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Abstract

In this dissertation we evaluate numerically the solution representations obtained from a recently

developed Fokas integral method for solving boundary value problems for linear evolution PDEs.

In particular, we consider the case of the linear KdV equation.The Fokas method is quite general

and it is therefore of wider interest to assess its competitiveness for numerical purposes. Until

now pseudospectral methods have been know to be the most accurate numerical scheme for smooth

functions. In the work following, the linear KdV equation will be computed numerically using both

a pseudospectral method and the dircet evaluation of the integral representation, and comparisons

will be made between these two methods for accuracy and speed of the numerical computation.

The nonlinear KdV equation will be looked at using pseudospectral methods and a motivation for a

possible hybrid method which would use both the Fokas and pseudospectral methods together will

be given.
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Chapter 1

Introduction

In this project we consider the analytical and numerical solutions of initial boundary value problems

for evolution partial differential equations (PDEs) with constant coefficients, posed on a half line.

These equations are of the form

qt(x, t)+T q(x, t) = 0, t > 0, x ∈ [0,∞) (1.1)

where T is an x-differential operator. We prescribe initial data

q(x,0) = q0(x), x ∈ [0,∞),

where q0(x) is a given smooth function, such that q(x, t)→ 0 as x→ ∞ and an appropriate number

of boundary conditions are prescribed.

Equations of type (1.1) describe processes that are evolving in time from a given initial state. The

simplest example is the heat or diffusion equation, qt = qxx, which models how heat diffuses starting

from a given initial temperature.

The classical way of solving this type of problem is using a Fourier type transforms on the real line.

For example, the heat equations on the half line with q(0, t) given is solved by the sine transform,

while the same equation but with qx(0, t) given is solved by the cosine transform. Thus, the type

of transform needed for a given initial boundary value problem is specified by the PDE, by the

domain, and by the given boundary conditions. For simple boundary value problems there exists an

algorithmic procedure for deriving the associated transform [9]. However, for many problems the
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classical transform method fails. For example, as we will see in Chapter 2, there does not exists a

real fourier type transform for solving third order equations on the half line.

A new transform method was introduced by Fokas in 1997 [5], where the solution was found by

rewriting the PDE as a Lax pair and then performing a simultaneous spectral analysis of it. Using

this approach one can express the solution in the form of an integral for all linear and integrable non-

linear PDEs with spatial derivatives of arbitrary order. Moreover, the solution obtained by this new

method is uniformly convergent at the boundaries and spectrally decomposed. The characterization

of the solution relies on the analysis of the global relation (relation between all boundary and initial

data). Later Fokas found an alternative simpler derivation of this result (only for linear PDEs), not

involving spectral analysis. We will be using this simpler approach and leave it to the interested

reader to look up the spectral analysis method.

This new method will be introduced in Chapter 2 and we will illustrate it via Korteweg-de Vries

(KdV) equation. In particular, we aim to solve the following four problems,

1. For the linear KdV,

qt(x, t)+qx(x, t)+qxxx(x, t) = 0. (1.2)

we consider the following combinations of initial and boundary data:

(a) Dirichlet boundary conditions and zero initial conditions, q(x,0) = 0

q(0, t) = sin(wt) w ∈ R
(1.3)

(b) Dirichlet boundary conditions and non-zero initial conditions, q(x,0) = xe−ax a ∈ (0,1]

q(0, t) = sin(wt) w ∈ R.
(1.4)

(c) Neumann boundary conditions and non-zero initial conditions, q(x,0) = x2e−ax a ∈ (0,1]

qx(0, t) = sin(wt) w ∈ R.
(1.5)

2. For the non linear KdV

qt(x, t)+qx(x, t)+q(x, t)qx(x, t)+qxxx(x, t) = 0. (1.6)

2
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we consider the following given data, q(x,0) = xe−ax a ∈ (0,1]

q(0, t) = sin(wt) w ∈ R.
(1.7)

For the three linear cases a solution will be computed numerically both via the new Fokas method

and by spectral methods, which will enable us to compare the two methods. In the case of non-linear

KdV, the solution will be obtained using split step method where one step will compute solution

using Fokas method and other using spectral method. This will be compared to the results obtained

from purely spectral code. In Chapter 3 an overview of the pseudospectral methods will be given.

It will be shown in Chapter 4 that the novel integral representations given by the new Fokas method

are suitable for the numerical evaluation of the solution. This is possible, as using simple contour

deformations in the complex k-plane, to obtain integrals involving integrants with strong decay for

large k. [1] In Chapter 4 we look at the numerical results for the problems (1.3) - (1.5) and compare

the results obtained from both methods for each of the problems. Lastly, in Chapter 5 we solve

the problem (1.7) by pseudospectral methods using the Fourier split-step and give a motivation for

combining the Fokas method for the linear part with pseudospectral method for the nonlinear part.

All of the numerical schemes presented in this work are performed using Matlab. Codes, developed

in this project, for the new Fokas integral method have been adopted from [11] and codes for pseu-

dospectral methods have been adopted from [3]. It is possible that the codes’ performance can be

enhanced but this is not the focus of the present project.

1.1 Korteweg-de Vries (KdV) equation

The KdV equation is defined by,

qt +qx +qqx +qxxx = 0,

and it was derived in 1895 by Korteweg and de Vries to describe long wave propagation on shallow

water. It is an integrable, dispersive nonlinear evolution equation and it relates the amplitude of the

wave and its change in space, with the change of the amplitude in time [3]. The spatial variable x

is usually assumed to be real (so there is some decay at infinity) or on torus (so the data is periodic)

3
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[17].

The intriguing property of the KdV equation is that under certain circumstances the dispersion and

nonlinearity balance each other out, thus allowing the special solutions that travel without changing

there shape. Korteweg and de Vries showed that the equation posed on the real line possesses a

soliton solution, which takes the form

q(x, t) = 3c2sech2
(

cx− c3t
2

)
,

where c is the velocity and can take any positive value. Moreover, the solitons are important because

they characterize the long time behaviour of evolution equations in one space dimensions. The soli-

tons travel with out changing the shape and interact linearly.

Since its discovery the KdV equation has been applied to many problems in different areas of

physics, as in fluid dynamics, aerodynamics, acoustics and others as a model for shock wave forma-

tion, solitons, turbulence, boundary layer behavior, and mass transport [18].

It has been studied for decades and many numerical methods have been developed over the years,

starting with explicit methods in 1960s to pseudospectral methods. Recently some simple linear

problems have been implemented numerically by exploiting the integral representation of the so-

lution obtained from the new Fokas transform method. Here, we use this numerical approach and

extend it for the linear KdV and for the nonlinear problem as well.

1.2 Preliminary results

In this section we state the definitions and the theorems used throughout this work. We have omitted

the proofs as they are easily obtainable in undergraduate textbooks.

Theorem 1.2.1 (Cauchy)

If a function f (k) is analytic and bounded in a simply connected domain D, then along any simple

closed contour C in D I
C

f (k)dk = 0.

4
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Next we present a lemma which is important for evaluating exponential integrals on open unbounded

domains.

Lemma 1.2.1 (Jordan)

Let C be in circular arc , obtained by considering the intersection of the circle of radius R with the

upper half complex plane C+. Suppose that on C we have f (k)→ 0 uniformly as R→ ∞. Then

lim
R→∞

Z
C

eiλk f (k)dk = 0, (λ > 0).

-a
0−R R

C



Q

Figure 1.1: The contour C corresponding to Jordan’s Lemma.

Definition 1.2.1 (The Fourier transform pair)

For a given function f (x) which is continuous and infinitely differentiable, i.e. f ∈ S[0,∞) 1, defined

on the half line, x ∈ [0,∞), the Fourier transform pair is defined as follows

f̂ (k) =
Z

∞

0
e−ikx f (x)dk

f (x) =
1

2π

Z
∞

−∞

eikx f̂ (k)dx

1Where S is a Schwarz space

5



Chapter 2

The Fokas Spectral Transform

Method for Linear Evolution PDEs

on Half Line

In this chapter we will introduce a transform method for solving initial boundary value problems

for linear PDEs and integrable nonlinear PDEs with constant coefficients in one space dimension.

This new method has been introduced by Fokas [5], and further developed by Fokas and Sung [2].

Although this method can only be applied in general to PDEs with constant coefficients, many phys-

ically relevant problems fall into this category. Among the equations considered we list Schrödinger

equation with zero potential

iqt +qxx = 0, (2.1)

the heat equation

qt = qxx, (2.2)

first Stokes equation

qt +qxxx = 0, (2.3)

and the linear KdV or Stokes equation

qt +qx +qxxx = 0. (2.4)

6
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In this project we study the linear KdV equation (2.4). Hence, we shall now use this as an example

to describe the general method. The heat equation and Stokes first equations follow similarly and

for Schrödinger equation and/or more detail on these and other problems the reader is referred to [1]

- [3], [5], [6].

2.1 General Solution

Consider the linear KdV equation (2.4) posed on the half line,

qt +qx +qxxx = 0, x ∈ [0,∞).

To model an initial and boundary value problem, we need to supplement the equation with initial

conditions and one boundary condition at x = 0. Hence, we always assume

q(x,0) = q0(x) (2.5)

and we shall specify boundary conditions below.

Using Fourier Transform we have

q̂(k, t) =
Z

∞

0
e−ikxq(x, t)dx,

then by integration by parts we obtain

q̂x(k, t) =−q(0, t)+ ikq̂(k, t) (2.6)

and

q̂xxx(k, t) =−qxx(0, t)− ikqx(0, t)+ k2q(0, t)− ik3q̂(k, t) (2.7)

Now substituting (2.7) and (2.6) into (2.4) gives

q̂t(k, t)+(ik− ik3)q̂(k, t) = qxx(0, t)+ ikqx(0, t)+(1− k2)q(0, t). (2.8)

Multiplying through by e(ik−ik3)t and integrating with respect to t, we obtain

e(ik−ik3)t q̂(k, t) =
Z t

0
e(ik−ik3)s [qxx(0,s)+ ikqx(0,s)+(1− k2)q(0,s)

]
ds+ q̂0(k). (2.9)

7
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We can define t transforms on the left boundary by

g̃ j(k, t) =
Z t

0
e(ik−ik3)s

∂
j
xq(0,s)ds, t > 0 for j = 0,1,2 (2.10)

and

g̃(k, t) = g̃2(k, t)+ ikg̃1(k, t)+(1− k2)g̃0(k, t), k ∈ R. (2.11)

Thus, rearranging (2.8) we get expression for x transform of q(x, t),

q̂(k, t) = e−(ik−ik3)t g̃(k, t)+ e−(ik−ik3)t q̂0(k). (2.12)

Inverse Fourier Transform

q(x, t) =
1

2π

Z
∞

−∞

eikxq̂(k, t)dk

gives a formal integral representation of the solution of (2.4) with some initial data (2.5) on real line

(k ∈ R) given by

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t q̂0(k)dk +
1

2π

Z
∞

−∞

eikx−(ik−ik3)t g̃(k, t)dk. (2.13)

Recall that one of the three boundary functions can be prescribed as a boundary condition. Hence,

this expression involves two unknown functions and thus it is not a representation of the solution of

practical significance.

This problem arises already for second order problems such as the heat equation (2.2), if one uses

the Fourier transform. However, for second order problems one could instead use sine or cosine

transforms. For example, for heat equation with prescribed initial condition q(0, t), it is possible to

find a solution representation involving only given functions by using the transform pair

q̂(k, t) =
Z

∞

0
sin(kx)q(x, t)dx, k ∈ R,

q(x, t) =
2
π

Z
∞

0
sin(kx)q̂(k, t)dk

also (2.2) and integration by parts yields

q̂t(k, t)+ k2ĝ(k, t) = kq(0, t).

Hence, the solution is therefore

q(x, t) =
2
π

Z
∞

0
e−k2t

(
q̂(k,0)+

Z t

0
ek2skq(0,s)ds

)
sin(kx)dk (2.14)

8
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where q̂(k,0) =
R

∞

0 sin(kx)q(x,0)dx.

Thus, the integral representation for the solution obtained via the sine transform in this case is fully

defined in terms of the data of the problem. Note however, that (2.14) is not uniformly convergent

as x→ ∞, so we cannot compute q(0, t) by just letting x = 0.

However, for the first Stokes equation (2.3) or the linear KdV this approach fails and it has been

shown that for an odd number of spatial derivatives there are no x-transforms which could give a

solution involving only known functions [7]. This is confirmed by the linear KdV for which the

x-transform has the given solution (2.13) involving unknown functions.

The main difference between the new approach and the Fourier transform approach just obtained

is to integrate along complex contours instead of the real line. i.e. k is no longer real but rather a

complex variable. This allows the use of complex analytic techniques.

Using analyticity considerations, we obtain the integral representation in the form

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t q̂0(k)dk +
1

2π

Z
∂D+

eikx−(ik−ik3)t g̃(k, t)dk, (2.15)

where now k ∈ C and where ∂D+ is the contour in the upper half complex k-plane where the expo-

nential ei(k−k3) is purely oscillatory. The domain D is defined by

D = {k ∈ C : Re(ik− ik3)≤ 0}, D± = D∩C±

and D has boundaries given by ∂D±, where the interior of the domain is always to the left, see Fig.

(2.1).

We now sketch the proof of the identity between (2.13) and the Fourier representation (2.15). We

note that the first term on the right hand side of equation (2.13) is identical to the first term in (2.15).

The equality of the second terms is due to analyticity considerations and Cauchy’s theorem. Indeed

the term

eikx
Z t

0
e−i(k−k3)(t−s) [qxx(0, t)+ ikqx(0, t)+(1− k2)q(0, t)

]
ds (2.16)

is analytic and bounded in the region of complex k-plane, where Im(k) > 0 and Re(ik− ik3) > 0 and

t−s > 0. Hence, the integral of this term along the real axis can be deformed to the integral along the

9
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contour ∂D+, i.e. the integral along the rays (−∞,−1/
√

3]∪ [1/
√

3,∞) can be deformed along the

curves (in blue) shown in Fig.(2.1). These curves are the two branches of the curve Re(ik− ik3) = 0,

Im(k) > 0.

-

6
Im(k)

Re(k)
1√
3

−1√
3

D+

D−1 D−2

∂D+

@
�

Q�� �BB
Re(ik− ik3) > 0

Re(ik− ik3) < 0
Re(ik− ik3) > 0

Re(ik− ik3) < 0
Re(ik− ik3) > 0

Re(ik− ik3) < 0

Figure 2.1: The regions D+, D−1 , D−2 where Re[i(k− k3)] < 0.

However, equation (2.15) still involves the unknown boundary data, but now we are integrating over

the complex plane along the contour of D+, ∂D+, see Fig.(2.1). This gives us much more freedom

and we shall show that in this wider setting it is always possible to express unknown functions in

terms of the known one(s) for all linear and integrable nonlinear PDEs.

The important relation that yields the characterisation of the unknown boundary function is,

e(ik−ik3)t q̂(k, t) = g̃2(k, t)+ ikg̃1(k, t)+(1− k2)g̃0(k, t)+ q̂0(k) Im(k)≤ 0 (2.17)

This is called by Fokas the global relation, and it is a constraint linking all initial and boundary

values. Analyticity considerations show that the contribution of the term involving q̂(k, t) to the final

integral representation of the solution is zero. Hence, we can neglect the contribution of this term

10
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and consider a simplified global relation,

(k2−1)g̃0(k, t) = g̃2(k, t)+ ikg̃1(k, t)+ q̂0(k) Im(k)≤ 0. (2.18)

We consider this relation for k ∈ ∂D+, as this is the contour at which we need to characterise the

unknown functions. Note that this contour is the boundary of the domain D+. Also, that the global

relation is only well defined if Im(k) ≤ 0. This is due to the fact that the term q̂0(k) contains the

exponential e−ikx, x > 0, which is unbounded as x grows if Im(k) > 0. Indeed,

e−ikx = e−i[Re(k)+i Im(k)]x

= e−iRe(k)xeIm(k)x

and since |e−iRe(k)x|= 1, we have that

|e−ikx|= |eIm(k)x|. (2.19)

Thus,

|e−ikx| →

 ∞, Im(k) > 0

0, Im(k) < 0
(2.20)

and is therefore bounded in the lower half of the complex-k plane. Thus, the global relations (2.17)

and (2.18) are also defined for Im(k)≤ 0. This is crucial for what follows.

We still need to show that the representation (2.15) can be expressed only in terms of the known

data of the problem. For this we need to show that it is possible to compute the term g̃(k, t) for k

on the contour ∂D+ in the upper half complex k-plane, in terms of the given initial and boundary

conditions. It would seem then that the global relation is not useful, firstly because it is defined in

the lower half complex k-plane, and secondly as it is one equation involving two unknown function.

However, we can transform (2.18) from lower complex k-plane to the domain D+. This is easily

done by observing that g̃ j(k, t), j = 0,1,2, depend on k only via the w(k) = ik− ik3 expression.

Hence, g̃ j(k, t), j = 0,1,2, are invariant by those transformations k→ ν(k), which preserve w(k).

For the linear KdV equation we have w(k) = ik− ik3 = w(ν(k)), which gives

ν−ν
3 = k− k3.

11
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This has a trivial root ν(k) = k, hence we have

(ν(k)− k)(−ν
2− kν− k2 +1) = 0

and since we don’t want the trivial root, solve (ν2 + kν+ k2−1) = 0, which gives

ν1,2 =
−k±

√
k2−4(k2−1)

2

=
−k±

√
−3k2 +4
2

=
−k± i

√
3k2−4

2
.

If ν1 ∈ D−1 and ν2 ∈ D−2 then k ∈ D+. Thus, replacing k by ν j(k) in equation (2.18) we find two

algebraic equations

(ν2
1−1)g̃0(ν1, t) = g̃2(ν1, t)+ iν1g̃1(ν1, t)+ q̂0(ν1)

(ν2
2−1)g̃0(ν2, t) = g̃2(ν2, t)+ iν2g̃1(ν2, t)+ q̂0(ν2)

and since g̃ j(k, t) are invariant to νi(k) transformation, then we have

(ν2
1−1)g̃0(k, t) = g̃2(k, t)+ iν1g̃1(k, t)+ q̂0(ν1) (2.21)

(ν2
2−1)g̃0(k, t) = g̃2(k, t)+ iν2g̃1(k, t)+ q̂0(ν2) (2.22)

which are valid in D+. Thus, we are left with two equations and two unknowns which are simple to

solve for given boundary data.

2.2 Boundary conditions

Two types of boundary data will be considered here: Dirichlet and Neumann for which general

solutions will be derived.

12
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2.2.1 Dirichlet boundary condition

Let,

q(0, t) = f (t) (2.23)

for which our Fourier Transform is g̃0(k, t) =
R t

0 e(ik−ik3)sq(0,s)ds =
R t

0 e(ik−ik3)s f (s)ds.

Here, we can express terms g̃1(k, t) and g̃2(k, t) in terms of g̃0(k, t) using equations (2.21) and (2.22).

So (2.21) - (2.22) gives

(ν2
1−ν

2
2)g̃0(k, t) = i(ν1−ν2)g̃1(k, t)+ q̂0(ν1)− q̂0(ν2)

and so,

g̃1(k, t) =
ν2

1−ν2
2

i(ν1−ν2)
g̃0(k, t)+

q̂0(ν2)− q̂0(ν1)
i(ν1−ν2)

=
ν1 +ν2

i
g̃0(k, t)+

q̂0(ν2)− q̂0(ν1)
i(ν1−ν2)

=
−k
i

g̃0(k, t)+
q̂0(ν2)− q̂0(ν1)

i(ν1−ν2)
(2.24)

and (2.21) - ν1
ν2

(2.22) gives(
ν

2
1−1−ν1ν2 +

ν1

ν2

)
g̃0(k, t) =

(
1− ν1

ν2

)
g̃2(k, t)+ q̂0(ν1)−

ν1

ν2
q̂0(ν2)

and so,

(
ν

2
1ν2−ν2−ν1ν

2
2 +ν1

)
g̃0(k, t) = (ν2−ν1) g̃2(k, t)+ν2q̂0(ν1)−ν1q̂0(ν2)

(ν1(ν2ν1 +1)−ν2(ν2ν1 +1)) g̃0(k, t) = (ν2−ν1) g̃2(k, t)+ν2q̂0(ν1)−ν1q̂0(ν2)

(ν2ν1 +1)(ν1−ν2)g̃0(k, t) = (ν2−ν1) g̃2(k, t)+ν2q̂0(ν1)−ν1q̂0(ν2)

hence,

g̃2(k, t) = −(ν1ν2 +1)g̃0(k, t)+
ν1q̂0(ν2)−ν2q̂0(ν1)

ν2−ν1

= −
(

1
4
(k2 +3k2−4)+1

)
g̃0(k, t)+

ν1q̂0(ν2)−ν2q̂0(ν1)
ν2−ν1

= −k2g̃0(k, t)+
ν1q̂0(ν2)−ν2q̂0(ν1)

ν2−ν1
(2.25)

13
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Substituting (2.24) and (2.25) into (2.11) we have

g̃(k, t) = −k2g̃0(k, t)+
ν1q̂0(ν2)−ν2q̂0(ν1)

ν2−ν1
+

+ik
(
−k
i

g̃0(k, t)+
q̂0(ν2)− q̂0(ν1)

i(ν1−ν2)

)
+(1− k2)g̃0(k, t)

which simplifies to

g̃(k, t) = (1−3k2)g̃0(k, t)+ q̂0(ν1)
k−ν2

ν2−ν1
+ q̂0(ν2)

ν1− k
ν2−ν1

(2.26)

and substituting (2.26) into (2.15) gives

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t q̂0(k)dk +

+
1

2π

Z
∂D+

eikx−(ik−ik3)t(1−3k2)g̃0(k, t)+ (2.27)

+
1

2π

Z
∂D+

eikx−(ik−ik3)t
(

q̂0(ν1)
k−ν2

ν2−ν1
+ q̂0(ν2)

ν1− k
ν2−ν1

)
dk

which is the solution to the linear KdV (2.4) subject to initial conditions (2.5) and Dirichlet boundary

conditions (2.23).

Example 1: Linear KdV with Dirichlet BC and zero IC

Now we find a solution to the particular linear KdV problem with initial and boundary data defined

as follows,

q(x,0) = 0 (2.28)

q(0, t) = sin(wt). (2.29)

Fourier Transforms of the initial condition is

q̂0(k) =
Z

∞

0
e−ikxq(x,0)dx

= 0 (2.30)

and of boundary condition is,

g̃0(k, t) =
Z t

0
e(ik−ik3)sq(0,s)ds

14
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=
Z t

0
e(ik−ik3)s sin(ws)ds

=
[
− 1

w
cos(ws)e(ik−ik3)s

]t

0
+

ik− ik3

w

Z t

0
e(ik−ik3)s cos(wt)ds

= − 1
w

cos(wt)e(ik−ik3)t +
1
w

+
ik− ik3

w

([
1
w

sin(ws)e(ik−ik3)s
]t

0
− ik− ik3

w
g̃0(k, t)ds

)

so,

g̃0(k, t)
(

w2 +(ik− ik3)2

w2

)
= − 1

w
cos(wt)e(ik−ik3)t +

1
w

+
ik− ik3

w2 sin(wt)e(ik−ik3)t

and

g̃0(k, t) =
(

w2

w2 +(ik− ik3)2

)(
− 1

w
cos(wt)e(ik−ik3)t +

1
w

+
ik− ik3

w2 sin(wt)e(ik−ik3)t
)

= e(ik−ik3)t

(
e−(ik−ik3)tw−wcos(wt)+(ik− ik3)sin(wt)

w2− (k− k3)2

)
.

Using identities sin(wt) = eiwt−e−iwt

2i and cos(wt) = eiwt+e−iwt

2 , adding and subtracting extra term and

rearranging yields

g̃0(k, t) =
e(ik−ik3)t

2

(
2we−(ik−ik3)t −w(eiwt + e−iwt)+(k− k3)(eiwt − e−iwt)

(w− (k− k3))(w+(k− k3))

)
±

±e(ik−ik3)t

2

(
(k− k3)e−(ik−ik3)t

(w− (k− k3))(w+(k− k3))

)

=
e(ik−ik3)t

2

(
e−(ik−ik3)t(w+(k− k3))− e−iwt(w+(k− k3))

(w− (k− k3))(w+(k− k3))

)
+

+

(
e−(ik−ik3)t(w− (k− k3))− eiwt(w− (k− k3))

(w− (k− k3))(w+(k− k3))

)

and so

g̃0(k, t) =
e(ik−ik3)t

2

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
(2.31)

Hence, using general Dirichlet solution (2.27) obtained above and substituting values of initial (2.30)

15
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and boundary (2.31) data we have

q(x, t) =
1

4π

Z
∂D+

eikx(1−3k2)

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
dk (2.32)

which is an integral representation of the solution of (2.4) subject to (2.28) and 2.29).

Example 2: Linear KdV with Dirichlet BC and non-zero IC

Here, consider Dirichlet problem with non-zero initial conditions, defined as follows,

q(x,0) = xe−ax, a ∈ R+ (2.33)

and the same boundary data as for Example 1.

Fourier Transforms of the initial condition is

q̂0(k) =
Z

∞

0
e−ikxq(x,0)dx =

Z
∞

0
xe−(ik+a)x dx

=
�
��

�
��
�[

e−(ik+a)x

−(ik +a)
x

]∞

0

+
1

(ik +a)

Z
∞

0
e−(ik+a)x dx

=
1

(ik +a)

[
e−(ik+a)x

−(ik +a)

]∞

0

=
1

(ik +a)2 (2.34)

and of the boundary condition is the same as for Example 1,

g̃0(k, t) =
e(ik−ik3)t

2

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
.

Hence, using the general Dirichlet solution (2.41) obtained above and substituting values of initial

(2.34) and boundary (2.31) data we have

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t 1
(ik +a)2 dk + (2.35)

+
1

4π

Z
∂D+

eikx(1−3k2)

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
dk +

+
1

2π

Z
∂D+

eikx−(ik−ik3)t
(

k−ν2

(iν1 +a)2(ν2−ν1)
+

ν1− k
(iν2 +a)2(ν2−ν1)

)
dk

16
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Lastly, by expanding and simplifying the algebraic expression in the third part of the (2.35), yields

the integral representation to the linear KdV equation with initial and boundary data given by (2.33)

and (2.29), respectively,

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t 1
(ik +a)2 dk +

+
1

4π

Z
∂D+

eikx(1−3k2)

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
dk +

+
1

2π

Z
∂D+

eikx−(ik−ik3)t k2 +4ika−a2 +1
(−k2− ika+a2 +1)2 dk (2.36)

2.2.2 Neumann boundary condition

Let,

qx(0, t) = h(t) (2.37)

for which our Fourier Transform is

g̃1(k, t) =
Z t

0
e(ik−ik3)sqx(0,s)ds

=
Z t

0
e(ik−ik3)sh(s)ds.

As for Dirichlet case we can express terms g̃0(k, t) and g̃2(k, t) in terms of g̃1(k, t) using equations

(2.21) and (2.22). As before (2.21) - (2.22) gives

(ν2
1−ν

2
2)g̃0(k, t) = i(ν1−ν2)g̃1(k, t)+ q̂0(ν1)− q̂0(ν2)

and this yields,

g̃0(k, t) =
i(ν1−ν2)

ν2
1−ν2

2
g̃1(k, t)+

q̂0(ν1)− q̂0(ν2)
ν2

1−ν2
2

=
i

ν1 +ν2
g̃1(k, t)+

q̂0(ν1)− q̂0(ν2)
ν2

1−ν2
2

=
i
−k

g̃1(k, t)+
q̂0(ν1)− q̂0(ν2)

ν2
1−ν2

2
. (2.38)
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Here, (2.21) - ν2
1−1

ν2
2−1

(2.22) gives

0 =
(

1− ν2
1−1

ν2
2−1

)
g̃2(k, t)+ i

(
ν1−ν2

ν2
1−1

ν2
2−1

)
g̃1(k, t)+ q̂0(ν1)−

ν2
1−1

ν2
2−1

q̂0(ν2)

0 =
(
(ν2

2−1)− (ν2
1−1)

)
g̃2(k, t)+ i

(
ν1(ν2

2−1)−ν2(ν2
1−1)

)
g̃1(k, t)−

+(ν2
2−1)q̂0(ν1)− (ν2

1−1)q̂0(ν2)

from which we obtain,

g̃2(k, t) = ikg̃1(k, t)+
(ν2

2−1)q̂0(ν1)− (ν2
1−1)q̂0(ν2)

(ν2
1−ν2

2)
. (2.39)

Hence, substituting (2.38) and (2.39) into (2.11) we have

g̃(k, t) = ikg̃1(k, t)+
(ν2

2−1)q̂0(ν1)− (ν2
1−1)q̂0(ν2)

(ν2
1−ν2

2)
+ ikg̃1(k, t)+

+(1− k2)
(

i
−k

g̃1(k, t)+
q̂0(ν1)− q̂0(ν2)

ν2
1−ν2

2

)
which simplifies to

g̃(k, t) =
(

3ik− i
k

)
g̃1(k, t)+ q̂0(ν1)

ν2
2− k2

ν2
1−ν2

2
+ q̂0(ν2)

k2−ν2
1

ν2
1−ν2

2
(2.40)

and substituting (2.40) into (2.15) yields

q(x, t) =
1

2π

Z
∞

−∞

eikx−(ik−ik3)t q̂0(k)dk +

+
1

2π

Z
∂D+

eikx−(ik−ik3)t
(

3ik− i
k

)
g̃1(k, t)+ (2.41)

+
1

2π

Z
∂D+

eikx−(ik−ik3)t
(

q̂0(ν1)
ν2

2− k2

ν2
1−ν2

2
+ q̂0(ν2)

k2−ν2
1

ν2
1−ν2

2

)
dk

which is the solution to the linear KdV (2.4) subject to initial conditions (2.5) and Dirichlet boundary

conditions (2.37).

Example 3: Linear KdV with Neumann BC and non-zero IC

Here, we consider a Neumann problem with non-zero initial conditions. The case with zero initial

conditions is obvious as seen from the two Dirichlet problems above. Let,
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q(x,0) = x2e−ax, a ∈ R+ (2.42)

qx(0, t) = sin(wt). (2.43)

Fourier Transforms of the initial condition is

q̂0(k) =
Z

∞

0
e−ikxq(x,0)dx =

Z
∞

0
x2e−(ik+a)x dx

=
��

�
��

��
[

e−(ik+a)x

−(ik +a)
x2

]∞

0

+
2

(ik +a)

Z
∞

0
xe−(ik+a)x dx

=
��

��
�
��

[
e−(ik+a)x

−(ik +a)
x

]∞

0

+
2

(ik +a)2

Z
∞

0
e−(ik+a)x dx

=
2

(ik +a)2

[
e−(ik+a)x

−(ik +a)

]∞

0

=
2

(ik +a)3 (2.44)

and of the boundary condition is the same as for the case 1, but here it is g̃1(k, t) which is provided

by given data,

g̃1(k, t) =
Z t

0
e(ik−ik3)sqx(0,s)ds

= ...

=
e(ik−ik3)t

2

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
. (2.45)

Thus, again substituting the equations for initial and boundary data (2.45) and (2.44) into the general

solution (2.41) yields,

q(x, t) =
1
π

Z
∞

−∞

eikx−(ik−ik3)t 1
(ik +a)3 dk + (2.46)

+
1

4π

Z
∂D+

eikx
(

3ik− i
k

)(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
dk +

+
1

2π

Z
∂D+

eikx−(ik−ik3)t
(

q̂0(ν1)
ν2

2− k2

ν2
1−ν2

2
+ q̂0(ν2)

k2−ν2
1

ν2
1−ν2

2

)
dk

and, by expanding and simplifying the algebraic expression in the third part of the (2.46), gives the
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integral representation to the linear KdV equation with Neumann boundary data,

q(x, t) =
1
π

Z
∞

−∞

eikx−(ik−ik3)t 1
(ik +a)3 dk +

+
1

4π

Z
∂D+

eikx
(

3ik− i
k

)(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
dk +

+
1
π

Z
∂D+

eikx−(ik−ik3)t
(

ik4 +3ia2− ka3−6k3a+6ka−3ik2a2− i
k(−k2− ika+a2 +1)3

)
dk+
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Chapter 3

Pseudospectral Methods

Spectral methods were introduced in the 1970s and they have become widely popular for their accu-

racy and convergence speed when applied to smooth functions in comparison to the finite difference

(FD) and finite element (FE) methods.

In this chapter we give an overview of pseudospectral methods, concentrating on the case of non-

periodic problems, in particular for third order equations.

The essential difference between spectral as opposed to finite difference/finite element approxima-

tions is that the latter approximates functions locally, using only the information available in some

neighborhood of the point at which the approximation is computed. In contrast, spectral methods

use all the information on the domain and thus approximate a solution globally.

For finite differences the most accurate schemes are those where the interpolating polynomial is

centered on the grid point of interest, e.g. three and five point quadratic formulas with errors of

magnitude O(h2) and O(h4), respectively. In contrast pseudospectral methods can be viewed as the

limit of N-point formulas, with error of order O(hN). Thus, as N is increased error in pseudospectral

methods is rapidly decreased as h becomes smaller and unlike FD and FE methods, the order in

pseudospectral methods is not fixed. Now since h is O(1/N), then

Pseudospectral error = O
(

1
NN

)
.

Moreover, not only does the error in pseudospectral methods decreases faster than any finite power

21



Pseudospectral Methods

of N thus making it much more accurate than finite elements or finite difference methods, but also

because of the high accuracy spectral methods are memory minimizing, too. Thus, if high accuracy

is required spectral methods is the ideal tool, however problems arise for spectral methods when

complex geometries are used and finite element methods should be considered instead.

Spectral methods are usually described as expansions based on global functions. The idea is to

approximate a solution u(x) by a finite sum of N +1 basis functions

u(x)≈ uN(x) =
N

∑
k=0

akφk(x),

where ak are weights or expansion coefficients and φk(x) are basis functions such as trigonometric

functions or Chebyshev polynomials, for example. Substituting this series into the equation

Lu = f (x),

where L is a differential operator, we obtain the residual function defined by

R(x;a0,a1, ...,aN) = LuN− f ,

and since the residual function is zero for the exact solution, then the goal is to choose the series co-

efficients {an} so that the residual is minimized. The different spectral methods and pseudospectral

methods differ mainly in their minimization strategies [12].

Pseudospectral methods require that the differential equation is exactly satisfied at interpolation or

collocation points. Thus, as R(x, ;an) is forced to vanish at increasingly more number of points, it

will become smaller and smaller in between the interpolation points. Thus, uN(x) will converge to

u(x) as N increases.

It is important to choose the right set of basis functions which must satisfy three requirements listed

in [14], namely:

1. The approximations ∑
N
k=0 akφk(x) of u(x) must converge rapidly (at least for reasonably smooth

functions);

2. Given coefficients ak, it should be easy to determine bk such that

d
dx

(
N

∑
k=0

akφk(x)

)
=

N

∑
k=0

bkφk(x),
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3. It should be fast to convert between coefficients ak, k = 0, ...,N, and the values for the sum

u(xi) at some set of nodes xi, i = 0, ...,N.It turns out that uN = INu is precisely the interpolant

of u on the given nodes. Thus, spectral methods can also be described in terms of interpolation

properties.

That is basis sets need to be easy to compute, have fast convergence and completeness. The choice of

the basis functions is determined by the type of problem at hand, for periodic functions trigonometric

functions satisfy the above criteria and for non-periodic functions one resorts to using Chebyshev or

Legendre polynomials; we will concentrate on Chebyshev polynomials referring the reader to [12]

or [14] for background on other types of polynomials.

3.1 Non-periodic problems

Consider a non-periodic smooth function defined on [-1,1]. In general, when a smooth function

is extended it becomes non-smooth and if trigonometric interpolation in equispaced points is used,

then the above given criteria for φk(x) will not be satisfied. Thus, spectral accuracy will be lost and

hence, the main reason for using spectral methods.

Instead, we must replace trigonometric polynomials with algebraic polynomials,

p(x) = a0 +a1(x)+ ...+aN(x)

on unevenly spaced points. We will use Chebyshev points, which are defined by

x j = cos
(

jπ
N

)
, j = 0,1, ...,N, (3.1)

and are the projections onto the interval [-1,1], of equispaced points along the unit circle in the

complex plane, see Fig. 3.1. Chebyshev polynomials are defined as

Tn(cosθ)≡ cos(nθ). (3.2)

We can see how the use of these points increases the accuracy of polynomial interpolant. For exam-

ple, if we interpolate u(x) = 4
5+128x2 on a 21 point grid, then the maximum error on an equispaced

grid is 72.4399, but using Chebyshev points the maximum error is only 0.014837. The difference in
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Figure 3.1: Chebyshev points, projections onto x axis of equally spaced points on the unit circle with

N = 27.

easily seen in Fig. (3.2), where the interpolant on the left is oscillating near the ends of the interval

(Gibbs phenomena see [10]). However, Chebyshev points approximate function u(x) very well. By

increasing the number of grid points accuracy for equispaced points decreases exponentially with

oscillations escalating, where as for Chebyshev points accuracy increases exponentially.

Figure 3.2: Interpolation of u(x) = 4
5+128x2 for equispaced and Chebyshev points.

3.1.1 Chebyshev differentiation matrices

Chebyshev points x j = cos( jπ/N) can be used to construct Chebyshev differentiation matrices,

which then can be used to differentiate functions defined on these points. Now given a function u j

defined on Chebyshev points we obtain a discrete derivative w j in two steps:

• Let p(x) be the unique polynomial of degree ≤ N with p(x j) = u j, 0≤ j ≤ N.

• Set w j = p′(x j).
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The differentiation operator is linear so it can be represented by multiplication by an (N +1)× (N +

1) matrix, which is denoted by DN . Hence, we have

w = DNu,

where N is the number of grid points and can be odd or even positive integer.

Theorem 3.1.1 For each N ≥ 1, let the rows and columns of the (N +1)× (N +1) Chebyshev spec-

tral differentiation matrix DN be indexed from 0 to N. The entries of this matrix are

(DN)00 =
2N2 +1

6
, (DN)NN =−2N2 +1

6
(3.3)

(DN) j j =
−x j

2(1− x2
j
, j = 1, ...,N−1 (3.4)

(DN)i j =
ci

c j

(−1)i+ j

xi− x j
, i 6= j, i, j = 0, ...,N (3.5)

where

ci =

 2, i = 0 or N

1, otherwise.

Using explicit formulas in the above theorem, it is simple to compute Chebyshev differentiation

matrix DN , this has been done in [13]. In [13] a program called cheb.m computes DN using eight

line Matlab code. This code is used for all the spectral numerical computations in Chapters 4,5.

The program, given number of grid points N, returns Chebyshev points in vector y and Chebyshev

differentiation matrix DN .

3.1.2 Polynomial trick

So far the main components needed to solve the linear and nonlinear KdV equation have been given.

However, as described above Chebyshev differentiation matrices can be used only on functions

defined on Chebyshev points, that is x ∈ [−1,1], where as problems solved in this project are defined

on the half-line x ∈ [0,∞). This is easily overcome by using a polynomial trick described here for

the linear KdV case.
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We can truncate the spatial, x, domain, say at x = 40 as the solution decays rapidly and will be zero

at this point. Hence, the problem now is defined on a finite, closed domain by,

ut +ux +uxxx = 0 x ∈ [0,40] (3.6)

with boundary conditions

u(0) = sin(t)

u(40) = 0 (3.7)

ux(40) = 0.

Note, that since now we have a bounded domain, we require three boundary conditions for the

problem to be well-defined. That is, we have forced the solution and it’s first derivative to be zero at

the right boundary.

Now to make use of the Chebyshev differentiation matrix we need to transform spatial variable

x ∈ [0,40] to y ∈ [−1,1]. We use simple map for this

y =
1

20
x−1.

With the change in variable our problem ( 3.6) has changed too,

0 = ut + yxuy + y3
xuyyy

= ut +
1

20
uy +

1
8000

uyyy.

So we now solve the transformed problem

ut +
1

20
uy +

1
8000

uyyy = 0 y ∈ [−1,1]

with boundary conditions

u(−1) = sin(t) (= a)

u(1) = 0 (= b)

uy(1) = 0 (= c).

To impose the boundary conditions we use the polynomial trick, that is rewrite u(y, t) in terms of

some function q(y), which satisfy Dirichlet boundary conditions and ’something else’. We chose

26



Pseudospectral Methods

this ’something else’ to be polynomials as they are the easiest to compute.

So let

u(y, t) = g(y)q(y)+h(y), (3.8)

where q(y) is a polynomial such that q(±1) = 0 and g(y) and h(y) are smooth functions and h(y)

satisfies the same boundary conditions as u.

Now at y =±1 we have that u(±1) = h(±1), but

uy(1) = g(1)qy(1)+hy(1)

since u(y, t) and h(y) satisfy the same boundary conditions, then we require that g(1) = 0. The

simplest function giving this is g(y) = y−1. Lastly we need to find h(y) such that h(1) = hy(1) = 0

and h(−1) = sin(t),

h(y) =
a+2c−b

4
y2 +

b−a
2

y+
3b+a−2c

4

=
sin(t)

4
y2 +

−sin(t)
2

y+
sin(t)

4

= sin(t)
(

y2

4
− y

2
+

1
4

)
. (3.9)

Hence, substituting above into ( 3.8)

u(y) = (y−1)q(y)+ sin(t)
(

y2

4
− y

2
+

1
4

)
, (3.10)

and so first three derivatives of u(y, t) are

uy = (y−1)qy +q+ sin(t)
(

y
2
− 1

2

)
uyy = (y−1)qyy +2qy + sin(t)

1
2

uyyy = (y−1)qyyy +3qyy.

Now, backward Euler formula is

u(t +∆t)−u(t)
∆t

= −
uy

20
−

uyyy

8000

= −
(y−1)qy +q+ sin(t)

( y
2 −

1
2

)
20

−
(y−1)qyyy +3qyy

8000

so
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u(t +∆t)
∆t

=
u(t)
∆t
−

(y−1)qy +q+ sin(t)
( y

2 −
1
2
)

20
−

(y−1)qyyy +3qyy

8000

(y−1)q+ sin(t +∆t)
(

y2

4 −
y
2 + 1

4

)
∆t

=
u(t)
∆t
−

(y−1)qy +q+ sin(t)
( y

2 −
1
2
)

20
−

(y−1)qyyy +3qyy

8000

Using the Chebyshev differential matrix DN gives,

(y−1)D0
Nq+ sin(t +∆t)

(
y2

4 −
y
2 + 1

4

)
∆t

=
u(t)
∆t
−

(y−1)D1
Nq+D0

Nq+ sin(t)
( y

2 −
1
2
)

20
−

−
(y−1)D3

Nq+3D2
Nq

8000

and we have(
(y−1)

∆t
D0

N +
(y−1)

20
D1

N +
D0

N
20

+
(y−1)
8000

D3
N +

3D2
N

8000

)
q(y) =

u(t)
∆t
− 1

∆t
sin(t +∆t)

(
y2

4
− y

2
+

1
4

)
−

− sin(t)
20

(
y
2
− 1

2

)
,

Thus, if we let

L =
(y−1)

∆t
D0

N +
(y−1)

20
D1

N +
D0

N
20

+
(y−1)
8000

D3
N +

3D2

8000
(3.11)

and

f (y) =
u(t)
∆t
− 1

∆t
sin(t +∆t)

(
y2

4
− y

2
+

1
4

)
− sin(t)

20

(
y
2
− 1

2

)
, (3.12)

then we are left to solve a the following system

Lq(y) = f (y) (3.13)

which gives q(y) at a given time step t∗, then from ( 3.10) we find u(y, t∗) and the process is repeated

until the final time has been reached. Lastly, a simple mapping back into x space via x = 20y + 20

will give the solution u(x,t).
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3.2 Time-dependent problems

In general, the time coordinate is not treated spectrally. Discretising the spatial coordinate by a

pseudospectral algorithm leaves us with a system of ODEs of the form ut = f (u,x, t), with u and

f being vectors which can be marched forwards in time using some time stepping scheme like

Backward Euler or Runge-Kutta. In principle, one sacrifices spectral accuracy in doing so, but

in practice, small time steps with formulas of order two or higher often leave the global accuracy

quite satisfactory. Marching with small time steps is much cheaper than computing the solution

simultaneously over all space-time [12, 13].

We use backward Euler scheme in above polynomial trick method, which is applied to all linear

problems in this project. Backward Euler scheme is of order O(∆t) and thus for it not to undermine

the spectral accuracy we need to use small time steps. The fourth order Runge-Kutta scheme (RK4)

has been used to obtain nonlinear numerical results in Chapter 5. The benefits of using RK4, a

rather expensive explicit method, is that it is stable with a large time step compared to other explicit

methods (i.e. backward Euler), it is self-starting, that is it requires initial data only at one time level

and lastly but importantly it has an error decreasing as O(∆t4) where ∆t is the step size in t.

It is important that an accurate time stepping scheme is used, as otherwise the high spectral accuracy

would be compromised. Backward Euler is much easier (and possibly cheaper) to implement, and

if smaller time steps is not a problem, then this approach is preferred over the RK4 scheme for its

simplicity.
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Chapter 4

Linear Numerical Results

In this chapter we consider the numerical solution of the linear KdV equation. In particular, we com-

pute solutions to the three linear problems defined earlier (1.3) - (1.5). As set out at the beginning

of this project, the aim is to compute the three problems using the Fokas integral representation and

using pseudospectral methods. Hence, this chapter is divided into two parts. In the first part we will

discuss the numerical techniques required for integrating the solution obtained using the new Fokas

transform method and present the obtained results. In the second part, we will look at the results

obtained for each of the three problems by using the pseudospectral method.

4.1 Numerical integration of the Fokas spectral transform method

In Chapter 2 we obtained the general solutions to Dirichlet and Neumann problems for the linear

KdV equation,

qt(x, t)+qx(x, t)+qxxx(x, t) = 0.

These solutions are given by the integral around the contour ∂D+ in the complex k-plane, see Fig.

(4.1).

To integrate the linear KdV equation numerically we need to map contour ∂D+ onto the real line,

which then can be integrated by the simple Trapezoidal rule. For simplicity we will use the solution
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(2.32) to the problem (1.3), given by

q(x, t) =
1

4π

Z
∂D+

eikx(1−3k2)

(
e−(ik−ik3)t − e−iwt

(w− (k− k3))
+

e−(ik−ik3)t − eiwt

(w+(k− k3))

)
︸ ︷︷ ︸

(?)

dk.

Computation of the solution for the other problems will use exactly the same method, but involve

more terms.
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Figure 4.1: Complex k plane, with contour of integration ∂D+ (blue) for the linear KdV equation.

4.1.1 Mapping from complex to real contour

Since ∂D+ is the boundary of the domain of boundedness (at infinity), then appealing to Cauchy’s

theorem we can deduce that q(x, t), under mild assumptions, is independent of ∂D+, even if ∂D+ is

deformed inside the shaded regions to widen out to a shape such as parabola or hyperbola for large

|Re(k)| [4]. The integral of (?) is exactly in the form covered by Trefethen et al. Numerical methods

for the quadrature of integrals of type (?) have recently been derived by Weideman which are based

on applying N point trapezoid or midpoint rule to (?) after transformation of k to a real variable

θ ∈ R. Trefethen et al showed that if the integration contour is a hyperbola in the upper half of the

complex k-plane, then the trapezoidal rule has a convergence rate of order O(3.20−N).

Several analytic functions that map a contour in the complex plane onto the real line are given in [4].
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Here we use the analytic function,

k(θ) = iγsin(α− iθ) (4.1)

to map the points θ onto the real line to a hyperbola type contours in complex k-plane [11]. Thus,

once mapping is applied, the solution becomes

q(x, t)=
1

4π

Z
R

eik(θ)x(1−3k(θ)2)

e−(ik(θ)−ik(θ)3)t − e−iwt

(w− (k(θ)− k(θ)3))
+

e−(ik(θ)−ik(θ)3)t − eiwt

(w+(k(θ)− k(θ)3))︸ ︷︷ ︸
(??)

γcos(α−iθ)dθ

(4.2)

Hence, we want to deform ∂D+ to a contour for which we can expect Trefethen’s results. For this

we need the solution to be bounded and analytic in the shaded regions in the Figures (4.3), (4.6).

Now eikx is analytic and decaying in C+, e−i(k−k3)t is analytic and decaying in the shaded regions in

the Figures (4.3), (4.6) and eiwt does not depend on k and so is analytic and decaying for fixed t but

any k values. Lastly, we need to check if there are any singularities in the denominators of (??). For

simplicity we take w = 1, then roots of k3− k +1 = 0 are

k0 ≈−1.32472, k1 ≈ 0.662+0.562i, k2 ≈ 0.662−0.562i (4.3)

and roots of k3− k−1 = 0 are,

k′0 ≈−k0, k′1 ≈−0.662+0.562i, k′2 ≈−0.662−0.562i. (4.4)

Thus, we can deform ∂D+ to any contour inside the shaded regions, if we avoid zeros of the denom-

inators of (??).

Keeping this in mind we consider the following two possibilities as integration contour:

• Hyperbola along ray π/12

The simplest case is to define ∂D+ on a hyperbola through the origin asymptotic to the rays

π/12 and 11π/12, as using these rays we escape the singularities. We can visualize this as

follows in the complex k plane.
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Figure 4.2: Mapping (red) of real θ line onto k(θ) contour along π/12 ray

We can see from Fig. (4.3) that roots k0 and k1 are close but not in the shaded regions and the

rest of the roots of the two equations k2, k′0, k′1 and k′2 are well away from the shaded regions.

Thus, using this mapping we can expect the convergence results in [4].
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Figure 4.3: Deformation of the integration contour (blue) to red for the first map.
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This mapping gives the following solution to the problem (1.3) on x ∈ [0,200], t ∈ [0,2π],

Figure 4.4: Numerical solution for the linear KdV by simple mapping along π/12 ray

• Shifted hyperbola along the ray π/6

A more involved but equally simple case is to take k(θ) = θ for 0 ≤ Re(k) ≤ 1/
√

3 and for

Re(k) > 1/
√

3 apply mapping k(θ) = iγsin(α− iθ)− iIm(k(1/
√

3)), see Fig. (4.5).

-
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√

3))

�
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�
�
�
�∂D+

Figure 4.5: Mapping (red) of real θ line onto k(θ) contour by shift of the imaginary axis
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Figure 4.6: Deformation of integration contour (blue) to red for the second map.

Using this mapping we obtain the solution to the problem (1.3) in x ∈ [0,200], t ∈ [0,2π],

Figure 4.7: Introduction of spurious periodic solution for large x by using the shift of the imaginary

axis

Both of these methods approximate the solution near the boundary extremely well as neither of them
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have singularities. However, the shift of the imaginary part in the second case introduces numerical

instability in the solution and as a result the solution possesses periodic waves, see Fig. (4.7). This

can be solved by finer discretisation in θ, but that means more computation time. Hence, we give

the upper hand to the first method, and will use it for all of the numerical computations here.

Next is the question: how far along the θ do we need to integrate? This we find simply evaluating the

two exponentials that depend on θ. From Fig. (4.8) we see that both exponentials have reached zero

at θ = 7. Thus, it is enough to integrate over the short interval θ ∈ [0,7] to capture the full solution.

It should be noted that we integrate over the θ∈ [−7,0] interval too, but because of the symmetry we

can just multiply the solution obtained from integrating over θ ∈ [0,7] by two. Note, that solution

obtained from θ = 0 we use only once.

Figure 4.8: Evaluation of the two exponentials: ∑
x=40
x=0 eik(θ)x and ∑

t=2∗pi
t=0 e−i(k(θ)−k3(θ))t against θ.
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4.1.2 Composite Trapezoidal rule

Since the integrand in (4.2) is smooth and continuous we can use a composite trapezium rule to

integrate it. The trapezoidal rule is one of the Newton-Cotes formulas. These formulas are based on

interpolatory polynomials that use equally spaced nodes.

Definition 4.1.1 (Composite trapezoidal rule)

Let f ∈C2[a,b] of the real line and let the interval [a,b] be subdivided into m subintervals [xk,xk+1]

of width h = (b− a)/m by using the equally spaced nodes x = a + kh , for k = 0,1, ...,m. The

composite trapezium rule then is given by

T ( f ,h) = h

[
f (x0)+ f (xm)

2
+

m−1

∑
k=1

f (xk)

]
(4.5)

with error given by

ET ( f ,h) =− (b−a)
12

f ′′(ξ)h2 = O(h2) (4.6)

where ξ ∈ [a,b]. Hence, Z b

a
f (x)dx = T ( f ,h)+ET ( f ,h).

This is a very simple integration method and is preferred because of its simplicity and ease of im-

plementation.

The error introduced by the trapezoidal method, in general, is of order O(h2) as stated above. How-

ever, the trapezoidal rule is exponentially accurate when applied to an analytic integrand on a peri-

odic or unbounded domain [4]. We compute precisely an integral of this kind, thus the approximation

given here of the solution theoretically has an error of order O(3−N), introduced by the trapezoidal

approximation of the integral; there is no error of time stepping and spectral discretisation. In prac-

tice, of course we need to take into account the roundoff errors introduced by machine precision

(here Matlab double precision). If the roundoff is treaded carefully, however, this method can in

principle achieve machine precision.

Hence, to integrate (1.3) using above the mapping and composite trapezoidal rule we have the fol-

lowing code
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f o r kk = 0 :N

t h e t a = kk∗h ;

k = i ∗ga∗ s i n ( a l p h a − i ∗ t h e t a ) ;

q = 1 / ( 4∗ p i ) exp ( i k x )(1−3 k ˆ 2 ) . ∗ . . .

( ( exp(− i ( k−k ˆ 3 ) t ) − exp(− i w t ) ) / ( w−(k−k ˆ 3 ) ) + . . .

( exp(− i ( k−k ˆ 3 ) t ) − exp ( i w t ) ) / ( w+( k−k ˆ 3 ) ) ) ;

t e rm = r e a l ( q∗gamma∗ cos ( a lpha−i ∗ t h e t a ) ) ;

s o l = s o l + te rm ;

i f k == 0 ; s o l = 0 . 5 s o l ; end

end

s o l = (2 h ) s o l ;

Exponentials eikt and e−ikt can be computed once outside the loop as their value does not depend on

k and terms can be grouped for e−i(k−k3)t , for faster computations.

4.1.3 Results for the linear KdV problems for t ∈ [0,2π]

Here we present the numerical results of the three linear KdV problems as set out in Chapter 1 and

for which integral representations were found in Chapter 2.

Numerical solution of Example 1

Figure 4.9: Numerical solution of the linear KdV with q(x,0) = 0 and q(0, t) = sin(wt) for t ∈ [0,2π],

where w = 1 using the new Fokas transform method, with α = π/12, γ = 1
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Numerical solution of Example 2

Figure 4.10: Numerical solution of the linear KdV with q(x,0) = xe−ax and q(0, t) = sin(wt) for

t ∈ [0,2π], where w = 1 using the new Fokas transform method, with α = π/12, γ = 1

Numerical solution of Example 3

Figure 4.11: Numerical solution of the linear KdV with q(x,0) = xe−ax and qx(0, t) = sin(wt) for

t ∈ [0,2π], where w = 1 using the new Fokas transform method, with α = π/12, γ = 1
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4.1.4 Results for the linear KdV problems for t ∈ [0,15π]

To see how the initial wave is dispersing we need to compute the solution for larger t.

Numerical solution of Example 1

Figure 4.12: Numerical solution of the linear KdV with q(x,0) = 0 and q(0, t) = sin(wt) for t ∈

[0,10π], where w = 1 using the new Fokas transform method, with α = π/12, γ = 0.53

Numerical solution of Example 2

Figure 4.13: Numerical solution of the linear KdV with q(x,0) = xe−ax and q(0, t) = sin(wt) for

t ∈ [0,10π], where w = 1 using the new Fokas transform method, with α = π/12, γ = 0.53
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Numerical solution of Example 3

Figure 4.14: Numerical solution of the linear KdV with q(x,0) = xe−ax and qx(0, t) = sin(wt) for

t ∈ [0,10π], where w = 1 using the new Fokas transform method, with α = π/12, γ = 0.53

4.2 Numerical solution using pseudospectral method

Numerical results for the linear KdV are computed using the polynomial trick described in Chapter

3. Here we truncated the spatial domain far enough so that the solution and its derivative there

naturally would be zero (not forced to be). Thus now we are solving the linear KdV on the finite

domain with three boundary conditions (for the problem to be well posed). Next we transformed the

problem from x∈ [0,40] to y∈ [−1,1] so that Chebyshev points and the corresponding differentiation

matrix can be used. Then we impose that the solution consists of two parts. The first part is a

solution to (y−1)q(y), which satisfies only the Dirichlet boundary conditions. The second part is a

polynomial, h(y), which satisfies the same three boundary conditions as the original problem and can

easily be found. The only unknown function now is q(y). Using backward Euler for time stepping

and Chebyshev differential matrices for spatial differentials we arrive at an expression where all the
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terms involving the unknown function q(y) can be grouped together (all matrices) as in (3.11),

L =
(y−1)

∆t
D0

N +
(y−1)

20
D1

N +
D0

N
20

+
(y−1)D3

N +3D2
N

8000

and all the left over terms are known (all vectors), as in (3.12)

f (y) =
u(t)
∆t
− 1

∆t
sin(t +∆t)

(
y2

4
− y

2
+

1
4

)
− sin(t)

20

(
y
2
− 1

2

)
.

Hence, we have a simple matrix problem to solve (3.13), given by

Lq(y) = f (y).

To do this, we exploit the simple Matlab matrix solver q(y) = L\ f (y).

The error for spectral methods is exponentially decreasing, i.e. it is of order O(hN) or O(1/NN), as

we use N = 128 in all the computations, then for all of the spectral methods the error introduced by

spectral discretisation is

pseudospectral error ≈ 1.89288 ·10−270.

However, the backward Euler method is of order O(∆t) and hence we need ∆t to be very small for

good approximations to the solution. As backward Euler is implicit scheme, then it does not pose

a stability issue and code is stable for all values of ∆t even if it is not very accurate. We also need

to take into account roundoff errors introduced by numerical arithmetics. Hence, spectral methods

is much more accurate than finite difference or finite element methods for smooth functions. How-

ever, time discretisation introduces new errors in the solution and even though this still would give

a method that is more accurate than FD or FE, the numerical integration of Fokas integrals is much

more accurate than pseudospectral methods with time stepping.
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4.2.1 Results for the linear KdV problems for t ∈ [0,2π]

Here we present the numerical results of the three linear KdV problems as set out in Chapter 1 and

for which integral representations were found in Chapter 2.

Numerical solution of Example 1

Figure 4.15: Numerical solution of the linear KdV with q(x,0) = 0 and q(0, t) = sin(wt) for t ∈

[0,2π], with w = 1.

Numerical solution of Example 2

Figure 4.16: Numerical solution of the linear KdV with q(x,0) = xe−ax and q(0, t) = sin(wt) for

t ∈ [0,2π], with w = 1
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4.2.2 Results for the linear KdV problems for t ∈ [0,24π]

To see how the initial wave is dispersing we need to compute the solution for larger t.

Numerical solution of Example 1

Figure 4.17: Numerical solution of the linear KdV with q(x,0) = 0 and q(0, t) = sin(wt) for t ∈

[0,24π], with w = 1

Numerical solution of Example 2

Figure 4.18: Numerical solution of the linear KdV with q(x,0) = xe−ax and q(0, t) = sin(wt) for

t ∈ [0,24π], with w = 1
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4.3 Comparison between the methods

To compare the two methods, since the pseudospectral method can only be used in conjunction with

Chebyshev points, then we can either run the code for the Fokas method on Chebyshev points, which

are mapped into x space, i.e. y ∈ [−1,1]→ x ∈ [0,40], or on an equally spaced x grid and with small

∆x which then leaves us to match the nearest points. We measure the absolute difference between

the two solution matrices to gain the error estimate. The two methods at most differed by 0.04,

and that could be lowered provided the Fokas integral is evaluated on much finer grid. Hence, the

two methods are approaching the same solution. Even though this does not provided an estimate of

the error in either of the methods or codes, it still gives a verification that methods are computing

correctly the solution.

We have not computed the Example 3, defined in (1.5), using pseudospectral methods as it is requires

a method other than the polynomial trick for us to apply the Chebyshev differentiation matrix and it

is out of the scope of this project. However, this illustrates the benefits of using the Fokas integral

solutions as not only the method is general to all linear PDEs of type (1.1), but also the numerical

method is exactly the same for all of these problems, one only needs to change the integral obtained

(as in Chapter 2) and put it in the code. When using other methods we are forced to use different

methods depending on the problem for computing the solution.

Max t value 200×127 200×200 400×400 ∆θ

2π 1.23s 1.27s 2.48s 0.2

6π 1.57s 1.7s 3.46s 0.1

10π 8.28s 9.32s 20.76s 0.01

15π 1m 18s 1m 35s 3m 17s 0.001

Table 4.1: CPU time taken computing the solution to (1.3) using the Fokas integral. 200× 127

means that the solution is computed for 200 points in x direction and 127 points in t directions and

s-seconds, m-minutes.
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In regards to the speed of the computation, we present the following observations of the two meth-

ods.1 Experiments running each code for a different length of time and from rough to fine discreti-

sation in time and space, suggests the following. The code integrating the new method is much

faster than pseudospectral code for all possible discretisations (up to N = 3333 in space and time,

and where the solution domain is x ∈ [0,40] and max(t) ≤ 6π), see Tables (4.1) and (4.2) . For

example, the new method computed solution on domain x ∈ [0,40], t ∈ [0,2π] for 1000 points in x

and t domains in just 21 seconds, where as pseudospectral methods took too long to complete the

computation.

However, as we increase the time domain, not necessarily increasing the number of points, when

maximum of t = 10π both methods seem to compute at similar speeds. After this point pseudospec-

tral methods become faster. The integration method looses its upper hand because there is a corre-

lation between max(t) and max(x) and the size of ∆θ, i.e. for domain x ∈ [0,40], t ∈ [0,2π] we have

∆θ = 0.2, but for domain x ∈ [0,40], t ∈ [0,15π] we need ∆θ = 0.001 for the solution not to blow up.

Hence, as ∆θ is linked to the number of quadrature points needed (remember we need to compute to

θ = 7) then as ∆θ gets smaller the number of quadrature points increases and the more time it takes.

It is possible that this is just a numerical problem, which once resolved would give the superiority

(in computation time) to the Fokas integral method for all time values.

Max t value 200×127 ∆t 200×200 ∆t 400×400 ∆t

2π 9.01s 0.0314 12.53s 0.0495 2m 34s 0.0157

6π 9.58s 0.094 14.5s 0.1484 2m 30s 0.0471

10π 9s 0.1571 13.5s 0.2474 2. 31s 0.0785

15π 9s 0.2356 13.64s 0.3711 2m 34s 0.1178

Table 4.2: CPU time taken computing solution to (1.3) using pseudospectral methods. 200× 127

means that solution is computed for 200 points in x direction and 127 points in t directions and

s-seconds, m-minutes.
1Note, for both codes all the variables that can have been evaluated outside the loops and advantage where possible have

been taken of Matlab vectorization.
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Solutions from both of methods, as expected show decrease in hight of the main solitary wave. This

process is slow, especially if energy in initial condition is large. We can see this especially well in

Fig. (4.19).

Figure 4.19: Diffusion of the soliton in numerical solution of the linear KdV with q(x,0) = 0 and

q(0, t) = sin(wt) for t ∈ [0,24π], with w = 1

Now, we should note that above computation time comparisons were made on the speed of compu-

tation for the same number of points in x and t directions, not the accuracy. As a matter of fact all

solutions from pseudospectral methods for speed comparisons were less accurate than the numerical

integral method of Fokas solution. Hence, as discussed above, for pseudospectral methods to be as

accurate as the new Fokas integral method we require that ∆t = 10−9 (for second order scheme in

time). Thus, as for pseudospectral methods computation time increases drastically with the increase

of the problem domain (see Tables (4.1),(4.2)), it will not be practical to compute pseudospectral

methods to the same accuracy as numerically integrating the Fokas integral. This is because the

code using Chebyshev differentiation matrices will become very slow. For example, to compute

solution for Example 1 on domain x ∈ [0,40], t ∈ [0,2π] with ∆t = 10−9 took 42 minutes. Hence, the

Fokas integral method wins hands down for all domain sizes and maximum times in the case when

we want the same accuracy from both methods.
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Chapter 5

Nonlinear Numerical Results

As the numerical computation has proved to be so easy to implement and to such high accuracy, it

is just natural to try to compute the nonlinear KdV next. In this chapter we are interested in looking

at the nonlinear KdV equation defined in (1.6),

qt(x, t)+qx(x, t)+q(x, t)qx(x, t)+qxxx(x, t) = 0 x ∈ [0,∞), t > 0.

In particular we consider (1.6) with the following initial and boundary data, q(x,0) = xe−ax a ∈ (0,1]

q(0, t) = sin(wt) w ∈ R,

as defined in (1.7). First we will apply the split step Fourier method using the Chebyshev grid to find

the pseudospectral solution. Next we aim to adapt the split step method to solve this non-periodic,

nonlinear problem, by taking advantage of the exact formula for solving the linearised problem. We

start by solving the problem by a classical split step spectral method, see Chilton. We then indicate

what modifications are necessary in order to incorporate the Fokas integral formula.

5.1 Pseudospectral method using the split-step method

In this section, a split-step Fourier method is presented using the nonlinear KdV problem subject to

(1.7). The idea of this method is to split the problem into a nonlinear part

ut(x, t)+u(x, t)ux(x, t) = 0
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and a linear part

ut(x, t)+ux(x, t)+uxxx(x, t) = 0

and alternate between them.

Since we have non-homogeneous time-dependent uncoupled boundary conditions, i.e. the problem

is non-periodic, we solve the problem on the Chebyshev grid and apply the polynomial trick (see

Chapter 3) to impose the boundary conditions. For this we need to truncate the spatial domain to

say x ∈ [0,40] 1, then the nonlinear KdV mapped on the Chebyshev grid is

ut(y, t)+
1

20
uy(y, t)+

1
20

u(y, t)uy(y, t)+
1

8000
uyyy(y, t) = 0 y ∈ [−1,1], t > 0. (5.1)

subject to initial and boundary data



u(y,0) = 20(y+1)e−a20(y+1) a ∈ (0,1],y[−1,1]

u(−1, t) = sin(wt) w ∈ R

u(1, t) = 0

uy(1, t) = 0,

(5.2)

5.1.1 Non-linear step

In this first step we advance the nonlinear part of the solution,

ut(y, t)+
1

20
u(y, t)uy(y, t) = 0 (5.3)

by half a time step, ∆t/2, using RK4 method.

Boundary conditions are imposed using the polynomial trick,

u(y, t) = (1− y)q(y, t) y ∈ [−1,1], t > 0 (5.4)

1This is far enough for the solution and its first derivative to be zero there as in the original problem we have that

u(x, t)→ 0,ux(x, t)→ 0 as x→ ∞. For some of the plots, to illustrate the behaviour for large t, in calculations we have

truncated the domain at x = 100.
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and hence, the boundary data for this part is

q(±1, t) = 0.

Hence, we have

ut(y, t) = (1− y)q(y, t)t

uy(y, t) = −q(y, t)+(1− y)qy(y, t),

and in terms of q(y, t), (5.3) is given by

(1− y)qt(y, t)+
1

20
(1− y)q(y, t) [−q(y, t)+(1− y)qy(y, t)] = 0

Rearranging above we obtain,

qt(y, t) = − 1
20

q2(y, t)+
1

20
q(y, t)qy(y, t)(1− y)

= − 1
20

q2(y, t)+
1

40
(
q2(y, t)

)
y (1− y). (5.5)

Given an initial condition u(y j,0), 0 ≤ j ≤ N, then in terms of q(y, t) from (5.4), initial condition

becomes

q(y j,0) =
u(y j,0)
(1− y j)

. (5.6)

We use the fourth order Runge Kutta scheme, given by,

qn+1 = qn +
1
6

(d1 +2(d2 +d3)+d4) (5.7)

where

d1 =
∆t
2

(
− 1

20
q2

n(y, t)+
1
40

[qn(y, t)]
2
y (1− y)

)
d2 =

∆t
2

(
− 1

20

[
qn(y, t)+

1
2

d1

]2

+
1

40

[
qn(y, t)+

1
2

d1

]2

y
(1− y)

)

d3 =
∆t
2

(
− 1

20

[
qn(y, t)+

1
2

d2

]2

+
1

40

[
qn(y, t)+

1
2

d2

]2

y
(1− y)

)

d4 =
∆t
2

(
− 1

20
[qn(y, t)+d3]

2 +
1

40
[qn(y, t)+d3]

2
y (1− y)

)
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to advance the solution half a time step. Since we are solving the Dirichlet problem, the above is

only applied to interior points of the spatial domain. The Chebyshev differential matrix DN is used

to differentiate with respect to y. Hence, above becomes

d1 =
∆t
2

(
− 1

20
q2

n(y, t)+
1

40
(1− y)q2

n(y, t) ·DN

)
d2 =

∆t
2

(
− 1

20

[
qn(y, t)+

1
2

d1

]2

+
1

40
(1− y)

[
qn(y, t)+

1
2

d1

]2

·DN

)

d3 =
∆t
2

(
− 1

20

[
qn(y, t)+

1
2

d2

]2

+
1

40
(1− y)

[
qn(y, t)+

1
2

d2

]2

·DN

)

d4 =
∆t
2

(
− 1

20
[qn(y, t)+d3]

2 +
1
40

(1− y) [qn(y, t)+d3]
2 ·DN

)
.

The full solution in q(y, t) for half a time step with initial and boundary data is then given by

q
(

y j, t +
∆t
2

)
=
[

sin(wt);q
(

yi, t +
∆t
2

)
;0
]
, i = 1, ...,N−1, j = 0,{i},N (5.8)

and the full solution in u(y, t) for the nonlinear part is,

u
(

y j, t +
∆t
2

)
= (1− y j)q

(
yi, t +

∆t
2

)
, i = 1, ...,N−1, j = 0,{i},N. (5.9)

5.1.2 Linear step

Now the linear part,

ut(y, t)+
1

20
uy(y, t)+

1
8000

uyyy(y, t) = 0 (5.10)

with boundary data

u(−1, t) = sin(wt), u(1, t) = 0, uy(1, t) = 0,

where the initial data is now the solution from the nonlinear step. Now, this is exactly Example 3,

solved in Chapter 4, only now we advance the solution half a time step at a time. Hence, we apply
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the same polynomial method as in Chapter 3 and it is readily seen that we obtain the same linear

system as in (3.13) but with half a time step, i.e. now instead of (3.11) we have

L =
2
∆t

(y−1)D0
N +

(y−1)
20

D1
N +

D0

20
+

(y−1)
8000

D3
N +

3D2
N

8000
(5.11)

and instead of (3.12) we have

f (y) =
2
∆t

u(t)− 2
∆t

sin(t +∆t)
(

y2

4
− y

2
+

1
4

)
− sin(t +∆t/2)

20

(
y
2
− 1

2

)
. (5.12)

Hence, the method can be summarized as follows,

• set initial data u0

set initial time t = 0

set final time tMax

set ∆t

compute number of plots nplots = tMax/dt

• for i = 1 : nplots

1. Advance the nonlinear part ut +uux = 0 by t +∆t/2 from time t to time t +∆t/2.

If i = 1 use given initial data u0, else use data from linear part obtained at i−1.

2. Advance the linear part ut +ux +uxxx = 0 by t +∆t/2 from time t +∆t/2 to time t +∆t .

Initial data is always the solution from the nonlinear part.

end
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5.1.3 Numerical results from pseudospectral method

Using the above description, the nonlinear KdV with data as defined in (1.7) has the following

solution

Figure 5.1: Solution to the nonlinear KdV with u(x,0) = xe−x and u(0, t) = sin(t), for x ∈ [0,40],

t ∈ [0,2π] with ∆t = 0.01.

We can see the difference between the linear and the nonlinear KdV from Figures (5.2) and (5.3)

below.

The figures above verify that the linear solution is dispersive and looses energy where as the nonlin-

ear KdV is indeed not dispersive and the peak of the soliton is kept at the same height. This can be

seen especially well if more energy is put in by initial data as in Fig. (5.4).

5.2 Pseudospectral method and Fokas integral method using the

split-step method

A possible future development would be to use the exact computation for the linear step, achieved

by the Fokas method in Chapter 4, to propose an alternative way to compute numercially the solu-

tion of non-periodic boundary value problem for the nonlinear KdV. Indeed, since it is so easy to

compute the linear KdV the using Fokas integral method and because it can be applied to any linear
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Figure 5.2: Comparison between linear and nonlinear KdV solution with u(x,0) = xe−x and u(0, t) =

sin(t), for x ∈ [0,40], t ∈ [0,8π].

Figure 5.3: Comparison between linear and nonlinear KdV solution with u(x,0) = xe−x and u(0, t) =

sin(t), for x ∈ [0,40], t ∈ [0,8π].

PDE of the form (1.1) with no restriction on boundary conditions, we suggest the combinations of

the pseudospectral method with the Fokas integral method for calculating the nonlinear KdV using
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Figure 5.4: Comparison between linear and nonlinear KdV solution with u(x,0) = x2e−x and

u(0, t) = sin(t), for x ∈ [0,40], t ∈ [0,8π].

the split step method.

This would involve solving the nonlinear part, ut +uux = 0, as above using the Chebyshev differen-

tiation matrix and a time stepping scheme like RK4. Then, the linear part, ut +ux +uxxx = 0, would

use the solution obtained from the Fokas integral method. Since, both linear and nonlinear parts have

to ”communicate” with each other, that is the linear part needs to use the solution from the nonlinear

part and vice versa, we cannot use the code developed for the Fokas method as is. If we would use

the numerical integration on the linear part as we have done in Chapter 4 then the ”communication”

would be only one way and the linear part would never know what the nonlinear part does. What we

require is to take the solution from the nonlinear part as an initial data for the linear part and evaluate

it at k, µ1 and µ2 (e.g. for Dirichlet case q̂0 in (2.27)). Note, that since we cannot solve now for the

initial data analytically we compute it using the FFT (Fast Fourier Transform) and the IFFT(Inverse

Fast Fourier Transform) pair.

The difficulty is in the computation via FFT of the transform of the new initial condition not only for

k real, but also at the other points needed in order to evaluate the integral representation. This work is

in progress, as it presents a more serious challenge than we originally envisaged. This method should

produce more accurate results than the pure pseudospectral method and its computation speed should

also improve, especially for larger domains.
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Chapter 6

Conclusions and Further Work

In this chapter we summarize the work carried out in this dissertation. We will discus the main re-

sults of the work carried out here and refer the reader to the relevant chapters. We will also indicate

the areas for possible further research in the topic.

The aim of this dissertation was to compare the numerical results of the recently developed Fokas

integral method for solving boundary value problems for linear and integrable nonlinear PDEs in

two variables and the well known pseudospectral methods. The Fokas integral method produces the

exact solution in the integral form. This only leaves us to do the numerical integration, which is

much easier to do than use any other methods developed until now for the numerical computation of

linear evolutionary PDEs on the half line. Moreover, it also proves to be much more accurate.

The theory of the Fokas integral method was developed in Chapter 2 and we used the linear KdV

equation to illustrate the method. Even though the method was explained only in terms of the lin-

ear KdV, exactly the same method applies to ALL linear evolutionary PDEs. Because of this, the

method is of great importance as it provides a generalized way of solving such equations, rather than

needing to resort to a specific transform (and in many cases not being able to solve the problem at

all). Moreover, in comparison to solutions obtained using classical Fourier transforms, the integral

representation obtained from the Fokas method is uniformly convergent at the boundaries and it is

spectrally decomposed. In Chapter 2, we found the general solutions for both Dirichlet and Neu-

mann cases, as well as giving integral representation of the solution to the three particular sets of
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initial and boundary data.

To compute these integrals numerically we used the Trapezoidal rule which we introduced in Chap-

ter 4. It is very easy to implement and is cheap to use. Moreover, applying the Trapezoidal method to

integrals on the infinite domain produces error of order O(3−N), where N is the number of quadrature

points used. Thus, the numerical solution obtained by numerically integrating the solution from the

Fokas method, in theory is more accurate than the machine precision. However, of course in practice

we can only achieve the machine precision but with this method it is readily obtained. Hence, this

gives an extremely easy way of solving linear evolution PDEs analytically and numerically.

We also discussed the pseudospectral methods in Chapter 3. These methods have been very popular

since the 1970s as they, until now, have proved to be by far more accurate than any finite differences

or finite element methods when applied to smooth functions. In general, one only approximates spa-

tial variables spectrally, using finite differences for time stepping. This is also what we have done,

using the Backward Euler method for the linear KdV and the fourth order Runge Kutta method

for the nonlinear KdV. Time stepping is computationally much cheaper than discretising the time

domain spectrally. However, even tough pseudospectral methods have errors that decrease expo-

nentially for spectrally discretised domains, the time stepping introduces new errors. For Backward

Euler errors are of order O(∆t), for RK4 of order O(∆t4).

In Chapter 4 we showed numerical results of the linear KdV for both of the methods. We verified

the two solutions for both of the methods approach the same solution and thus concluded that the

methods have been implemented correctly. We also tested out the computation time taken for dif-

ferent grid sizes for the two methods. We concluded that numerical integration of the Fokas method

as implemented here is much faster when it comes to domains where 0 ≤ maxT ≤ 6π. This was

because of some correlation occurring between the size of the domain and θ. This, correlation is

not understood at the moment and most probably is a numerical issue rather than an issue with the

method. In future it would be very useful to understand why this correlation occurs as if it does

prove to be purely numerical, then implementing the method differently would provide us with a

numerical method which is far superior in accuracy and speed for any domain. However, even with

this correlation, which forced us to use more quadrature points for integration, the Fokas method

is still numerically superior when it come to matching the accuracy of the solution. Pseudospectral

methods were much faster for time domains t ∈ [0,15π] for a fixed number of grid points, but also

far less accurate than the numerical code for the Fokas integral method.
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Thus, the conclusion is that the new Fokas integral method is a first general method which can be

applied to all the linear evolutionary PDEs. It produces an analytic integral representation of the

solution around a contour in the complex plane. Using simple numerical integration method, it is

extremely easy to implement the method numerically. It is more accurate than the pseudospectral

methods, and if accuracy is an issue, the Fokas method is also faster too (as currently implemented).

Because of the ease of implementation of the linear method it would be very useful to apply this

approach for the nonlinear case too. Thus, in Chapter 5 we first described the split step method

for solving the nonlinear KdV equation using pseudospectral methods as currently one of the most

accurate schemes for this equation. Then we give an outlay of how the solution from the Fokas

method for the linear KdV could be used in the second step to give us a hybrid method, one which

is half pseudospectral and half numerical integration of the solutions from the Fokas method. We

have not been able to develop or implement this idea in this project because of the time constraints.

However, it would be an interesting path to explore, as if implemented successfully, it would provide

a more accurate solution than the purely pseudospectral method and the speed of computation should

improve too, as the step size in time would not need to be so small.
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