe

pC∇ψjdξdη. (7.54)

From this we can take m and p outside the integrals since they are constant within the

element. Interchanging the sum and the integral results in the acceleration vector, u̇, being

taken outside the integral.

7.5.1 System Assembly

In this case the basis function ψ does not vanish at the element boundaries.

For the boundary term, we take p outside the integral as an average of the neighbouring

elements to the side we are on, calling this pside. By orthogonality, the result for an element

is

mu̇i

∫
Ωe

ψiNidξdη = −pside
∮
∂Ωe

ψjds+ p

∫
Ωe

C∇ψjdξdη. (7.55)

The system is assembled by summing the information from the elements surrounding a node.

Using the shape function integrals, which are evaluated in Appendix (E.2), for this case, we

obtain the following scheme, which we call Scheme B.

7.5.2 Scheme B

Using Appendix (E.2), we are able to obtain a discretised form of eqn. (7.55). This is done

by summing boundary terms for an element along with the element’s forcing contribution to

node ij. In the ξ direction we have

miju̇
ξ
ij = f ξij =

1

4
(y2(p11 − p12 + 15p8 − 15p9)

+ y3(−p11 + p7) + y4(p3 + 15p4 − p7 − 15p8)

+ y5(−p1 + p2 − 15p4 + 15p5) + y6(p1 − p3)

+ y7(−p2 + p6) + y8(p10 − 15p5 − p6 + 15p9)

+ y9(−p10 + p12)). (7.56)
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where the positions of the values are illustrated in Figures (E.3). The nodal mass mij, is the

contribution of mass, me

∫
Ωe
ψjNidξdη, from each surrounding element to the node ij.

The two schemes we have obtained for the spatial derivatives will be applied later to estimate

an error. First, we look at determining an error estimate in terms of the temporal derivatives.

7.6 Semi-Discrete Time Error

We have seen in Section 3.9.2 how to use the truncation error for the nodal position x to

obtain an estimated error in one time step for velocity and density. We extend this method

to obtain a semi-discrete in time error estimate for density. We do not extend the result for

velocity in the 2D case, since it is a nodal value and is not clear which elements would require

refining.

7.6.1 Estimated Error for Density

To evaluate the estimated error for density in 2D, we require an estimated error to the

Jacobian |J |.
Following on from the 1D result for the nodal truncation error, from Section (3.8.1), we

extend the result to 2D for Scheme 1, using eqn. (3.73), such that

τn(L1) = −k
2

12
x′′′ +O(k3), (7.57)

where the Jacobian follows as

τn(L1) = −k
2

12
J ′′′ +O(k3). (7.58)

Similarly, for Scheme B expressed in Section (3.8.2), the result can be extended to 2D using

eqn. (3.77), resulting in

τn(L2) = −k
2

3
x′′′ +O(k3), (7.59)

where the Jacobian follows

τn(L2) = −k
2

3
|J |′′′ +O(k3). (7.60)
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From Section 3.9, we obtain an estimated error in one time-step for the nodal position x in

eqn. (3.81). This can be extended to the 2D case, using equations (7.58) and (7.60), resulting

in

e[|J |] = |J |(tn + k)− (|J |1)n+1 = kτn(L1) =

(
(|J |2)n+1 − (|J |1)n+1)

3
+O(k4). (7.61)

The estimated error in one time-step for the derivative of |J | becomes

e

[
d|J |
dt

]
= τn(L1) =

(
(|J |2)n+1 − (|J |1)n+1)

3k
+O(k3). (7.62)

The result in eqn. (7.62) will be applied in the fully-discrete case, whereas eqn. (7.61) can

now be applied to obtain an estimated error for density.

In 2D the mass is

m = ρ|J |.

Therefore, from eqn. (7.7) we have

dm

dt
= 0

⇒ mn+1 = mn

⇒ ρn+1 =
mn

|J |n+1
.

The 1D result is demonstrated in eqn. (3.58), extending this result to 2D we obtain

e[ρ] = ρ(tn + k)− (ρ1)n+1 =
mn (|J |n+1 − |J |(tn + k))

|J |(tn + k)|J |n+1
. (7.63)

Using eqn. (7.61) we obtain the estimated error of density in one step such that

e[ρ] = ρ(tn + k)− (ρ1)n+1 =
mn
(
(|J |1)n+1 − (|J |2)n+1)

(|J |1)n+1 (2 (|J |1)n+1 + (|J |2)n+1) . (7.64)

7.7 Semi-Discrete Spatial Error

The results in eqn. (7.44) and eqn. (7.56) can be applied to determine an error estimate in

one step.
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By expanding eqn. (7.44) and eqn. (7.56) using Taylor series, we obtain the truncation error

for the spatial derivative in eqn. (7.31).

The leading term of the truncation error for eqn. (7.44) is

τ(Sa) = h2
(yξξξpη

6
+
yξpξξη

8
− yηpξξξ

24
+
yξξpξη

4

)
− l2

(yηηηpξ
6

+
yηpξηη

8
− yξpηηη

24
+
yηηpξη

4

)
+ · · · (7.65)

Similarly, for eqn. (7.56), the leading term of the truncation error is

τ(Sb) = h2
(

3
yξξξpη

2
+ 9

yξpξξη
8
− 7

yηpξξξ
8

+ 9
yξξpξη

4
− yξξηpξ

2
− yξηpξξ

)
− l2

(
3
yηηηpξ

2
+ 9

yηpξηη
8
− 7

yξpηηη
8

+ 9
yηηpξη

4
− yξηηpη

2
− yξηpηη

)
+ · · · (7.66)

As has previously been seen we have simplified the leading term to a single derivative, where

an estimate to that derivative has been obtained. It is difficult to extend that method since

we have several derivatives in the leading term of the truncation error.

For now we assume the mesh remains orthogonal such that we can disregard the mixed

derivatives, resulting in the following truncation errors

τ(Sa) =
1

24

(
l2yξpηηη − h2yηpξξξ

)
+ · · · (7.67)

and for eqn. (7.56)

τ(Sb) =
7

8

(
l2yξpηηη − h2yηpξξξ

)
+ · · · (7.68)

Alternative methods to obtain the leading term of the truncation error more appropriately

shall be discussed in Chapter 9.

7.7.1 Error Estimation

Using eqn. (7.67) and eqn. (7.68), we have the following leading terms of the truncation

error in one step for p

p(ξi + h, ηj + l)− (pa)(i+1,j+1) = hlτn(Sa) =
1

24

(
hl3yξpηηη − lh3yηpξξξ

)
+ · · · (7.69)

p(ξi + h, ηj + l)− (pb)(i+1,j+1) = hlτn(Sb) =
7

8

(
hl3yξpηηη − lh3yηpξξξ

)
+ · · · (7.70)
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where we will say Ψ(ξi, ηj) = (hl3yξpηηη − lh3yηpξξξ).

By subtracting eqn. (7.70) from eqn. (7.69) we obtain

(pb)(i+1,j+1) − (pa)(i+1,j+1) = −5

6
Ψ(ξi, ηj) + · · ·

⇒ Ψ(ξi, ηj) =
6
(

(pa)(i+1,j+1) − (pb)(i+1,j+1)

)
5

+ · · · (7.71)

Now substitute the computable term from eqn. (7.71) into eqn. (7.69), to obtain an estimated

error in one spatial step for the pressure term, such that

e[p] = p(ξi + h, ηj + l)− (pa)(i+1,j+1) =

(
(pa)(i+1,j+1) − (pb)(i+1,j+1)

)
20

+ · · · (7.72)

Following from this, we obtain an estimated error in one step for the spatial derivative of p

from eqn. (7.31), such that

e[C∇p] =

(
(pa)(i+1,j+1) − (pb)(i+1,j+1)

)
20hl

+ · · · (7.73)

We use eqn. (7.72) as a refinement criteria for the semi-discrete in space case, where eqn.

(7.73) shall be applied to the fully-discrete case.

7.8 Fully-Discrete Error Estimate for Density

To estimate the error for the Jacobian in onestep we use eqn. (7.16). We have

xn+1 = xn + kun +
k2

2
fn+ 1

2 . (7.74)

The error in one step for x becomes

x(tn + k)− (x1)n+1 = e[x] = k(e[u]) +
k2e([f ])

2
(7.75)
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where |J | follows, such that

|J |(tn + k)− (|J |1)n+1 = e[|J |] = k(e[u]) +
k2e([f ])

2
+ · · · (7.76)

where f = −C∇p
m

. Using eqn. (7.62) we have

e[u] = e

[
∂x

∂t

]
= e

[
d|J |
dt

]
= τn(L1) =

(
(|J |2)n+1 − (|J |1)n+1)

3k
+O(k3). (7.77)

Using eqn. (7.73) we also have

e[f ] = e[C∇p] =

(
(pa)(i+1,j+1) − (pb)(i+1,j+1)

)
20hl

+ · · · . (7.78)

By substituting eqn. (7.77) and eqn. (7.78) into eqn. (7.76) we obtain

e[|J |] =

(
(|J |2)n+1 − (|J |1)n+1)

3
−
k2
(

(pa)(i+1,j+1) − (pb)(i+1,j+1)

)
40hlm

+ · · · (7.79)

which is the fully-discrete error estimate in one time step for the Jacobian. This can now be

applied to obtain an error estimate for density.

By substituting eqn. (7.79) into eqn. (7.63) we obtain

e[ρ] = ρ(tn + k)− (ρ1)n+1 = (7.80)

−
mn

(
((|J |2)n+1−(|J |1)n+1)

3
− k2((pa)(i+1,j+1)−(pb)(i+1,j+1))

40hlm

)
(

(|J |1)n+1 +
((|J |2)n+1−(|J |1)n+1)

3
− k2((pa)(i+1,j+1)−(pb)(i+1,j+1))

40hlm

)
(|J |1)n+1

+ · · · (7.81)

which can now be used as a refinement criteria for 2D problems.

7.9 Chapter 7 Summary

In this chapter we have extended all results, from previous chapters, to the 2D Euler Equa-

tions. We have obtained two temporal schemes and two spatial schemes.

The truncation errors for the Jacobian and momentum equations were obtained. These were

applied in Milne’s approach in order to estimate the error. The estimated errors for semi-
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discrete in time density, semi-discrete in space pressure and a fully-discrete density were

derived.

In the following chapter, we utilise these error estimates as refinement criterion and imple-

ment refinement for a range of 2D problems.



Chapter 8

Refinement

8.1 Results Overview

In Chapter 6 we used the Sod shock tube problem, which has an analytic solution, to deter-

mine how well the approach developed acts as an error estimate. The features we wished to

capture were the shock front, the top and bottom of the fan and the contact. The method

proved to capture all these features. Although it was shown to capture the top and bottom

of the fan and the contact with a lower magnitude than the true error, the approach captured

the shock position and value extremely well for all cases. We demonstrated how different

variables captured different features, i.e. the velocity captured the entire rarefaction the

best. From these results it would seem beneficial to choose the error estimate as a refinement

criterion, since it is capturing all the features we wish to resolve.

The refinement is implemented by flagging elements using the error estimate and these ele-

ments are divided isotropically. A full description is given in [64].

We apply the 2D approach to the 1D problem, Sod’s shock tube, which is implemented in a

2D manner. From this we can judge how well the approach works as a refinement criteria.

The approach can then be applied to more genuine 2D problems such as the Square Sod

problem (see [64]) and the 2D Riemann problem (see [50]) to determine how well the ap-

proach works for detecting flow features in 2D.

We implement the method into a full ALE method for the 2D Riemann problem, Radial

Sod problem (see [90]) and Sedov Blast wave (see [79]), since these problems exhibit mesh

tangling when run in a purely Lagrangian manner, see [64]. We also wish to demonstrate

that the approach can be applied to the ALE method.

130
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8.2 Lagrangian Results

We run the Sod shock tube problem, Square Sod problem and 2D Riemann problem in a

purely Lagrangian manner, and implement the error estimates as a refinement criteria.

8.2.1 Sod Shock Tube

We have already described the Sod shock tube problem, from [83], in Section 6.1. This

problem is used to test and compare the method developed in this project since an analytic

solution is available. We now look at running the Sod shock tube problem (which is a 1D

problem) with a 2D code, and implement refinement of elements. For this problem we will

also investigate how well the error estimation behaves as a refinement criteria against existing

results using density gradients as a refinement criteria, which was implemented in [64].

The Sod shock tube problem is run to a final time of 0.2 for the region (0, 1) × (0, 1) with

100×10 mesh points. From Figures 8.1, 8.2 and 8.3 we see how the uniformly fine mesh shows

expansion from x = 0.2, and then compression at x = 0.69 and the shock at x = 0.8. These

are the regions we wish to resolve using the refinement criteria. We compare the Scheme 1

and Scheme 2 solutions in Figures 8.2 and 8.3, as we wish to demonstrate that both schemes

behave well in order to use for the error estimate. From Figures 8.2 and 8.3, the results are

extremely comparable. One visible difference between the schemes is in the specific internal

energy plot, Scheme 1 overshoots the analytic solution while Scheme 2 undershoots the an-

alytic solution. Since the analytic solution is available for this problem we can investigate

the error norms of both schemes, see Table 8.1. Although there are differences between the

schemes the error norms are comparable. The largest difference is in the ∞-norm. This is

a good feature since the ∞-norm demonstrates the error norm at the shock. If the largest

difference is with the ∞-norm then the estimated error will be largest around the shock, as

we desire. These results demonstrate that both schemes are suitable to be used to determine

an error estimate which will trigger refinement. We now investigate how well the the error

estimate performs as a refinement criterion.

The profiles in Figures 8.4 and 8.5, which demonstrate the results from using the density

gradient and the semi-discrete in time error estimate as a refinement criteria respectively,

provide excellent agreement to the uniformly fine solution. However from this alone it is not

clear how well each refinement criterion performs in relation to the other. Figure 8.7 shows

that using the semi-discrete in time error estimate as a refinement criteria captures the top
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and bottom of the fan and the shock extremely well. The results for the density gradient in

Figure 8.6 also demonstrates that these regions are well resolved by the refinement criteria.

However, we see in Figure 8.6 the entire expansion is refined due to its varying gradient,

whereas Figure 8.7 only detects the top and bottom of the fan. Such refinement is wasteful

since the solution is smooth along the expansion, and we do not require refinement here.

However on comparison of the number of elements present over the evolution of the problem

in Figure 8.8, the density gradient criteria has fewer elements than the semi-discrete in time

error estimate criterion.

The fine grid and both AMR grids required 322 timesteps. For the fine grid, a total of

322, 000 elements were required for the entire evolution. For the estimated error criterion,

only 40% of this amount is required, and for the density gradient criterion, 37% is required.

The additional elements are coming from the shock when the semi-discrete in time error

estimate is used, which is evident in Figure 8.7 where there is more refinement around the

shock than in Figure 8.6. The runtime is reduced by 40% for the error AMR and 77% less

for the density gradient AMR, both a significant saving, however the error estimate is taking

5.13 seconds longer than the density gradient AMR.

Although the density gradient performs better overall, the approach devised in this thesis

still performs significantly better than the uniformly fine mesh. It is promising that the error

estimate is not wasting refinement on smooth features i.e. the rarefaction, as the density

gradient is doing. Although the estimated error seems to be over refining around the shock,

this is not necesseraly a bad feature. When shocks pass through refinement boundaries, os-

cillations often arise, (see [64]). The over refinement could prove to be beneficial in reducing

such oscillations, hence improving the accuracy of the solution.

Since an analytic solution is available here we are able to determine the error norms to com-

pare the fine calculation against the calculations using AMR, see Table 8.2. From the error

norms we see that the solutions of the fine calculation and AMR using the error estimate

devised in this work are more comparable than the solution obtained using the density gra-

dient as an AMR trigger. This is an extremely promising result.

Having demonstrated how the estimated error compares to the density gradient refinement

criteria, we look at the estimated error as a refinement criteria for genuine 2D problems, and

investigate how well the approach works against the uniformly fine grid. Additionally to the

semi-discrete in time error estimate for pressure, for the 2D problems we have a semi-discrete

in space error estimate for density and a fully-discrete error estimate. We begin the 2D

investigation with a Square Sod problem.
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Figure 8.1: Sod’s Shock Tube Problem Lagrangian Fine Mesh at T = 0.2.

Table 8.1: Error Norms Comparing Scheme 1 and Scheme 2 for the Sod Shock Tube.

Calculation ||e||1 ||e||2 ||e||∞
Scheme 1 0.00524 0.00907 0.04462
Scheme 2 0.00587 0.00995 0.0618
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Figure 8.2: Sod’s Shock Tube Problem at T = 0.2. Density, Pressure, Velocity and Energy.
Scheme 1 on a Fine Mesh Compared to Analytic Solution.

Figure 8.3: Sod’s Shock Tube Problem at T = 0.2. Density, Pressure, Velocity and Energy.
Scheme 2 on a Fine Mesh Compared to Analytic Solution.
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Figure 8.4: Sod’s Shock Tube Problem Comparing Fine, Analytic and AMR using Density
Gradient at T = 0.2.

Figure 8.5: Sod’s Shock Tube Problem Comparing Fine, Analytic and AMR Results using a
Semi-Discrete in Time Error Estimate at T = 0.2.
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Figure 8.6: Sod’s Shock Tube Problem AMR using Density Gradients at T = 0.2.

Figure 8.7: Sod’s Shock Tube Problem AMR using a Semi-Discrete in Time Error Estimate
for Density at T = 0.2.
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Figure 8.8: Sod’s Shock Tube Problem Comparing Number of Elements.

Table 8.2: Error Norms Comparing Fine Calculation against AMR.

Calculation ||e||1 ||e||2 ||e||∞
Fine 0.00524 0.00907 0.04462

Density Gradient AMR 0.00078 0.00316 0.03722
Semi-Discrete in Time AMR 0.00146 0.00456 0.03736

8.2.2 Square Sod Problem

The Square Sod problem consists of a square domain, here a (0, 1) × (0, 1) region, with a

smaller square inside on the domain, (0.3, 0.7)× (0.3, 0.7). The initial conditions within the

smaller square are ρ = 1, p = 1 and u = 0. Outside this region the initial conditions are

ρ = 0.125, p = 0.1 and u = 0. This is illustrated in Figure 8.9.

A fine calculation was run on a 100× 100 mesh to a final time of t = 0.1, as is illustrated in

Figures 8.10 and 8.11. The artificial viscosity coefficients are taken as cl = 0.3 and cq = 0.65

as in [64].

The problem behaves like a Sod shock tube along the centre of each side, with Radial Sod
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behaviour at the corners, (see [64]).

We compare the fine grid results against the AMR results, where the initial mesh is taken as

50× 50 when refinement is implemented.

ρl = 1

p = 1

ρl = 0.125

p = 0.1

(0.3, 0.3)

(0.7, 0.7)

Figure 8.9: Square Sod Initial Data

When using the density gradient as a refinement criteria the entire expansion is refined,

see Figure 8.12, which is not necessarily required. The semi-discrete in time error estimate

for density detects all areas of interest very well without too much over refinement. The

refinement is symmetric and has occurred around the shock and the contact, the corners

after the contact are also refined. There is possible over refinement around the shock, since

there are no unrefined elements between the shock and the contact. This will add to the

overall runtime. The top of the expansion is not detected here, see Figures 8.13 and 8.16,

since it is smooth, see Figure 8.10. As we have discussed in Chapter 6, the sharp features

are temporal errors, since we use a temporal error estimate here the smooth features are

not detected as well. The semi-discrete in space error estimate for pressure also detects

the features of interest well. The shock and contact are refined extremely well, without

refinement between these two features at the constant state. The top of the expansion is

also detected, and the refinement is symmetric, see Figures 8.14 and 8.17. From Figure 8.14

the error estimate is attempting to refine the top of the expansion, which is farely steep, see

Figure 8.10. These results are in agreement with the 1D results from Chapter 6, where it

was concluded that the shock is a temporal error and the expansion is a spatial error, since

we are using a spatial error estimate the smooth features will also be detected. The fully-
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discrete error estimate in Figure 8.15, detects and refines the shock and contact extremely

well. However, further work needs to be carried out on this method since the refinement is

not symmetric and there are random areas between the shock and contact which are being

refined. Although this method does not perform as well as the others, it is still promising

that it refines the shock and contact, with an area of unrefined elements between these two

features. The semi-discrete in time error estimate AMR and semi-discrete in space pressure

estimate AMR both demonstrate extremely good results as can be seen in the contour plots

from Figures 8.21 and 8.22, both are comparable to the uniformly fine results in Figure 8.19.

We see the density gradient AMR is also equally comparable to the uniformly fine mesh as

illustrated in Figure 8.20. However, the fully-discrete contour plot in Figure 8.23 is least

comparable to the fine calculation, particularly in the region between the shock and contact

where we saw the patchy refinement in Figure 8.15. The overall run time is reduced by 78%

for the semi-discrete in time error estimate for density, whereas the semi-discrete in space

error estimate for pressure is only reduced by 42% and the fully-discrete is reduced by 73%

compared to the uniformly fine mesh. When the density gradient was applied as a refinement

criterion the runtime was 86% less than the fine calculation, see Table 8.3. It is expected that

the run time be greater in the estimated error approach since two schemes are implemented

in order to obtain the estimated error.

The semi-discrete in time criterion uses 98% fewer elements, the semi-discrete in space uses

73% less and the fully-discrete uses 89% less whereas the density gradient method uses 95%

fewer elements than the uniformly fine grid, over the entire evolution as illustrated in Figure

8.24. We see a lot of oscillatory behaviour in Figure 8.24 for the semi-discrete in space and

fully-discrete AMR. The semi-discrete in space adds a lot of refinement at the beginning

of the problem and then starts to settle, whereas the fully-discrete AMR refines and then

derefines most of the refined elements throughout the evolution. This demonstratess the

difficulties associated with choosing a beneficial refinement tolerance. However, considering

the run times, the semi-discrete in time and fully-discrete error estimations are comparable

to the density gradient results, when considering both time and number of elements.

We have seen that the fully-discrete error estimate requires further work, since the refinement

is not symmetric, however the shock and contact are captured and refined well, with a 73%

saving in the run time compared to the uniformly fine solution, therefore the results are

promising. We illustrated in Figure 8.13 and Figure 8.22 how the steep features are detected

with temporal errors and the smooth features are detected with spatial errors. When the

semi-discrete in time and semi-discrete in space error estimates were implemented for AMR

the results are extremely comparable to the uniformly fine solution, with a saving in runtime
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of 78% and 42% respectively. These results are also comparable to the density gradient

AMR. The semi-discrete in time and semi-discrete in space error estimates both used fewer

elements over the entire evolution compared to the density gradient AMR. All contour plots

in Figures 8.20, 8.21 and 8.22 are extremely comparable, therefore, when considering the

balance between run time and number of elements the semi-discrete in time AMR and density

gradient AMR produce equally good results.

Figure 8.10: Square Sod Problem Density Surface Plot on Fine Mesh at T = 0.1.
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Figure 8.11: Square Sod Problem Lagrangian Fine Mesh at T = 0.1

Figure 8.12: Square Sod Problem AMR with Density Gradient Mesh at T = 0.1.
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Figure 8.13: Square Sod Problem Semi-Discrete in Time Estimated Error for Density, AMR
Mesh at T = 0.1.

Figure 8.14: Square Sod Problem Semi-Discrete in Space Estimated Error for Pressure, AMR
Mesh at T = 0.1.
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Figure 8.15: Square Sod Problem Fully-Discrete Estimated Error for Density, AMR Mesh at
T = 0.1.

Figure 8.16: Square Sod Problem Semi-Discrete in Time Estimated Error for Density AMR,
Mesh and Contour Plot of Density at T = 0.1.
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Figure 8.17: Square Sod Problem Semi-Discrete in Space Estimated Error for Pressure AMR,
Mesh and Contour Plot of Density at T = 0.1.

Figure 8.18: Square Sod Problem Fully-Discrete Error for Density AMR, Mesh and Contour
Plot of Density at T = 0.1.



145

Figure 8.19: Square Sod Problem Density Contour Plot at T = 0.1.

Figure 8.20: Square Sod Problem Density Contour Density Gradient AMR Plot at T = 0.1.
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Figure 8.21: Square Sod Problem Density Contour using Semi-Discrete in Time Estimated
Error for Density AMR Plot at T = 0.1.

Figure 8.22: Square Sod Problem Semi-Discrete in Space Estimated Error for Pressure for
AMR, Density Contour Plot at T = 0.1.



147

Figure 8.23: Square Sod Problem Fully-Discrete Estimated Error for Density, AMR Mesh at
T = 0.1.

Table 8.3: Run Times and Total Elements for Square Sod Problem.

Fine Mesh Density Gra-
dient AMR

Semi-
Discrete
in Time
AMR

Semi-
Discrete
in Space
AMR

Fully-
Discrete
AMR

Run Times 3118.600 432.279 685.900 1817.85 811.205
Total Ele-
ments

10,310,000 477,184 216,092 2,777,147 1,111,404
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Figure 8.24: Square Sod Problem Number of Elements over Evolution of Problem.

8.2.3 Two-dimensional Riemann Problem

The 2D Riemann problem consists of a square domain split into four square regions. The

quarters are labeled as 1, 2, 3 and 4 where the respective regions are defined as x > 0.5 and

y > 0.5, x < 0.5 and y > 0.5, x < 0.5 and y < 0.5 finally x > 0.5 and y < 0.5. The problem

consists of four shocks, as the shocks interact an oval region of high density is formed. The

initial data from [50] for the regions are as follows

p2 = 0.3500 ρ2 = 0.5065 p1 = 1.1000 ρ1 = 1.1000

u2 = 0.8939 v2 = 0.0000 u1 = 1.0000 v1 = 0.0000

p3 = 1.1000 ρ3 = 1.1000 p4 = 0.3500 ρ4 = 0.5065

u3 = 0.8939 v3 = 0.8939 u4 = 0.0000 v4 = 0.8939.

The problem is run to T = 0.2 on a region (0, 1)×(0, 1) for a uniformly fine mesh of 100×100

and when refinement is implemented the initial mesh is 50× 50.

The artificial viscosity coefficients are cl = 0.3 and cq = 0.65 as defined in [64].

We can see from Figure 8.26 that the mesh starts to become tangled within the oval, this
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occurs since we are using a Lagrangian method. From Figure 8.29, we see how the tangling

of the mesh imprints on the solution, where there is a lot of noise within the oval on a region

that is constant (see Figure 8.25). The tangling on the mesh will affect the areas detected

for refinement.

From Figure 8.27, where we have used the density gradient for AMR, we see how the oval

and the shock is captured, where the distorted mesh at the centre is not refined. For the

semi-discrete in time error estimate for density AMR in Figure 8.28 we see that the oval and

shocks are captured again, however we now have refinement at the centre of the oval where

the distortion occurs. The reason for this detection is likely to be due to the refinement

tolerances we have chosen in each case.

From the contour plots on the uniformly fine mesh in Figure 8.29 we can see the shocks at

the top left and bottom right of the figure. The distortion of the mesh has imprinted on the

solution within the oval, where we can see some noise. Away from the oval we see contours at

the boundaries which are left over from the rarefaction. From Figure 8.30, we see the density

gradient AMR has a lot more noise within the oval compared to the uniformly fine mesh,

and the contours around the shocks and oval are not as close together. The features at the

boundaries are only slightly detected for the density gradient AMR. For the semi-discrete in

time error estimate for density we see in Figure 8.31 that the contours are in better agreement

to the uniformly fine contours. The contours around the shocks and contact are closer to

each other than for the density gradient AMR. A promising result from this method is that

the noise within the oval is reduced here compared to the uniformly fine mesh. Additionally,

the less significant features at the boundaries are also comparable to the uniformly fine mesh.

We have a saving of 92% for the elements over the entire evolution for the density gradient

AMR, whereas we use 86% fewer elements compared to the uniformly fine mesh for the

error estimate AMR. Although the error estimate AMR uses slightly more elements than the

density gradient, it is still a significant saving compared to the uniformly fine mesh, where

20, 760, 00 elements are used over the entire evolution, see Figure 8.32.

The run time for the semi-discrete in time error estimate for density is 76% less than the

uniformly fine grid however, the density gradient is 94% less than the uniformly fine mesh.

Although the run time is the smallest for the density gradient AMR , stated in Table 8.4, it

is the semi-discrete in time error estimae for density that gives the better results from Figure

8.31, even improving on the uniformly fine grid at the centre of the oval.

Since we have an overall saving of 76% in run time for the semi-discrete in time error estimate

for density AMR, and a saving of 20754686 elements for a better result, we conclude the error

estimate AMR should be used for this problem.
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We have not considered the semi-discrete in space and fully-discrete error estimates here,

since these approaches include the spatial derivative estimation the tangling of the mesh has

an impact on the error estimate, therefore affecting the run of the problem. However, it

is demonstrated in [64] that an AMR approach can be combined with an ALE method to

limit the tangling of the mesh. We wish to demonstrate that the current approach can also

be incorporated into the ALE method, by testing on the 2D Riemann problem, Radial Sod

problem and the Sedov blast wave problem.

Figure 8.25: 2D Riemann Problem, Surface Plot of density on Fine Mesh at T = 0.2.
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Figure 8.26: 2D Riemann Problem Uniformly Fine Mesh at T = 0.2.

Figure 8.27: 2D Riemann Problem, AMR with Density Gradient at T = 0.2.
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Figure 8.28: 2D Riemann Problem, AMR with Semi-discrete in Time Density Error Estimate
at T = 0.2.

Figure 8.29: 2D Riemann Problem, Contour Plot of Density on Fine Mesh at T = 0.2.
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Figure 8.30: 2D Riemann Problem, Contour Plot of Semi-discrete in Time Density with
AMR using Density Gradient at T = 0.2.

Figure 8.31: 2D Riemann Problem, Contour Plot of Density using AMR with Error Estimate
Fine Mesh at T = 0.2.
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Figure 8.32: 2D Riemann problem total number of elements.

Table 8.4: Run Times and Total Elements for 2D Riemann Problem.

Fine Mesh Density Gradient
AMR

Semi-Discrete in
Time AMR

Run Times 11463.3 727.994 2759.42
Total Elements 20,760,000 1,643,063 2,859,724

8.3 ALE Results

As we have seen in Section 8.2.3, the Lagrangian method can cause the mesh to tangle which

in turn imprints on the solution. To overcome this we use an ALE method as described in

[64], which uses a relaxation method to prevent the mesh from tangling as much.

We begin by repeating the 2D Riemann problem as this is where we observed the tangling.

We then extend this method to the Radial Sod problem and Sedov blast wave problem, since

these test problems are known to become tangled with a Lagrangian mesh as mentioned in

[64].
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8.3.1 2D Riemann Problem

We apply the initial data from Section 8.2.3 to the 2D Riemann Problem using an ALE

method.

We see from the uniformly fine mesh in Figure 8.34 how the ALE method prevents the mesh

from tangling.

From Figure 8.35 we see the density gradient AMR refines around the the oval of high density

and shocks. Similarly in Figure 8.36, the semi-discrete in time estimated error for density

refines the oval and shocks however, there is extra refinement in the corners of the oval. This

refinement is due to the peak in density, see Figure 8.33. The semi-discrete in space error

estimate for pressure refines areas which are not significant, see Figure 8.37. The features

which are detected and being refined in this case are the contours around the boundaries,

along with the contours within the oval, as can be seen in the uniformly fine mesh contour

plot, Figure 8.38. The refinement of insignificant features here is due to the refinement

tolerance. To loose the additional refinement we would need to increase the refinement

tolerance however, by doing so we loose the refinement around the significant features. For

the uniformly fine mesh using the ALE method in Figure 8.38, we still see noise at the centre

of the oval however the noise does not extend the entire length of the oval, as in Figure 8.29.

All contour plots in Figures 8.39-8.41 are in good agreement with the uniformly fine solution

in Figure 8.38, where the semi-discrete in space results being the least similar since additional

insignificant features at the boundaries are illustrated in Figure 8.41.

The run time for the semi-discrete in space AMR is 4% greater for the uniformly fine results,

this is because there is a surge of refinement at the begining of the problem, see Figure

8.42. The total number of elements remains high throughout the evolution. As previously

mentioned, if the refinement criteria was increased in order to introduce less refinement

around insignificant features, it would also remove refinement around the features we are

interested in. The density contours for this problem are the least comparible to the uniformly

fine. Therefore, this method is the least suited for this problem.

The run time for the density gradient AMR is 74% less than the uniformly fine mesh whereas,

the run time for the semi-discrete in time error estimate for density is 63% less, these methods

give extremely similar results. However, the density gradient AMR uses 643680 elements and

the error estimate AMR uses 565503 over the entire evolution, where the number of elements

in a timestep are illustrated in Figure 8.42. The density gradient AMR and error estimate

AMR are both suited to this problem, since they demonstrate similar accuracy in the solution,

have similar run times and number of total elements.
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The fully-discrete error estimate gave nonsensical results for this problem. Further work

needs to be carried out on the fully-discrete error estimate approach, when used with ALE.

Figure 8.33: 2D Riemann Problem, Surface Plot of density on Fine Mesh at T = 0.2.
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Figure 8.34: 2D Riemann Problem Uniformly Fine Mesh at T = 0.2.

Figure 8.35: 2D Riemann Problem, AMR with Density Gradient at T = 0.2.
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Figure 8.36: 2D Riemann Problem, AMR Mesh with Semi-Discrete in Time Error Estimate
for Density at T = 0.2.

Figure 8.37: 2D Riemann Problem Semi-Discrete in Space Estimated Error for Pressure,
AMR Mesh at T = 0.1.
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Figure 8.38: 2D Riemann Problem, Contour Plot of Density on Fine Mesh at T = 0.2.

Figure 8.39: 2D Riemann Problem, Contour Plot of Density with AMR using Density Gra-
dient at T = 0.2.
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Figure 8.40: 2D Riemann Problem, Contour Plot of Density Using Semi-Discrete in Time
Error Estimate for Density AMR at T = 0.2.

Figure 8.41: 2D Riemann Problem Semi-Discrete in Space Estimated Error for Pressure,
Density Contour Plot at T = 0.1.
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Table 8.5: Run Times and Total Elements for 2D Riemann Problem.

Fine Mesh Density Gradi-
ent AMR

Semi-Discrete
in Time AMR

Semi-Discrete
in Space AMR

Run Times 2488.86 656.9 920.39 2585.4
Total Elements 3,3500,00 643,680 565,503 273,363

Figure 8.42: Total Number of Elements for the 2D Case.

8.3.2 Radial Sod Problem

We run a quarter Radial Sod problem from [90], using an ALE approach, to T = 0.25. For

the quarter problem where the radius is within 0.4 of (0, 0), the initial conditions are ρ = 1,

p = 1 and zero velocity, elsewhere the conditions are ρ = 0.125, p = 0.1 and zero velocity.

We run the problem on a uniformly fine mesh of size 100×100, we also implement refinement

with density gradients, semi-discrete in time, semi-discrete in space and fully-discrete error

estimates initiated from a 50× 50 mesh. The artificial viscosity coefficients are cl = 0.5 and

cq = 0.75, see [64].

Since we use an ALE method we do not have any mesh tangling on the fine mesh, see Figure

8.44. When implementing AMR using density gradients we see the expansion, contact and
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shock are refined, see Figure 8.45. Whereas the results using AMR triggered by a semi-

discrete in time error estimate for density, semi-discrete in space error estimate for pressure

and fully-discrete error estimate for density refine the shock front, see Figures 8.46, 8.47 and

8.48. However, around the contact the refinement becomes patchy in the latter three. For the

semi-discrete in time case, there appears to be less refinement in the constant region between

the shock and contact, compared to the semi-discrete in space case and fully-discrete case.

However, the semi-discrete in space case, from Figure 8.47, demonstrates more refinement

around the expansion. This again agrees with the conclusion in Chapter 6, where the steep

solutions are detected by temporal errors and the smooth features are detected by spatial er-

rors. The fully-discrete approach refines most of the areas leading from the shock backwards

to the top of the expansion, see Figure 8.48, this is wasteful as several smooth or constant

states appear in this region.

The contours for the uniformly fine mesh illustrated in Figure 8.49 are not quite symmetrical,

this is because the problem was implemented on a , not polar coordinates. The contours in

Figure 8.50 exhibit oscillations around the bottom of the fan also the edges do not reach

the boundaries, there are also oscillations around the contact the shock however, is captured

well. For the semi-discrete in time error estimate for density there are oscillations around

the contact however, they are less severe than the density gradient AMR, see 8.51 and 8.52.

Although there are oscillations at the bottom of the fan, the edges do reach the boundaries

in this case. The shock is captured well and is comparable to the uniformly fine mesh. The

semi-discrete in space estimated error for pressure AMR demonstrates the least amount of

oscillatory behaviour around the contact, see Figures 8.53 and 8.54. The base of the fan

is more symmetric than the previous two methods. Although there are still oscillation at

the base of the fan, the edge is closer to the boundary than in the density gradient case.

The shock front is captured least well in the semi-discrete in space AMR since it is slightly

irregular. The fully-discrete error estimate exhibits oscillations after the base of the expan-

sion and before the contact, as illustrated in Figures 8.55 and 8.56. The contours around

the fan are least symmetric in this case. However, this is the only example where there are

not oscillations between the contact and the shock. The shock is slightly irregular, but is

generally captured well.

All the methods investigated in this section require significantly less elements than the uni-

formly fine mesh, which uses 3410000 elements. The total number of elements used over

the evolution of the problem for the density gradient AMR is 635399, whereas the semi-

discrete in time AMR requires slightly more, 716801. However, the semi-discrete in space

and fully-discrete AMR require the most amount of elements, 1011499 and 1311684 elements
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respectively, see Figure 8.57.

The fully-discrete AMR has the largest run time compared to the other AMR methods, see

Table 8.6, it also gives the worst results. We conclude that the fully-discrete AMR is not

suitable for this problem. Whereas, there is a significant saving of 85% in the run time for

the density gradient, however, although the run time is slightly more for the semi-discrete in

time and semi-discrete in space methods, (see Table 8.6), they give better overall results from

their contour plots. Where the semi-discrete in time error estimate is best used for sharp

features, i.e. the shock and contact. Tthe semi-discrete in space is best applied to smooth

features i.e. the fan. This conclusion agrees with the previous results.

We must conclude that further work needs to be done on using error estimate AMR for this

problem. The error estimate AMR in Figures 8.46-8.48 may appear to be trying to detect

the features of interest, but the refinement is extremely patchy. This will have an effect

on the final solution. From Figures 8.52, 8.54 and 8.56, it can be seen that the choice of

derefinement tolerance could be causing a problem with the patchy refinement, since the

contours are following the areas of derefinement. Whereas in Figure 8.45 we illustrated that

the density gradient AMR behaves extremely well. The areas of refinement are clear and

capture all desired features.
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Figure 8.43: Radial Sod Problem, Surface Plot of density on Fine Mesh at T = 0.25.

Figure 8.44: Radial Sod Problem Uniformly Fine Mesh at T = 0.25.



165

Figure 8.45: Radial Sod Problem, AMR with Density Gradient at T = 0.25.

Figure 8.46: Radial Sod Problem with Semi-Discrete in Time Error Estimate for Density
AMR at T = 0.25.
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Figure 8.47: Radial Sod Problem with Semi-Discrete in Space Estimated Error for Pressure,
AMR Mesh at T = 0.25.

Figure 8.48: Radial Sod Problem with fully-Discrete Estimated Error for Density, AMR Mesh
at T = 0.25.
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Figure 8.49: Radial Sod Problem, Contour Plot of Density on Fine Mesh at T = 0.25.

Figure 8.50: Radial Sod Problem, Contour Plot of Density with AMR using Density Gradient
at T = 0.25.
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Figure 8.51: Radial Sod Problem, Contour Plot of Density using AMR with Error Estimate
at T = 0.25.

Figure 8.52: Radial Sod Problem, Mesh and Contour Plot of Density using AMR with Error
Estimate at T = 0.25.
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Figure 8.53: Radial Sod Problem with Semi-Discrete in Space Estimated Error for Pressure,
Density Contour Plot at T = 0.25.

Figure 8.54: Radial Sod Problem with Semi-Discrete in Space Estimated Error for Pressure,
Density Contour and Mesh Plot at T = 0.25.
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Figure 8.55: Radial Sod Problem with Fully-Discrete Estimated Error for Density, Density
Contour Plot at T = 0.25.

Figure 8.56: Radial Sod Problem with Fully-Discrete Estimated Error for Density, Density
Contour and Mesh Plot at T = 0.25.
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Figure 8.57: Total Number of Elements for the Radial Sod Problem run with ALE.

Table 8.6: Run Times and Total Elements for Radial Sod Problem.

Fine Mesh Density Gra-
dient AMR

Semi-
Discrete
in Time
AMR

Semi-
Discrete
in Space
AMR

Fully Dis-
crete AMR

Run Times 2483.720 352.200 687.650 658.590 837.663
Total Ele-
ments

3,410,000 635,399 716,801 1,011,499 1,311,684

8.3.3 Taylor-Sedov Blast Wave

The Taylor-Sedov blast wave consists of an intense explosion from a single point, from which

a blast wave propagates out. Although this is another radial problem, and as we saw in the

previous section the error estimate AMR struggled when applied to the Radial Sod problem,

it is much easier to detect the area to refine since the problem only consists of one main

feature, rather than three.
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The initial conditions for this problem are

p = 0

ρ = 1

γ =
5

3

at the origin. The quarter domain is represented by (0, 1) × (0, 1). The cell energies are 0

everywhere except the cell at the origin where it is given the value 8 (see [64]). However, we

are dealing with a quarter region and to transfer into the internal energy we divide the total

energy by four times the cell area.

The calculation is evolved to a final time of T = 0.1. We use an ALE calculation on a

uniformly fine grid of 64× 64, and apply the density gradient, the semi-discrete in time error

estimate, the semi-discrete in space error estimate and the fully-discrete error estimate as

refinement criteria, with an initial mesh of 32 × 32. The artificial viscosity coefficients are

taken as cl = 0.5 and cq = 0.75.

The run time for the density gradient approach is 90% less than the uniformly fine grid,

whereas the run time for the semi-discrete in time, semi-discrete in space and fully-discrete

AMR is 85%, 88% and 77% less, respectively. All are significant savings on the uniformly

fine mesh runtime, see Table 8.7.

The saving for the approximated error comes in the number of elements. Figure 8.58 demon-

strates that the semi-discrete in time error estimate uses fewer elements over the evolution

than the density gradient approach.

However, it is important that these savings have not compromised the solution. Figure 8.61

illustrates that the density gradient approach refines the front of the shock wave very well,

but also refines behind the shock wave. It is stated in [64] that this refinement is due to the

density variations which are a result of the energy being initialised as a square rather than a

quarter circle as would be more correct due to radial asymmetry. It is only the shock front

which is required to be refined, as is excellently done in Figure 8.62, where the semi-discrete

in time AMR has been implemented. The semi-discrete in space AMR illustrated in Figure

8.63, refines around the shock very well, with slight refinement at the origin. The fully-

discrete AMR also captures the shock front extremely well, illustrated in Figure 8.64. There

is slightly extra refinement before the shock front, this is because of the smooth region before

the shock front, as illustrated in Figure 8.59, is also being refined, however this refinement is

not as symmetric as the previous results.
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These results are in agreement with the previous findings. The shock front is detected with

temporal errors as seen in Figures 8.62-8.64, whereas the smooth features are detected by

spatial errors, where we saw the additional refinement away from the shock front in Figures

8.63 and 8.64.

All contour plots from Figures 8.66-8.69 are in good agreement to the uniformly fine solution

in Figure 8.65. However, the fully-discrete error estimate AMR gives the worst results as

illustrated in Figure 8.69. The contours are not as symmetric as previous cases, and there is

more noise around the shock front.

We have demonstrated that although the density gradient approach has a slightly less overall

runtime than the estimated error approach for all cases, the estimated error approach in

a semi-discrete in time, semi-discrete in space and fully-discrete manner actually use fewer

timesteps and fewer elements over the evolution of the problem, see Figure 8.58. Addition-

ally, the results of the estimated errors are extremely favourable compared to the uniformly

fine results.

In conclusion we have demonstrated a method to estimate the error, and shown why this

method should be used as a refinement criteria. The investigation has been extended to 2D

and refinement has been implemented using this approach. The last chapter discusses the

main developments and results of this thesis, with a summary of the main features.

Table 8.7: Run Times and Total Elements for Sedov Blast Wave Problem.

Fine Mesh Density Gra-
dient AMR

Semi-
Discrete
in Time
AMR

Semi-
Discrete
in Space
AMR

Fully-
Discrete
AMR

Run Times 535.830 55.350 81.850 65.500 120.901
Total Ele-
ments

1,642,496 182,041 187,619 176,062 174,745
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Figure 8.58: Sedov Number of Elements over Evolution of Problem.

Figure 8.59: Sedov Problem Density Surface Plot on Fine Mesh at T = 0.1.
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Figure 8.60: Sedov Fine Mesh at T = 0.1.

Figure 8.61: Sedov, AMR with Density Gradient Mesh at T = 0.1.
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Figure 8.62: Sedov, Using a Semi-Discrete in Time Error Estimate for Density AMR Mesh
at T = 0.1.

Figure 8.63: Sedov Problem with Semi-Discrete in Space Estimated Error for Pressure AMR
Mesh at T = 0.1.
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Figure 8.64: Sedov Problem with Fully-Discrete Estimated Error for Density AMR Mesh at
T = 0.1.

Figure 8.65: Sedov Density Contour Plot at T = 0.1.
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Figure 8.66: Sedov Density Contour Density Gradient AMR Plot at T = 0.1.

Figure 8.67: Sedov Semi-discrete in time Density Contour Estimated Error AMR Plot at
T = 0.1.
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Figure 8.68: Sedov Problem with Semi-Discrete in Space Estimated Error for Pressure, Den-
sity Contour Plot at T = 0.1.

Figure 8.69: Sedov Problem with Fully-Discrete Estimated Error for Density, Density Con-
tour Plot at T = 0.1.



Chapter 9

Conclusions and Further Work

The main achievement of this thesis has been the development of refinement criterion based

on error estimates using truncation errors for the Euler Equations. This is the first time the

truncation error has been derived for the Main Scheme, from Sections (3.3.1) and (4.2.1).

When solving fluid flow problems numerically, the accuracy of the solution is dependent

on the mesh resolution. Because fluid problems usually involve regions where the solution

changes rapidly, it is particularly necessary to refine these areas. In this work, we have de-

veloped an alternative refinement criteria to that stated in [64], based on error estimates.

Due to the advantage that the Lagrangian mesh follows the solution, we developed the error

estimate for this phase.

We investigated a simpler system initially i.e. the Isothermal equations. This was then ex-

tended to the system of three equations i.e. the Euler Equations.

In the Introduction, we introduced the main concepts, methods and aims of the thesis.

The ideas introduced in the Introduction were then expanded in Chapter 2. The system of

equations which we solve for were stated and described in a Lagrangian reference frame in

Chapter 2, since most papers express the Euler equations in a hybrid form using the material

derivative to link between the Eulerian and Lagrangian grids. Here it is important to to

highlight the equations expressed fully in the Lagrangian reference frame. The main forms

of error estimates for refinement were discussed, where the pros and cons of the estimates

are outlined in [77]. The Richardson extrapolation method which uses the order of accuracy

of truncation errors was highlighted. It was deduced that this method is expensive due to

the requirement of a coarse and fine grid. However, the idea of using the truncation errors

suggested the development of the idea that we proposed in this thesis.

180
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Once the truncation error was obtained a method was required to approximate the uncom-

putable terms in the truncation error. This lead to the inclusion of a second scheme of the

same order as the Main Scheme, from Sections (3.3.1) and (4.2.1). Using two schemes and

an approach similar to Milne’s device, see [27], we were able to deduce an error estimate.

Since the system of equations includes spatial and temporal derivatives for simplification we

considered the spatial and temporal errors separately.

Chapter 3 began by investigating two schemes used to discretise the temporal derivatives in

the system of two equations. One scheme came from [64] and was referred to as the Main

Scheme, as seen in Sections (3.3.1) and (4.2.1), where the other came from [28]. The trun-

cation error of x was obtained for each scheme which was then used to obtain an estimate

to the leading term of the truncation error for the Main Scheme. Similarly this was done

for the Euler equations, again using the Main Scheme from [64], seen in Sections (3.3.1) and

(4.2.1), and the second scheme was chosen from [46]. It was then required to obtain an error

estimate in terms of the spatial derivative.

In Chapter 4 we looked at comparing two schemes to approximate the spatial derivatives.

The Main Scheme from Sections (3.3.1) and (4.2.1), uses a Galerkin finite element approach.

The second scheme, which was developed in this thesis, uses a Petrov-Galerkin finite element

approach. The truncation errors for each scheme was obtained, and used to obtain an ap-

proximate to the leading term of the truncation error, in terms of the two schemes for the

spatial derivative.

The results from Chapters 3 and 4 were combined in Chapter 5 to obtain an estimate to the

fully discrete form of the error for x. Using the estimated error for x, we then obtained an

error estimate for ρ and u in fully and semi-discrete forms, for the system of two equations

and the Euler equations.

Using the results from Chapter 5, we tested the error estimates using a Riemann problem

for the Isothermal equations, and Sod’s shock tube problem for the Euler equations. These

test cases were used since they are simple and an exact solution is available hence, allowing

a comparison between the estimated errors and true error. In all cases the location and

magnitude of the estimated error for the shock were in extremely good agreement to the true

error. The sharp features at the top and bottom of the expansion were detected in all cases.

However, the magnitudes of the estimated errors were less than the true error. The rarefac-

tion itself was poorly captured in several cases, the best case was the velocity estimated error

for the Isothermal and the pressure estimated error in the Euler Equations. Additionally, a

contact exists in the solution for the Euler Equations. Although not obvious, since the error

blended in with the oscillatory behaviour before the shock front, the contact was detected.
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As for the top and bottom of the fan, the contact was detected with less magnitude for the

estimated error case compared to the true error. We investigated the schemes at the contact

further in Appendix D, and concluded the schemes were exact at the contact, this confirms

why there was such difficulty in detecting the contact throughout. The ∞-norms were in

good agreement in all cases, since the shock was approximated very well.

Since the main aim of this thesis was to develop refinement criteria for the 2D Euler Equa-

tions, we extended the 1D results from Chapters 3 and 4 to the 2D case in Chapter 7.

However, we did not extend the error estimate for velocity to 2D, since the velocity is held

at a node which has contributions from four surrounding elements, therefore, it is difficult to

determine which element would need refining. The semi-discrete in time error estimate was

straightforward to obtain, and is just a simple extension of the 1D case. However, there were

more difficulties with the semi-discrete in space case. The leading term of the semi-discrete

in space case contains several mixed derivatives which can not be simplified to a single term.

For this reason we assumed that the mesh remained Cartesian throughout the evolution of

the problem, therefore, we disregarded any mixed derivatives. A semi-discrete in time error

estimate for x was available, this was then applied to obtain an estimated error for ρ, the

semi-discrete in space error estimate for pressure was also available. Both semi-discrete errors

were combined to obtain a fully-discrete error estimate for density.

The results from Chapter 7 were applied to a variety of test problems including the Sod

Shock Tube and the more genuine 2D problems such as the Square Sod, and 2D Riemann

problem, which were ran purely Lagrangian. Since mesh tangling was exhibited in the 2D

Riemann problem, when ran in a Lagrangian manner we implemented the full ALE method

to the 2D Riemann problem. Additionally, we introduced the Radial Sod problem and Sedov

Blast Wave, when ALE was applied. By using the ALE method we were able to demonstrate

that the error estimates developed in this thesis can be implemented with ALE. When the

method was applied to the 1D test problem Sod shock tube, which was run in a 2D manner

on a Lagrangian mesh, the areas of refinement were excellent, i.e. only the top and bottom

of the fan were detected with the contact and shock also being detected. We demonstrated

that the error norms were in better agreement for the error estimate AMR than the density

gradient AMR, compared with the uniformly fine mesh, which is an excellent result for the

method developed here. However, there were difficulties with the Radial Sod problem. The

refinement was patchy and the contour plots were extremely noisy, which suggests this should

be an area of further work.

The estimated error behaves excellently when compared against the uniformly fine grid, and

proves to be extremely well suited to detecting specific features with a minimal amount of
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elements compared to the density gradient approach. One of the difficulties discussed in

Chapter 2 is how to determine which refinement criteria is best suited to detecting certain

flow features. The main conclusion we have from the results in Chapters 6 and 8 is the error

estimate is useful in detecting specific flow features, i.e. a temporal error is useful in detecting

steep solutions and a spatial error is best suited to detecting smooth features, which is in

agreement with Aftosmis’ suggestion in [2], that different sensors should be used for different

flow features.

From the development of the estimated error approach, we have come across several restric-

tions to the method. The derivatives of the exact solution in the truncation error need to

be simplified so that the two schemes can be compared. Therefore, the leading term of the

truncation error for each scheme needs to be of the same form with different coefficients in

order to gain an estimate for that term. As we saw in Chapter 7, the leading term of the

truncation error contained several derivatives and could not be simplified into a general term.

This lead to disregarding most of the terms in the spatial error for the 2D case. When we

investigated the 2D results in Chapter 8 it was the semi-discrete in space and fully-discrete

estimated errors which under performed or proved difficult to gain any results. This indi-

cates the importance of the terms we had to disregard. However, we were able to obtain an

approximate error for density in all cases. This is suggested in [20] to be the best variable to

refine upon.

In conclusion we have obtained an error estimate based on truncation errors to the Main

Scheme, from Sections (3.3.1) and (4.2.1), for the first time in 1D and 2D. We have investi-

gated the behaviour of the error estimate against a true error. The error estimate has been

applied as a refinement criteria to a range of test problems in 2D. The estimated error AMR

detects all the specific features of interest extremely well. In the Sod shock tube problem

with refinement we see that, although the features are detected extremely well there appears

to be over refinement at the shock. As seen in the Square Sod problem there is not an

unrefined region between the contact and shock, as would be expected due to the constant

state. This is due to the shock being over refined yet again. In some cases this has lead

to more elements overall compared to the density gradient approach, which (along with the

computational time of the second scheme) contributes to the overall run time being greater

in the estimated error case. If the shock was not refined as much the run time would be

reduced.
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9.1 Further Work

The main areas of further work include the automation of setting the refinement tolerance.

We have developed an approach which detects specific fluid flow features extremely well.

However, it still remains to set the tolerances automatically to determine when refinement

should happen. It is particularly difficult to set a suitable refinement tolerance in the 2D

Riemann problem, due to the complexity of the features present. From the 1D results, a

starting point would be to investigate the magnitude differences between the shock, which is

detected extremely well, with the magnitudes of contact, top and bottom of the rarefaction

to determine the relationship between these magnitudes in association with the error.

In Chapter 6, we saw that Scheme 1 and Scheme 2 results differed by the overshoots/undershoots

being reversed. There was also smoothing around the shock in the Scheme 2, case and evi-

dence of odd-even decoupling. These effects could be a result of the artificial viscosity. By

varying the cq and cl terms in the artificial viscosity we could determine its effect on the

solution from Scheme 2.

As exhibited in many of the 1D results there are oscillations before the shock. The over

refinement at the shock could be used to detect and understand these oscillations. As we

saw in Chapter 6, many of the results suffered in magnitude around the expansion. We also

suggested that the magnitude difference could be due to the oscillations, i.e. since mass is

conserved, the result will be compromised elsewhere in the solution due to the oscillations.

Since the second scheme was always less than the true error this could suggest that the Main

Scheme, from Sections (3.3.1) and (4.2.1), is not behaving as well as would be expected. To

understand the oscillations and magnitude differences a deeper understanding of how the

schemes behave separately and in relation to each other, i.e. consider the expansion, if one

of the schemes is more accurate than the other will the estimated error be dampened in this

region?

The approach can be restrictive, if the truncation error does not simplify to a function of

derivatives this will cause problems when comparing against the second scheme. In order to

determine two schemes which have the same leading term but of different factors a modified

equation approach could be imposed. By doing so the two schemes will have the same func-

tion in the leading term (with different factors), therefore, there will be no restrictions on

obtaining an approximate to this term.

We illustrated in Chapter 7 how the error estimate under performed as a refinement criteria

for the Radial Sod problem. All Radial Sod results had islands of derefinement. The contours

were extremely noisy, especially the areas where the contours were following the derefinement
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islands. We have seen in Appendix D how an error estimate is not obtained at the contact,

therefore it is difficult to refine this area accurately. Therefore, the contact may be getting

refined at some time steps and not being refined at others, hence leaving areas of patchy

refinement. The error estimate may be under performing as a refinement criteria since we

use Cartesian geometry, but we have a radial solution with a contact. The density gradient

performed extremely well on this problem. It is necessary to understand why and how these

two methods give such different answers.

We saw in Chapter 7 how we disregarded some of the derivatives in the leading term of

the truncation error. This was done under the assumption that the mesh remains relatively

Cartesian therefore, mixed derivatives can be disregarded. However, we saw in Chapter 8 the

consequence of omitting these terms, where the solutions were the least comparable when the

spatial derivative had been estimated. This requires further work to determine how this term

should be dealt with. One possible suggestion is to investigate splitting methods, developed

by Strang, see [84].

Once the error estimation for the spatial derivatives has been improved, this error could be

used to trigger anisotropic refinement. This could be implemented by doing a sweep in the

x direction followed by a sweep in the y direction and calculate a refinement ratio from this.

The refinement ratio would determine whether isotropic or anisotropic refinement is required.

Further investigations could be carried out to determine the effect of the error for different

variables has on the solution. As we saw in the 1D test case the rarefaction was not detected

very well by the density error, although the velocity detected it better. This could have an

effect on the magnitude differences in the overall errors. Following from this a combination

of these variables could be used in such a way that different variables trigger refinement for

specific flow features.

Further investigation needs to be done on reducing the computational run time. Although

in some cases we reduced the overall number of elements the run time was still higher in

the estimated error AMR approach, due to the additional scheme introduced to estimate the

error. Since there is over refinement at the shock, less buffering cells could be used, therefore

this would contribute to lowering the overall runtime.

Along with the above suggestions, other interesting areas of further work include; how to

implement refinement when using an error estimate of a nodal value, multiple levels of re-

finement, understanding how to use this method to trigger an anisotropic refinement and

fully implement this method theoretically with the ALE approach, by extending the analysis

rigorously.
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Preliminaries

A.1 Artificial Viscosity

A.1.1 Artificial Viscosity 1D

The 1D monotonic limiting artificial viscosity is developed in [16]. The monotonic veloc-

ity gradients, ∆u, are calculated for the element under consideration and its neighbouring

elements, as seen in Figure A.1.
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Figure A.1: 1D Artificial Viscosity Stencil
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The left and right ratios of the velocity gradient are,

RL =

(
∂u
∂x

)
L(

∂u
∂x

)
C

(A.4)

RR =

(
∂u
∂x

)
R(

∂u
∂x

)
C

(A.5)

the limiter is

Φ = max(0,min(
1

2
(RL +RR), 2RL, 2RR, 1)), (A.6)

the 1D monotonic artificial viscosity for element C is

q = cqρ|∆u|2(1− Φ)2 + clρcs|∆u|(1− Φ) (A.7)

by default the linear term cl is set to 1
2

and, as explained in [16], the value cq = 3
4

is valid for

most materials.

A.1.2 Artificial Viscosity 2D

To extend the above to 2D, it is not obvious, as explained in [10]. However, a method for 2D

is given in [89], by using an operator splitting technique. The 2D artificial viscosity looks at

the four edge artificial viscosities, surrounding an element C, see Figure A.2.

(x1, y1) (x2, y2)

(x3, y3)(x4, y4)

qb

qr

qt

ql C

Figure A.2: 2D Artificial Viscosity in an Element C

From Figure A.2, qt and qb are associated with compressions in the logical mesh direction

and ql and qr are orthogonal to qt and qb.
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In order to calculate the edge artificial viscosities, we define the appropriate direction vector

for he horizontal and vertical logical mesh, known as mesh legs. Each edge leg has a length

proportional to their perpendicular sides, such that,

Lhory = −(x4 + x3 − x2 − x1) (A.8)

Lhorx = (y4 + y3 − y2 − y1) (A.9)

Lvery = (x3 + x2 − x4 − x1) (A.10)

Lverx = −(y3 + y2 − y4 − y1), (A.11)

the area weighted length scales are then calculated as

∆xtb =
area

|Lhor|
(A.12)

∆xlr =
area

|Lver|
, (A.13)

where, Lhor = (Lhorx, Lhory) and Lver = (Lverx, Lvery). The velocity gradient for a cell

edge is calculated by projecting the difference between nodal velocities of that edge onto the

mesh leg, such that,

∆ub
∆xb

=
Lhor · (u2 − u1)

area
(A.14)

∆ut
∆xt

=
Lver · (u4 − u1)

area
(A.15)

∆ul
∆xl

=
Lhor · (u3 − u4)

area
(A.16)

∆ur
∆xr

=
Lver · (u3 − u2)

area
, (A.17)

where un is the velocity vector at each element node, n = 1, 2, 3, 4, in the horizontal and

vertical logical mesh directions, seen in Figure A.3.
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Figure A.3: 2D Velocity Gradients for Element C used in Velocity Gradient Ratios

Velocity gradient ratios are calculated, see in eqn. (A.4) and eqn. (A.5) for the 2D case,

the limiter is used from eqn. (A.6). Second order accuracy can usually be achieved by only

limiting the linear term. However, Christensen [16], suggests that it’s beneficial to also limit

the quadratic term, such that

|∆u| → |∆u|(1− Φ) for the linear term (A.18)

|∆u|2 → |∆u|2(1− Φ2) for the quadratic term. (A.19)

Before the edge artificial viscosities are calculated it is necessary to check if there is an

indication of expansion, since artificial viscosity only acts in the direction of compression.

During an expansion, the nodes move away from each other, this would result in a positive

velocity gradient, during compression the nodes move in towards each other resulting in a

negative velocity gradient. Therefore, we have

if
∆u

∆x
> 0 then set

∆u

∆x
= 0

this gives a non-zero value only when we are in the presence of shocks.

The edge artificial viscosities are given as a linear combination of the linear and quadratic
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terms where,

qb = cqρ

(
∆ub
∆xb

∆xtb

)2

(1− Φ)2 + clρcs

∣∣∣∣∆ub∆xb
∆utb

∣∣∣∣ (1− Φ) (A.20)
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)2

(1− Φ)2 + clρcs

∣∣∣∣∆ub∆xt
∆xtb

∣∣∣∣ (1− Φ) (A.21)

ql = cqρ

(
∆ul
∆xl

∆xlr

)2

(1− Φ)2 + clρcs

∣∣∣∣∆ul∆xl
∆xlr

∣∣∣∣ (1− Φ) (A.22)

qr = cqρ

(
∆ur
∆xr

∆xlr

)2

(1− Φ)2 + clρcs

∣∣∣∣∆ur∆xr
∆xlr

∣∣∣∣ (1− Φ), (A.23)

the gradient of u is calculated from the required velocity gradient multiplied by the appro-

priate edge distance.

The edge artificial viscosities are taken as the average of the artificial viscosities in the same

logical directions, where

qhor =
1

2
(qt + qb) (A.24)

qver =
1

2
(ql + qr), (A.25)

the edge artificial are then summed over an element to give a scalar result for the element

artificial viscosity, resulting in

q = qhor + qver. (A.26)

The artificial viscosity now has all the required desirable features, it is staggered, monotonic,

optimally reduces dissipation and improves stability.

A.2 Time Stepping Control

During the Lagrangian step we advance the solution by one time step. The time step must

be set in accordance to some tolerance for stability. The Courant-Friedrichs-Lewy (CFL)

condition is used from [52], where

∆t =
Cl

c
; C ≤ 1 (A.27)
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C is the Courant number, usually taken to be 1
3

or 1
2
, see [64], l is the minimum distance in

which a wave has to propagate until it crosses an element and c is the sound speed. Therefore,

the CFL restricts the timestep so that it is not greater than the time it takes a sound wave

to cross any cell.

Since we use artificial viscosity, q, we must modify eqn. (A.27), see [37], where the sound

speed is

c =

√
c2
s +

2q

ρ
, (A.28)

cs is the element sound speed, therefore the time step becomes

∆t =
Cl√
c2
s + 2q

ρ

. (A.29)

The information required is the local sound speed and the minimum distance across a cell.

In 1D, the distance is the length of the cell. However, it is slightly more difficult to obtain

the minimum distance in 2D. For this project we take the minimum of four perpendicular

projections from the mid-point along each side to the intersection with another face, as is

done in [10]. This gives a good balance of stability and computational efficiency.

We usually favour C = 1
2
, since we use half of the perpendicular projection sides and the

actual minimum distance for a wave to propagate across the cell may be less than this.

Since we have the local sound speed, cs, and minimum distance across a cell, l, the timestep

is calculated for each cell, and it is the minimum time step across the region that is used.

The timestep is calculated at the beginning of each step.



Appendix B

Odd-Even Decoupling

To demonstrate the odd even decoupling ‘chequerboard’ phenomenon in 1D, consider the

velocity u(x) to be zero everywhere and the density ρ and the pressure p to have a ‘sawtooth’

type profile where

ρi =

{
1 if i = 1, 3, 5..

2 if i = 2, 4, 6..
(B.1)

as shown in [22] and demonstrated in Figure B.1.

It is observed that the even nodes have high pressures compared to the odd nodes. Physi-

1 2 3 4 5 6 7

1

2

i

ρ,p

Figure B.1: Sawtooth ρ and p

cally it would be expected that the areas of higher pressure will smooth out the oscillations

by moving to the regions of lower pressure. However, if we look at the Lagrangian momentum

equation in 1D,

m
∂u

∂t
= −pξ,

192
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when discretised in space using cell centered methods, we obtain Figure B.2. The discretisa-

i− 2 i− 1 i i+ 1 i+ 2

Figure B.2: Nodal positions of ρ, p and u

tion becomes

mi
dui
dt

= −pi+1 − pi + (pi − pi−1)

2∆ξ
= −pi+1 − pi−1

2∆ξ
= 0

since pi+1 = pi−1. This is what is known as odd-even decoupling. Since we are solving for

node i but the derivative only consists of information from the neighbouring nodes i− 1 and

i+ 1. The update of the momentum is zero, we are left with an unphysical effect where the

oscillations in the pressure are not smoothed out.

However, with a staggered mesh where the velocities and pressures are stored at different

locations, see Figure B.3

x x
ui−1 pi− 1

2
ui pi+ 1

2
ui+1

Figure B.3: Nodal positions of u and p

the momentum equation now results in

mi
dui
dt

= −
pi+ 1

2
− pi− 1

2

∆ξ
,

where the pressure smoothes out.

This argument can also be applied to ρ, ε, m and V , where these variables are held at the

cell centre.



Appendix C

Verification of the Error Estimate

Since we are using Taylor expansions for the error estimate, the data is required to be smooth

to enable us to use order arguments. We must verify the estimation holds for data with steep

gradients, as mentioned in the Introduction and Chapter 2.

To do so, we reduce the system of two equations to the wave equation. We can then choose

the initial data to represent a smooth curve which can be modified for curves with different

gradients. By doing this we can determine how steep our data can be before our approximated

error is not valid.

Using the idea from [70], we reduce the system of two equations to the wave equation, if we

say

f = xξξ. (C.1)

Using the system of two equations in Lagrangian form we have

∂x

∂t
= u (C.2)

∂u

∂t
= f. (C.3)

We now use eqn. (C.1), and reduce the system of equations to

ut = f = xξξ

and since

xt = u

194
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it follows that

xtt = ut = f = xξξ,

so x satisfies the general wave equation.

For the momentum equation in eqn. (C.3), using eqn. (C.1) we have

ut = xξξ (C.4)

⇒ utt = xξξt, (C.5)

thus using eqn. (C.2),

xtξ = uξ (C.6)

⇒ xtξξ = uξξ, (C.7)

therefore,

utt = uξξ.

Hence, u also satisfies the standard wave equation.

D’Alembert’s formula expresses the general solution to the wave equation i.e.

x(ξ) = F (ξ − t) +G(ξ + t), (C.8)

where F and G are determined from initial data.

As a simple test, we restrict this verification to the semi-discrete in time error estimate for

density only. Hence, we can determine the exact solution for ρ for the wave equation. We

have

ρ =
m

xξ
,

where

xξ = Fξ +Gξ.

The density becomes

ρ =
m

Fξ +Gξ

. (C.9)

We wish to choose initial data which exhibits steep solutions. Let

F (ν) = ν +
eβν

β
= G(ν). (C.10)
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When using ξ − t and ξ + t for the functions F and G respectively, this becomes

F (ξ − t) = ξ − t+
eβ(ξ−t)

β
(C.11)

G(ξ + t) = ξ + t+
eβ(ξ+t)

β
, (C.12)

where β is an arbitrary constant which can be altered to vary the gradient of the wave.

We have the solutions

x(ξ, t) = 2ξ +
eβ(ξ−t)

β
+
eβ(ξ+t)

β
(C.13)

u(ξ, t) = xt = eβ(ξ+t) − eβ(ξ−t) (C.14)

ρ(ξ, t) =
c(ξ)

2 + eβ(ξ−t) + eβ(ξ+t)
. (C.15)

The initial data can be obtained by substituting t = 0 into the above solutions

u(ξ) = 0 (C.16)

ρ(ξ) =
c(ξ)

2 + 2eβξ
. (C.17)

The initial data can now be used in testing how well the error estimate works when applied

to steep solutions.

We demonstrate how the semi-discrete in time error estimate for density, derived in Chapter

3, can be applied for varying gradients of a wave at the same time, t = 0.2, and for the same

initial mesh of 200 points.

The results verify the approximated error can be applied to shock like waves. Note that

as the gradient of the wave gets steeper, the error and estimated error converge at the shock.

We have demonstrated that the estimated error is large at the shock, therefore, proves to be

a suitable method to apply as a refinement criteria.
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Figure C.1: β = 1

Figure C.2: β = 5
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Figure C.3: β = 15

Figure C.4: Ratio of Error and Approximated Error



Appendix D

Difficulties at the Contact

From Chapter 6 it was not clear if we were detecting the contact in the error estimate. To

analyse this we look at both temporal schemes from Sections 3.7.1 and 3.7.2, using a jump

in density ρ and energy ε, with a constant velocity, u, and pressure, p.

We have

εl = 1 , εr = 0 (D.1)

ρl = 1 , ρr = 0 (D.2)

xξ = xr − xl (D.3)

where c1 and p are constants.

D.1 Scheme 1

Using Scheme 1 from Section 3.7.1 for the Euler equations we have

(xl)
n+ 1

2 = (xl)
n +

k

2
u , (xr)

n+ 1
2 = (xr)

n +
k

2
u (D.4)

(xξ)
n+ 1

2 = (xr)
n +

k

2
u−

(
(xl)

n +
k

2
u

)
= (xr)

n − (xl)
n = (xξ)

n . (D.5)
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Since (xξ)
n+ 1

2 = (xξ)
n we have

(ρl)
n+ 1

2 =
mn

(
(

(xl)ξ

)n+ 1
2

=
mn(

(xl)ξ

)n = (ρl)
n (D.6)

(ρr)
n+ 1

2 =
mn(

(xr)ξ

)n+ 1
2

=
mn(

(xr)ξ

)n = (ρr)
n . (D.7)

Since u is constant, ux = 0, therefore,

εn+ 1
2 = εn − kpn (uξ)

n

2ρn
(D.8)

therefore (εl)
n+ 1

2 = (εl)
n and (εr)

n+ 1
2 = (εr)

n . (D.9)

Now using ρn+ 1
2 = ρn and εn+ 1

2 = εn we obtain

pn+ 1
2 = (γ − 1)ρn+ 1

2 εn+ 1
2 = (γ − 1)ρnen = pn = p. (D.10)

We use

ū =
1

2
(un+1 + un)

=
1

2
(u+ u)

= u. (D.11)

For the predictor step

(xl)
n+1 = (xl)

n + ku , (xr)
n+1 = (xr)

n + ku (D.12)

(xξ)
n+1 = (xr)

n + ku− ((xl)
n + ku) = (xr)

n − (xl)
n = (xξ)

n (D.13)

since (xξ)
n+1 = (xξ)

n we have

(ρl)
n+1 =

mn(
(xl)ξ

)n+1 =
mn

((xl) ξ)
n = (ρl)

n (D.14)

(ρr)
n+1 =

mn(
(xr)ξ

)n+1 =
mn

((xr) ξ)
n = (ρr)

n . (D.15)
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Since ū = u is a constant, from eqn. (D.11), therefore, ūξ = 0, which is used in

εn+1 = εn − kpn+ 1
2 ūξ

ρn+ 1
2

(D.16)

to obtain (εl)
n+1 = (εl)

n , and (εr)
n+ 1

2 = (εr)
n . (D.17)

We now have ρn+1 = ρn and εn+1 = εn

pn+1 = (γ − 1)ρn+1εn+1 = (γ − 1)ρnen = pn = p. (D.18)

D.2 Scheme 2

Using Scheme 2 from Section 3.7.2 we have

un+1
∗ = un − k (pξ)

n

mn
, (D.19)

since p is a constant, then pξ = 0, therefore

un+1
∗ = un = u (D.20)

and

ū∗ =
1

2

(
un+1
∗ + un

)
=

1

2
(u+ u)

= u. (D.21)

Using

((x∗)l)
n+1 = (xl)

n + ku and ((x∗)r)
n+1 = (xr)

n + ku

we obtain (
(x∗)ξ

)n+1

= (xl)
n + ku− ((xr)

n + ku) = (xr)
n − (xl)

n = (xξ)
n . (D.22)
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Since (xξ)
n+1 = (xξ)

n, we have

((ρ∗)l)
n+1 =

mn(
(xl)ξ

)n+1 =
mn(

(xl)ξ

)n = (ρl)
n (D.23)

((ρ∗)r)
n+1 =

mn(
(xr)ξ

)n+1 =
mn(

(xr)ξ

)n = (ρr)
n . (D.24)

Using ū = u, which is a constant, hence, ūξ = 0, along with using

(ε∗)
n+1 = εn −

kpn (ū∗)ξ

(ρ∗)
n+1 (D.25)

we obtain ((ε∗)l)
n+1 = (εl)

n , and ((ε∗)r)
n+1 = (εr)

n . (D.26)

Since (ρ∗)
n+1 = ρn and (ε∗)

n+1 = εn, we obtain

(p∗)
n+1 = (γ − 1) (ρ∗)

n+1 (ε∗)
n+1 = (γ − 1)ρnen = pn = p. (D.27)

For the predictor step we have

un+1 = un − k

(
(p∗)ξ

)n+1

mn
. (D.28)

Since (p∗)
n+1 = pn = p is a constant then

(
(p∗)ξ

)n+1

= 0. Therefore,

un+1 = un = u, (D.29)

and

ū =
1

2

(
un+1 + un

)
=

1

2
(u+ u)

= u. (D.30)

We have

(xl)
n+1 = xnl + ku and (xr)

n+1 = xnr + ku

resulting in (xξ)
n+1 = xnl + ku− (xnr + ku) = xnr − xnl = (xξ)

n . (D.31)
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Since (xξ)
n+1 = (xξ)

n we have

((ρl))
n+1 =

mn(
(xl)ξ

)n+1 =
mn(

(xl)ξ

)n = (ρ)nl (D.32)

((ρr))
n+1 =

mn(
(xr)ξ

)n+1 =
mn(

(xξ)r
)n = (ρr)

n . (D.33)

We have ū = u, a constant, therefore, ūξ = 0, and

εn+1 = εn − kpnūξ
ρn+1

(D.34)

therefore εn+1
l = εnl , and εn+1

r = εnr . (D.35)

Finally, using ρn+1 = ρn and εn+1 = εn we obtain

pn+1 = (γ − 1)ρn+1εn+1 = (γ − 1)ρnen = pn = p. (D.36)

We see that with the stated initial data, both schemes are exact at the contact, meaning that

an error based on the difference between these two schemes will not be available here.



Appendix E

Shape Function Integrals

In Chapter 7, we have the weak form of the conservation equations in terms of integrals. The

integrals are taken over the element after a mapping to the computational mesh, in (ξ, η)

space. The evaluation of integrals can be seen in [10, 38], and are reproduced here.

E.1 Galerkin method

For the Galerkin Method in Chapter 7, we use basis functions which vanish on the boundaries.

These bilinear functions are expressed as

N1(ξ, η) =
1

4
(1− ξ)(1− η), (E.1)

N2(ξ, η) =
1

4
(1 + ξ)(1− η), (E.2)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), (E.3)

N4(ξ, η) =
1

4
(1− ξ)(1 + η). (E.4)

In order to compute the integrals with respect to the computational mesh, in (ξ, η) space, we

have mapped from the physical mesh, in (x, y) space. The mapping introduces a Jacobian

matrix. To deduce the Jacobian we have the the quadrilateral vertices expressed as ri =

(xi, yi)(i = 1, 2, 3, 4), such that

r(ξ, η) = N1(ξ, η)r1 +N2(ξ, η)r2 +N3(ξ, η)r3 +N4(ξ, η)r4. (E.5)
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This gives

x(ξ, η) =
1

4
((x1 + x2 + x3 + x4) + ξ(−x1 + x2 + x3 − x4)

+ η(−x1 − x2 + x3 + x4) + ξη(x1 − x2 + x3 − x4)), (E.6)

y(ξ, η) =
1

4
((y1 + y2 + y3 + y4) + ξ(−y1 + y2 + y3 − y4)

+ η(−y1 − y2 + y3 + y4) + ξη(y1 − y2 + y3 − y4)). (E.7)

Define

A1 =
1

4
(−x1 + x2 + x3 − x4), (E.8)

A2 =
1

4
(x1 − x2 + x3 − x4), (E.9)

A3 =
1

4
(−x1 − x2 + x3 + x4), (E.10)

A4 =
1

4
(x1 + x2 + x3 + x4), (E.11)

B1 =
1

4
(−y1 + y2 + y3 − y4), (E.12)

B2 =
1

4
(y1 − y2 + y3 − y4), (E.13)

B3 =
1

4
(−y1 − y2 + y3 + y4), (E.14)

B4 =
1

4
(y1 + y2 + y3 + y4). (E.15)

The Jacobian matrix is given by

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (E.16)
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Using eqn. (E.6) and eqn. (E.7) we obtain

∂x

∂ξ
=

1

4
(−x1 + x2 + x3 − x4) +

η

4
(x1 − x2 + x3 − x4) (E.17)

= A1 + A2η, (E.18)

∂x

∂η
=

1

4
(−x1 − x2 + x3 + x4) +

ξ

4
(x1 − x2 + x3 − x4) (E.19)

= A3 + A2ξ, (E.20)

∂y

∂ξ
=

1

4
(−y1 + y2 + y3 − y4) +

η

4
(y1 − y2 + y3 − y4) (E.21)

= B1 +B2η, (E.22)

∂y

∂η
=

1

4
(−y1 − y2 + y3 + y4) +

ξ

4
(y1 − y2 + y3 − y4) (E.23)

= B3 +B2ξ, (E.24)

so the Jacobian becomes

J =

[
A1 + A2η B1 +B2η

A3 + A2ξ B3 +B2ξ

]
, (E.25)

where

detJ = (A1 + A2η)(B3 +B2ξ)− (B1 +B2η)(A3 + A2ξ).

The inverse Jacobian now becomes

J−1 =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

1

|J |

[
∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

]
=

1

|J |

[
B3 +B2ξ −(B1 +B2η)

−(A3 + A2ξ) A1 + A2η

]
=
C

|J |
.

(E.26)

where C is the adjoint matrix.

From eqn. (7.41) we have

C∇N =

(
C11 C12

C21 C22

)(
Nξ

Nη

)
=

(
C11

∂N
∂ξ

+ C12
∂N
∂η

C21
∂N
∂ξ

+ C22
∂N
∂η

)
. (E.27)

The form of C is demonstrated in eqn. (E.26).
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We also have

∂N1

∂ξ
=

1

4
(η − 1) ,

∂N1

∂η
=

1

4
(ξ − 1),

∂N2

∂ξ
=

1

4
(1− η) ,

∂N2

∂η
=

1

4
(−ξ − 1),

∂N3

∂ξ
=

1

4
(η + 1) ,

∂N3

∂η
=

1

4
(ξ + 1),

∂N4

∂ξ
=

1

4
(−η − 1) ,

∂N4

∂η
=

1

4
(1− ξ).

This leads to

C11
∂N1

∂ξ
+ C12

∂N1

∂η
=

1

4
((η − 1)(B3 +B2ξ)− (ξ − 1)(B1 +B2η)) ,

C21
∂N1

∂ξ
+ C22

∂N1

∂η
=

1

4
((η − 1)(A3 + A2ξ) + (ξ − 1)(A1 + A2η)) ,

C11
∂N2

∂ξ
+ C12

∂N2

∂η
=

1

4
((1− η)(B3 +B2ξ) + (ξ + 1)(B1 +B2η)) ,

C21
∂N2

∂ξ
+ C22

∂N2

∂η
=
−1

4
((1− η)(A3 + A2ξ) + (ξ + 1)(A1 + A2η)) ,

C11
∂N3

∂ξ
+ C12

∂N3

∂η
=

1

4
((η + 1)(B3 +B2ξ)− (ξ + 1)(B1 +B2η)) ,

C21
∂N3

∂ξ
+ C22

∂N3

∂η
=
−1

4
((η + 1)(A3 + A2ξ)− (ξ + 1)(A1 + A2η)) ,

C11
∂N4

∂ξ
+ C12

∂N4

∂η
=
−1

4
((η + 1)(B3 +B2ξ) + (1− ξ)(B1 +B2η)) ,

C21
∂N4

∂ξ
+ C22

∂N4

∂η
=

1

4
((η + 1)(A3 + A2ξ) + (1− ξ)(A1 + A2η)) .

The information is now available to evaluate the integrals from eqn. (7.41), which is∫ 1

−1

∫ 1

−1

Ni|J |dξdη.
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For the nodes i = 1, 2, 3, 4 surrounding the element we have

i = 1

∫ 1

−1

∫ 1

−1

N1|J |dξdη =
1

9
[(3B3 −B2)(3A1 − A2)− (3A3 − A2)(3B1 −B2)],

i = 2

∫ 1

−1

∫ 1

−1

N2|J |dξdη =
1

9
[(3B3 +B2)(3A1 − A2)− (3A3 + A2)(3B1 −B2)],

i = 3

∫ 1

−1

∫ 1

−1

N3|J |dξdη =
1

9
[(3B3 +B2)(3A1 + A2)− (3A3 + A2)(3B1 +B2)],

i = 4

∫ 1

−1

∫ 1

−1

N4|J |dξdη =
1

9
[(3B3 −B2)(3A1 + A2)− (3A3 − A2)(3B1 +B2)].

For the right hand side of equation (7.41), we evaluate the integral of the basis function at

each node surrounding the element, which is differentiated with respect to the coordinate

direction. We have,∫ 1

−1

∫ 1

−1

(
C11

∂N1

∂ξ
+ C12

∂N1

∂η

)
dξdη = (B1 −B3),∫ 1

−1

∫ 1

−1

(
C21

∂N1

∂ξ
+ C22

∂N1

∂η

)
dξdη = (A3 − A1),∫ 1

−1

∫ 1

−1

(
C11

∂N2

∂ξ
+ C12

∂N2

∂η

)
dξdη = (B1 +B3),∫ 1

−1

∫ 1

−1

(
C21

∂N2

∂ξ
+ C22

∂N2

∂η

)
dξdη = −(A3 + A1),∫ 1

−1

∫ 1

−1

(
C11

∂N3

∂ξ
+ C12

∂N3

∂η

)
dξdη = (B3 −B1),∫ 1

−1

∫ 1

−1

(
C21

∂N3

∂ξ
+ C22

∂N3

∂η

)
dξdη = (A1 − A3),∫ 1

−1

∫ 1

−1

(
C11

∂N4

∂ξ
+ C12

∂N4

∂η

)
dξdη = −(B1 +B3),∫ 1

−1

∫ 1

−1

(
C21

∂N4

∂ξ
+ C22

∂N4

∂η

)
dξdη = (A3 + A1).
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E.2 Petrov Galerkin Method

We now evaluate the shape integral functions from Section 7.5.

The orthogonal basis functions here are,

ψ1 = 4N1 − 2N2 +N3 − 2N4 =
1

4
(1− 3ξ)(1− 3η),

ψ2 = −2N1 + 4N2 − 2N3 +N4 =
1

4
(1 + 3ξ)(1− 3η),

ψ3 = N1 − 2N2 + 4N3 − 2N4 =
1

4
(1 + 3ξ)(1 + 3η),

ψ4 = −2N1 +N2 − 2N3 + 4N4 =
1

4
(1− 3ξ)(1 + 3η),

(E.28)

in terms of the bilinear basis functions Ni, which have previously been used. Now we have

(with ri = (xi, yi)(i = 1, 2, 3, 4))

r(ξ, η) = ψ1(ξ, η)r1 + ψ2(ξ, η)r2 + ψ3(ξ, η)r3 + ψ4(ξ, η)r4, (E.29)

this gives

x(ξ, η) =
1

4
((x1 + x2 + x3 + x4) + 3ξ(−x1 + x2 + x3 − x4)

+ 3η(−x1 − x2 + x3 + x4) + 9ξη(x1 − x2 + x3 − x4))

y(ξ, η) =
1

4
((y1 + y2 + y3 + y4) + 3ξ(−y1 + y2 + y3 − y4)

+ 3η(−y1 − y2 + y3 + y4) + 9ξη(y1 − y2 + y3 − y4)).

The Jacobian for the orthogonal basis function becomes

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

1

|J |

[
∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

]
=

[
3A1 + 9A2η 3B1 + 9B2η

3A3 + 9A2ξ 3B3 + 9B2ξ

]
, (E.30)

and the required determinant is

|J | = (3A1 + 9A2η)(3B3 + 9B2ξ)− (3B1 + 9B2η)(3A3 + 9A2ξ).
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The inverse Jacobian now becomes

J−1 =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

1

|J |

[
3B3 + 9B2ξ −(3B1 + 9B2η)

−(3A3 + 9A2ξ) 3A1 + 9A2η

]
=
C

|J |
. (E.31)

We also have

∂ψ1

∂ξ
=

1

4
(9η − 3) ,

∂ψ1

∂η
=

1

4
(9ξ − 3),

∂ψ2

∂ξ
=

1

4
(3− 9η) ,

∂ψ2

∂η
=

1

4
(−9ξ − 3),

∂ψ3

∂ξ
=

1

4
(9η + 3) ,

∂ψ3

∂η
=

1

4
(9ξ + 3),

∂ψ4

∂ξ
=

1

4
(−9η − 3) ,

∂ψ4

∂η
=

1

4
(3− 9ξ).

This leads to

C11
∂ψ1

∂ξ
+ C12

∂ψ1

∂η
=

1

4
((9η − 3)(3B3 + 9B2ξ)− (9ξ − 3)(3B1 + 9B2η)) ,

C21
∂ψ1

∂ξ
+ C22

∂ψ1

∂η
=

1

4
((9η − 3)(3A3 + 9A2ξ) + (9ξ − 3)(3A1 + 9A2η)) ,

C11
∂ψ2

∂ξ
+ C12

∂ψ2

∂η
=

1

4
((3− 9η)(3B3 + 9B2ξ) + (9ξ + 3)(3B1 + 9B2η)) ,

C21
∂ψ2

∂ξ
+ C22

∂ψ2

∂η
=
−1

4
((3− 9η)(3A3 + 9A2ξ) + (9ξ + 3)(3A1 + 9A2η)) ,

C11
∂ψ3

∂ξ
+ C12

∂ψ3

∂η
=

1

4
((9η + 3)(3B3 + 9B2ξ)− (9ξ + 3)(3B1 + 9B2η)) ,

C21
∂ψ3

∂ξ
+ C22

∂ψ3

∂η
=
−1

4
((9η + 3)(3A3 + 9A2ξ)− (9ξ + 3)(3A1 + 9A2η)) ,

C11
∂ψ4

∂ξ
+ C12

∂ψ4

∂η
=
−1

4
((9η + 3)(3B3 + 9B2ξ) + (3− 9ξ)(3B1 + 9B2η)) ,

C21
∂ψ4

∂ξ
+ C22

∂ψ4

∂η
=

1

4
((9η + 3)(3A3 + 9A2ξ) + (3− 9ξ)(3A1 + 9A2η)) .

We are now able to evaluate the integrals in eqn. (7.55). This is done by looking at one

element, which surrounds node i.

We seek the solution to the integral on the left hand side in equation (4.14), which is∫ 1

−1

∫ 1

−1

ψjNi|J |dξdη.
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For the nodes i = 1, 2, 3, 4 surrounding the element we have

i = 1

∫ 1

−1

∫ 1

−1

ψ1N1|J |dξdη = 18A2B1 − 18A1B2 + 9A1B3 − 9A3B1 − 18A2B3 + 18A3B2,

i = 2

∫ 1

−1

∫ 1

−1

ψ2N2|J |dξdη = 18A1B2 − 18A2B1 + 9A1B3 − 9A3B1 − 18A2B3 + 18A3B2,

i = 3

∫ 1

−1

∫ 1

−1

ψ3N3|J |dξdη = 18A1B2 − 18A2B1 + 9A1B3 − 9A3B1 + 18A2B3 − 18A3B2,

i = 4

∫ 1

−1

∫ 1

−1

ψ4N4|J |dξdη = 18A2B1 − 18A1B2 + 9A1B3 − 9A3B1 + 18A2B3 − 18A3B2.

We now look at the boundary integral, −pside
∮
ψidS. We have the side differential vector

dS,

dS = (dξ, dη,−dξ,−dη),

which is illustrated in Figure E.1. We integrate each nodal basis function ψi over each side

dξ

dη

−dξ

−dη

Figure E.1: Direction Vector

of the element, consider the element in Figure E.2.

To evaluate the integral in the correct direction we have,

dS = (cosθ, sinθ)dS,

where S is the side we are solving for.

To determine (cosθ, sinθ), consider the right angled triangle, below in Figure E.3. The

hypotenuse of the right angled triangle which has been constructed, as the side length

L1 =
√

(x2 − x1)2 + (y2 − y1)2.
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(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

s1

s2

s3

s4

Figure E.2: Sides

s1

(x1, y2) (x2, y2)

(x1, y1)

Figure E.3: Side Calculation

The adjacent and opposite lengths to θ are y1 − y2 and x2 − x1 respectively, resulting in

cosθ =
y1 − y2

L1

and sinθ =
x2 − x1

L1

. (E.32)

Focusing on the component in the x direction for the following sides, cosθ becomes S1 = y1−y2
L1

,

S2 = y2−y3
L2

, S3 = y3−y4
L3

and S4 = y4−y1
L4

.

We now transform our irregular quadrilateral onto a canonical square, as illustrated in Figure

E.4. The integral dealing with the component in the x direction is

−pside
∫
S

ψicosθdS
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(-1,-1) (1,-1)

(1,1)(-1,1)

S1

S2

S3

S4

Figure E.4: Canonical Square

for one side, where S is now a function of ξ or η therefore, for ξ = 1 or ξ = −1 we have

dS =
dS

dη
dη =

Li
2
dη.

Where η = 1 or η = −1

dS =
d

dξ
dξ =

Li
2
dξ,

where dS is the untransformed side length, dη or dξ is the transformed side length and Li is

2 in this case. The integral becomes

−psidecosθ
Li
2

∫
S

ψidr,

since cosθ and L are not functions of ξ and η they come outside the integral, and r is η or ξ.

We evaluate the integral for the sides of each element. The side p terms are taken as a

straight average from neighbouring elements. This results in a different discretisation to the

Galerkin method as we now have a larger spread of pressure values.

For a node i, where the nodes are labelled in an anticlockwise manner, we require the nodes

as illustrated in Figure E.5.

The element numbering is illustrated in Figure E.6.

On the sides S1, S2, S3 and S3, we have η = −1, ξ = 1, η = 1 and ξ = −1 as constants on

the sides respectively. For an element the respective side intervals are as follows:
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y1
y2

y3y4

y5

y6

y7
y8

y9

Figure E.5: Nodal labels about a point labelled 1

i

el1

el2

el3

el4

el5

el6

el7

el8

el9

el10

el11

el12

Figure E.6: Elements used to evaluate the side term at a node i

Element 1 where ψi = ψ1

(y1− y2)

2

(p8 + p9)

2

∫ 1

−1

ψ1(ξ,−1)dξ =
1

2
(y1− y2)(p8 + p9),

(y2− y3)

2

(p8 + p11)

2

∫ 1

−1

ψ1(1, η)dη =
1

4
(y3− y2)(p8 + p11),

(y3− y4)

2

(p8 + p7)

2

∫ 1

−1

ψ1(ξ, 1)dξ =
1

4
(y4− y3)(p8 + p7),

(y4− y1)

2

(p8 + p4)

2

∫ 1

−1

ψ1(−1, η)dη =
1

2
(y4− y1)(p8 + p4).
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Element 2 where ψi = ψ2

(y5− y1)

2

(p4 + p5)

2

∫ 1

−1

ψ2(ξ,−1)dξ =
1

2
(y5− y1)(p4 + p5),

(y1− y4)

2

(p8 + p4)

2

∫ 1

−1

ψ2(1, η)dη =
1

2
(y1− y4)(p8 + p4),

(y4− y6)

2

(p4 + p3)

2

∫ 1

−1

ψ2(ξ, 1)dξ =
1

4
(y6− y4)(p4 + p3),

(y6− y5)

2

(p1 + p4)

2

∫ 1

−1

ψ2(−1, η)dη =
1

4
(y5− y6)(p1 + p4).

Element 3 where ψi = ψ3

(y7− y7)

2

(p6 + p5)

2

∫ 1

−1

ψ3(ξ,−1)dξ =
1

4
(y8− y7)(p6 + p5),

(y8− y1)

2

(p5 + p9)

2

∫ 1

−1

ψ3(1, η)dη =
1

2
(y8− y1)(p5 + p9),

(y1− y5)

2

(p5 + p4)

2

∫ 1

−1

ψ3(ξ, 1)dξ =
1

2
(y1− y5)(p5 + p4),

(y5− y7)

2

(p5 + p2)

2

∫ 1

−1

ψ3(−1, η)dη =
1

4
(y7− y5)(p5 + p2).

Element 4 where ψi = ψ4

(y8− y9)

2

(p10 + p9)

2

∫ 1

−1

ψ4(ξ,−1)dξ =
1

4
(y9− y8)(p10 + p9),

(y9− y2)

2

(p9 + p12)

2

∫ 1

−1

ψ4(1, η)dη =
1

4
(y2− y9)(p9 + p12),

(y2− y1)

2

(p8 + p9)

2

∫ 1

−1

ψ4(ξ, 1)dξ =
1

2
(y2− y1)(p8 + p9),

(y1− y8)

2

(p9 + p5)

2

∫ 1

−1

ψ4(−1, η)dη =
1

2
(y1− y8)(p9 + p5).

For the right hand side of eqn. (7.55), we evaluate the integral of the basis function at each

node surrounding the element, which is then differentiated with respect to the coordinate
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direction, resulting in the following∫ 1

−1

∫ 1

−1

(
C11

∂ψ1

∂ξ
+ C12

∂ψ1

∂η

)
dξdη = 9(B1 −B3),∫ 1

−1

∫ 1

−1

(
C21

∂ψ1

∂ξ
+ C22

∂ψ1

∂η

)
dξdη = 9(A3 − A1),∫ 1

−1

∫ 1

−1

(
C11

∂ψ2

∂ξ
+ C12

∂ψ2

∂η

)
dξdη = 9(B1 +B3),∫ 1

−1

∫ 1

−1

(
C21

∂ψ2

∂ξ
+ C22

∂ψ2

∂η

)
dξdη = −9(A3 + A1),∫ 1

−1

∫ 1

−1

(
C11

∂ψ3

∂ξ
+ C12

∂ψ3

∂η

)
dξdη = 9(B3 −B1),∫ 1

−1

∫ 1

−1

(
C21

∂ψ3

∂ξ
+ C22

∂ψ3

∂η

)
dξdη = 9(A1 − A3),∫ 1

−1

∫ 1

−1

(
C11

∂ψ4

∂ξ
+ C12

∂ψ4

∂η

)
dξdη = −9(B1 +B3),∫ 1

−1

∫ 1

−1

(
C21

∂ψ4

∂ξ
+ C22

∂ψ4

∂η

)
dξdη = 9(A3 + A1).
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