A NUMERICAL MODEL OF
SEDIMENT DEPOSITION
ON SALTMARSHES
by

Steven James Woolnough

Submitted to the
Department of Mathematics,
University of Reading,
in partial fulfillment of the requirements for the

Degree of Master of Science.

September 1993



Abstract

A one-dimensional model of sediment transport and deposition over a saltmarsh
is developed by simplifying a three-dimensional mass balance equation for the
sediment and integrating the resultant equation over the depth of the flow . The
sediment is assumed to be distributed with a uniform concentration through a
column of water above which the water is clear. The sediment in the column
is assumed to settle out at a fixed rate and the height of the front between the
clear and the water containing sediment is used as the dependent variable. The
resulting equation for the height of this front is solved numerically for one tidal
period using the box scheme. From this solution the position at which the front
intersects the marsh surface is approximated which enables the depth of sediment
deposited by one tide to be evaluated. The results obtained for a special case
are compared with an analytic solution. The model is then used to investigate
how varying the settling velocity and the dimensions of the saltmarsh affect the

distribution of the deposited sediment.



Contents

List of Notation . . . . . . . . . . . .

1 Introduction

1.1 What is a Saltmarsh? . . . . . . ... ... o oL
1.2 Why are Saltmarshes Important? . . . . .. ... ... ... ...
2 Theory
2.1 The Generalised Mass Balance Equation for Suspended Sediment
2.1.1 Settling Velocities . . . . . .. .. ... 0oL
2.1.2  Fluid Velocity Components . . . .. ... ... ... ...
2.1.3  Sediment Diffusivities. . . . . .. .. ... 0oL
2.1.4  Boundary Conditions . . . . . .. .. ... ... ... ...
2.2 TheModel . . . . .. .o

2.2.1 The Region of Investigation . . . . ... ... ... ....

2.2.2  Approximations to the Two-Dimensional Mass Balance Equa-

2.2.3  Depth Integration of the One-Dimensional Mass Balance
Equation . . . . . ... ...

2.2.4  The Velocity Profile over the Saltmarsh . . . . .. ... ..



2.2.5 The Water Height over the Saltmarsh . . . . . .. ... ..
2.2.6 The Model Equations . . . . ... ... ... .......
2.3 An Analytic Solution . . . . .. ..o oo

3 The Numerical Model
3.1 Discretisation of the Problem . . . . .. .. .. ... .......
3.2 Properties of the Box Scheme . . . . ... ... ... ... .. ..
3.3 The Flood Tide . . . . . . .. ... .. ..
3.3.1 The Initial Time Step . . . . . . .. .. ... ... ...
3.3.2 The Landward Boundary . . . . . . ... ... ... ....
34 TheEbb Tide . . . . . . . .o o
3.4.1 The Seaward Boundary . . . . . . .. .. ... ... ... .
3.4.2 The Final Time Step . . . . . . ... ... ... .. ...

4 Numerical Results and Discussion

4.1 Testing . . . . . o oL
4.1.1 A Visual Comparison . . . . . .. .. .. ... .. ...,
4.1.2  FError Measurements . . . .. .. .. ... L.

4.2 Experiments . . . . . ... e
4.2.1 A Non-dimensional Form . . . . . .. .. ... ... ....
4.2.2  Distribution of Deposited Sediment . . . . . . .. ... ..
4.2.3  An Array of Particles . . . . . .. ... oL

5 Conclusions

References . . . ..

Acknowledgements

i

15

16

16

18

19

21

22

25

25

26

26

26

28

31

32

34

34

37



Notation

amplitude of tide [m]

height of saltmarsh above mean sea-level [m]
non-dimensionalised b

fractional volume of sediment in fluid

fractional volume of sediment in tidal water
diameter of sediment particle [m]

absolute error in the depth of sediment deposited [m)]
height of water above saltmarsh [m]
non-dimensionalised H

label of space grid points
P

node before z}

node before zg

mode number of fourier decomposition of y

length of saltmarsh [m]

number of space steps

half the number of time steps

exponent or time level

number of time steps in characteristic solving routine
time level in characteristic solving routine

rate of deposition on saltmarsh [ms™]

gradient of line of best fit for graph of error against M
gradient of line of best fit for graph of error against N
depth of sediment deposited on the saltmarsh [m]
approximation to depth of sediment deposited on the marsh at (x;,,) [m]
non-dimensionalised S

tidal period [s]

time [s]

time at which no sediment is suspended above a point on the marsh [s]
non-dimensionalised ¢

time at nth time level [s]

time at pth time level of characteristic solving routine [s]
phase of tide at which water covers the saltmarsh [s]
non-dimensionalised %,

horizontal fluid velocity [ms™!]

non-dimensionalised «

i1



u; fluid velocity components [ms™!]

[uy]?  approximation to uy(z;,t,) [m*s™']

v, particle settling velocity [ms™!]

v, non-dimensionalised v,

Vo settling velocity of single smooth sphere [ms™!]
w vertical fluid velocity [ms™!]

T horizontal coordinate [m]

z’ non-dimensionalised x

Te position of characteristic through zg [m]

P approximation to x.(t,) [m]

a2 (®) - Eth iteration of x? [m]

T position of jth node [m]

g position at which no sediment is suspended above the marsh [m)]
z; components of position vector [m)]

Y height of column of sediment in water
Yy’ non-dimensionalised y

Ye value of y on characteristic x. [m]

Yo approximation to y(z',t,) [m]

yr approximation to y(z;,t,) [m]

z vertical coordinate [m]

o label of characteristics

€ sediment mixing coefficients [m?s™]
n dynamic viscosity of fluid [Nsm™?]

0 parameter in box scheme

A the Courant number

£ amplitude of fourier mode

p density of fluid [kgm ]

o density of sediment [kgm =]

T truncation error

parameter in box scheme
angular frequency of tide [s™!]
At time step [s]
At.  time step in characteristic solving routine [s]
Az space step [m]
Az"  space step for first step in box scheme for ebb tide [m]

v



Chapter 1

Introduction

1.1 What is a Saltmarsh?

Coastal saltmarshes are relatively flat areas of land which are regularly flooded
by the sea; they occur high in the intertidal zone, mainly in temperate and high
latitudes on low energy coasts [Allen and Pye 1992]. Their occurrence is controlled
by the coastal geography since deposited sediment can only accumulate where
the wave action is small. Hence saltmarshes tend to be found only in sheltered
areas like bays and estuaries or on the lee side of spits and barrier islands. An
exception to this is where a major river deposits fine sediment which forms a large
and shallow region close to the shore which reduces the intensity of the incoming
waves, for example, the Mississippi Delta.
There are several processes which affect the development of saltmarshes. Firstly,

they need a source of sediment: this is usually from the suspended material in
the tidal water which periodically floods the marshes. The sediment will only be

deposited when the fluid velocities are small. Hence a saltmarsh will only develop



near the top of the intertidal region which is only covered at slack water. The
presence of vegetation on the marsh will affect the growth of the marsh in two
ways; it provides both an effective method for trapping and binding the sediment
carried by the water and also acts as a source of sediment itself. The vegetation
will only form once the saltmarsh is high enough relative to the mean sea-level,
but once this occurs the marsh will often grow more rapidly as the plants trap
the suspended sediment and add decaying organic matter.

The tidal regime is also important; the periods between flooding allow the
marsh to dry binding the sediment together. If the marsh is left exposed for long
enough plant life can develop strengthening it even more. A change in relative
sea-level can have a similar effect as this will also vary the length of time for
which the marsh is flooded. The wind and wave climate can also play a vital
role. Strong waves can erode large parts of the marsh and so a period of stormy

weather can change the shape and height of the marsh significantly.

1.2 Why are Saltmarshes Important?

Saltmarshes can be seen along much of the coast of Britain, some 20% of the
coastline of England and Wales, mostly in or around estuaries [Brampton 1992].
These saltmarshes have long been of interest to ecologists and conservationists
because of the wide variety of plant and animal life they sustain. Many of the
species found on the saltmarshes are believed to be exclusive to this environment
[Doody 1992]. As a result some 80% of these saltmarshes have been declared Sites
of Special Scientific Interest [Brampton 1992]. Saltmarshes are also of importance

in agriculture, providing seasonal grazing and sites for reclamation of land for



farming arable crops.

Until recently however they have been of little interest to coastal engineers,
but in the past few years there has been much attention paid to global warming
and the resultant threat of rising sea-levels and a stormier climate on the lowlying
coastal regions of Britain. The danger of loss of land to the sea has brought about
a need to improve the coastal defences around much of the British Isles.

Traditional coastal defence tactics such as the construction of sea walls can be
expensive and cheaper methods of protecting the land are being considered. One
such tactic is the use of the natural features of the coastline as a defence mecha-
nism. The most important feature of the saltmarsh in this respect is the way in
which they dissipate much of the incoming wave energy so that little remains at
the landward end [Brampton 1992]. This enables the land beyond to be protected
from the sea by a much smaller and therefore cheaper wall. To use saltmarshes
as an effective aid to coastal defence, without damaging their ecological value, re-
quires an understanding of the ways in which the marsh develops and how human
interference may affect this. This project uses a simplified one-dimensional model
of sediment transport over the marsh to simulate numerically the deposition of

sediment on the marsh by the tide.



Chapter 2

Theory

2.1 The Generalised Mass Balance Equation

for Suspended Sediment

The generalised mass balance equation for suspended sediment is

Xy Loy =y (g@) + L0 21)

i=1 Ui i=1 Y 0z
where (' is the fractional volume of sediment in the fluid, although any other
method of expressing concentration could be used, t is the time, u; are the com-
ponents of the fluid velocities in the coordinate directions x;, with x3=z vertically
upwards, v, is the particle settling velocity, defined as positive downwards, and

¢; are the sediment mixing coefficients.



2.1.1 Settling Velocities

The settling velocity of a single smooth spherical particle in a stagnant unbounded
fluid for small particle Reynolds numbers, Re = pDuvg/n, is given by Stokes” Law

1 - D?
oo = 7= plgD” (2.2)
18 n

where vg is the settling velocity of the single particle, o is the particle density, p
is the fluid density, ¢ is the acceleration due to gravity, D is the particle diameter
and n the dynamic viscosity of the fluid.

Richardson and Zaki(1954) find by experiment that the relationship between

settling velocity for an array of particles and a single particle is given by
v, = vo(l = C)" (2.3)

where n is a positive exponent dependent on the particle Reynolds number.
Maude and Whitmore(1958) find theoretically that 2.33 < n < 4.65 and generate
a curve of the relationship between n and the Reynolds number which agrees well
with the experimental results of Richardson and Zaki, as shown by Allen(1985).

Similarly Hallemeier(1981) suggests a scheme, based on experimental results,
for modifying the settling velocity for non-spherical particles. This scheme has

little effect on settling velocities in low Reynolds number cases.

2.1.2 Fluid Velocity Components

To solve equation 2.1 a knowledge of the fluid velocities is required, these can
be obtained from analytical or numerical solutions of the equations of motion of
the fluid or approximations to them. These fluid velocities will be specific to the

problem being considered.



2.1.3 Sediment Diffusivities

The sediment mixing coefficients are related to the diffusivities for the momentum
of the fluid. There are many ways of modelling turbulence and calculating diffu-
sion coefficients, based on results from both theory, eg. Prandtl’s mixing length
theory [Graf 1971] or experiments, eg. Rajaratnam and Ahmadi(1981). Once

again these results will be dependent on the problem being considered.

2.1.4 Boundary Conditions

In order to solve equation 2.1 in a finite region boundary conditions must be
specified. These are based on the physical boundary conditions that no sediment
may be transferred across the water surface. A known concentration profile may
be specified at a boundary of the region. At a solid boundary, eg. the bed of the
region, the rate of transfer is defined by the probabilities of a particle reaching
the boundary being deposited and of a particle on the boundary being eroded.
At a vertical boundary it can usually be assumed that there is no transfer of sed-
iment. At the bed of the region the probabilities can be estimated in many ways
James(1987) ignores the possibility of erosion and defines the probability of de-

position by the complement of the erosion probability defined by Einstein(1950).

2.2 The Model

2.2.1 The Region of Investigation

The saltmarsh is assumed to be horizontal and alongside a body of tidal water, i.e.

the sea or an estuary, straight enough and long enough that only variations in the



transverse direction need to be considered. Figure 2.1 shows the two-dimensional

approximation to the region of investigation.

water surface

‘landward’
H end
saltmarsh
‘seaward’ L .

end

Figure 2.1: The region of investigation

The marsh is bounded at one end, hereafter known as the ‘seaward end’, by
the body of water, which is the source of the sediment and at the ‘landward’ end,
a distance L away, by a vertical barrier. It is assumed that the water surface
remains horizontal across the marsh, this implies that the tide, when it reaches
the level of the marsh, instantaneously covers it. The depth of the water, H, over
the marsh is therefore uniform and a function of time only.

The simplifications made here allow the removal of one of the dimensions
from equation 2.1. The mass balance equation for suspended sediment in two

dimensions is

oc 9 d d oC o [ oC d
T 8_:1;(u0) + @(wc) = 9 (6906_:1;) 5 (QE) + %(vpc) (2.4)

where x is the transverse direction and u and w are the velocities in the x and z

directions, with the origin on the marsh at the seaward end.



2.2.2 Approximations to the Two-Dimensional Mass Bal-
ance Equation

In order to simplify the equations to be solved, further assumptions are made
about the flow over the marsh; Firstly, it is assumed that there is no vertical
motion of the fluid, i.e. w = 0. Secondly, that the flow is non-turbulent and
hence, that the sediment mixing coefficients are zero. Finally, that there is no
variation in the vertical direction of the horizontal velocity, u. These assumptions
result in a one-dimensional nature of the flow over the marsh and the mass balance
equation becomes
oc 0 0
z

S+ 7 (uC) = (v,0) = 0. (2.5)

It is further assumed that the settling velocity of each species of sediment
is constant and that the water entering the region at the seaward end of the
marsh has a uniform, constant in time, concentration of sediment, Cy, distributed
throughout its depth. The boundary condition at the bed of the region is ap-
proximated by assuming that there is no erosion from the bed and that all the

suspended sediment reaching the bed is deposited on it.

2.2.3 Depth Integration of the One-Dimensional Mass
Balance Equation

Equation 2.5 ; the one-dimensional mass balance equation can be integrated over

the depth of the flow, H(t), giving

H(t) 9! Ht) § H(t) §
/0 Edw/o o (uC) dz—/o (0,0 dz = 0. (2.6)

Using Leibniz’s rule for differentiation under an integral sign and omitting



zero terms gives

6t/ Cdz — —C( (1) + ;C/OH“)(U(J) dz — /OH“) ;Z(UPC) d==0. (2.7)

Assuming that at (x,1) the sediment is distributed through a column of height

y with a uniform concentration, i.e.

Co if0<2<
¢ Cotisssy (2.8)
0 ify<z<H
implies
aC
9. —Coé(y) (2.9)

where 6(y) is the Dirac delta distribution. The form of the concentration profile
given by equation 2.8 also implies that at every point except & = 0 the concen-
tration at the water surface is zero, so that for > 0, “LC(H(t)) = 0, which

’dt

means that equation 2.7 becomes

dy 0
o T %(uy) + v, = 0. (2.10)

Equation 2.10 is the continuity equation for the suspended sediment that will
be used in this project to provide a numerical simulation of the deposition of
sediment on a saltmarsh. Only values of ¥ > 0 have any physical significance in

the solution of this problem.

2.2.4 The Velocity Profile over the Saltmarsh

In order to solve equation 2.10 the functional form of the velocity over the salt-
marsh is required. This can be obtained by solving an equation of continuity for

the fluid derived from a consideration of mass balance in the fluid.



Consider a region of the saltmarsh between x and = + Axz. Above this region
there is a column of fluid, V(¢) = H(¢)Axz. The change in volume, AV over the

region in a time At is given by the net flow into the region in the same time,

which is
AV = AHAx = —HAt(u(x + Ax) — u(x)) (2.11)
AH u(x + Ax) — u(x)
—=—-H . 2.12
= At Az (2.12)

Taking the limiting case of this as Az — 0 and At — 0 gives the equation of
continuity
Ju 1 dH
— = 2.13
Ox H dt (2.13)
Applying the relevant boundary condition that the velocity is zero at the

landward end of the saltmarsh, @+ = L, allows this equation to be solved to

determine the velocity profile

L —xdH
H dt’

(2.14)

U =

2.2.5 The Water Height over the Saltmarsh

The depth of the water above the marsh is given by the height of the saltmarsh
above mean sea-level subtracted from the height above mean sea-level of the
water in the main channel, which is governed by the tidal regime. Assuming a

sinusoidal tide the depth of water above the marsh is given by
H(t) = Asin(w(t +t5)) — b (2.15)

where b = Asin(wtly), is the height of the marsh above mean sea-level, A is the

tidal amplitude, half the tidal range, and T = %T is the period of the tide. The

10



time, ¢, is defined such that ¢ = 0 when the water instantaneously covers the

marsh. The marsh will be covered by the tide whilst

T
0<t<——2. (2.16)
w

2.2.6 The Model Equations

In summary, the following equation is used to model the transport of sediment

over the salt marsh,

dy 0
a—l—a—x(uy)—l—vp—() (2.17)

with the boundary condition that

y(0,1) = H(t) Vo<t< 21 1 (2.18)

W

where the velocity and depth of water over the marsh are given by

L—axdH

H(t) = Asin(w(t+ to)) — b. (2.20)

2.3 An Analytic Solution

The model equations given in Section 2.2.6 can be solved analytically for the case
where b = 0, i.e. H = Asin(wt), by the method of characteristics described by
Wood(1993).

From equations 2.19 and 2.20 we have that
u= (L — 2)wcot(wt) (2.21)

and from equation 2.17 we have

oy Iy Ju

11



The characteristics of this equation are given by

d:z:_ _L—:L'dH (223)
a T T d '

= /w Vg [ L an (2.24)
o L—=x = m H '

where Hy = Asina, i.e. at t = 0, o = wt. Hence the equation of the characteristic

lines (see figure 2.2) is

v =1 (1 _ sina ) . (2.25)

0.419
e 0314 —
0.209
0.105
0.000

Figure 2.2: Characteristics of model equations of section 2.2.6 with 6 = 0. Anno-

tation shows values of «

On the characteristic given by equation 2.25 we have that
dy du
— =—|y— 2.26
(150 (2.26)

12



which implies from equation 2.21 that

d
d_?; — (weotwt)y = —v,. (2.27)

Multiplying equation 2.27 by a factor cosec(wt) gives

% (sm?(J—wt)) B _sinlzizt)' (2.28)

Given that, for 0 < ¢ < 7 at @ = 0, @ = wl and y = Asina, integration of

equation 2.28 gives

tan <

y = Asin(wt) [1 - ( 2 )] (2.29)

tan 5

where « is given by equation 2.25.

The rate of deposition, R(x,t), of sediment on the saltmarsh is given by

C ify >0
R:{ o Y (2.30)

0 otherwise
so, in order to be able to determine the depth of sediment deposited on the marsh
the time, tg(x), at which y = 0 is needed. The position, xg(t), at which y =0
can be found from equation 2.29 by substituting in an expression for « from
equation 2.25, giving

A
sin |2 arctan{e_”_: tan (<)

=L<1— 2.31
v5(7) sin(wt) (2:31)
Rearranging and using trigonometric identities gives
2 - z)—1
tgp(x) = —arctan e ( ; )=l (2.32)
E - (-2

Aw
It must be noted that for « > L[l — e *»] the expression does not hold as there

is no time for which y = 0 at these = values.

13



From equation 2.30 the depth of sediment, S, deposited by one tidal sequence

is given by

Sty = [ T R )i (2.33)

which gives

S(x) = Covptp(x). (2.34)

The depth of sediment deposited is shown in figure 2.3 for two different values of

V.
a) b)
5.0 _
] 0.5
£ 25 ] E
) | » 0'25i
00—TT T T T 1 TT 711 0.0 T T T T T
0 25 50 0 25 50
x/metres x/metres

Figure 2.3: The depth of sediment deposited by one tide when A = 5m, L = 50m,

T = 12hrsand Cy = 1 x107% with a) v, = 3x107*ms™ and b) v, = 3x10™°ms~".

14



Chapter 3

The Numerical Model

The tidal period over which equation 2.17 from section 2.2.6 is to be solved can be
split into two distinct parts. The first is whilst the tide is rising and water, full of
sediment from the channel, is coming into the region over the saltmarsh. The sec-
ond part is after the tide has turned and the water, with some sediment remaining,
is flowing out of the region. The equation could be solved approximately by the
numerical method of characteristics which would involve the repeated numerical
solution of the characteristic equation 2.23. This could be done by using either an
explicit method, which would cause problems because of the need to satisfy the
stability condition of the method or by using an unconditionally stable method
which would involve the repeated solution of a non-linear equation which could
be time consuming. For these reasons the numerical method of characteristics
was not used to solve the equations in general. However, the method is helpful
in the solution of the equations during the ebb tide, where it is used once at each
time level to provide one height, y, of the column of sediment at the new time

level. Apart from this the box scheme [Preissmann, 1961] is used to integrate the

15



equations numerically.

3.1 Discretisation of the Problem

The saltmarsh is divided into M equal sections of length Az = L/M with
r; = jAx. The time discretisation is done by using 2N equal time steps,
At = (55 — to)/N, with ¢, = nAt. The solution y(z;,1,) is approximated by

y? and [uy]? = u(x;,t,)y?. The depth of sediment deposited, S(z;,t,), on the

marsh is approximated numerically by S7.

3.2 Properties of the Box Scheme

When the box scheme is applied to equation 2.17 the time derivatives are ap-
proximated by a weighted average of the finite difference form at two spatial

points

ot AL (?J]‘H - ?Jj) + E(?inf - ?J]‘+1)v (3.1)

and the space derivatives are replaced by a weighted average of the finite difference

forms at two time levels

Dy~ D Gl — bl e (il ) (32)

where 6 and ¢ are user defined parameters between zero and one.
By substitution of Taylor series expansions into equations 3.1 and 3.2 it can

be seen that the errors in these approximations are

At 0%y

0%y
Oz Ot

+ O(A?) + O(Az?) (3.3)

16



and

Az 9 (uy)

9*(uy)
2 0z2 + AL Oz Ot

+ O(At?) + O(Az?) (3.4)

respectively.
This gives a finite difference approximation to the continuity equation for the

suspended sediment, equation 2.17 of the form

( At )(?JjH -y ) + E(?Jjj&l - ?Jj+1)‘|’

(1A_x0) (lwylfar = ) + é([uy]?ﬂ —uy]P*) v, =0 (3.5)

with a truncation error, 7, given by

0%y
Oz Ot

012 Jx Ol

e (823’ + 2082(“3’)) Lo (62(%) +2¢

2 2 Ox?

5 )+O(At2)+O(Ax2) (3.6)

Equation 2.17 can be partially differentiated with respect to t giving

oy 9*(uy)
o 0xot (3.7
and with respect to x giving
*(uy) D%
0z Oz ot (3:8)

Substituting these into equation 3.6 gives

1 Py 1

9 (uy)

S +HO(AP) +0(A).  (39)

This equation shows that the box scheme is second-order accurate with ¢ =0 =
0.5 and first order accurate otherwise.

The stability of the box scheme can be examined using the von Neumann
technique described by Wood(1993) on the finite difference scheme for the homo-

geneous, constant coefficient equation obtained by assuming that the velocity, v,

17



is constant and neglecting the settling velocity, v,, in equation 2.17

0 0

%+U£ ~ 0. (3.10)
Substituting the Fourier mode

yi = Epehar, (3.11)

where £ is the mode number and ¢« = y/—1, into the finite difference scheme and

cancelling the term £7e“*2% gives

(E=1D)[1 =&+ ™) 4 A —1](1 =0+ €0) =0 (3.12)

_ ., At
where A = ux—.
For stability of the scheme we require that || < 1, which with manipulation

of equation 3.12 gives a stability condition for the scheme
(1 =207+ (1-2¢)<0 (3.13)

This condition shows that the box scheme is unconditionally stable for ¢, 8 > 0.5.

For # < 0.5 and ¢ > 0.5 we need that

Al _(26-1)

v ie < =29 (3.14)

3.3 The Flood Tide

During the period of time in which the tide is flooding the marsh the height of the
column of sediment at the seaward boundary is known from equation 2.18. This
means that if the box scheme is used, stepping along the region from the seaward

end, then there is only one unknown in each equation. Since the differential

18



equation is linear in y, i.e. the velocity, u, is independent of y, the equation
produced by discretising using the box scheme is linear and can be solved easily.

Equation 2.17 is discretised using the box scheme with the parameters set at
6 = ¢ = 0.5. Rearranging the finite difference form, equation 3.5 to solve for y?_fll

explicitly gives

g = i =y +yialAx + ([uy]? — [uylfy, + [uy]f AL = 20,AtAx
i+l [Az + w41, toyr) AL

(3.15)

This equation is then solved for 0 < j < M — 1 to step along the region from the
seaward end for each time step 0 < n < N — 1, until the turn of the tide.

A numerical approximations @7 to xg(%,) is obtained by using linear interpo-
lation between the two points across which the sign of y7 changes. At each time

level there will be a jg such that y7 >0 and y? ,; <0 and 27, is defined by

TE ::]EZX$-+ n __.n
Yig — Yzt

(3.16)

The approximation to the depth of sediment deposited, S, is updated at each

time level using the following algorithm

ST+ Cv,At if 2; < apt!
St = 8 e g BRTB)OuBl ikl < 0 < a (3.17)
g~ %m
ST otherwise
3.3.1 The Initial Time Step
Initial values of y are given, at t = 0, y = 0. Initial values of uy are not so

obvious; initially, from equation 2.14, u is infinite and the product, uy, is not so
simply evaluated.
Two methods for dealing with the product uy were tried. Firstly [uy]? was set

to zero for all j. The second method was based on the assumption that for very

19



small ¢ the horizontal velocities are large compared to the settling velocities of the
sediment. This means that for very small ¢ the column of sediment in the water
is approximately the same depth, H, as the water. Then, using the expression

for the velocity from equation 2.19 the product uy, for small t, is given by

L—axdH dH

Both these expressions for uy were tried for the initial time step in the numerical
scheme applied to the problem described in section 2.3 and the results compared

with the analytic solution given there.

a) b) [9)
0.5 0.5 0.5
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£ 0.25- £ 025 £ 025
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x/metres x/metres x/metres

Figure 3.1: The position of xg for A = 5m, v, = 3 x 107" and T = 12hrs
obtained from; a) the numerical method with initial conditions uy(x,0) = 0, b)
dH

the numerical method with initial conditions uy(z,0) = (L — x)%F and c) the

analytic solution.

It can be seen by from figure 3.1 that neither of these initial conditions gave
results which agreed well with the analytic solution and so both methods were
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ruled out.

However, the product uy only appears in the space-derivative in equation 2.17
and so if the box scheme is used with § = 1.0 instead of # = 0.5 then an expression
for uy(x,0) is not needed. In order to preserve the second order accuracy of the
method for the other time steps, # = 1.0 is used only for the first time step and
for subsequent time steps the original § = 0.5 is used. This method can be seen
to provide sufficiently accurate results by comparing the solution obtained with
the analytic solution.

Using this method the box scheme for the first time step becomes

v =y T AR 4 2fuy )P AL - 20,At AR

Yj+1 = Az + 2u($j+17 Lo )AL

(3.19)

3.3.2 The Landward Boundary

When the model is run with the smaller particle sizes in the range for which
the scheme is required here, the approximation yj; to the height of the column of
sediment at the landward end of the region is positive. The analytic solution gives
y — —oo as ¢ — L and this implies that at the very end of the region there can
be no sediment suspended above the marsh. For this reason, if the approximation
Yy > 0 then the numerical model sets its value to zero. If the value was set to
a large negative number to match the analytic solution more closely, the linear
interpolation used to find the approximation z% to xp would be biased towards
the point Xp;_1. In the cases where this problem at the landward end occurs,
the solution to the equation has a very steep gradient near the end of the region
and so the linear interpolation between the two points is not a valid method of

obtaining the position of x%. Since the deposition on the marsh is defined by
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the position of x% it is more important to have this value accurately evaluated
than to have the height of the column at the end of the region accurately defined
because only values of y > 0 have any physical significance in this problem and
the value of yj,; affects the solution at subsequent time levels only at xp; and

therefore does not affect the solution in the interior of the region.

3.4 The Ebb Tide

During the ebb tide the box scheme cannot be used quite as simply as during the
flood tide. Since there is no boundary data no values are known at the new time
level and it is therefore necessary to evaluate at least one of the heights, y}“’l, at
the new time level by some other method. If a position towards the landward end
of the region is chosen then this new value can be used like a boundary condition
and the box scheme can be used to step towards the seaward end from this point
in the same way as it is used during the flood tide.

Several things need to be considered when calculating this ‘boundary value’,
the most important of which is that in order to get a complete solution for the
part of the marsh which still has sediment suspended above it, the first value at
the new time level must be in the region where there is no sediment suspended
above the marsh.

One possible method of obtaining the first value at the new time level is by
using the implicit three point scheme obtained from the box scheme by setting

the parameters to § = 0, ¢ = 1, remembering that we are now stepping in the
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negative x direction and that u is negative this gives a scheme,

w1 Yim Ax + ([uy]ioy — [uy]}) AL — v,AzAl
Yi-1 = Az

(3.20)

There are two main problems with this method, firstly the explicit scheme given
in equation 3.20 is only conditionally stable which will mean that Az, At will
have to be varied to provide stability. Secondly, once a value has been obtained
at the new time level a check will have to be made to ensure that the value is
negative and if not a new Az, At chosen to get a negative value.

An alternative method is to trace along the characteristic from a point at the
old time level, n, where the solution is non-positive to the new time level and
evaluate a numerical solution at this new point. This method guarantees that
the value at the new time level will be negative and does not create the same
problems over choice of Az and At. It does however require the characteristic
equation 2.23 to be solved numerically, which may itself create problems with
stability conditions.

The method used in this project is to trace the characteristic from the point
where the numerical solution is zero, 7 to the next time level, n41 by numerically

solving the characteristic equation

dx L —xdH

and to simultaneously update the values of y on this characteristic from the
equation

dy du

by use of a numerical method. To avoid problems with stability the trapezium
rule was chosen because it is unconditionally stable.
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Equations 3.21 and 3.22 are integrated from ¢, to ¢,41 using P time steps
At. = %. The position of the characteristic through x% is given by x.(t) and is

approximated by z? at a time ¢, = ¢, + pAt.. The trapezium rule then gives
gt = 2P 4 ;Atc [u(:z;ﬁ"’l, tpr1) + u(:z;f,tp)] (3.23)
This equation is solved iteratively by making an initial guess
aPLO) = P 4 At u(al,t,) (3.24)
and then using the iteration
gPHLHD) — gp g ;Atc [u(:z;ﬁ""l’(k),tp_l_l) + u(a?, tp)] (3.25)

until two consecutive approximations differ by less than a specified tolerance.
If the value of y on the characteristic is approximated by y? then application

of the trapezium rule to equation 3.22 gives

yf — [Up + %yfux(fl/‘?atp)] Atc
1+ 38t (o, )]

p+l __
yc -

(3.26)

With 2 and y known it is possible to use the box scheme to integrate
along the region towards the seaward end. The first step must be done with a
steplength defined by Az’ = 2’ —z; where j, is such that z;, < af < z; ;. This
means that an approximation to y(z%',¢,) is needed also. The value of y(z",1,) is
approximated by y. using linear interpolation between the two calculated values
either side of it. If j.(n41) = jr(f,) then the interpolation is done between z7
and x}, otherwise 27 and 7 ,, are used.

The box scheme applied to the first horizontal step at each time level becomes

et W5 ye —yl1A 4 ([uylf, — u(@d ta)ye — u(@d tup )yl |AL — 20,AtAS’

v [Az’ —u(z;,, tag1)At]

(3.27)
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For subsequent horizontal time steps the box scheme is given by

wrt _ i w7 =y A+ ([uyli, — [uy)} — [uy]f )AL = 20,AtAa
Yj—1 = (Ax —u(x;_q1,tug1)Al) |

(3.28)
If #(0,%,41) > 0 then the position of 2" and the depth of deposited sediment

are evaluated in the same way as for the flood tide.

3.4.1 The Seaward Boundary

If the characteristic being traced goes out of the region, i.e. . < 0 then the
integration of the characteristic equation stops, the time at which x. = 0 and
the value of y. are approximated using linear interpolation between ¢, and #,4,.
In this case or if yo™' < 0 then the method evaluates the time, t,, at which

y(0,1) = 0 by using linear interpolation along the time axis at # = 0, updates the

deposited sediment for the shortened time step, t; — ¢, and stops.

3.4.2 The Final Time Step

If the numerical solution continues until ¢ = = —2¢, without giving yott < 0 then
the method forces y2¥ = 0 and interpolates between %' ' and zero to evaluate

the deposition for the final time step.
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Chapter 4

Numerical Results and

Discussion

4.1 Testing

The numerical method was tested by using it to solve the problem described in
section 2.3 and comparing the results with the analytic solution given there.
The testing was done with the parameters of the problem set as; A = 5m, L =
50m, T = 12hrs and v, = 3 x 107*ms™" and v, = 3 x 107°ms~!, corresponding
to particle diameters of approximately 20pm and 5um. These two values were
chosen because they give solutions with different forms, (see figure 2.3) both of

which the method must be able to reproduce.

4.1.1 A Visual Comparison

Figure 4.1 shows the numerical solution for the depth of sediment deposited on

the marsh, this compares visually well with the analytic solution, figure 2.3.
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The numerical solution does smooth the corner, at * = L, for the case with
v, = 3% 107%ms~!, which corresponds to the numerical solution underestimating
xg. This is because the linear interpolation used to find xr underestimates the

steepness of the gradient in the solution for y at the very end of the region.

a) b)
5.0 . )
| O'Si
e £ .
£ 25— £ N
) _ 2 0'25i
00T T T T T 1 1T 7711 00T T T 1T T 7 T 1771
0 25 50 0 25 50
x/metres x/metres

Figure 4.1: The depth of sediment deposited by one tide as evaluated by the
numerical model when A = 5m, L = 50m, T = 12hrs and Cy = 1 x 1073 with a)

v, =3 x 107*ms™ and b) v, =3 X 10™°ms~!, for M = N = 400.

Because of the high curvature of y, on the integration for the ebb tide small
oscillations which are not in the analytic solution are generated by the scheme,
see figure 4.2.

This phenomena is not uncommon when second order schemes are used to
solve hyperbolic problems in which there is a steep gradient and since the oscil-
lations remain small and the depth of sediment deposited is dependent on the

position of xg which is not affected by these oscillations no action needs to be
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Figure 4.2: The numerical solution for y at ¢ = 4.5hrs when A = bm, L = 50m,

T =12hrs and v, = 3 X 107 °ms™! with M = N = 400.

taken to counter this.

4.1.2 Error Measurements

Measurements of the error between the numerical solution of the problem and
the analytic solution of the problem were made. An averaged absolute error in

the depth of deposited sediment, F,, is defined by

M
Bo= gy D St (11)
The error in the solution was evaluated for varying time and space discreti-
sations, i.e. M, N, for the parameters given above and the results are shown in
table 4.1.

The results in table 4.1, shown graphically in figure 4.3 | bring out some

important points about the error in the depth of sediment deposited; Firstly, it
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Error,F,/mm
N | M |v,=3x10""ms" |v,=3x 10" ms"
50 | 50 1.9657 x 1073 7.4086 x 1074
50 | 100 1.1740 x 1073 4.6134 x 1071
50 | 200 8.1780 x 10~* 2.9941 x 10~*
50 | 400 5.9296 x 10~* 2.0041 x 10~*
50 | 800 4.4190 x 10~* 1.3744 x 1074
100 | 50 2.0946 x 1072 6.4394 x 10~*
100 | 100 7.2483 x 1074 3.5656 x 10~*
100 | 200 4.4250 x 10~ 2.0693 x 10~*
100 | 400 3.0412 x 1074 1.2698 x 1074
100 | 800 2.1305 x 1074 7.9361 x 107°
200 | 50 2.3575 x 1072 6.4530 x 10~*
200 | 100 7.0094 x 1074 3.4750 x 10~*
200 | 200 2.6464 x 1074 1.8575 x 1074
200 | 400 1.5609 x 1074 1.0268 x 1074
200 | 800 1.0442 x 1074 5.8160 x 10~°
400 | 50 2.3432 x 107° 6.7564 %< 10~
400 | 100 7.2911 x 1074 3.5625 x 10~*
400 | 200 2.6778 x 1074 1.8822 x 1074
400 | 400 9.2843 x 107° 9.9209 x 10~°
400 | 800 5.3609 x 107° 5.2819 x 107°
800 | 50 2.1998 x 1072 6.8404 x 10~*
800 | 100 7.3507 x 1074 3.6360 x 10~*
800 | 200 2.3386 x 1074 1.9122 x 1074
800 | 400 7.6897 x 1075 9.9516 x 10~°
800 | 800 3.0227 x 107° 5.2401 x 107°

Table 4.1: Error in the numerical solution of the deposited sediment with A = bm,

T =12hrs and C = Cy for v, = 3 x 107*ms™! and v, = 3 x 107°ms~* for varying

values of N and M.
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Figure 4.3: The variation of the error, £,, with N for fixed values of M, with a)

v, =3 X 10~*ms~" and b) v, =3 X 10~ °mst.

can be seen that for fixed M the error can not be reduced greatly, if at all, by
increasing the value of N beyond that of M . Secondly, for a fixed value of N
the error improves if M is increased, even beyond the value of N, although this
effect is reduced for M > N. These two properties show that the error can be
improved by reducing the time step only if the space step is already small, but
that the error can be improved by reducing the space step, even for large time
steps. From this it can be concluded that the error in the depth of deposited
sediment is dominated by the error due to the space discretisation.

It is possible to get an estimate for the order of accuracy for the scheme by
calculating the gradient of the graphs of In(F;) against In(N) and In(M). To
estimate the order of accuracy in time the data for M = 800 was used as this will

have the smallest contribution to the total error from the error due to the space
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discretisation. Similarly to estimate the order of accuracy in space the data for
N = 800 was used. The estimate was made by evaluating the gradient of the line
of best fit through the data points using the method of least squares.

For N = 800 the gradient, rys, of the line of best fit for In(F;) against In(M)
is ry = —1.5628 for v, = 3x 107 *ms™! and ry; = —0.9282 for v, = 3x 10" °ms~'.

For M = 800 the gradient, ry, of the line of best fit for In(F;) against In(N)
is v = —0.9730 for v, = 3 x 107*ms™!, the data for v, = 3 x 10™>ms~" is not
suitable for a straight line approximation and so was not used.

These results show that the scheme is at least first order in time and space,

i.e.

B~ 0(1)+0(1) (12)
= O(A) + O(Az) (4.3)

The scheme used is first order because although the second order box scheme
is used to solve for y, linear interpolation which is only first order is used to
calculate the approximations to xp and hence the scheme becomes first order

overall.

4.2 Experiments

The model was used to examine how the depth of sediment deposited on the

marsh varies with the parameters A, b,v,, L for a fixed tidal period T' = 12hrs.
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4.2.1 A Non-dimensional Form

If A, b,v, are held constant and L is varied the solution as a function of the
variable /L remains unchanged. This can be seen in figure 4.4 which shows the

solution for three different values of L. with the other parameters unchanged.

a) b) c)
5.0 5.0 5.0
s E E
Py 2.5i Py 2.5t Py 2.5i
00T T T T 1 T T T71 00T T T T 1 T T T 00T T T 1 T T 711
0 5 10 0 25 50 0 50 100
x/metres x/metres x/metres

Figure 4.4: The depth of sediment deposited for A = 5m, v, = 3 x 10"*ms~! and

T = 12hrs with a) L = 10m, b) L = 50m and ¢) L = 100m.

Similarly, with 6 = 0 if A and v, are varied such that the ratio A/v, remains
constant the solution changes only by the ratio of the two values of A. Figure
4.5 shows the depth of sediment deposited for three different values of A with the
ratio A/v, fixed.

These two results can be predicted from the model equations of section 2.2.6
by non-dimensionalising them by the following making the following changes of

variable.

Qﬁ\
I
RIS
S
=
ot
S—’
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Figure 4.5: The depth of sediment deposited for L = 50m, T" = 12hrs with a)
A =4m and v, = 4 x 107*ms™", b) A = 2m and v, = 2 x 107*ms™! and c¢)

A=1Imand v, =1 x 10~ *mst.

= wit (4.6)
H

H = = 4.
b (4.7)
b

Vo= — 4.
1 (48)

t/ = wto (49)
S

= = 4.1

s = (4.10)

’ v

vl = —AZ; (4.11)
u

= — 4.12

u o (4.12)

Substituting these into the model equations leads to a non-dimensional prob-

lem defined by the equation

" (u'y") + v; =0 (4.13)
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with the boundary condition

y(0,¢) = H'() VO <t < g —t (4.14)
where
1—2'dH’
u/(x/,t/) == T dt/ (415)
H(t) = sin(t'+1t5) =V (4.16)

From this non-dimensional form of the equation it can be seen that the solution

is dependent on two non-dimensional parameters, b/A and v,/Aw.

4.2.2 Distribution of Deposited Sediment

By holding A.b,L and T constant and varying v, shows how the depth of sediment
deposited on the marsh depends on the settling velocity. From figure 4.6 it can be
seen that the sediment with small settling velocities is uniformly distributed over
the saltmarsh and that as the settling velocity increases a gradient in the depth
of sediment deposited develops across the marsh and the deposited sediment does
not extend across the whole width of the marsh.

Figure 4.7 shows that increasing the ratio /A reduces the depth of sediment
deposited on the marsh for a given concentration and also causes sediment of a

given settling velocity to be less evenly distributed over the marsh.

4.2.3 An Array of Particles

Sediment suspended in tidal water is not made up of particles of a unique size
and settling velocity but particles of many different sizes. This model can be
used to investigate this case because it has been assumed that each particle acts
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independently and therefore the solution for each particle size is independent of
the others.

The model can be used to solve the equations for a variety of particle sizes of
varying concentrations which represent the sediment suspended in the water and
the sum of the depth of sediment deposited for each size will give the total depth
of sediment on the marsh. From the solution for each particle size and the total
depth the proportion of each size particle in the deposited sediment at a point on
the marsh can also be evaluated.

From the solutions obtained for individual particles it can be seen that dis-
tribution of sediment for a mixed sediment supply would be characterised by a
greater depth of sediment deposited at the seaward end than the landward end
of the marsh and that at the seaward end the sediment will have a higher pro-
portion of the larger particles than at the landward end. These characteristics
are in agreement with observations from measurements of the deposited sediment
on saltmarshes in the Severn Estuary [Allen 1992] and the North Norfolk Coast

[French and Spencer 1993].
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Figure 4.6: The depth of sediment deposited on the marsh for A = bm, b = 3m,

L = 50m, T = 12hrs and Cy = 1 x 107 with a) v, = 3 x 107°ms™!, b)

v, =T x107%ms™, ¢) v, =2 x 107*ms™ and d) v, =3 x 107 ms™L.
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Figure 4.7: Depth of sediment deposited for A = bm, L
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= 50m, T = 12hrs,

Co=1x10"% and v, =8 x 107 °ms~! with a) b= 2m, b) b = 3m and ¢) b = 4m.
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Chapter 5

Conclusions

A simple one-dimensional mathematical model of sediment transport over a salt-
marsh was developed from a generalised three-dimensional mass balance equation
for suspended sediment by making a series of simplifying approximations regard-
ing the flow of the water over the marsh, the suspension of sediment in the water
and the topography of the marsh. Essentially, the marsh was assumed to be flat
and uniform in the along channel direction, the flow was assumed to be non-
turbulent and hence the diffusion of sediment in the fluid was ignored and the
sediment was assumed to be distributed throughout a column of water with a uni-
form concentration. The height of this column of water was used as the variable
to describe the quantity of sediment suspended above the marsh and an equation
governing its variation in space and time was obtained by depth integration of
the simplified mass balance equation. An analytical solution of this equation was
obtained for a saltmarsh at mean sea-level to compare with the solution obtained
from the numerical model.

The model equation was solved numerically by use of the box scheme [Preiss-
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mann, 1961] during the flood tide and a combination of the box scheme and the
numerical method of characteristics during the ebb tide. From the numerical so-
lution the depth of sediment deposited on the marsh was evaluated using linear
interpolation to approximate the solution between grid points.

The numerical solution for the depth of sediment deposited on the marsh was
compared with the solution obtained from the analytic solution and the scheme
was found to be approximately first order in time and space and the error term
was dominated by the errors due to the space discretisation.

Once the model had been tested it was used to examine how the depth of
sediment deposited on the marsh depends on the characteristics of the marsh and
sediment. With b = 0 it was found that the form of the solution was dependent
only on the non-dimensional parameter v,/Aw and a non-dimensional form of the
model equation was found which verified this.

The solution of this non-dimensional equation is dependent on the two param-
eters b/A and v,/Aw. Increasing b/A was found to reduce the depth of sediment
deposited on the marsh and also to cause the sediment to be less evenly spread
across the marsh. Increasing v,/Aw caused a higher proportion of the sediment
to be deposited on the marsh and also caused the sediment to be less evenly
distributed on the marsh. These characteristics mean that sediment made up of
different sized particles will be deposited on the marsh with a greater depth at the
seaward end and that there will be a higher proportion of the larger particles at
the seaward end than at the landward end. This pattern of sediment deposition

is in agreement with observations on saltmarshes in the Severn estuary [Allen,

1992] and the North Norfolk Coast [French and Spencer, 1993].
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