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Abstract

A class of two-dimensional, conservative, shape preserving advection
schemes is developed for use in meteorological models on any grid. The
advection scheme is formulated in finite volume form to ensure conserva-
tion. A local high order polynomial reconstruction of the advected field
is integrated over the region swept across each face to generate the fluxes
across cell edges. A flux limiter is applied to these fluxes to ensure shape
preservation of the advected profile. This procedure is generalised and
automated to enable it to be used on any grid on the plane and on the
sphere. The method is also included in a shallow water model on the
sphere.

The automatic generation of the schemes also enables the order of the
polynomial used to be easily changed to vary both the accuracy and
the computational cost of the scheme. The effect on the accuracy and
computational cost of varying the order of the polynomial and the grid
resolution has been investigated on square and triangular grids on the
plane, and the icosahedral-hexagonal grid on the sphere. It is found that
second to fourth order polynomial are the most efficient when comparing
a schemes accuracy with its computational cost.

The icosahedral-hexagonal grid gives a near uniform coverage of the
sphere and has no singularities, which makes it particularly suitable for
use in meteorological models. The schemes developed in this work have
been incorporated into a global shallow water model on an icosahedral-
hexagonal grid. A standard set of test cases for shallow water models
were used with the model to investigate the effect of using more accurate

advection schemes in the model. The use of higher order polynomials in
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the advection scheme produces significant improvements in the accuracy
of the model without the increase in computational cost associated with

increasing the grid resolution.
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To explain all nature is too difficult a task for any one man or even
for any one age. "Tis much better to do a little with certainty,
and leave the rest for others that come after you, than to explain

all things.
Sir Isaac Newton
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Chapter 1

Introduction

The transport of the properties of an air parcel by the wind is one of
the most fundamental concepts in meteorology. The transport of the
properties of a fluid parcel by a flow is also of great importance in many
other physical situations. The equation that governs this transport is the

advection equation and can be written as

d(po)
ot

+ V- (vpp) =0, (1.1)
for a fluid property with a mass mixing ratio ¢ in a fluid of density p
with velocity v. The fluid property ¢ could be a chemical tracer, such as
ozone, or a physical property of the fluid, such as entropy.

If the velocity v(x,¢) and the initial distribution of ¢(x,0) are known
then the distribution of ¢ at any later time can be calculated. If neither
the field over the whole domain or how the velocity of the flow varies in
time are known, or if suitable boundary conditions are not supplied then
equation (1.1) cannot be solved in isolation. However, when the process
of advection is combined with the other processes, such as heat effects, in
the atmosphere or oceans the system can be closed. Nevertheless, these

systems can rarely be solved without making some approximations, either

by simplifying the equations used or making some numerical approxima-



tions.

These approximations can be made either to the equations themselves
or to the way the fields are represented in a model. Approximations to the
equations may involve linearising and removing ‘small’ terms or assuming
balance conditions that are only approximate in the real problem. There
are also many ways that the problem can be discretised in both space
and time. These approximations can be combined in many different ways
for many different purposes, including studying individual atmospheric
processes, forecast models and climate simulations.

Richardson [36] proposed ‘solving’ the equations describing the atmo-
sphere by discretising them in space and stepping forward in time by using
numerical approximations to the derivatives in the equations. Richard-
son’s first forecast was not a success by todays standards for a number
of reasons. Both the model equations and the methods used to solve
them were rather basic approximations and the initial data was poorly
incorporated, as suggested by Lynch [26]. Despite these initial difficul-
ties, the idea has developed and is now used for forecasting as well as
running idealised models of individual atmospheric processes and climate
simulations.

Since the advent of computers, numerical methods have been refined
as more and more calculations can be performed in shorter and shorter
times (see Wiin-Nielsen [57]). These refinements have covered all aspects
of the numerical approximations of the governing equations, including
advection. The type of schemes that have been used for advection vary
from the simple first order Euler scheme to high order linear and non-
linear schemes. Cullen [5] gives an overview of finite difference methods

in a meteorological context whilst Rood [38] gives a review of many finite
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difference schemes for advection. Many of these schemes are one dimen-
sional, linear schemes which have various different orders of accuracy.
Higher order one dimensional schemes have since been developed, such
as the “Transient Interpolation Modeling’ (TIM) of Leonard [22].

There are several other ways to tackle the problem of numerically solv-
ing the advection equation. Overviews of several classes of method are
contained in the proceedings of an ECMWF seminar series [6]. Machen-
hauer [27] explains the development and application of the now widely
used spectral method. The semi-Lagrangian method is also widely used at
present and is discussed by McDonald [31] and Staniforth and Coté [43].
The finite element method is used in many applications in computational
fluid dynamics but not widely in meteorology, although one notable ex-
ception to this is the Canadian regional finite element forecast model [45].
Strang and Fix [46] give a description of the finite element method and
Temperton [50] puts this in a meteorological context. Finite volume
schemes have also been developed such as the Uniformly Third Order
Polynomial Interpolation Algorithm (UTOPIA) of Leonard et al. [23]
(see also, Rasch [35]) and that used by Thuburn [51].

All these methods are designed to give, amongst other things, a good
numerical accuracy as measured by one or more error definitions. As well
as this simple numerical accuracy it may also be desirable to impose some
of the known features of the advection equation on numerical solutions.
Equation (1.1) ensures that the total amount of whatever is being ad-
vected must be conserved, given suitable boundary conditions. When the

mass of the fluid is conserved, i.e. when

Op _
E‘FV-(pV)—O, (12)



equation (1.1) can also be written in advective form,

D¢ _

=0 1.3
Dt ) ( )
where % is the Lagrangian derivative;
D 0
— = — -V . 1.4
Di-oar vV (14

This shows that the mixing ratio of a fluid parcel does not change as it is
being advected. There can be no increase in the global maximum mixing
ratio, or decrease in the minimum, and there would be no generation of
new local maxima or minima.

Either or both of these properties, known as ‘conservation’ and ‘shape
preservation’ (or monotonicity), can be imposed on numerical solutions by
using suitable numerical schemes. Ensuring conservation means that our
advection scheme will not create or destroy amounts of whatever is being
advected. This is particularly important when the advected fields are
interacting with one another and the balance between them is important
e.g. the transport of reactive chemicals. Ensuring shape preservation
means that oscillations will not be generated near sharp gradients in the
field and that no new unphysical maxima or minima will be introduced.
This ensures that fields of advected quantities remain positive and do not
display unphysical oscillations.

Conservation can be easily ensured by using a finite volume type scheme
(e.g. the UTOPIA scheme [23]) or by a more careful formulation of other
finite difference or finite element schemes. Enforcing the shape preser-
vation property can lead to more complicated numerical schemes. Go-
dunov’s theorem (see LeVeque [25]) showed that any linear, shape preserv-
ing advection scheme cannot have an order of accuracy greater than one.

This means that any high order, shape preserving scheme must be non-

4



linear and there are a number of methods of generating such schemes. Van
Leer incorporated these features into his search for the ultimate conserva-
tive difference scheme [17, 18, 19, 20, 21]. The Universal Limiter [22, 51]
uses local information about the advected field to set bounds on fluxes
that ensure shape preservation. Suresh and Huynh [47] present a fifth
order scheme with a limiter that can be applied with Runge-Kutta time
stepping in one dimension.

Flux Corrected Transport (FCT) schemes [2, 3, 4, 61] take a simi-
lar approach using a first order, shape preserving scheme, and apply-
ing carefully constrained ‘antidiffusive’ fluxes. Total Variation Diminish-
ing (TVD) schemes [48] enforce a property similar to shape preservation
which may allow extrema to grow if a nearby one diminishes. Essentially
Non-Oscillatory (ENO) schemes [8, 40] do not enforce the shape preser-
vation but do ensure that the magnitude of spurious oscillations decays
with increasing resolution.

Making improvements to a numerical solution of the advection equation
can be done in two ways. Increasing the computer power devoted to the
problem will enable more complex and more accurate schemes or higher
resolution to be used. Improving the numerical methods that are used can
also improve the numerical solutions obtained. Improving the efficiency of
a scheme will allow it to be used on a higher resolution grid. There is also
the option to try and improve the accuracy of the schemes themselves,
though these improvements will usually increase the computational cost
of the schemes. A final possibility is to develop a new scheme that is
more accurate than those currently used.

It is important to consider the use of the term ‘accuracy’ in the con-

text of numerical methods. ‘Accuracy’ is often used in reference to some
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measure of the error in a numerical solution, a more accurate scheme is
one that gives a better (usually lower) value of this error. Different error
measures can behave differently for the same numerical schemes, a simple
example of this can be seen in the L-norms of the Laplacian operator in
Majewski et al. [28] (Fig. 8). The L; and Ly errors display a second order
accuracy as the grid is refined but the L. error is only first order. In this
and many other cases, the ’order of accuracy’ is used to describe the rate
at which the accuracy of the scheme improves as the grid is refined.

It is a well known but often overlooked fact that a ‘high order’ scheme
may have a lower accuracy than a ‘low order’ scheme at some resolution.
Accuracy can also be measured in a qualitative sense whereby a particular
property of the solution may be important as well as or instead of an error
measure. For example, it may be important that the numerical solution
of the advection equation does not contain any spurious oscillations, even
if this means that an error measure in increased. In this work there
are occasions when we can relate the order of the polynomial used by a
scheme to the formal order of accuracy of the scheme and times when
this is not possible. For this reason, reference to the ‘order’ of a scheme
refers to the order of the polynomial used, the formal order of accuracy
will be referred to explicitly when required.

The use of high order accurate advection schemes can have a significant
improvement in meteorological models. An example of this is given by
Gregory and West [7] who investigated the use of different schemes to
model the ‘tape-recorder signal’ of water vapour in the stratosphere. This
work showed that the signal propagated vertically much too fast when a
second order scheme was used. When higher order accurate schemes were

used there were strong unphysical oscillations in solutions, limiters were
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required to remove these oscillations.

An important part of many numerical schemes is the grid on which the
problem is discretised. Schemes that have a time step dependent on a
Courant-Freidrichs-Levey (CFL) condition will become inefficient if there
is a wide range in the distance between grid points or the sizes of cells.
The CFL condition constrains the size of the time step, relative to the
grid spacing, that can be used to maintain the stability of the scheme. If
there is a mix of large and small cells then the small cells will restrict the
size of the time step, making it more expensive to use without greatly
increasing the accuracy. For a two-dimensional problem the grid will be
two dimensional which can cause problems if a one dimensional scheme
is used, usually by applying it once in each coordinate direction. This
is usually quicker to compute than using a multidimensional scheme but
often causes anisotropic distortion of the advected profile when the flow
is at an angle to the grid (for example see Thuburn [51]). Many schemes
are designed to be used on rectilinear grids and are not so well suited to
unstructured grids.

Gridding the sphere has long been a problem with a latitude-longitude
approach having singularities at the poles. A number of fixes have been
used to overcome this problem within models but there are spherical grids
that do not have these singularities. The icosahedral-hexagonal grid has
been investigated for use in meteorological problems by Williamson [58],
Sadourny et al. [39], Masuda and Ohnishi [30], Heikes and Randall [10, 11]
and Thuburn [52, 53] and is now being used by Deutscher Wetterdienst in
on operational global forecast model [28, 29]. This grid gives a nearly uni-
form coverage of the sphere and does not suffer from the ‘pole problem’.

The drawback of this grid is that it contains very little regularity so many
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existing numerical schemes cannot be used. The icosahedral-hexagonal
grid is described in detail in chapter 4.

The aim of this work is to develop an accurate, conservative and shape
preserving advection scheme that is both fully multidimensional and can
be used on unstructured grids. The properties of the scheme are desirable
for some of the reasons described above and because we hope to improve
the results of the Shallow Water model on the icosahedral-hexagonal grid
developed by Thuburn [52, 53]. This model used a multidimensional
advection scheme that was conservative and shape preserving but was
based on a method for use on a regular hexagonal grid. This scheme
caused some problems when used with the icosahedral-hexagonal grid
that we might expect a tailor made scheme not to reproduce.

Attempting to develop an advection scheme that produces a numerical
solution with all the desired properties (accuracy, conservation, shape
preservation) will require some sacrifices to be made. The approach taken
here is to try and include these sacrifices within the scheme by developing
a method that will generate a family of schemes. Conservation can be
assured by discretising the problem into finite volumes and approximating
the fluxes between the control volumes (cells). The method is designed
to allow greater accuracy to be gained at the expense of computational
cost. In common with many advection schemes we shall find a scheme
for which the tracer value at the next time step, ¢"*! can be written in
terms of a set of coefficients, ¢, and the tracer values at the current time

step, ¢". This means we can write down an update equation in the form

ortt = "ol (1.5)

J

where the subscripts on ¢ identify a particular cell of the grid. It is the



coefficients, ¢;, that we seek to make up the advection scheme. If the
method is to be applied to unstructured grids then it will be necessary
for the method of finding these ¢’s to be automated. This is because the
different sizes and shapes of the cells prevent us from finding a general
set of ¢’s for all cases. If the schemes are used to find the fluxes of
the advected quantity between the cells then shape preservation can be
guaranteed by use of the Universal Limiter as described in Thuburn [51].

The method for generating these schemes is based on a polynomial in-
terpolation of the advected field which is used to approximate the fluxes.
This is the same idea as used by Leonard in his ULTIMATE scheme [22]
in one dimension and UTOPIA scheme [23] in two dimensions. Chapter 2
begins by showing how automating the basic method used by the ULTI-
MATE schemes enables the same idea to be applied to non-uniform grids.
Extending the ULTIMATE methodology to two dimensions enabled the
development of the UTOPIA scheme. Using the idea of automatic gen-
eration allows this to be extended to use any order polynomial when
generating the advection scheme, not just the second order polynomial®
used in the UTOPIA scheme. The details of this extension on rectangular
grids and the results of idealised test cases are also included in Chapter 2.

The method described in Chapter 2 cannot be applied directly to non-
rectangular grids since it relies on properties of the connectivity of the
grid. This means that the method must be generalised further to enable
its application to other grids. A new way of fitting the polynomial is

needed in order to enable the method to be applied to non-rectangular

IThe UTOPITA scheme was derived using a third order polynomial for interpolation to generate an update equation. Tt
was suggested by Leonard et al. [23] that the scheme could be written in terms of fluxes across cell boundaries that were
analogous to the one dimensional quadratic interpolation schemes with extra two dimensional terms. It will be shown
later in this work that the UTOPTA scheme is very similar to a scheme generated directly using a two dimensional second

order polynomial interpolation



grids. Chapter 3 covers some of the ways this may be done in one dimen-
sion and goes on to apply the most suitable way to triangular grids in
two dimensions. The results from idealised test cases similar to those in
Chapter 2 are also presented.

Chapter 4 applies the method developed in Chapter 3 to a hexagonal-
icosahedral grid on the sphere. This does not require any further changes
to be made to the method itself but some extra approximations are made
because of the spherical geometry. A description of these approximations
and their effects in one dimension are given in Chapter 4 along with
results of test cases from the application of this method to the spherical
icosahedral grid.

In order to test if these schemes have any effect in more complex sys-
tems of equations they are used in a shallow water model. The results of
the test cases proposed by Williamson et. al. are presented in Chapter 5.
Chapter 6 discusses the conclusions that can be drawn from the previous
chapters and discusses some of the points raised. This chapter also con-
tains suggestions for further work to be done with this method in order

to improve it further.
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Chapter 2

Rectangular Grids

2.1 Introduction

In the last chapter several properties that are desirable in a numerical
scheme were described, these included, conservation, shape preservation,
multidimensionality and good accuracy. Advection schemes with these
properties already exist, the ULTIMATE scheme [22] in one dimension
and the UTOPIA scheme and Universal Limiter [23], but we will need
to extend these methods for our purposes. The ULTIMATE family of
schemes uses polynomial interpolation in one dimension, allowing greater
accuracy to be achieved by increasing the order of the polynomial at the
expense of increasing the computational cost. This ability to vary the
accuracy and cost of the scheme is a useful feature that we would like to
retain but the current method can only be applied to regular grids. We
shall begin in Section 2.2 by automating the process of generating the
advection scheme so we can apply the same method of the ULTIMATE
schemes to irregular grids in one dimension.

The UTOPIA scheme uses a second order multidimensional polynomial
in the same way as the ULTIMATE scheme does in one dimension. We

can expand on this idea to use higher order multidimensional polynomials
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to increase the accuracy and the computational cost of the schemes. The
methodology for doing this is covered in Section 2.3.1 and the results of
using the schemes are presented in Section 2.4. Once we have achieved an
automation of the process of generating advection schemes and extended
the schemes to two dimensions we can go on to look at extending the

methods to irregular grids.

2.2 One-Dimensional Advection

The advection equation, in one dimension, of a tracer with mixing ratio,
¢, by a non-uniform velocity u(t,z) can be written,

0 0 (—
0¢ _ 9(-ug) (2.1)
ot Ox
The fluid density, p, is taken to be constant in this case so ¢ can be
thought of as representing the average tracer amount in the cell. By

integrating this equation over a time At and a control volume ¢ in space

we get the exact conservative form

ot =00+ (b~ dw). (2:2)

where ¢ is the average mixing ratio in cell 7 at time nAt and qASE/R is
the flux across the left/right edge of cell i in time A¢. The flux may
be thought of as the average mixing ratio ¢ at the edge over time At,
multiplied by the Courant number “A—A;, the ratio between the mass of
fluid swept across the edge and the total mass in the cell. It can also be
thought of as the amount of the tracer swept across the edge during the
time step, shown by the bold regions in Figure 2.1. It is these fluxes that

we wish to approximate in order to produce an update equation for our

numerical method, based on equation (2.2) .
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Figure 2.1: Diagram showing the regions used to calculate the fluxes, qASZ/R, using the polynomial, p,,.
The polynomial P, is interpolated over N + 1 cells. The integral of this polynomial over the region
swept across an edge in one time step is the approximation to the flux. A different polynomial will be

found for each edge.

In his paper [22] Leonard derives update equations for advection of a
tracer by a variable advecting velocity using polynomial approximations
to the continuous tracer field. An N'™ order polynomial is interpolated
through N + 1 cell centres spaced either side of the edge to approximate
the tracer field. This polynomial can then be used instead of the unknown
¢-distribution to approximate the fluxes in a similar way to that shown in
Figure 2.1. This was done pointwise on a grid with a uniform spacing, Az,
but the method can be extended to a grid with unequal Az’s. For such
a grid we would not wish to write down, and then code up, the update
equation for each cell in turn. Instead we shall develop the method in
such a way that it can easily be coded up to calculate the coefficients in

the update equation automatically. This will give us an update equation
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of the form

oI =o' + (cp - Pt —cr - PR (2.3)

where the ¢} z’s are vectors of the mixing ratio of the tracer in the
cells surrounding the left /right edges and the c’s are the coefficients that
our method will calculate. Equation (2.3) is conservative, given suitable
boundary conditions, due to the fact that the left flux of cell ¢ is the right

flux of cell 7 — 1.

2.2.1 Generating the Advection Scheme

What we seek for our method is an approximation to the amount of tracer
swept across each edge at each time-step. In general we do not know
the exact region swept across each edge, nor do we have a continuous
representation of the tracer field over the domain, both of which would
be required to calculate the flux exactly. We therefore seek to construct
an approximation to the tracer field and the region swept across each edge
in order to approximate the fluxes. In one dimension the region swept
across an edge is simply approximated as the region between edge ¢ and
(1) — uAt. The reconstruction of the tracer field used here, shown as p
in Figure 2.1, follows the method of Leonard [22], using a local polynomial
reconstruction at each edge. In this case the method is applied to finite
volumes.

In order to fit a polynomial over a region we insist that the total amount
of the tracer in a cell is the same amount interpolated over the polynomial

we seek at time level n. Mathematically,

Ax;orf :/ py(z)de, (2.4)
cell i

14



where NNV is the order of the polynomial being used. This polynomial has
N +1 terms and so we insist that the above holds for N +1 distinct cells.
This generates N +1 equations for the N 41 unknowns and thus uniquely
defines a polynomial. The reason why this will not be a singular problem
will be made clear when we investigate the error of the schemes. If N +1

t % cells on each side of the edge are used for a

is even then the neares
centred scheme, otherwise the nearest % cells downwind of the edge and
% + 1 cells upwind of the edge are used for an upwinded scheme.

If we define a local coordinate system with the origin at the edge for

which we wish to approximate the flux, and write p, (z) as Z;VZO a;a’?

then equation (2.4) can be written as

N

Si+Aw; '
Az;p} = Z/S ajr’de (2.5)

j=0 7S
where S; is the distance of the left edge of cell 7 from the local origin.
Integrating this gives

]V
n o__ 1 aj . AVER Jj+1
@__Awi;;j+1 (S + Ay - 8P (2.6)

Using the binomial expansion we can write this as

n zN: a; Sj_|_1 n gi (] + 1>'A‘Lflszj+l_kl B Sj+1
FT L (DA \ T (G+1— k) ' '

k'=1

(2.7)

Substituting ¥’ = k + 1 and simplifying gives

o / ‘AmkSJ K
Z:EZ%EZ T (2.8)

0

By insisting that this holds for each cell in the stencil, we can write
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down the following N + 1 equations for the unknown a;’s,

N J 1 .
or=ag+ Y a; Y. ]{ AzkSiTh 5 £0,  (2.9a)

Lo Y (TR R+
N .
a; A’
o =ag+y Tt ,S;i=0. (2.9b)
=1 J+1

S; = 0 for the cell to the right of the edge for which we are approximating
the flux, i.e. cell 2. The solution of these equations for the unknown a;’s

(in vector a) is a matrix inversion problem of the form

( I Piywp Pyjwp oo oo oo Pyiwn \
I P Py Py i
Azx; Az? . Azl _
1 A - | Al la=g¢.  (210)
I P Py Pr i1
\ 1 P1,z'+¥ P2,z‘+% oo PN,z'+# )

The first or last row, depending on the flow direction, will not be included
if an even order polynomial is used (i.e. N + 1 is odd). P,,, is a two
dimensional polynomial in Az, and S,, consisting of all terms of order

n, taken from equation (2.9a);

n

n!
Py = Agk gk 2.11
’ kz:% CEGICES] (2.11)

This matrix will be ill-conditioned if N is large even if Ax,, is of order
one, since Sy will then be large. Assuming that the order of the polyno-
mial being used is much smaller than the number of cells in the domain
and that cell sizes vary gradually, S,, will be O(Az;). In this case if Az;
is small or large then the matrix will become ill conditioned as the poly-

nomial order increases. This ill-conditioning can be lessened by factoring
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out a diagonal matrix of powers of a general Az. Rewriting (2.10) in this

way gives
B diag[l, Az, Az? ... Az""a=¢ , (2.12)

B being what is left of the matrix in equation (2.10) after the factorisa-

tion. We can now write down the coefficients, a;, of our interpolating

polynomial,
| X
E =10 - _ N
aj —gS.ZL‘j —0 BJZ ¢l J = 07 17 27 T (213)

where Bj_l-1 is the element in the j™ row and i+1"™ column of B='. The flux
across the boundary, ggﬁ, can now be found by integrating this polynomial

over the region swept across the edge in one time step,

o = — /_umza alda (2.14)

Performing this integration and substituting equation (2.13) for the a;’s

gives
N N ;
- 1 1 —(—uAt)i+!
no_ _ B-lon . 2.15
oL ;uAtAﬂ; Jt %} j+1 ( )
Simplification yields
PR TG AR
op=> o 1 > Bl (2.16)
=0 i=0
where o = “A—Axt is the Courant number of the flow for the upwind cell at

this edge. If the general Az is chosen to be Ax; from either the upwind or
downwind cell of the edge then « is the Courant number corresponding
to that cell. If Ax; is uniform then « is the Courant number for that

edge relative to both cells. We can now write down an equation for the
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¢’s from equation (2.3),

a= 2 |- i=0,1,...,N . (2.17)

\ 7 ) \ (=) )

If the flow is constant in time then ¢ can be calculated once for each edge,

otherwise this matrix-vector product will need recomputing each time the
flow changes at that edge.

Using this method, we can calculate the flux at each edge as the dot
product of a vector of coefficients with a vector of tracer values in cells
neighbouring the edge. The vector of coefficients is constant at an edge
in equation (2.3) if the flow across that edge is constant, otherwise it can
be formed from a matrix-vector product. This vector is dependent on
the speed and direction of the flow and the matrix is dependent only on
the direction of the flow and the grid. In order to compute this method
efficiently, we first form the matrix B for each edge and calculate its
inverse. If this is the first time step or if the flow has changed at an edge,
then the product of the corresponding B~! and « is formed. The dot
product of this vector, or one calculated at a previous time step, with the
corresponding ¢ gives the flux.

This enables coefficients of o and the ¢;’s to be calculated for all cells.
The coefficients of o depend on the grid size and so need only be calculated
once for a regular grid. When this is the case the coefficients of ¢ depend
only on a and need only be calculated once for uniform, constant flow.
These coefficients are used to calculate the fluxes for the update equation
which are in turn used to approximate the tracer distribution at the next

time step. This last step is repeated for each time step.
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2.2.2 Error Analysis

We define the error in a cell at time ¢,, to be the difference between the
actual amount of the tracer in that cell and the approximated amount,

thus

1Az
e = gt / bt x)da (2.18)
(¢

i—1) Az
The right hand side can be written in terms of the values at a previous
time and the fluxes across each edge of the cell,
1Az

et = ol + Yo" | - / O(tn 2)de + 3 FLUX(t) |

1) Az

edges edges

(2.19)

or equivalently,

= X ([ star = [ stenar) e

edges

Adopting the same local origin as before gives the areas as

0
/ do = / dx | (2.21a)
area(ty) 0— At (nt1)AL, t,0)d¢

and

0
/ de = / dx | (2.21Db)
area, 0 f (DAL (nA1 ,0)dt

where area(t,) is the true area swept across the edge in time step n, and
area, is the approximation to this area. Then, if u(¢,0) = ug over this

time period,
el = el 4 Z/ — ¢(tn,z)} do . (2.22)

This shows that the error in one cell depends on the accuracy of the

polynomial interpolation in the region swept across the edge at that time
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step. As would be expected, the more accurate the interpolation, the
smaller the error will be.

The polynomial is fitted by insisting that

Siy1
Ax;¢} :/ pN(I>d:B ’ (223>
Si

over N + 1 cells. The right hand side of this equation can be re-written,

using the mean value theorem, as
Az;ol = Awip, (x¢) , (2.24)

where S; < x¢ < S;jy1. Written in this form we can clearly see that the
interpolation of equation (2.10) is N + 1'h order accurate in space and
thus, from equation (2.22), so is the error in each cell. If u(¢,0) # ug then
there will also be a contribution to the error from the approximation of
the area swept across the edge.

Summing over each cell to find a bound on the global error gives,

‘ n+1‘ < Ien|+2Z/ |piy (¥) — &(tn, x)| da | (2.25)

Az —ugAt
where i runs over all edges on the grid and p;, () is the N'*" order poly-
nomial fitted around edge ¢ in the global coordinates. This global error
again depends on the accuracy of the polynomial interpolation and so
will also be of order N 4+ 1 if u = uy.

This argument shows that the order of accuracy of these schemes is
formally related to the order of the polynomial. Fitting polynomials
through data points can generate highly oscillatory polynomials for which
the accuracy can vary widely between two nearby points. This means
that the argument is only valid for showing how this error changes as
the resolution is varied but does not tell us how different order schemes

compare for a particular resolution grid.
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Figure 2.2: Numerical solutions of the advection of a step once around a periodic domain divided into
64 equal cells. The order of the polynomials used in each method is shown in the plots for the even

order (top) and odd order (bottom) cases

For some later versions of these schemes we shall not be able to for-
malise the relationship between polynomial and accuracy orders but we
shall continue to refer to schemes by their ’order’. In this work, the term
order will be used to refer to the order of the polynomial used for the
interpolation and not the order of accuracy of the scheme. In this way
the First Order Upwind scheme will be referred to as the zeroth order

scheme.

2.2.3 Numerical Results

The results of applying these schemes to a step initial profile on a regular

grid are shown in Figure 2.2. A grid of 64 cells was used with a uniform
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flow of 1 unit/second along a periodic domain of length 1. A time step of
1/128 was used to give a Courant number of J5. The top plot of Figure 2.2
shows the results of the schemes using even order polynomials, these all
have the correct phase speed and only produce a few, small oscillations
around the steep gradient. By contrast, the odd order schemes advect
the profile too slowly and produce more oscillations around the sharp
gradient.

Using a higher order polynomial better captures the steep gradient
and phase speed but introduces more oscillations into the solution. The
oscillations increase in frequency as higher order polynomials are used.
For the even order cases the amplitude of these oscillations increases
slightly with increasing order but the reverse is true for the odd order
cases. Unsurprisingly, these results are very similar to those found by
Leonard [22] for the regular grid case. The only difference between the
methods on grid points and over finite volumes is the way the polynomials
have been fitted.

In the finite volume case, irregularly sized grid cells have been allowed
in this computation, due to the process being automated. This means
more thought must be given to the choice of a suitable time step. A
smaller time step will generally improve the accuracy but for this method
will probably have a bigger improvement in the smaller cells than the
larger ones. Figure 2.3 shows the results of the same case but on a grid
with different sized cells. The 16 cells at either end of the periodic domain
have a size Az = 1/96, the middle 32 cells have size Az = 1/48. A time
step of two thirds the previous case was used so that the Courant number
in the smaller cells was J,. The results are very similar to those on the

regular grid. The smaller grid cells can better maintain a sharp gradient
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Figure 2.3: Numerical solutions of the advection of a step once around a periodic domain divided into
64 unequal cells. The order of the polynomials used in each method is shown in the plots for the even

order (top) and odd order (bottom) cases

but the larger cells cannot so the overall solutions are very similar. These
differences in cell sizes do show up in the lower order schemes where the
smoothing of the profile or the oscillations cross the boundary between
the different sized cells. Where this happens there is a marked change in
the gradient of the profile at the boundary.

With these results behaving exactly as we would expect we shall move

on to extend the ideas that generated these schemes into two dimensions.
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2.3 Two-Dimensional Advection

We can attempt to extend the same method into two dimensions on a
rectangular grid simply by using two-dimensional polynomials and in-
tegration. Another way to apply the method in two dimensions would
be to use dimensional splitting. This would involve applying the one-
dimensional method separately in each coordinate direction. This has
been shown by Leonard et al. [23] and Thuburn [51] to cause distortion
of an advected profile when the the flow is not aligned to the grid.

The UTOPIA scheme [23] uses a similar idea to the one-dimensional
schemes but with a two-dimensional polynomial used for the interpola-
tion. This was shown to reduce the anisotropic distortion generated by
using the one-dimensional schemes and dimensional splitting. We can ex-
tend this idea to use higher order polynomials in a fairly straight forward
manner. Leonard et al. [23] suggested extending the UTOPIA scheme by

2

using higher order one dimensional terms (1, =, z°,...) in the coordinate

directions but retaining the lower order cross terms (zy, 2%y xy?).

2.3.1 Generating the Advection Scheme

We again start by insisting that the integral of our polynomial over a cell

is equal to the total tracer amount in that cell. Thus

AmAy—// a,a" "yl dady | (2.26)

”’Jkozo

kH) +l and i, j are relative to an, as yet unspecified,
(N+N

2
need to find the K coefficients, a,. If the origin is at a cell vertex then

where the index » = KDk

origin. We now have a polynomlal with K (= ) terms for which we
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performing this integration gives

o = ZZ (iAz)**1 (= DA N (AT (- DA™
K AxAy E—1+1 E—1+1 I+1 I+1 ’

k=0 (=0

(2.27)

which can be simplified using the binomial expansion to give

N k k=1 m l)' k—l—m { p l —p
qﬁz = ZZazAxk_lAyl (Z — l —— > (Z l— ) . (2.28)

By insisting that equation (2.28) holds over K cells we can set up a
matrix problem of the form, Ba = ¢. By carefully selecting the stencil
over which we fit this polynomial, we can ensure that B is non-singular
and thus we have a unique N** order polynomial.

If more than N + 1 cells are used in any row of the grid then, when
[ =0, there are more than N + 1 distinct values of ¢ with which to find
the N 41 coefficients of the powers of x. This will force a row degeneracy
and the matrix will be singular. The matrix will also be singular if more
than V41 cells are used in any column, since when k = [ there are more
than N + 1 distinct 5 values. We therefore begin to build up a stencil by
selecting NV 4 1 cells in one row (j = dy) and N + 1 cells in one column
(i = dy). These cells are centred about the edge for which we wish to

approximate the flux or the cell upwind of it (see Figure 2.4 a).

By using these cells to form a matrix in a similar way to the one-
dimensional method, we are in practice fitting two one dimensional poly-
nomials over these cells. We can diagonalise the blocks that are dependent
only on the powers of x and the powers of y. The remaining terms in the
polynomial are multiples of these terms and where ¢ or j is constant this
multiple is constant. Because of this constant multiple, the row opera-
tions that diagonalise the x and y power terms zero the remaining terms

in all except one of these rows. This gives a matrix, B, which has the



©) d

Figure 2.4: Building a stencil for interpolating a sixth order polynomial. a) Seven cells in one row and
one column are included for the terms that are powers of # or y. b) Another row and column each of
six cells is added for terms zy” and 2"y where 1 < n < N — 1. ¢) Cells are added to ensure there are
five cells in another row and column. d) The final cell is added to make a row and column of four cells.

A similar method using a seventh order polynomial would result in the cells along the narrow dotted

lines also being included in the stencil.
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form,

L (Aa)™| (Ay)" (Az)f(Ay) . .
, L= d17 J = d2
0
N x N 0]
y J = d2
0
N x N
(Z) X 5 L:dl
0 K-2N-1xK-2N -1
0

The first row shows the order of the terms on each column where,
n,m = 1,2,... N and k.l = 1,2,... N —1 with k4+1 < N. Non-
zero blocks have only their sizes shown and the N x N blocks have been
diagonalised. The lower right block contains the information from the
remaining cells in the stencil that we have not yet selected. If we now
ensure that we have N cells in a different row and a different column
(see Figure 2.4 b) we can diagonalise the part of this block dependent on
the terms 2y’ and z'y where i = 1,2,... ,N — 1. This row or column
is chosen to be down-winded if the previous row/column was up-winded,
or up-winded if the last choice was centred or down-winded. We can
continue on in this way until the matrix B is fully diagonalised, thus
guaranteeing that the matrix is not singular and giving a fast method of
calculating it’s inverse if required.

Another way to think of this stencil is that it must contain the follow-

2 N

ing; One row of N 41 cells for the terms 1, z, x7,..., ", one column

J

of N + 1 cells for the terms 1, y, 4% ..., y" (the row and column must
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overlap as both fit the constant term) , two rows of at least N cells for

the terms zy, 2%y,..., ¥ 'y, two columns of at least N cells for the
terms zy, xy?, ..., zy¥ ! three rows of at least N —1 cells for the terms
22y?, ady?, . ., V2%, three columns of at least N — 1 cells for the
terms x2y?, x?%y3, ..., 2?2y 72, etc. A third way of building this stencil is

to ensure that there is an (m 4 1) x (n + 1) region for every term 2™y".
These regions are each centred or upwinded about the edge as necessary.
This method of stencil selection will yield a stencil of a particular form,
that of a diamond region of cells with cells added along one or three edges
of the diamond region. One edge will be used if an even order polynomial
is being fitted; which edge is included depends on the direction of the
flow. Three edges are included if an odd order polynomial is being used;
which edges are used again depends on the flow direction. Figure 2.4 d
shows an example of the stencil used for a sixth order polynomial.
Using this method of stencil selection, there are four possible stencils
for each edge and the edges have two orientations so there are a total of
eight possible stencils. Two of these stencils are identical while of the
remaining six stencils, three are transpositions of the other three. If we
define the origin to be the top or right node of the edge and refer to
the edges by the cardinal directions, then the identical stencils are for
flow from the northwest quadrant across the east edge and flow from the
opposite direction across the north edge (stencils 3 and b from Figure 2.5).
Stencil d is the same as stencil 1, translated one cell northwards, stencil
4 is stencil a translated one cell to the east. Stencil ¢ and stencil 2 are
also the same, translated one cell in each coordinate direction. We only
consider the stencils for the north and east edges here as the west and

south edges are the east and north edges of neighbouring cells.
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Figure 2.5: Orientation of stencils used for fitting a second order polynomial for all possible flow
directions and edge orientations. Stencils 3 and b are identical, the remaining six stencils form pairs

that are similar by translation; 1 & d, 2 & ¢,4 & a.

There are other possible methods for selecting a stencil, but this me-
thod does have several advantages. Firstly, and most importantly, it
guarantees a non-singular matrix that can be easily inverted using any
suitable method (e.g. Gaussian elimination). Secondly, the stencils are
all compact and centred or upwinded about the edge across which we are
approximating the flux. The stencils also have a simple form that can
easily be extended for higher order polynomials and to higher dimensions.

These stencils do not however, guarantee that the matrix B is well
conditioned. As before, it becomes more ill-conditioned as the order of
the polynomial is increased. Experiments will show (e.g. see Section 2.4.1)
that a significant amount of accuracy will be lost when using seventh or
higher order polynomials and single precision arithmetic. One way to
improve the conditioning of B is to use orthogonal basis functions, such
as Legendre polynomials, instead of simple powers of 2 and y. This will
not alter the polynomial we are seeking since it is unique. It should

however, improve the conditioning of B and will lead to a different form
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of the polynomial being found.

Once we have fitted a polynomial over the region around an edge we
can then integrate it over the area swept across the edge to approximate
the flux. For the purpose of the following derivation we shall continue to
use powers of x and y for the interpolated polynomial which can either
be calculated from the Legendre polynomials or used directly. The flux

in the z-direction is therefore given by

FLUX, / / a 2"yt dy da | 2.29,
uAtAy wa— Aykz(); ( )
where w = 2, the direction of the flow at the edge. The flux in the

y-direction can be found from a similar equation,

=Lyt da d 2.2
”UAtA.I’ /I)At /—— ZZQ ) v < 93/)

Az p—0 1=0

FLUX, =

where, u, v and hence w may be different from the previous case. Chang-
ing the order of the summation and integration and performing the first
integration from equation (2.2933) gives

!
—l!('w:L“)l_mAym"'1
FLUX, = kz; IZO: /um uAtAy (l —m)l(m + 1)! dv. (2.30)

Combining the terms involving powers of « and integrating again gives

FLUX, ZZ il azz l_<”N)k_mwl_m<Ay)m . (2.31)

k=0 1=0 N(m+ DIk —m+1)

Substituting for a, from a = B~'¢ and rewriting in terms of Courant

numbers gives

—-m

K N k
o
FLUX. =363 3 (=)' 1B lw“xkz T 4 I —m 1)

k=0 [=0
(2.32,)
where BZ! is the element in the n'™ column and z + 1" row of B7!,
(= “A—A;) is the Courant number of the edge and o, = ”AA; which is not
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strictly a Courant number for this edge. If o, = 0 then this equation will
not hold when k& = 0, but when a, = 0, v must be zero so there will be
no flux across the edge. When «,, = 0 then v, and therefore w, must be
zero, in this case integrating equation (2.29,) gives

BL (—uAt)! (—Ay)
FLUX, Z¢ZZ P (l<+1>y) . (2.33,)

n=1 k=0 1=0

Performing the same procedure for fluxes in the y-direction gives

—m

K k k-1
FLUX, . E(k—1)1Bz. Ay i
u ;qbzg —) o (w) Y Z (k—l—m)!(m+D)l(k—m+1)’

(2.32,)
in this case ay(= %) is the Courant number for the edge and o, = Z—A;.

If @y, = 0 then the flux across the edge is zero, while if o, = 0 then

—vAt) (= Az)r
FLUX, = Z¢ZZ l+1 —l+1) . (2.33,)

n=1 k=0 1=0

These equations can be written in the form

FLUX = (Ga) - ¢ (2.34)

t

yandGisa

where a is a vector of length K containing the terms o’a
K x K matrix. s and ¢ are integers between zero and N whose sum is N
or less. Except under special conditions, ¢ will change each time step, a
may also vary with time but G will only change if the stencil changes (i.e.
the flow direction changes to a different quadrant). This means that we
can precalculate the G’s for each edge, then at each time-step the flux can
be calculated by forming a and ¢ and combining them with the relevant
G.

This may seem like an expensive way of computing the fluxes but it

is little more so than any other method. Since we need only calculate

equation (2.34) at each time step we can compare the cost of this with
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other methods. Most standard methods can be written in the form of
equation (2.34) for example, the UTOPIA scheme of Leonard can be

written in this form for stencil 1 in Figure 2.5, with

5 1 1 1 1 1 I
6 3 4 "3 —1i —32 / 1 6.0
0 0 - o0 o ! 0 ¢

1 1 /

10 0 L 0 o0 a "
GUTOPIA = 16 1 1 ? 1 » &= j & ¢ - ’nLO
i —3 —1 85 1 VU o T
o 0 0 o0 L 1 sy &y
0 0 L o -1 9 \ o &

With the UTOPIA scheme sve have calculated G on paper where our
new method computes it automatically. Since we have used a similar
reasoning for developing our method as can be used for deriving the
UTOPIA scheme, the matrices G are similar for the UTOPIA scheme
and our scheme based on second order polynomial interpolation. For the

method described here we get

IR
0o 0 5 0 0 3
G:—%ooéoo
Pobp b b oo
0 0 0 0 -3 ¢
\ 0 0 -3 0 3 0

32



which is related to Gyropra by

/100

0 0 0
01 0 0 0 0
00-10 0 0

Gyrorra =G (2.35)
00 0 1 0 0
00 0 0 =20
\00000%)

The UTOPIA method can be thought of as using a second order poly-
nomial fitted through grid points (Leonard et al. [23]) whilst the new
method uses fitting over control volumes. This would cause a slight dif-
ference between the coefficients of each scheme and could account for the
difference between the two matrices G for each method.

Once the fluxes have been calculated at each edge it is then possible
to update the ¢-value in each cell by simply adding or subtracting the

appropriate fluxes,

=gl 4+ Y FLUX - Y FLUX . (2.36)

)
inflow outflow

Before undertaking this step we may apply a limiter to these fluxes, in
order to ensure shape preservation of the ¢-field.

This method does not impose a time step restriction on the scheme,
any value of At can be used and the scheme will work. This does not
guarantee stability of the generated scheme but we might reasonably ex-
pect the stability conditions of the Lax-Wendroff and UTOPIA schemes
to hold for our comparable schemes. For higher order schemes we may
be concerned about taking small time steps and using parts of high am-
plitude, high frequency oscillations to calculate our fluxes. If we apply

a suitable flux limiter then this will ensure the stability of the schemes
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possibly by imposing a stability condition on the Courant number. We

shall now take a closer look at such a limiter.

2.3.2 The Flux Limiter

We have a simple form for calculating fluxes that requires a matrix-vector
multiplication and a dot product be computed. A flux limiter will require
knowledge of the ¢-field, so if we wish our matrix G to remain constant
in time we must use a limiter that post-processes the fluxes and does not
alter G. One such flux limiter is the Universal Limiter of Leonard [22]
with refinements proposed by Thuburn [51]. The limiter is explained in
detail in those papers, here we shall only look at the application of the
method itself.

The general principle is to take information about the flow and the
distribution of the advected quantity and use them to calculate bounds
on the fluxes that will ensure shape preservation. As each edge is both
an inflow to one cell and outflow from another, two sets of bounds are
generated for each edge. If the flux lies outside these bounds then it is
adjusted to be the nearest allowable value. In the worst case the bounds
overlap at only one value, the concentration in the upwind cell, and the
limiter works as the first order upwind scheme at that edge for that time-
step.

This description of the limiter is given in terms of ¢ being a mixing
ratio, since we are working with a constant density this will still hold if
¢ is a concentration. The method for generating the initial fluxes will
also hold if ¢ is a mixing ratio, which is how it will be treated when the
density is not constant.

Using the notation that ¢ denotes a flux across an edge, the limiter
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Figure 2.6: Diagram showing the labelling conventions used in describing the flux limiter. The arrows

refer to the direction of the flow so I and O refer to inflow and outflow edges of cell k respectively

works as follows;

Step 1: Inflow bounds are defined as (for edge 11 in Figure 2.6),

(&ﬁ@)min =min {qslrlnrinv QSZ} ) (2-37min>
(G0 ) ax =max {¢%2 . 7} (237 max)

where ¢ L is the minimum mixing ratio in an upstream neighbour-
hood of edge I1. This neighbourhood will include cell A, and also
cells B and C if there is flow from these cells into A. If B is included
in the upwind region and there is flow from cell D into B, then cell D

should be included. Cell E could also be included in this way, even

though it is down wind of edge O2.

35



Step 2: Ensure that the flux lies within these bounds by setting

(scheme) 2 (in
¢n = min {¢1 3 ¢§1 ))min} ) (2-38)
Il = max {¢Il7 ¢111n' max} . (239)

Step 3: Define upper and lower bounds on ¢}"*' by

(6 i =min {7} (240,
( Z+1)max = max {ggl(-m)} , (2.40max)

where ¢ refers to the inflow edges of cell k. If there is no inflow into

cell k then ( ”"'l)mm and (¢} ntl Jmax are set equal to ¢}

Step 4: Revise the inflow bounds,

<¢111“ >mm - mln {¢m1n’ ) (2-41min)

<¢Illn )max - maX{¢maX? qb%l] ) <241max)

Step 5: Calculate the outflow bounds from
(qggcout)) : =¢Z + Zin(m(¢z('m))max _ (¢Zl+1)max (1 + Zin Ozl'zout()éj>
Zoutaj
(2.421in)

(&(Out)> :¢Z + Zinai(qu('m)>min - ( m+])m1n (1 + Eln Zoutaj) .
k Zoutaj

(2.421ax)

Step 6: Ensure the flux lies within these bounds,
lll mln {¢Ol7 kOUt))max} ) (243)
gbm = max {qﬁl(l)ll, gbl(fut))min} : (2.44)

The «’s used here are modified Courant numbers, scaled by the ratio

between the density flux across the edge and the density in the cell. In
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the following work the density remains constant so this ratio is equal
to one, where this is not the case then the Courant numbers will need
scaling accordingly. For the limiter to ensure shape preservation it also
requires that the sum of the Courant numbers over the outflow edges
(the denominators in equations (2.42,;,) and (2.42,,,x)) is less than one.
This imposes a time step restriction on the scheme which may or may not
be stricter than the restriction on the basic scheme itself. The adjusted

fluxes can now be used in equation (2.36) to update the ¢-field.

2.3.3 Error Analysis

We can use a similar argument to that used in the one dimensional case
to try and get an idea of how the numerical error of this scheme. We
again define the error in a cell at time ¢, to be the difference between the

actual amount of the tracer in that cell and the approximated amount,

e?j"'l = ”+1 / s / s (tny1, 2, y) dady . (2.45)
(j—1)Ay J (i-1)Az

If the limiter is not being applied then we can also write the right hand
side in terms of the values at a previous time and the fluxes across each

edge of the cell, as before,

el = <%+Z¢> (/ / H(tn, v, y) dedy + Y FLUX(t )) .
(j=1)Ay

edges edges
(2.46)

Or equivalently,

:LJ+1 er + Z (// (z,y) dedy — // O, x,y) dxdy) . (2.47)
arean area(tn)

edges
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If we adopt the same local origin as when we fit the polynomial then the

integrals in the exact case are given by

0 0
// dydax E/ / dydx |
area(tn) Az x—fé’;j”“u(t,x,o dt +0— f (n+1)at v(t,z,0) dt

(2.48,)
and // dxdy = / / dxdy |
area(tn) Ay JO0 fn+1 Jat u(t,0,y) dt +y— an)At (¢,0,y) d¢

(2.48,)

and for the approximate case by

// dydax E/ / dyder = ugAtAx |
arean Az nH)At ” dt +0— an)At ”- dt

(2.49,)
and // dady —/ / dedy = ugAtAy ,
arean Ay J0 f (n+1)a wodt +y— f (n+1)a v, dt
(2.49,)

where uj; = u(nAt,iAx, jAy) and v}, = v(nAt,iAz,jAy). Then, if the
wind is uniform and constant (u(t,z,y) = ug & v(t,x,y) = vy, over this

time period),

g =t Y / / Pl i) = Ot 2. ) dt da
Ar Jx—

r— edges U()At U()At
+ Z/ / p(wisy) = (tn, wisy) dt dy . (2.50)
y—edges Ay Jy—ugAt—vgAt

This shows that the error in one cell again depends on the accuracy
of the polynomial interpolations for the regions swept across each edge
of the cell at that time step. We can again argue, using the Mean Value
Theorem, that fitting polynomials using the integral over an area has
the same order of accuracy as fitting a polynomial through a particular
point in each cell. The result of this is that a scheme using an N*' order

1th

interpolating polynomial is N+ 1" order accurate in space. If u(t,0) # ug
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then there will also be a contribution to the error from the approximation
of the area swept across the edge. If the limiter is applied to the fluxes
then the above argument will not hold when the limiter changes the value
of a flux.

Summing over each cell to find a bound on the global error gives,

‘ n+1‘ < le| -}-QZ o lpi(x) — o(tn,x)| dady (2.51)
r—ugAt

where ¢ runs over all edges on the grid and p;(x) is the polynomial fitted

1th

around edge 7. This error is also N 4+ 1" order accurate when the limiter

is not applied to the scheme.

2.4 Test Cases

Three test cases were used to test the schemes produced by this me-
thod on a square grid; a uniform flow, a solid body rotational flow and a
strong deformational flow. These three cases are frequently used, though
not always together, in numerical experiments to show the strengths and
weaknesses of numerical advection schemes. Here all three have been
used in an attempt to establish whether this method works well for a
range of flows or if it has problems with some types of flow. Various error
measurements were made along with a measure of the cost of comput-
ing the results, the CPU runtime. Generally, higher order schemes are
more accurate, as are those run on more refined grids. By comparing
these results with the computational cost of generating them using this
method should show when a higher order scheme is more cost effective
than increasing the resolution.

These test cases give a measure of the success of the scheme which

can be compared with other schemes run under the same conditions.
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The tests in themselves do not give a complete picture of how well the
scheme would perform in the atmospheric problem. The uniform flow,
Section 2.4.1, has little resemblance to flows found in the real atmosphere
but does provide an indication of how well the scheme handles flow at an
angle to the grid. The rotational flow, Section 2.4.2, has more in common
with rotating systems in the atmosphere but the flow has a zero strain
rate and so does not stretch parcels in the same way. The final test,
Section 2.4.3 on deformational flow does include vortices which stretch
fluid parcels but these are regular and do not interact with one another
as in the real atmosphere. Looking at the results of these tests together
should give a good idea of the strengths and weaknesses of the scheme
and where it will succeed or have problems in the real atmosphere.

For completeness, several measurements were taken of errors and prop-
erties of the advected profile. For the first two cases, the error measures
used were the Ly , Ly and L, norms and first and second moments of
mass, along with a breakdown of the Ly norm into diffusive and disper-
sive components. The L; norm behaves in the same way as the Ly norm
in these cases and so is not shown, neither is the first moment of mass
as this is always unity to machine accuracy because of the conservative

nature of this method. The norms are defined as

_ /2 ler —'¢N|i
PR

L;

(2.52)
and the moments of mass as

> oy
M = &N 2.53
S o (2:53)

where ¢ is the true solution, ¢y is the numerical solution and the sums

are performed over all cells in the domain.

Other measures taken were of the final maximum and minimum values
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of the distribution and of how well the scheme maintained the symmetry
of solutions (where it should). The maximum and minimum values were
used primarily to check that the limiter is working and not allowing the
values of the extrema to grow, as was the case in all runs. For symmetric
initial conditions in a symmetric flow the solution should also be symmet-
ric, and is to machine accuracy for these test cases. A qualitative account
of the results for the third test case is presented here. An analytic solu-
tion does exist, but it is complicated to calculate and would add little to
the qualitative result.

In all the cases that follow the errors for schemes using 8 and 9" or-
der polynomials on higher resolution grids are worse than those for most
lower order schemes. This is because of the ill-conditioning of the ma-
trix B which does not allow accurate numerical inversion and subsequent
evaluation of coefficients and fluxes. This may generate schemes that are
unstable, but where blow up has not occured the results that have been
obtained are shown. There are methods by which the conditioning of
these matrices may be further improved, but this is not done here as the
results for schemes lower than 8 order provide sufficient information in

these cases.

2.4.1 TUniform Flow

For this test case, an initial profile was advected by a constant uniform
flow at an angle of 45° to a square grid (Az = Ay) over a unit square with
periodic boundaries. Four grids were used, each double the resolution
of the previous one; 20x20 (Az = 0.05), 40x40 (Az = 0.025), 80x 80
(Az = 0.0125) and 160x160 (Az = 0.00625). The flow speed was one unit

per second in each coordinate direction (magnitude /2 from southwest
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to northeast) and a Courant number of one quarter (a, = a, = 0.25) was
used in each direction. This meant that each doubling of the resolution
requires twice the number of time steps to be used. The profile is advected
once around the periodic domain in one second, requiring 80, 160, 320 or
640 time steps depending on the grid size.

Two initial profiles were used for this test case, a square step and a
smooth cos? function. The tracer value for the square step initial con-
ditions was one in the region 0.25 < x,y < 0.75 and zero elsewhere.
The smooth function was defined as cos?(27R) for R < 0.25 and zero
elsewhere, where R is the distance from the centre of the domain. The
step initial conditions test how well the schemes can maintain a sharp
gradient in a smooth velocity field and should show how the limiter af-
fects the accuracy in preventing spurious oscillations in the solution. The
smooth initial condition tests how well the schemes are able to maintain
a localised extreme value.

The Ly and L., errors are used to show the relative accuracy of the
schemes. The former gives a measure of the accuracy over the whole
domain whilst the latter gives the largest error in any cell. The Ly error
can also be divided into diffusion and dispersion parts, which give an
indication of amount of diffusion and oscillation in the schemes.

Figure 2.7 shows the final time results for a selection of schemes that
were generated and applied to the step initial conditions. Using a second
order polynomial without the flux limiter, on an 80 x 80 grid gives the
reference solution shown in plot a with which we can compare the other
schemes. This behaves as would be expected, with a slight smoothing of
the sharp gradient around the edge of the step region and the generation

of spurious oscillations. If the same scheme is used but with the flux
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a) 2" Order, 80x80 Grid, Limiter off b) 2" Order, 80x80 Grid, Limiter on

ir 1
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c)

2" Order, 160x160 Grid, Limiter off

Figure 2.7: Numerical solutions of the advection of a square step once around a periodic domain. Grid
sizes, the order of the polynomial used and the state of the limiter are shown above each plot. Contours

at 0.0 and 1.0 are dotted lines
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limiter applied, then these oscillations are removed, as seen in plot b.
The downside of this is that there is a little more smoothing of the sharp
edges.

If a fourth order polynomial is used instead of the second order one,
then we get the result shown in plot ¢. This solution contains more
oscillations but they are smaller in both magnitude and wavelength, so
large gradients are better maintained. If a higher resolution grid is used
instead of a higher order polynomial then the results are very similar,
as seen by comparing plots ¢ and d. The main differences are that the
oscillations are a little smaller on the finer grid and that this result took
more than twice as long to compute (as will be seen in plot a of Figure 2.8)

The final solutions of the same schemes applied to the smooth initial
condition are not shown but do not exhibit any significant differences
in the behaviour of the schemes. Small oscillations are still generated
around the non-zero part of the initial profile, though they are smaller
in magnitude. The main difference in results between the two profiles
is the maintenance of the peak value in the smooth initial profile. This
difference is best seen in the later comparison between the L., errors of
the different schemes.

Figure 2.8 shows the Ly and L., norms plotted against the computa-
tional cost for both profiles, with and without the use of the flux limiter.
This plot and ones like it will be used widely throughout the next few
chapters so it is important to take some time to understand what they
show. Each symbol on the plot represents one of the error measures for
one of the schemes, plotted according to the error value and the compu-
tational cost (CPU runtime) taken to calculate the result.

The symbols are joined by lines according to the resolution of the grid
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a) Step inital profile, Limiter: off b) Step inital profile, Limiter: on
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Figure 2.8: Ly and L. error norms for step profile (top) and smooth profile (bottom) advected by

uniform constant flow. Grid sizes are as shown and each order scheme is marked by a symbol.
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on which the scheme was used and the type of error being measured.
Solid lines represent either the Lo error or the error due to diffusion
(explained later in this section), the dashed lines represent the L, error
or the dispersion error. The different symbols that are used represent the
different resolutions of the grids, the exact resolutions are shown with
each set of plots. On a particular resolution grid the computational cost
increases as higher order schemes are used so the first (fastest) symbol on
a line represents the zeroth order scheme. The second symbol represents
the first order scheme and so on.

The trend in the lines representing each resolution shows how the ac-
curacy (error) varies with the effort (CPU runtime) needed to generate
the result as higher order schemes are used. Comparing the lines for the
different resolution grids shows how the accuracy varies with the effort
required to generate the results when the resolution is also allowed to
vary. If all the lines for one error measure overlap then the effort required
to generate a result of a given accuracy is the same regardless of whether
the scheme order or grid resolution is changed. If the lines do not overlap
then either increasing the resolution or the order of the schemes will be
more efficient, the graph will tell us which.

We can look at this relationship in two ways, if we wish to achieve
a particular accuracy then we can look along the graph from the y-axis
to see the most efficient scheme/grid combination that gives the desired
accuracy. Alternatively we can consider having a specific amount of com-
puting time in which we wish to find the most accurate solution possible.
In this case we can look up along the z-axis for that particular time and
find the scheme and grid that will give the most accurate result.

In this particular case we can make several observations about the be-
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haviour of the different order schemes on different resolution grids. Ap-
plying the schemes without the flux limiter to the step profile (plot a)
shows a general reduction in these error norms as higher order schemes
are used. The L., error, in this case, gives an indication of the phase
error and how well the sharp gradient is captured. There is an increase
in the L., error when increasing the polynomial order from zero to one,
caused by the introduction of oscillations into the solution. These os-
cillations generally decrease in magnitude and increase in frequency as
higher order polynomials are used for interpolation. Schemes using even
order polynomials generate fewer oscillations than those using odd order
polynomials.

When the flux limiter is applied (plot b), these oscillations are removed
and the L., error is improved for schemes using low order polynomials.
Where higher order polynomials are used the oscillations prevented are
small and the lessening of the sharp gradient caused by the limiter domi-
nates this error. The L, error also increases as the resolution is increased,
suggesting that the phase error is larger relative to the grid size on the
more refined grids. This is most likely caused by the need for more time
steps to be taken on these grids, the phase error per time step is smaller
on these grids.

The Lg error gives an indication of the combined error over the whole
of the domain. Increasing the order of the polynomial used from even to
odd order increases the number and magnitude of oscillations but better
captures the steep gradient. These factors counteract one another in
terms of the Ly error to give relatively small improvement in accuracy
between even order schemes and those of order one higher. Increasing

from an odd to an even order polynomial reduces the magnitude of these
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oscillations and improves the phase speed, which is shown by the larger
improvement in accuracy in plot a. Applying the flux limiter removes
these oscillations and improves the accuracy, in the Ly norm, for low order
schemes. For the higher order schemes, these oscillations are smaller and
errors due to the poorer representation of the sharp gradient begin to
dominate. The effect of this is that the errors appear to be approaching
a limit as the order of the polynomial is increased. These properties of
the different order schemes appear to be the same here as in the one-
dimensional case.

The results for the smooth initial profile, plots ¢ and d, display slightly
different behaviour, due to the absence of a sharp gradient in the initial
profile. The errors are much smaller than the previous case, which is a re-
sult of the smooth profile being more amenable to accurate interpolation
by polynomials. The L., error for this case is effectively a measure of the
change in the peak value of the solution and this improves with increasing
order and resolution. The Ly error also shows a continued reduction as
higher order polynomials and higher resolutions are used. The relation-
ships between even and odd order schemes observed in the previous case
are again present in this one.

When the limiter is applied, the effect is similar to the previous case,
in that there is a slight improvement in the errors for some of the lower
order schemes and a worsening for the higher order schemes. The main
difference in this case is that there are oscillations between the errors
of high-even and high-odd order schemes. High-even order schemes ap-
pear to be approaching a limit form below whilst high-odd order schemes
would seem to be approaching the same limit from above. One possible

mechanism for this is the difference between the number and size of os-
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cillations in the even and odd order schemes. The limiter will alter the
fluxes more where many, large oscillations are being generated and this
will have a greater effect on the accuracy.

The 2-axis on these plots indicates the computational cost (CPU run-
time) for generating and running the schemes. This allows us to make
a fairer comparison between the schemes as it shows the computational
effort required to reach the accuracy achieved by each scheme. In the
un-limited cases, plots a and ¢ show that a given accuracy in the Lq error
can be reached by either increasing the order of the interpolating polyno-
mial or the resolution. In these cases however, the CPU runtime required
to gain a given level of accuracy is roughly the same, whichever method
of improvement is used. For example, if we want the Ly error to be less
than 0.08 in plot a of Figure 2.8 we can achieve this in around three and
a half CPU seconds using either a sixth order scheme on a 20x 20 grid
or a second order scheme on a 40 x 40 grid. Alternatively, if we want
the most accurate solution possible in forty CPU seconds for the smooth
initial profile, an eighth order scheme on a 40x40 grid gives a similar Lo
error to a third order scheme on an 80x 80 grid.

When the limiter is used all the schemes become more expensive to run
and the errors are generally worse than in the unlimited cases. This is
the trade off that is made for ensuring that the numerical solution main-
tains the shape preservation property of the true solution. The limiter’s
greater effect on the accuracy for higher order schemes means that it be-
comes more cost effective to increase the resolution than to increase the
polynomial order beyond a certain level. In the smooth case, this level is
that of the fourth order polynomial. For the step case this level may be

a little higher though it is difficult to give an exact figure without results

49



for resolutions between those shown in plot b.

In order to try and better understand why the errors behave in this
way, we can look at the diffusive and dispersive components of the L,
norm. The square of the Ly error measure may be written in terms of
diffusion and dispersion errors, derived through writing the Ly error in

terms of mean and variance. Following the argument of Takacs [49],

L2 _ Z(¢T B ¢N)2 — 1
D DY R S

where ¢, is the true solution, ¢, is the numerical solution. By writing

(0%(6y — by) + (67— Ov)?) . (2.54)

the field ¢ in terms of its mean, ¢, and variance, ¢(¢), it can be shown

that,

Ly= El¢3 ((0(67) = 0(6,))" + (61 = o3)* +2(1 = ) (6,)0(6,))

(2.55)
where p is a coefficient depending on the correlation between the numer-
ical and exact results. Due to the conservative nature of this method,
o1 — ¢n = 0. If there is no diffusion then o(¢,) — o(¢,) = 0, leaving the

dispersion error as
1
Lisp = Z—¢2(1 — p)o(9,)ao(oy) - (2.56)
So the diffusion error is
1
Lgirs = S5

Figure 2.9 shows these component parts of the square of the Ly norm

(0(d7) = a(4))" - (2.57)

for both profiles. For the step profile, the diffusion error is several orders
of magnitude smaller than the dispersion error for both the limited and
un-limited schemes. The previously observed behaviour of the schemes
being thus shown to come from the error due to dispersion. The differ-

ences between using even and odd order polynomials can be seen more
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a) 0 Step inital profile, Limiter: off b) Step inital profile, Limiter: on
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Figure 2.9: Lgig and Lgisp error norms for step profile (top) and smooth profile (bottom) advected by

uniform constant flow. Grid sizes are as shown.

51



clearly from these plots. Increasing from an odd to even order polynomial
introduces more diffusion but reduces the dispersion. Increasing from an
even to an odd order polynomial has little effect on the dispersion but
does reduce the amount of diffusion. In the case of the smooth profile
there is a smaller difference between the magnitude of the diffusion and
dispersion parts of the error when using low order polynomials. The dif-
fusion error decreases more rapidly than the dispersion part and only
becomes relatively small when the polynomial order is increased beyond
two (four for the coarsest grid).

These results show that increasing the order of the polynomial will
reduce the diffusion by more than it will reduce the dispersion but that
the error will continue to improve. This improvement will continue until
the matrix inversion part of the algorithm can no longer be accurately
computed. The effects of this can be seen for the high order polynomials
on the finest grids where the errors begin to increase significantly as the

order is increased.

2.4.2 Rotational Flow

For this test case, a counter clockwise solid body rotation was applied
to the initial profile of a split cylinder. The rotation speed was 27 times
the radius from the centre of a unit domain, in a direction perpendicular
to the radius. The boundaries were treated as periodic in the code but
due to the method of averaging the flow speed there is no flow across the
boundaries. This does not have any effect on the final solution, which is
the same as the initial condition, or on the limited schemes, where the
tracer does not reach the boundaries. Where the small oscillations in the

un-limited schemes reach the boundary the flow is not a true solid body
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rotation but this has little effect on the quality of the solution.

The initial condition is a cylinder of radius 0.15 and height 1 with a
'slot” of width 0.05 removed leaving a 'bridge’ of maximum width 0.05.
The same four grids were used as for the previous test case with a maxi-
mum Courant number of £ in each direction so one rotation requires 8N
time-steps, where NV is the number of cells in one coordinate direction.
This case tests how well the schemes cope with flows at all angles to the
grid and with small scale features such as the ’slot’ and the ’bridge’.

Before examining the numerical results of these tests it is useful to
consider the different approximations this test requires. Firstly, the flow
is not uniform across any cell, so an approximation of the flow must be
made. To obtain these results, the parallel and perpendicular components
of the flow at each edge have been prescribed as their analytic values at
the mid-point of that edge. The area swept across each edge is thus ap-
proximated as the area swept across the edge by a uniform flow in the
region around the edge. This breaches the condition that u(t,x,y) = g
& v(t,x,y) = vg in our error analysis, introducing a further error that
may either increase or reduce the overall error. It is also important to
note that the initial conditions on the discrete grid do not give an exact
representation of the stated initial conditions. For the calculation of the
error measures the ’true’ solution used is that of the discrete represen-
tation of the initial condition. This means that they do not take into
account any errors from discretising the initial condition.

Figure 2.10 shows some examples of the final numerical solutions for
this test case. Plot a shows the result of using a second order polynomial
on an 80x80 grid without the flux limiter. This exhibits the same features

as the square step in the previous test case, smoothing the sharp gradients
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a) 2" Order, 80x80 grid, Limiter: off b) 2" Order, 80x80 grid, Limiter: on
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Figure 2.10: Numerical solutions of the advection of a split cylinder by a solid body rotational flow.
Grid sizes, the order of the polynomial used and the state of the limiter are shown above each plot.

Contours at 0.0 and 1.0 are shown as dotted contours. Only the region around the cylinder is shown.
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a) Limiter: off b) Limiter: on
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Figure 2.11: Ly and Lo, error norms for a split cylinder advected by a solid body rotational flow. Grid

sizes are as shown.

and introducing unphysical oscillations in the solution. The result of this
is that there is a significant filling of the slot and erosion of the bridge.
By limiting the fluxes for this case, as shown in plot b, the oscillations
are prevented but the result of lessening the sharp gradients is that there
is more filling of the slot.

If we use a fourth order polynomial instead of switching on the limiter,
as for plot ¢, then the oscillations are reduced in magnitude but increase
in frequency. The sharp gradients are better maintained so there is little
erosion of the bridge or filling of the slot. If the resolution of the grid is
doubled instead of increasing the order of the polynomial, then similar
results are achieved, though at a higher computational cost. By compar-
ing the smoothness of the contours in plots ¢ and d we can also see that
the more refined grid better captures the shape of the initial condition.

Figure 2.11 shows the Ly and L., error measures for the different grid

resolutions and orders. In both the un-limited and limited cases, the er-
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a) Limiter: off b) Limiter: on
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Figure 2.12: Laig and Lgisp error norms for a split cylinder advected by a solid body rotational flow.

Grid sizes are as shown.

rors vary in a similar way as for the previous square step test. There
is a general reduction in the error as higher order polynomials are used,
though the overall error values are higher than in the previous case. The
higher error values are caused by the added approximation of the area
being swept across each edge, which is most noticeable in the L., error.
For the un-limited case, plot a, the relationship between even and odd
order schemes is the same as before but is more marked, with small in-
creases in the error when increasing from even to odd order polynomials.
Including the limiter, shown in plot b, removes not only the oscillations
in the numerical solutions but also these variations in the Ly error. The
added approximation of the region swept across the edge has little effect
on the trends observed in the uniform flow test cases but it does raise the
values of the error measures.

The same comparison as before can be made between the diffusive and

dispersive parts of the square of the Ly error and is shown in Figure 2.12.
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The diffusion error is much smaller than the dispersion error for all but the
first order upwind scheme. The dispersion error is also improved by the
limiter removing oscillations, for schemes using odd order polynomials.
More diffusion is introduced by the limiter but this is still significantly
smaller than the dispersion part of the error. These results are again very
similar in form to the previous case, with higher error values due to the
added approximation of the area being swept across each edge.

These results combine to show that, as in the previous tests, increasing
the order of the polynomial used for interpolation improves the accu-
racy of the schemes. This improvement in accuracy comes for a smaller
computational cost than doubling the resolution for polynomials of up to

order eight without the use of the limiter.

2.4.3 Deformational Flow

This case is used by used by Smolarkiewicz to test the multi-dimensional
Crowley advection scheme [41] and is discussed further by Staniforth
et.al. [42, 44]. The flow field for this case is a set of 16 counter rotat-

ing vortices defined by the streamfunction,
Y(x,y) = Asin (kzx) cos (ky) , (2.58)

where A = 8, k = 47/L and the origin is at the bottom left corner. L
is the length of the domain, in this case 100 units. The initial tracer
profile is a cone of height one and radius 15 units, centred on the centre
of the domain, as shown in Figure 2.13. A maximum Courant number
of 0.7 is used and the test is run for the same length of time as in Smo-

larkiewicz [42], T' = 2637.6 seconds. On an 80x 80 grid, 3021 time steps

of approximately 0.87 seconds duration are thus used. Since the flow is
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Figure 2.13: Initial conditions (shading) and flow directions (arrows) for deformational flow test case.
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constrained to move along streamlines, each vortex is self contained and
the solution for all but the six central vortices will be zero for all time.
Provided we align our numerical grid with the boundaries of the vor-
tices and apply the flux limiter this property will hold for our numerical
solution.

Staniforth et. al. [44] gave an exact solution to this test case and also
arguments as to the best way to interpret the results. The vortices act
to pull out the flow into thin streamers which are wrapped around the
centre of the vortex by the rotation of the flow. We can only hope to
approximate the true solution over short time periods since we cannot
accurately resolve a pattern of streamers that have widths close to the
grid size. Over longer time periods we can only hope to approximate the
large scale features of the flow, since a direct comparison between the
true and numerical solutions would not be very informative. Results up
to time 7'/50 are used here for inter-comparison and a direct comparison
with the true solution, figure 3 from [44].

Results for times from T/50 up to T are used only to show whether
the numerical results represent the large scale features that are present in
the true solution. There are three particular features that we would hope
to see, the first being that the solution remains zero in all but the six
central cells. The next is that the fluid parcels in the four ’outer vortices’
remain close to the edge of their vortex and the solution remains zero in
the centre of the vortex. The final feature is that the two central vortices
each resemble an ‘eggcup’ shape at time 7.

Figure 2.14 shows some results for three limited schemes for a short
time after the test is started. Each of these cases exhibits the features

we would expect to see. The initial profile is separated into six separate
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Figure 2.14: Short time results of the deformational flow test case. The plots are arranged as follows:
a-b 80 x 80 grid, second order. c-d 80 x 80 grid, fourth order. e-f 160 x 160 grid, second order. a,c,e:
t = 1%—0. b,d,f: ¢t = %. All schemes have been used with the flux limiter and the x, y and z-axes have
the same scale in each plot.
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vortices and stretched into filaments which are being wrapped up around
the centre of the vortex. The stretching of the filaments at saddle points
of the flow (vortex corners) causes new maxima and minima to occur in
the solution. The limiter allows these to form in the numerical solution on
the boundary of each vortex but also allows smaller oscillations to form
along the filaments. These extrema are caused by the same mechanism
as those on the boundary but the conditions that create them are due
to the discretisation of the wind field. The use of a piecewise constant
wind field on a discrete grid case can allow a small amount of unphysical
divergence to be generated. The limiter will then allow small oscillations
to be generated as they are part of the physical solution of the discrete
wind field version of the test case. Despite this problem, the limiter
does still ensure that the global maximum and minimum values are not
exceeded. The fourth order scheme does a slightly better job of capturing
the steep gradients of the filaments than the second order scheme. The
higher resolution scheme manages to perform even better, maintaining
both steeper gradients and higher peak values, though at a much increased
computational cost.

Figure 2.15 shows numerical solutions for the same three schemes as
before but after a longer time period. The first column shows the numer-
ical solutions at t = T'/50, after about one rotation around the vortex.
The schemes for the 80x80 grid show little significant difference at this
time, only slightly steeper gradients for the fourth order scheme. The
scheme on the 160x 160 grid shows a small but significant improvement
over both lower resolution schemes, again mainly in the capture of the
steep gradients.

The middle column of Figure 2.15 shows plots at a time roughly equiv-
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Figure 2.15: Long time results of the deformational flow test case. The plots are arranged as follows:

First row 8080 grid, second order. Second row 80x80 grid, fourth order. Third row 160 x 160 grid,

second order. First column, ¢ = 5T_0' Second column, ¢ = 1T—0. Third column, # = 7" . All schemes have

been used with the flux limiter. Filled contours are at intervals of 0.05 and dashed contours as labelled.
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alent to five rotations around the vortex. In the four outer vortices, there
is little difference between the two schemes on the lower resolution grid.
The solution in the central vortices at this time has streamers that are
roughly the width of one cell on the 80 x80 grid. In the numerical so-
lutions the streamers have merged together and are starting to look like
the ‘eggcup’ suggested by Staniforth et al. [44]. This merging has oc-
cured because the numerical schemes have not adequately modelled the
narrowness of the streamers, partly due to the accuracy of the schemes
but mostly due to aliasing on the grid. There is still a region of high/low
contrast rotating around the centre of each vortex, more markedly in the
fourth order case than in the second. This contrast is clearer still on
the higher resolution grid where these regions also extend further back
around the centre of the vortex. The increased resolution also allows the
scheme to better capture the smaller features close to the edges of the
outer vortices.

The right hand column of Figure 2.15 shows the solutions at the fi-
nal time, after roughly fifty rotations around the vortex. Each scheme
displays the ‘eggcup’ shape to a greater or lesser extent, at least if the
contour interval is carefully chosen as for the second order scheme on the
80x80 grid. The same contour interval shows a clearer ‘eggcup’ when the
fourth order scheme is used and a clearer one still on the higher resolution
grid.

These results show that the resolution of the grid can be more impor-
tant than the order of the numerical scheme used. In this case the test
was generating features smaller than the scale of the grid, so a higher res-
olution grid has a significant advantage in trying to capture these features

for longer time runs. The higher order schemes do have a slight advantage
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over the lower order schemes on a given grid because they are better at
maintaining the steep gradients involved for longer and thus resolving the
features closer to the grid scale. The one advantage that the lower reso-
lution schemes have is that they are much cheaper to compute. Doubling
the resolution means that calculations must be performed for four times
as many cells at each time step and that twice the number of time steps
need to be taken in order to satisfy any Courant number condition. This
means that doubling the resolution causes a roughly eight fold increase in
the computational cost of the run. Whether or not this increased compu-
tational burden is worth the effort depends on how important it is that

the scheme resolves the small scale features.

2.5 Summary

A general method for generating multidimensional advection schemes of
improving accuracy on a regular rectangular grid has been developed
and implemented in two dimensions. The method works by fitting a
polynomial to the discrete tracer field around an edge and then integrating
this polynomial over the region swept across that edge to find the flux.
The stencil over which the polynomial is fitted is chosen such that there
is a unique polynomial fit through the data. A flux limiter can be applied
to the fluxes generated in this way if shape preservation is required.
The resulting schemes have been run on a number of test problems with
a flux limiter to prevent spurious oscillations and negative values being
generated. Numerical results show a large improvement in accuracy for
a relatively small cost by increasing the order of the scheme from first to

third order and less of an improvement for a greater increase in cost for
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higher order schemes. For most cases, increasing the order of a scheme
beyond eight would be less cost effective (in terms of CPU time) than
increasing the resolution of the grid on which the scheme is being run.

Notable exceptions to this rule of thumb are more complicated sets of
equations, of which advection makes up only one part. Atmospheric mod-
els may not be sensitive to small improvements in the advection scheme,
other approximations in the model may introduce more significant errors
into the numerical solution. It is also true that increasing the resolu-
tion of such models is more computationally expensive than in the cases
tested here. The first of these factors suggests that we should increase
the resolution rather than the order of the advection scheme, while the
second factor suggests the opposite. Whether these factors balance out
or one is dominant over the other will be examined when we look at a
more complicated shallow water model in Chapter 5.

The results of these schemes compare well, in terms of accuracy, with
many commonly used schemes. This is not surprising considering the
lower order schemes generated in this way are finite volume versions of
known schemes. The scheme based on a zeroth order polynomial is the
same as the diffusive first order upwind scheme and the first order scheme
turns out to be a two-dimensional generalisation of the Lax-Wendroft
scheme. The second order scheme is similar to the UTOPIA scheme of
Leonard et al. [23] with higher order schemes being based on the same
methodology.

These results show that in this case, and quite possibly others, increas-
ing the order of a scheme gives a larger improvement in the diffusion error
than in the dispersive part. This would suggest that at some point simply

increasing the order of a scheme will have little discernible effect on the
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error, which is also shown in these results. Increasing the resolution will
cause an improvement in the dispersion error and a lower order scheme
may be used for a saving in the cost with little extra error. Finding the
exact optimum balance between cost and error for all but the simplest
problems would be difficult and would depend on the nature of the flow
and our criteria for measuring accuracy. For example, looking at the
L+ error for the uniform test case we could conclude that we could use
schemes of up to order eight but for the deformational flow we would
want to increase the resolution before using such high order schemes.

The current implementation of this method has not yet been fully op-
timised for constant flow conditions and is very inefficient for variable
flow problems. On a structured grid it is not too difficult to optimise the
code for variable flow. Only speed and direction will vary the coefficients
needed, so these can be stored when first generated and re-used when
flow at another edge or time are near enough identical. On unstructured
grids the same idea may be implemented, but with few if any identical
edges, storage of all coefficients may become a problem.

The method can be extended to work in three dimensions in a straight-
forward way. A three dimensional N*' order polynomial must be fitted
over a stencil which can be selected in the same way as for the two di-
mensional case. Selecting a row of V41 cells in each coordinate direction
followed by different rows of N cells in each direction and so on will gen-
erate the three dimensional analogue of the two dimensional stencil. The
region swept across the edge can then be found and the integral of the
polynomial over the region will give the flux.

The method described in this chapter can be used on rectangular grids

but is not applicable to other grids in its current from. If we wish to apply
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a similar method on a non-rectangular grid then we will need to find a
different region over which to fit the interpolating polynomial around an
edge. It is this problem that we now consider in the next chapter, along

with a change to the way that the polynomial is fitted over the stencil.
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Chapter 3

Triangular Grids

3.1 Introduction

In the previous chapter we developed a method for generating finite vol-
ume advection schemes on rectangular grids in two dimensions. This
method was based on a local polynomial approximation to the advected
field, an idea which can be extended for use on other grids. In this chap-
ter we will look at how the method can be applied to both regular and
irregular triangular grids in two dimensions. The basic ideas carry over in
a straight forward manner, but the application of these ideas introduces
some extra problems in this case. These problems are caused by the grid,
since we no longer have such a simple method for selecting the stencil
over which to fit the polynomial.

The way we selected the stencil on the square grid relied on the regular-
ity of the grid and the alignment of the cells with the coordinate system.
Even on a regular triangular grid, the previous method makes little sense
as the cell edges are no longer aligned with the coordinate directions. A
square has edges in two parallel pairs but a triangle has edges orientated
in three directions, which breaks the symmetry our previous idea relied

upon. Instead, we must find some other way of selecting a stencil over
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which to fit the polynomial. There are many ways this could be done but
most are ruled out if we do not wish to have to reselect a stencil at each
time step. This stipulation rules out any method that uses the wind field
as part of the criteria for which cells to use.

If we select compact stencils by adding cells neighbouring those already
in the stencil then we may never have a stencil with exactly the same
number of cells as terms in our polynomial. If we use the distance of cells
from a certain edge or cell then, on a regular grid, we may still end up
with two cells that have equal claim to be added to the stencil when we
only need to add one more. Since there is no logical way to decide which
of these cells to include without resorting to using the wind field, we are
left with little choice but to change the way we fit the polynomial over
the selected stencil.

Instead of insisting that the integral of the polynomial over a cell is
equal to the amount of whatever is being advected in that cell we can insist
that the difference between the two, summed over the stencil, minimises a
cost function. In order to test whether this is a reasonable approximation
to make, we shall return to the one-dimensional problem and examine its
effects in that case. We can fit our polynomial over fewer or more cells
than there are terms in the polynomial and we can also choose several
cost functions. We shall consider these various options after looking at

how the method will change.

3.2 One-Dimensional Advection

As in the previous chapter, we begin with the one-dimensional advection

equation for a tracer with mixing ratio ¢ by a non-uniform velocity u in
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a fluid of constant density,

ot Ox

99 _ _0{ug) (3.1)

Integrating this over a time step At and a cell in space we get the exact

formula for the update equation,

ot = — (dh— %) (3.2)

where ¢? is again the mixing ratio of tracer ¢ in the i'" cell at the n'"
time step and ggﬁR is the flux across the left/right edge of cell i in time
At. For a fluid of uniform, constant density ¢ can also be thought of as

an average concentration. Discretising this equation as before gives

07 =0} + (co - dp —er - PR) (3:3)
where the ¢y z’s are vectors of the mixing ratio of the tracer in the
cells surrounding the left /right edges and the c’s are the coefficients that
our method will calculate. In order to calculate the ¢’s when we do not
have the same number of cells in our stencil as there are terms in the
polynomial we shall insist that the residual, r, is minimised where

=y (Axigzﬁ?— /Ce”i py () dx)2 : (3.4)

stencil

This minimises, in a least squares sense, the difference between the pre-
viously predicted amount of tracer in each cell and the amount approxi-
mated by the fitted polynomial.

In the previous chapter we forced r = 0 by insisting that the tracer
amount approximated by the polynomial was equal to the predicted

amount in each cell in the stencil, or
Ax;o7 :/ py(z) da. (3.5)
cell 1
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We rewrote this as
Az;¢! = E / aja’ da | (3.6)
, S;
j=0

for each cell and ultimately as the matrix equation
Ba=¢. (3.7)

If we repeat this process for this case then we again arrive at equation
like (3.7) but with the important difference that B is no longer square. If
there are fewer cells in our stencil than terms in our polynomial then B
will have fewer rows than columns and the system will have an infinite
number of solutions, i.e. 72 = 0 for an infinite number of N order
polynomials. If there are more cells in the stencil than terms in the
polynomial there will be more rows in B than columns and there will in
general be no solutions to equation (3.7), i.e. 7% # 0 for any N order
polynomial but will be minimised for one N** order polynomial.

The value of a that minimise the difference between Ba and ¢, in the

least squares sense, is found by minimising

r=1l¢—Bal, . (3.

This is a discrete form of equation (3.4) for which the values of r are
equivalent. The solution to the minimisation problem can be found by
pre-multiplying ¢ by a pseudo inverse of B, found by taking either a
QR factorisation or singular value decomposition (svd) of B. The QR
factorisation is cheaper to compute than the svd method but it will fail if
there are any degeneracies in the matrix B, i.e. if the rows are not linearly
independent. The svd method will always produce the correct result but
is more expensive to compute (see chapter 2 of [34] for a full description

of these two methods). Since this step is not performed during the time
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stepping part of the method we can afford to use the svd method without
significantly increasing the overall computational cost of the scheme. The
svd method has been used here since it cannot be guaranteed that there
are no degeneracies in B.

The singular value decomposition decomposes B into three matrices U,
¥ and VT, where U is column-orthogonal, V is row-orthogonal and ¥ is a
diagonal matrix of the singular values. If B is an m X n matrix, then U

is m X n and ¥ and V are nxn. The matrix B can be written as,
B=UxV", (3.9)
so a can be found from,
a=ViU'g. (3.10)

For the cases when B is a square matrix, ¥ is the diagonal matrix of the
eigenvalues of B and V and UT are the matrix of eigenvectors and its
inverse.

In the over-determined case where B has more rows than columns,
this a minimises the cost function r. In the under-determined case when
there are fewer equations than terms in the polynomial the a that is found
gives r = 0 and minimises |a|]. This second condition is not specified as
a condition but is a byproduct of the singular value decomposition. It is
not necessarily unwelcome since it will help to reduce any roundoft errors
in computations using a. Once suitable coefficients a of the interpolating
polynomial have been found this polynomial can then be integrated across

the area swept across the face in one time step giving

. 1 .
o = EZ(L]/ ) dx . (3.11)
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As in the previous chapter, we can perform this integration to give

N
o= aj(—ulAt) | (3.12)
=0
or equivalently
N
6= (—uAty VEUT] ¢, (3.13)

Jj=0
where [...]; is the 5 row of matrix [...]. This will approximate the fluxes
but in order to see if these are reasonable approximations we must take a
closer look at the schemes generated by this method. There are two cases
to be considered. The first is the case of fitting an N*" order polynomial
over fewer than N+1 cells. This is known as the under-determined system
because this generates fewer equations than unknowns to be found. The
second case involves fitting an N'*" order polynomial over more than N 41
cells. This will give more equations than unknowns and is called the over

determined system.

3.2.1 Under-Determined Interpolation

In this case there is generally more than one polynomial that zeroes the
cost function r, so one of a number of interpolating polynomials is being
used. Each of these polynomials will therefore give the correct solution
for a Courant number of one, by removing everything from one cell and
placing it in the next. In order to test the method we shall choose a
stencil in the same way as in the previous chapter but with one less cell
than is required to find a unique N** order polynomial fit.

The coefficients of the polynomial fitted around each edge are calcu-
lated in the same way as before. The following argument is being given

only to show some of the features of these coefficients. The polynomial
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fitted by the least squares method zeroes r and is the one which has the

smallest value of |al, i.e.

Ba =¢ (3.14a)

N
and Z a? =amin (3.14b)
1=0

where B has the same form as equation (2.10) but one fewer rows. We
can write B as [B | b] Dy where B is the matrix formed in the fitting of
an N — 1*" order polynomial over these N cells, b is the vector from the
final column of B and Dy is a diagonal matrix of the powers of Az from
0 to N. We know from Chapter 2 that B has an inverse so we can pre

multiply equation (3.14a) by this and the inverse of Dy_; to get
, 1 ,—1
[[ DL ,B beN} a=D B ¢. (3.15)
The general j'* equation in this set is,
Az /o1 1 (1
0+ o (B b)av = (8 - ¢) (3.16)
where the subscript j on a matrix represents the j** row of that matrix.
The right hand side of this equation is the j* coefficient, a;, of the poly-
nomial found by fitting an N — 1** order polynomial over these cells. We

have N equations of this form for the N + 1 unknowns, the final equation

comes from the condition that the sum of the squares of the coefficients,
N N-1

. , Az s 2
Cl? = a/?\]' + Z (Clj — m <B] : b) CZN) ) (317>

is minimised. This is minimised when its derivative with respect to ay is

zero, when

N-l /AN - N-1 AN -
QaN_zzg(M_l< jl.b)) (_A (&' b)aN):o,
j= j=
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re-arranging gives

(£5'6) (T3 2= (57 p))
L (o) 2 (8 m)

This shows that ay — 0 as Az — 0 since B and b do not depend on

Azx. The right hand side of equation (3.17) can be rewritten as a quadratic
in ay to also show that ay — Z;V:_Ol a; as Az — 0. In effect, as Az — 0,

we recover the N — 1th

order scheme when we use only N cells in the
stencil. This result tells us that the scheme is consistent as Ax — 0
through the consistency of the N — 1** order scheme. Equation (3.16)

suggests a relationship between the polynomial found by fitting a lower

order polynomial over the cells and the polynomial we seek. The extra

Az

term,

<Zi]\;0 B;Zlbz> ayx", has no obvious meaning in the context
of this method and will have an unknown impact on the schemes being
generated.

In practice, applying this method generates unstable schemes with
growing oscillations near discontinuities in the gradient of the advected
profile. As would be expected from the argument above, the oscillations
grow more slowly as the resolution is increased until ill-conditioning of
the computation renders any results meaningless. This suggests that this
application of the method is unusable without some refinement of the way
the polynomial is fitted over the stencils. Even if this were done these

results suggest that we would not gain the full accuracy of the N order

polynomial being used.

3.2.2 Over-Determined Interpolation

For this case it is not generally possible to find a polynomial which satis-

fies r = 0, the cost function (3.8). Fitting a polynomial over the cells by
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a least squares fit in this case does not result in the integral of the poly-
nomial over each cell being equal to the amount of the advected quantity
in that cell. Such a scheme would therefore not give the exact solution
if a Courant number of one is used, as many one dimensional numerical
schemes do.

In order to test this method in one dimension we shall try fitting an
N order polynomial over N 42 cells using the method described in Sec-
tion 3.2. When we do this we find that growing oscillations are generated
upwind of discontinuities in the gradient of the advected profile. These
oscillations grow much more slowly than those for the under-determined
case and are only generated upwind of discontinuities. If these problems
are simply caused by no longer insisting on equality between the actual
and numerical tracer amounts in each cell, then we may be able to re-
move these oscillations by insisting this equality holds over the region
swept across the edge, i.e. the central cell or cells in the stencil.

A crude but apparently effective way of enforcing this equality in this

framework is to apply a weighting to the cost function, i.e.
r=|w-¢—w-(Ba), , (3.20)

where w is a vector of weights. The weights are unity for all but the
central cells and corresponding rows of B in the stencil, for which they
are larger. This increases the contribution to the cost function from any
inequality over the central cells so a larger weight will reduce the inequal-
ity. This weighting is the same as pre-multiplying both sides of Ba = ¢
by a diagonal matrix of the weights. It is simple to implement in the code
and carries through both the method and the code without requiring fur-

ther adaptions. Increasing the weight for one cell forces the difference
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Figure 3.1: Numerical solutions of the advection of a square step once around a periodic domain using
fourth order interpolation over six cells (five for the exact fit). 64 grid cells are used. A weighting is

applied to the upwind cell during the fitting.

between the actual and numerical amounts of tracer to be smaller in or-
der to minimise the cost function r. All that remains now is to decide on
the magnitude of the weights and which cells to apply them to.

For a first attempt at this method we shall apply a weight only to the
cell upwind of the edge for which we are approximating the flux. The
results of using weights of magnitude 2, 4 and 8 with a fourth order
polynomial are shown in Figure 3.1, along with the solution using exact
interpolation over five cells. Any of these weights is enough to prevent
growing oscillations from occuring, a weight of four or more being enough
to generate a solution similar to that when using only five cells. Applying
larger weights has very little effect on the schemes until they become large

enough to affect the conditioning of B so that the numerics cannot be
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Figure 3.2: Numerical solutions of the advection of a square step once around a periodic domain using
fourth order interpolation over six cells (five for the exact fit). 64 grid cells are used. A weighting is

applied to three central cells during the fitting.

accurately computed.

If these same weights are used over the upwind cell and one cell to
each side for the same test then the numerical results are as shown in
Figure 3.2. In this case a larger weight is needed to ensure that growing
oscillations are not generated, a weight of about eight or more is enough
to recover a solution close to that given by an exactly fitted fifth order
polynomial. Another option is to weight the upwind cell by more than
its two neighbouring cells, in this case the results are almost identical to
those in Figure 3.1.

These results suggest that fitting a polynomial over more than N + 1
cells using a weighted least squares fit is a suitable way of generating

fluxes for these types of schemes. Experiments will need to be performed
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on other grids in order to decide on suitable values to use for the weights.
Applying these ideas in two dimensions will enable us to tackle problems
on two dimensional grids where we need to select stencils that contain
more cells than there are terms in the polynomial we are fitting. Before
attempting this we shall see what a similar error analysis to that used in

the previous chapter can tell us about the accuracy of these schemes.

3.2.3 Error Analysis

Following the same argument that was used in the previous chapter, we
define the error in a cell at time ¢, to be the difference between the actual

amount of the tracer in that cell and the approximated amount

1Az
R e N (3.21)
(¢

i—1) Az

The right hand side can be written in terms of the values at a previous

time and the fluxes across each edge of the cell to give

edges

If the continuous and discrete wind fields are the same in this region for

this time then

el = el 4 Z / — ¢(tn, )} da . (3.23)

Summing over each cell to find a bound on the global error gives,

o < e |+22/ P () — Gt )| i | (3.24)

IAx—ugAt

where i runs over all edges on the grid and p;, () is the N*" order poly-
nomial fitted around edge ¢ in the global coordinates.
This again shows that the accuracy of the scheme depends on the accu-

racy of the polynomial interpolation over this region. In this case however
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we do not have as much information about the accuracy of this interpo-
lation as before. We would expect that the accuracy of fitting the poly-
nomial improves as the value of the cost function decreases. This will
happen as Ax decreases or the order of the polynomial used increases.
We cannot however say anything about an order of accuracy for these
schemes. It is for this reason that we refer to the schemes by the order of
the polynomial used rather than their formal order of accuracy.

This work in one dimension has shown us that we can fit an N*® order
polynomial over more than N 4 1 cells and use this in the same method
of generating advection schemes as before. This will be useful as we now
look at two dimensional grids where we may not be able to find a suitable
method of selecting a stencil that gives a uniquely determined system
when fitting the polynomial. Finding a method of selecting a stencil is
one of the problems that we now need to tackle, along with testing the

method to see if the results are as good as on the square grid.

3.3 Two-Dimensional Advection

With the ideas from this one dimensional work we can now attempt to
construct a generalisation of the square grid method of the last chapter
for triangular grids. The main ideas will be the same as those used in the
last chapter but with a new method of selecting a stencil and fitting the
polynomial. Following the methodology of the last chapter we can begin

to construct the new schemes.

80



3.3.1 Generating the Advection Scheme

We begin with the two dimensional advection equation in flux form,

o
81‘

V. (ug) =0, (325
where ¢ and u are two dimensional tracer and wind fields respectively.
Discretising the time derivative gives
it =0 = > 9, (3.26)
edges
with gB representing the flux across an edge of cell ¢ in one time step. We

wish to approximate these fluxes by the integral of a polynomial over an

approximation of the region swept across the edge at each time step,

(8%
= vz y)dady | 3.27
€|H|At/|nw/£p (2, y)dady (3.27)

, U is the length of the edge, A is the area of cell ¢ and

where o = E'“J‘At

|n| is the magnitude of the flow normal to the edge. The origin of the
local x — y coordinate system is defined separately for each cell. The
polynomial p, is found by ﬁtting over a stencil such that

// Za 2 hytdady = AgP | (3.28)

10 1=0

for each cell ¢ in the stencil, where again z = (k+1)k/2+1. The difference
between this method and that of the square grid now arises since we
must find a different way of choosing the stencils over which to fit the
polynomial.

On a general triangular grid the cells may not be aligned with one
another so we will not be able to find a simple stencil as in the last chapter.
The first order upwind scheme will use the cell upwind of an edge so this

would be a suitable cell to begin our stencil. If we fit a zeroth order
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polynomial over this cell we will generate a first order upwind scheme. If
we wish to use a first order polynomial then we will need to add two or
more cells neighbouring this central cell, since there are three terms in the
polynomial. On an irregular grid, distances between the centres of cells
or their size could be used to select two cells to add. On a regular grid
however, there may be no way to choose between cells other than using the
flow direction. Using the flow to choose which cells to add to the stencil
would require that a new stencil was chosen whenever the flow changed
at that edge. This could be computationally very expensive. Instead we
shall include all three neighbouring cells and use a weighted least squares
best fit to find our polynomial, as we did in the one-dimensional case.

If we were fitting a second order polynomial then we would need to add
more cells neighbouring those already in the stencil. In the case shown
in Figure 3.3 this would also give us the ‘right’ number of cells (10) over
which to fit a third order polynomial without needing to perform a least
squares fit. On some grids we may need to add more neighbouring cells
and find a least squares fit for a third order polynomial. We can continue
adding cells in ‘halos’ of those cells neighbouring the current stencil until
we have as many or more cells as there are terms in the polynomial we
are seeking. Figure 3.3 shows how the stencil will be built up in this way;
first, the darkest upwind cell, 0, is added, then the neighbouring cells
labelled 1, then their neighbours, 2, and so on until we have enough cells.

Choosing a stencil in this way does require us to change the stencil if
the flow changes so that a different cell becomes the upwind cell of the
edge. This does not increase the computational cost significantly since
the new upwind cell will already have a stencil as the upwind cell of

another edge. In the code, a stencil is generated for each cell and then
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Figure 3.3: Diagram showing the stencils over which polynomials will be fitted for flow across the

highlighted edge. The numbers show order of polynomial for which cells will be added to the stencil.
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used whenever it is upwind of an edge.

The need for this change could be eliminated altogether by beginning
the stencil with the two cells either side of the edge and adding their neigh-
bours. This can cause problems with the zeroth order scheme, which is
no longer shape preserving and in some cases is unstable. These problems
can also occur when the weighting is applied to these central cells. These
cases require special treatment and so this method is not followed here,
since we are seeking a general method.

We can now perform the integrations in equation (3.28) to generate

the usual matrix equation
Ba=1¢. (3.29)

For this method of stencil selection B will generally have more rows then
columns so we will again need to use a singular value decomposition to
find the least squares fit polynomial. In the cases when B is square the
singular value decomposition will find the inverse of B where it exists, as
it does on every occasion in this work. In order to produce stable schemes
we will need to apply weights to both sided of this equation as in the one

dimensional case, giving
Bua=¢, , (3.30)

where the subscript means that the weighting has been applied to these

arrays. We can now find a from
a=V,Y,'Uls, . (3.31)

The vector a defines the polynomial p, in equation (3.27) so we can now
calculate the fluxes and update the advected field.

Since the matrix B depends only on the stencil, V,,X-'UT can be cal-
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Figure 3.4: Diagram showing the labelling conventions used in describing the flux limiter. The arrows

refer to the direction of the flow so T and O refer to inflow and outflow edges of cell k respectively

culated for each cell and the relevant one used for each edge. We then
need only compute equations (3.31) and (3.27) and update the tracer field
at each time step, limiting the fluxes if required. The irregularity of the
grid makes writing down the steps of this process in the same way as in
the last chapter a messy task. These calculations are not shown here but

result in an equation of the form

~

¢ = (Gya) - ¢, , (3.32)

which is similar to equation (2.34) but includes the weighting and with
Gy as a S X K matrix, S being the number of cells in the stencil and K
the number of terms in the polynomial.

The limiter can be applied in the same way as before, the only difference
being in the consideration of the region upstream of the edge. In the

diagram in Figure 3.4, cell A is upwind of edge I1. Cells B and C are also
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in the upstream neighbourhood of I1 if there is flow from these cells into
A. If B is in the upstream region then we must also include D if there is
flow from this cell to B. Cells E, F, G, H and J can also be included in
the upstream region in this way.

There are two other minor differences between this case and that of
the square grid. The first is that performing exact integration is much
less straight-forward on triangles than on rectangles. For this reason
Gaussian quadrature was used to approximate integrals. The orders of
quadrature used here are such that they integrate polynomials of order
up to six exactly. Schemes using higher order polynomials will contain
some extra errors but these do not appear to have a large effect on the
overall accuracy of the schemes.

The second difference is in the representation of the flow fields. These
have been defined in Cartesian co-ordinates and converted before being
used by the scheme. The normal and tangential components of the flow
field have been calculated at the centre of each edge and used as the

values along that edge.

3.4 Test Cases

The same three test cases run on the square grid were used to test the
schemes produced by this method on the triangular grid, a uniform flow,
a rotational flow and a strong deformational flow. These cases have been
chosen for the same reasons as before and so that we can compare results
to see what effect the changes in the method have made to the numerical
solutions. The same error measures have been used with grids of similar

resolution. The grids were set over a unit square domain with equally
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Figure 3.5: The regular and irregular grids used in the test cases on triangular grids.

spaced points along the periodic boundaries, interior points were placed to
give both regular and irregular grids as shown in Figure 3.5. The irregular
grid is formed by moving the points of the regular grid by a random
amount of up to one third of a grid cell in each coordinate direction.
The same measures have been taken in these cases as in the previous
chapter for the same reasons as before. Differences between the set up
of the tests will be noted in each section along with any changes in the
results. As well as comparing the schemes on square and triangular grids,
we can also compare the results on regular and irregular triangular grids.
For a more detailed discussion of the error measures used see Section 2.4
Initial experiments were run to determine a suitable value of the weight
to be applied to the central cell of the stencil. In the same way as in one
dimension, there was a wide range of values for the weights for which
the final solutions were very similar. In this case however, a weighting of
a magnitude of a few hundred was needed to ensure that the generated
schemes were stable. The value of the weight used in all the remaining

work was taken to be 1000. There were no cases where this value appeared
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to be too small to ensure stability or large enough to cause ill-conditioning

of the numerics.

3.4.1 Uniform Flow

For this test case an initial profile was advected by a constant uniform flow
at an angle to the cell edges on the regular grid. Three grid resolutions
were used on a unit square domain, each double the resolution of the
previous one and of comparable resolution to one of the square grids used
previously. The regular grids are 14 x 14, 28 x28 and 56 x 56 square grids
with each square divided into two triangles, giving grids of 392, 1568
and 6272 cells respectively. These also form the basis of the irregular
grids. Due to the increase in the memory required to store the stencils
and their associated arrays these tests have not been run at a resolution
equivalent to the highest resolution square grid. This problem was caused
by inefficient coding and has been rectified for later implementations of
the method.

The flow speed was 2 units per second in the z-direction 1 in the y-
direction, a maximum Courant number of 0.5 was used in either direction.
In order to maintain this Courant number, each doubling of the resolution
requires twice the number of time steps to be used. The profile is advected
twice around the periodic unit domain in the z-direction and once around
in the y-direction in one second. This requires 112, 224 or 448 time steps
on the regular grid depending on the grid size. More steps are required
on the irregular grid since the smaller cells require a smaller time step to
maintain the Courant number.

The initial profile used for this test case was a square step function

defined as unity over 0.25 < z,y < 0.75 and zero elsewhere. This test
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gives an idea of how the schemes cope with sharp gradients in the advected
profile. This profile lines up with the regular grid but on the irregular
grid we must integrate over each cell to find the initial tracer value in
that cell. This was done using the same quadrature routine used within
the method. The integration is therefore not exact and does not give
the same initial conditions on each grid. For the purposes of measuring
the errors, the ’true’ final solution is taken to be the same as this initial
condition on that grid. This means that the errors measured are due to
the advection scheme, not the discretisation on each grid.

Figure 3.6 shows the final numerical solutions for four of the schemes
on the 56 x 56 grid. Plot a shows the result of using a second order
polynomial for the interpolation on a regular grid. This is comparable
with the results of a similar scheme run on an 80 x 80 grid shown in
Figure 2.7. The sharp gradients are not so well maintained in this case
but this is mainly because the grid is better aligned with the profile
in the square grid case. Increasing the order of the polynomial to four
gives the result shown in plot ¢. As in the square grid case the sharp
gradients are better maintained and there are more, smaller oscillations
in the solution. Plot d shows the same order scheme run on an irregular
grid. This shows little difference from the regular grid result except where
the grid does not align with initial condition, seen as unevenness along the
steep gradient. When the limiter is applied to the second order scheme
there is a significant difference from previous results.

A more extreme example of this problem is shown in Figure 3.7. When
the flow is aligned with one of the edges of the triangles there is very little
distortion of the profile. When the flow is at a right angle to that edge

there is significant distortion perpendicular to the flow. These results
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Figure 3.6: Numerical solutions of the advection of a square step around a periodic domain on a grid of
6272 triangles. The order of the polynomial used, the grid type and the state of the limiter are shown

above each plot. Contours at 0.0 and 1.0 are shown as dotted lines
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Figure 3.7: Numerical solutions of the advection of a square step around a periodic domain on a grid
of 6272 regular triangles by a second order scheme with the limiter applied. The direction of the wind

is shown by the arrows on the y-axes. Contours at 0.0 and 1.0 are shown as dotted lines

display the kind of anisotropic distortion that the refinements proposed
in Thuburn [51] were designed to reduce. These refinements acted to relax
the bounds on the inflow and outflow for each cell. On the triangular grid
there will be either one inflow and two outflow edges or vica-versa so the
bounds will be restricted by this 'lack of options” as to where the fluxes
are distributed. This problem is seen, to a greater or lesser extent, in the
majority of tests involving the limiter on the triangular grid. Whilst the
basic scheme would appear to be working satisfactorily on this grid, the
limiter has this serious drawback.

The Ly and L., errors for these schemes are shown in Figure 3.8 in
the same way as the previous chapter. Plot a shows the results of using
these schemes on a regular grid without applying the limiter. As before
there is an improvement in the Ly error as either or both of the order of
the scheme and grid resolution is increased. The smaller errors for the
cases on the coarsest grid are due to the method of measuring the error

not taking into account the fact that the grid cannot resolve the initial
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Figure 3.8: Ly and Lo, error norms for step profile advected by uniform constant flow on regular (top)

and irregular (bottom) triangular grids. Grid sizes are as shown and each order scheme is marked.
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condition as well as other cases.

In all other tests on this and the square grid, the initial step region
was aligned with the grid cells and was thus more accurately resolved.
For this resolution grid the gradient falls in the middle of cells and so is
effectively smoothed in the initial condition. It is this initial condition
that forms the final solution so the schemes are not trying to maintain as
steep a gradient as in other cases. The L., error improves as the order is
increased but increases with the resolution. This is again because of the
changes in the phase error relative to the resolution of the grid.

We have already seen an example of the distortions caused by the flux
limiter, plot b shows the effect this has on the errors. The L., error is
increased by the application of the limiter and increases with the order
of the polynomial, since the limiter is used more for these schemes. The
L, error is also increased significantly over the unlimited schemes for the
higher order schemes though there is sill a decrease as the scheme order
is increased.

The results on the irregular grid, plots ¢ and d, are very similar to those
on the regular grid. The main difference is that both the Ly and L., errors
are a little smaller on the irregular grid. This is again because the grid is
not aligned with the initial condition and so the initial condition does not
contain as sharp a gradient as on the regular grid. This is particularly
noticeable in the L., error where there is now a significant increase in the
error as the resolution is increased. This suggests that this error comes
from the region around the steep gradients and is caused by the phase
error.

We can also decompose the Ly error into diffusive and dispersive parts

in the same way as on the square grid. Figure 3.9 shows this decompo-
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Figure 3.9: Laig and Lgisp error norms for step profile advected by uniform constant flow on regular

(top) and irregular (bottom) triangular grids. Grid sizes are as shown.
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sition applied to the same cases as above. In all cases the zeroth order
scheme is shown to be highly diffusive but the higher order schemes have
a dispersion error significantly larger than the diffusion. The dispersion
error decreases with increasing order but more slowly than the diffusion
error. This suggests that the higher order schemes maintain the steep
gradients more effectively but make little improvement in the phase er-
ror.

Although these results on the triangular grids are not as good in quan-
titative terms as those on the square grid, they are qualitatively very
similar. The behaviour of the schemes as the order is increased and the
greater effect of the limiter on higher order schemes are particularly sig-
nificant features present in both cases. The results for the advection of
a smooth profile by the same flow as the square step behave in a similar
way to the results above and on the square grid. They are not shown here
but they are also quantitatively worse than the square grid cases whilst
being qualitatively very similar.

The computational cost of generating and running these schemes on the
triangular grids is two or three times larger than that of the square grid
tests. This is mainly due to the number of stencils that are being used in
each case. On the square grid there were only seven different stencils over
which a polynomial needed fitting, on the triangular grid there was one
stencil for each grid cell. The computational cost of running the schemes,
ignoring the cost of their generation, depends only on the number of edges
and the number of cells in each stencil. There are roughly % the number of
edges on the triangular grid compared to a similar resolution square grid
but there will be a few more cells in the stencil of a method of comparable

order.
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3.4.2 Rotational Flow

For this test case an anti-clockwise solid body rotation was applied to an
initial profile of a split cylinder in the same way as in Section 2.4.2. The
rotation speed was 27 times the distance from the centre of the rotation
so the solution after one second was the initial distribution. The same
grids as used in the previous section were again used for this test. The
time step was chosen to give a maximum Courant number of 0.5 across
any edge of the grid. The final numerical solutions for the region around
the cylinder from four of the schemes are shown in Figure 3.10

The first of these plots shows the result of using a second order scheme
on a regular grid without the limiter. The slot shows a significant amount
of filling and there is some erosion of the bridge. This scheme also displays
the usual spurious oscillations and negative values that we have seen in
other cases. Plot b shows the resulting solution when the flux limiter is
applied to the fluxes generated by this scheme. This has removed the
spurious oscillations and negative values but has caused more filling of
the slot and erosion of the bridge. The solution does not show any of
the anisotropic distortion that was seen in uniform flow case, most likely
because the flow is rotational and there is no single direction in which
the profile is stretched. Increasing the order of the scheme to four gives
the result shown in plot ¢. As before, the steep gradients are better
maintained and there are more, smaller oscillations. This leads to less
filling of the slot and better maintenance of the bridge. Using the fourth
order scheme on the irregular grid gives a solution very similar to the the
one on the regular grid.

Figure 3.11 shows the Ly and L. norms for all cases on the regular
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Figure 3.10: Numerical solutions of the advection of a split cylinder by a solid body rotational flow.
The order of the polynomial used, the grid type and the state of the limiter are shown above each plot.

Contours at 0.0 and 1.0 are shown as dotted lines. Only the region around the cylinder is shown.
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Figure 3.11: Ls and L, error norms for advection of a split cylinder by a rotational flow on regular

(top) and irregular (bottom) triangular grids. Grid sizes are as shown and each order scheme is marked.
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and irregular grids run with and without the limiter. On the regular
grid without using the limiter the Lo error behaves as in previous cases,
decreasing with increases in the scheme order and grid resolution. On
the coarsest grid the L., error and Ly error are very similar, a result of
severe diffusion of the advected profile which loses almost all of the split
cylinder shape. This is the case for zeroth order schemes on all grids
but at higher resolutions the L., errors is significantly larger than the L
error. The two error measures do behave in a similar fashion as the order
of the schemes and resolutions of the grid are increased.

The results for schemes run without the limiter on the irregular grid
(plot ¢) are very similar to those on the regular grid. The main difference
is that the L., errors are larger than on the regular grid, most likely
because of the variation in cell sizes. When the limiter is applied to these
schemes (plots b and d) the observed trends are barely altered. There is a
general increase in the values of these error measures over the un-limited
versions but the trend is still for reduced errors with increased resolution
and order.

The diffusion and dispersion errors also behave in a similar fashion to
the uniform flow test case. These errors are shown in Figure 3.12 for the
regular and irregular grids, with and without the limiter. For the zeroth
order cases, the diffusion error is comparable in size to the dispersion
error. As the order of the polynomial is increased the diffusion error
decreases more rapidly than the dispersion error. The diffusion error is
insignificant compared to the dispersion error for all but the lowest order
schemes and those on the coarsest grid. When the limiter is applied to
these schemes, the order of the scheme must be above two before this

distinction can be made.
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Figure 3.12: Lgg and Lgisp error norms for a split cylinder advected by a solid body rotational flow on

regular (top) and irregular (bottom) triangular grids. Grid sizes are as shown.
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Once again these results have a very similar form to those of the square
grid and to those of the uniform flow test case. In this case the values
of the error measures are a little better than on the square grid. This is
again because of the way in which the initial conditions were set up in
this case. Integrating the specified initial condition over each cell led to
some smoothing of the sharp gradient in the initial condition and thus

the ’true’ solution.

3.4.3 Deformational Flow

This case is set up in exactly the same way as for the square grid test. A
flow field of 16 self contained, counter rotating vortices is used to advect
the initial profile of a cone of height one unit over a domain 100 units
square. The initial condition is only non zero over the six central vortices
so the solution should be zero over the remaining vortices for all time.
The initial profile is stretched out by the vortices and is wrapped around
the centre of each vortex 50 times in time T = 2637.6 seconds. We would
only expect to accurately model the the flow over a short time period of
one or two rotations. After this time we would only hope to model the
general features of the solution.

Figure 3.13 shows the short time behaviour of three schemes on regular
triangular grids. The three schemes are a second and fourth order scheme
on the 6272 cell grid and a second order scheme on a 25088 cell grid, all
use the limiter. These results improve slightly for the fourth order scheme
when compared to the second order scheme on the coarser grid, the results
on the refined grid are much better than both. This was also the case on
the square grid but there is an important difference in the results in this

case.
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Figure 3.13: Short time results of the deformational flow test case. The plots are arranged as follows:
a-b 6272 cell grid, second order. c-d 6272 cell grid, fourth order. e-f 25088 cell grid, second order. a,c,e:
t = 17(;—0. b,d,f: ¢t = %. All schemes have been used with the flux limiter and the x, y and z-axes have

the same scale in each plot.
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The results on the triangular grid are not symmetric in this case. The
flow field and the initial conditions are symmetric and so should be the
solution. The triangular grid does not share these symmetries and so
neither do the solutions. Even with this difference we would expect the
results to be more symmetric than they are. The reason for the asym-
metry in these solutions is the anisotropic distortion caused by the flux
limiter. This is only manifest when the flow is at an angle to the grid and
so there have been different amounts of distortion over each vortex.

The effect of this distortion over the longer time period can be seen in
Figure 3.14. After one rotation around the vortex we have still managed
to capture the features of the flow with a streamer of tracer being wrapped
around the vortex. This streamer is broader than it should be however
and this can be seen in the profiles at later times. After five rotations
around the vortex at 7/10 we have lost all features of the tracer field.
The only feature of the model that is 'correct’ is that none of the tracer
has crossed between vortices. The ‘eggcup’ profile is not visible in any of
the profiles at time % or later.

The results for this test on the irregular grid are very similar to those
of the regular grid and are not shown here. On the irregular grid pre-
viously described the grid does not align exactly with the boundaries of
the vortices. This will allow tracer to ’leak’ from the central vortices into
neighbouring ones in which there should be no tracer. In order to prevent
this, an irregular grid was generated from the regular one by perturbing
only the nodes that were not on the boundaries between the vortices.

The axes and contours are the same in figures 3.13 and 3.14 as in

figures 2.14 and 2.15 for the square grid case so a direct comparison can

be made between the results. These results do not compare well with
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Figure 3.14: Long time results of the deformational flow test case. The plots are arranged as follows:
First row 6272 cell grid, second order. Second row 6272 cell grid, fourth order. Third row 25088 cell
grid, second order. First column, ¢ = ST—O. Second column, ¢ = 1T_0' Third column, £ = 7. All schemes
have been used with the flux limiter. Filled contours are at intervals of 0.05 and dashed contours as

labelled.
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those of the square grid, there is much more smoothing of the profile in
all cases on the triangular grid. This smoothing is mainly caused by the
flux limiter on the triangular grid but there may also be a contribution

from the size and shape of the grid cells.

3.5 Summary

The method developed in the previous chapter has been adapted for use
on triangular grids. This adaption was made by changing the way the
polynomial is fitted over the region around each face. This was necessi-
tated by the method of selecting stencils so as not to require the stencils
to change whenever the flow changed. This in turn was desirable in order
to keep down the computational cost of the scheme.

This method can now be applied to any grid on the plane. It may be
possible to find different ways of selecting stencils on other grids as we
did on the square grid. This may be of benefit to the schemes but neither
this change nor any others should be required for the method to work.
The accuracy of the schemes on other grids cannot be assured but the
tests run so far show that the behaviour of the schemes varies little on
different grids.

The test cases run using this new method of fitting the polynomial
showed little difference in the behaviour of the schemes from the previ-
ous method as the grid resolution and scheme order was changed. This
suggests that the problem is in some sense well posed since fitting poly-
nomials in two different ways, and finding two different polynomials, has
little effect on the overall behaviour of the solution.

The loss of accuracy in the test cases run with this method may be
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due to a number of factors. The two most likely reasons are the two
things to have changed significantly from the last case, the method and
the grid. The stencil is broadly similar to that used in the previous case
but the method of fitting the polynomial is different. Results in the
one-dimensional case showed that there was very little difference between
exactly fitted polynomial and one of the same order fitted over one extra
cell. This suggests that the reason for the loss in accuracy was due to the
different grid used in this case.

The flux limiter displayed significant difficulties in coping with flows
at an angle to the triangular grids. This caused a significant loss of ac-
curacy in many cases where the limiter was used. These problems were
not present on the square grid and they have not been observed on other
grids (e.g. the icosahedral-hexagonal grid of the next chapter). This sug-
gests that there is a specific problem for the limiter with triangular grids.
This should not concern us unduly since we are only using this case as
a stepping stone to look for ideas for extending the method to unstruc-
tured spherical grids. There are many more successful shape preserving
schemes that can be applied to triangular grids.

More evidence to implicate the grid as the cause of the loss in errors
might be found by returning to the square grid and selecting stencils and
fitting the polynomial by the methods of this chapter. Another way is
to use this method on other grids to see whether the results are more
like those of the triangular or square grid cases. It is this second method
that we shall follow in the next chapter by applying the method to an
icosahedral-hexagonal grid on the sphere. The reason for making this next
step is that the meteorological problems we wish to tackle are defined in

a spherical geometry.
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Chapter 4

Icosahedral-Hexagonal Grid on the
Sphere

4.1 Introduction

The method of generating advection schemes that was applied to trian-
gular grids in Chapter 3 can be applied to any grid on a plane without
further adaptions. We wish to use these schemes in meteorological ap-
plications so we must also be able to apply the method to grids on the
sphere. The basic method can be applied on the sphere but it will require
the polynomials and integrals to be found in spherical coordinates. This
does not require any adaptions to be made to the method itself but will
require changes to the application of the method. Since the polynomials
will have a slightly different form on the sphere, so will the matrices based
on their integrals over the cells. This in turn will lead to later parts of
the method requiring different forms also.

As this method is based on a local approximation to the tracer field
over a stencil around each cell it is straightforward to simply approximate
this region as a plane. Provided the region is small, i.e. it contains only
a small proportion of the total number of cells, we might expect this ap-

proximation to create only a small additional error. Before trying this on
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the sphere we will begin by looking at what effect this has in one dimen-
sion by projecting the circle onto a line in Section 4.2. In Section 4.3 we
will take a closer look at the icosahedral-hexagonal grid before applying
the method to this grid in Section 4.4. The results of some test cases are
presented in Section 4.5. The suitability of the method for inclusion in a
more complex model is discussed in the final section, Section 4.6, before

the method is applied to a shallow water model in the next chapter.

4.2 One Dimensional Advection on a Circle

We have already looked at how to apply this type of method to irregularly
spaced grids in one dimension in chapters 2 and 3. In this case the grid
will be defined on a circle by a regular angle, Af, giving cells of uniform
arc length, rAf where r is the radius of the circle, though this need not
be the case. We can select a stencil over which to fit a polynomial in the
same way as before. We choose N + 1 cells centred either on the edge of
interest or the cell upwind of it which are projected onto a line before we
fit an N'" order polynomial over them.

Figure 4.1 shows two ways in which the circle can be projected onto
the line. The line has been defined as the line through the two points
that form the edges of cell 0. Cell 0 is the central or upwind cell of the
stencil so we shall have a different line for each cell. The width of this

cell, Az, is found using the cosine rule

Azg = 3/2r2(1 — cos Af) . (4.1)

Az will have a length that depends on the way in which we project the

circle onto the line. If we project along the normal to the circle at the
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A.Tl Axo Axl

Figure 4.1: Projecting the circle onto the sphere. The distance Az depends on the method of projection
(i. or ii.) and the angle Ag.

edge (method i.) then Az is given by
cos (2)

cos (22)

A.Z‘l = Axo (42 1)

If we project the edge in the direction normal to the line (method ii.)

then
Az = Axgcos (AF) . (4.2 ii)

In general, if method i. is used to project each edge

oS <(2n—21)A6>

Az, = AIBOCOS <(2n+21)A9) )

(4.3 1)

and if method 1ii. is used
Ax, = Axgcos (nAf) . (4.3 ii)

We can see from these equations that Az, — Az, as Af — 0, so we
would expect the error introduced by this approximation to decrease as

the resolution is increased.
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If we follow the same method as in Section 2.2, using a second order

polynomial and a Courant number of one half, then the equation for the

flux (2.16) has the form

g = T 2(A0) 61+ (44 12/(A0) +8/(A) 60 + (1 =2/(A)) 61—,
4f(A0) (T + F(A0)) (1 + 2/ (A0)) o

where the function f(A#) depends on the method of projection. The

function f takes the following forms,

f(Af) =1 where Az, =rA# (circular case)
(4.5)
(2n—1)Af
oS .
f(Af) =cos a0 sec 340 where Az, =Ax < ’ )
2 2 oS <(2n+1)A6)
2
(4.5 i)
f(Af) =cos(AF) where Az, =Axgcos(nAf) . (4.5 i)

Some percentage errors in the coefficient of the known ¢-values are given
for both methods of projection in tables 4.1 and 4.2. The correct value
for each coefficient is taken as the coefficient from the uniform grid case.

These tables show that both methods of projecting the circle on to the
line are second order accurate as the resolution is increased. Method 1. is
about twice as accurate as method ii. when using a second order polyno-
mial but the errors are similar when using a fourth order polynomial. In
both cases the accuracy is lower when using the higher order polynomial.
This is partly because the stencil is wider for the higher order case so a
greater approximation has been made. Overall the errors are small, less
than one percent for grids with a Af of 2°. This suggests that either
method of projection is suitable for the orders of polynomials and grid

resolutions that we will be using in two dimensions. Before applying this
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Percentage error in coefficients
Af Method 1i. Method ii.

b-1 | 9o o b_1 | oo o
10°11.542710.0000(1.542710.7654 [0.0000|0.7654

5° 110.3820(0.0000(0.3820 | 0.1906 |0.0000|0.1906

2°110.0610(0.0000(0.0610 | 0.0305{0.0000|0.0305

1°110.0152|0.0000{0.0152|{0.0076 |0.0000|0.0076

Table 4.1: Percentage errors for the coefficients of a second order scheme found by projecting the circle

onto the line. The errors in the coefficients of ¢g are zero to machine accuracy

Percentage error in coefficients

AB Method i. Method ii.

b2 | ¢-1 | o b1 G2 || P2 | P-1 | o b1 b2
10° |16.7171 |2.5420 | 0.0000 | 2.5420 |6.7171 || 6.8308 | 1.9904 | 0.0000 | 1.9904 | 6.8808
5° ||1.6570 |0.6261 [0.0000 [0.6261 |1.6570 || 1.6671 |0.4878 |0.0000 |0.4878 | 1.6671
2° 110.26420.0998 |0.0000 |0.0998 |0.2642 ||0.2644 |0.0776 | 0.0000 |0.0776 |0.2644
1° |0.0660|0.02490.0000 |0.0249 |0.0660 || 0.0660|0.0194|0.0000 |0.0194 [0.0660

Table 4.2: Percentage errors for the coefficients of a fourth order scheme found by projecting the circle

onto the line. The errors in the coefficients of ¢g are zero to machine accuracy
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approximation and our method to the sphere we shall take a closer look

at the grid that we will be using.

4.3 Icosahedral-Hexagonal Grid

The icosahedral-hexagonal grid was first introduced as a near-uniform,
spherical grid by Sadourny et al. [39] and Williamson [58]. These au-
thors produced models of the barotropic vorticity equation on this grid
in 1968. Until recently, little use has been made of the grid in meteo-
rology when compared to the widely used latitude-longitude grid. The
grid has been used for integrations of the shallow water equations by
several authors, Masuda and Ohnishi [30], Heikes and Randall [10, 11]
and Thuburn [53]. More recently an operational numerical weather pre-
diction model has been developed at Deutscher Wetterdienst [29] us-

ing an icosahedral-hexagonal grid. A climate model using a modified

icosahedral-hexagonal grid is currently under development by Tomita et al.

The grids used by these models have all been called icosahedral-hexa-
gonal grids though they do contain some subtle differences. The me-
thod of grid generation described here and used in tests of the advection
schemes is also slightly different from these methods. These differences
and the suggested reasons for them will be explained along with the me-
thod.

All methods begin with a regular icosahedron constructed with its
twelve vertices on the surface of a sphere, shown in Figure 4.2 a. For
simplicity we shall place two vertices at the poles so that half the remain-
ing vertices lie spaced at 72° intervals on latitude circle 26.565°N and half

similarly in the southern hemisphere. Each vertex is surrounded by five
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a) b)

d)

!
SN

Figure 4.2: Generating the icosahedral-hexagonal grid. a) The icosahedron in a unit sphere. b) Each
edge of the icosahedron is bisected and the new nodes projected onto the sphere. ¢) Grid 2, the dual
of grid b, aka. the Bucky ball. c) Grid 6, the dual grid after five successive bisection-projections of the

icosahedron. Pentagonal cells are shaded, all other cells are hexagonal
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equilateral triangles so the dual of this grid is made up of twelve regular
pentagons, a regular dodecahedron.

The dual grid is found by using the vertices on the sphere as vertices
to form a Voronoi grid. Each Voronoi cell is defined as the collection of

points p, on the sphere S, that are associated with vertex Vj by
{lp = Vil <lp—Vi| VpeS &le{l,2,--- . N}\{k}} . (4.6)

where |- — -| is the great circle distance between two points on the sphere.
This means that each cell is associated with a grid point and is made up of
the region that is nearer to that grid point than any other. The edges of
each cell are made up of points equidistant from two grid points and form
the perpendicular bisector of the great circle arc between those points.
The vertices of the dual grid are equidistant from three grid points and
fall at the centres of the triangles on the original grid.

The twenty equilateral triangles that make up the icosahedron can be
divided up in a number of ways to form similar spherical grids. Willi-
amson [58] and Sadourny et al. [39] divided these triangles into as many
smaller triangles as required on each plane face and then radially pro-
jected all the nodes onto the sphere, Figure 4.2 b. The nodes can then
be joined by arcs of great circles to form triangular cells if required. The
dual of this grid is shown in Figure 4.2 c.

Heikes and Randall [10, 11] suggest that a more even spacing of grid
points is achieved by projecting points onto the sphere between each
subdivision of the edges. Each of the twenty edges of the icosahedron
is bisected and the new points are projected radially onto the sphere.
This forms a grid of 80 triangles and 120 edges, each of which is again

bisected and the new points projected onto the sphere. This procedure of
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bisection and projection can be continued to form a hierarchy of triangular
grids on the sphere, the dual grid of each of these triangular grids forms
another in the hierarchy of icosahedral-hexagonal grids used in this work.
The new vertices added to the grid are each surrounded by six triangles
and so are associated with hexagons on the dual grid. There are still
twelve pentagons at the vertices from the original icosahedron. The dual
grid formed after five successive bisections and projections is shown in
Figure 4.2 d, five of the twelve pentagons can be seen still showing the
underlying icosahedron.

This grid is not symmetric about the equator and because of this nu-
merical results will not be symmetric when symmetric conditions are
used. Heikes and Randall [10, 11] suggest rotating the southern hemi-
sphere through 36° after the first subdivision of the triangles to create a
symmetric grid. This 'twisted icosahedral grid’ is not used here since the
earth and its atmosphere are not symmetric, though some of the later
test cases are. The grids described so far each have double the resolution
of the previous grid in the hierarchy. Another possible adaption of this
method of grid generation was suggested by Majewski et al. [28]. An ini-
tial trisection of the edges of the icosahedron, followed by projection and
bisections, generates grids with resolutions between those in the original
hierarchy.

The spatial operators that Heikes and Randall use on their grid in [10]
are not consistent as the cell size goes to zero. This is an artifact of the
mid points of the edges and the arcs between cell centres not coinciding.
In order to remove this inconsistency the grid was 'tweaked’ by minimising

R = Z Z it (4.7)

cells edges
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where 7; is the distance between the midpoint of an edge and the midpoint
of the arc joining the centres of the two cells. Heikes and Randall [11] give
a more detailed explanation of the problem and its solution. This adap-
tion is included in the grid used in this work with a slight modification.
Instead of solving the global minimisation problem, each new grid point
is 'tweaked’ in turn and the process is repeated over the globe for twenty
iterations at each grid refinement. This grid gives the same results for
the test cases used by Heikes and Randall using their numerical schemes.

In this way we have a hierarchy of grids based on the number of subdi-
visions performed. Grid 1 is defined as a dodecahedron, grid 2 is the grid
formed by one subdivision and so on. The number of cells Ngpx, edges

Nepgr and vertices Nygppr on each grid are related to the grid number

Nerip by
Npox =5 x M +2 (4.8)
Nepgr =15 x M (4.9)
Ny e =10 x M (4.10)

where M = 22Nemo—1) = Qther properties of the grid are shown in ta-
ble 4.3. These are the same properties shown in Table 1 of each of Heikes
and Randall [10, 11] and Thuburn [53]. Comparing these tables shows
that tweaking the grid equalises the areas of the grid cells but increases
the variation in the distance between cell centres. This is likely to be
beneficial in a cell based finite volume scheme but detrimental to a grid
point scheme.

Williamson [58] suggested that it was beneficial for the distances be-
tween grid points to vary smoothly. Majewski et al. [28] also blame ’local

grid nonuniformity’ for reducing the slope of the infinity norm for their
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Nerip | Nox NEQ Ausve (km2) % dave % TEQUIV CEQUIV
1 12 - | 4.251x107 | 1.000 | 7053.9 | 1.000 | T2-T3 | 60-90
2 42 10| 1.215%107 | 0.884 | 3765.0 | 0.881 T6 40
3 162 | 20| 3.149x10° | 0.914 | 1916.2 | 0.813 T12 20
4 642 | 40| 7.945x10° | 0.937 | 962.4 | 0.791 T24 10
5 2562 | 80 | 1.991x10° | 0.935 | 481.7 | 0.787 T50 5
6 10242 | 160 | 4.980x10* | 0.929 | 240.9 | 0.785 | T100 2.5
7 40962 | 320 | 1.245x10* | 0.926 | 120.5 | 0.784 | T201 1.25

Table 4.3: Properties of the tweaked icosahedral-hexagonal grids. Ngrrp is the grid number within the
hierarchy of grids, Ngox is the number of cells on the grid and Ngg the number round the equator. A
and d represent the area of cells and the distance between the centres of neighbouring cells respectively.
The suffix av g refers to an average value over the whole grid whilst arax and arrn refer to maximum
and minimum values. TrgQurv 1s an approximate equivalent spectral truncation based on the number
of degrees of freedom. opgurv is an approximate equivalent resolution on an n° x n° grid based on

the number of grid cells

Laplace operator. A measure of the uniformity of the cell sizes is shown
in table 4.4 which shows the average and extreme ratios of the sizes of
neighbouring grid cells. This table shows that the sizes of neighbouring
cells varies more smoothly as the grid resolution is increased on both the
tweaked and un-tweaked grids. The largest difference in the size of neigh-
bouring cells over the whole grid does not show an improvement as the
resolution of the un-tweaked grid is increased. In contrast, this measure of
the largest variation in cell sizes shows an improvement as the resolution
is increased on the tweaked grid. This shows us that tweaking the grid
acts to smooth the variations in cell sizes but does not tell us how this
will effect our numerical results. To test this we must adapt our method

and apply it to these grids.
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Untweaked grid | Tweaked grid
N, Ar Ar Ar Ar

GRID | Ajave | A mIN | A AvE | AT MIN

1 1.000 | 1.000 || 1.000 | 1.000

2 0.941 0.884 | 0.942 | 0.884

3 0.949 | 0.902 | 0.978 | 0.931

4 0.960 | 0.895 | 0.990 | 0.944

5 0973 | 0.895 | 0.995| 0.944

6 0.983 | 0.895 | 0.997 | 0.945

7 0.991 | 0.895 | 0.998 | 0.949

Table 4.4: Relations between neighbouring grid boxes on icosahedral-hexagonal grids. Nggrrp is the
grid number within the hierarchy of grids. A represents the area of cells. 4y g refers to an average value
over the whole grid and 7y refers to the minimum value. ; and ; refer to the largest and smallest of

a pair of neighbouring cells respectively.

4.4 Generating Advection Schemes on the Sphere

We can easily apply the method described in the last chapter to these
icosahedral-hexagonal grids if we can overcome the problem of the spher-
ical geometry. The results of projecting the circle onto a line in one
dimension in Section 4.2 suggest that we can do this by projecting the
cells in the stencils onto a plane. The only other part of the method that
we need to consider again is the selection of a stencil. This could be done
in the same way as before though this can lead to large numbers of cells
being added at the same time. Instead a slightly adapted method is used
on this grid.

The method begins as before by selecting a stencil for each edge of the
grid. We again select a stencil for each cell and use the stencil for the

cell upwind of each edge. Each stencil begins with the cell that we are
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finding a stencil for and (for all but the zeroth order scheme) the five or
six surrounding cells. On the triangular grid we continued adding cells
that shared one or more edges with cells already in the stencil. In this
case we are going to restrict the number of cells added at one time by
only adding cells that share two or more edges with those in the stencil.
This reduces the number of cells that are added at one time and makes
stencils more compact, reducing the error when the stencil is projected
onto the plane. An example of this method of selecting the stencil on a
hexagonal part of the grid is shown in Figure 4.3

Next we form the matrix B in the same way as before by integrating a
general polynomial over each cell in the stencil but first we must project
the stencil onto a plane. The plane we use is any one tangent to the
sphere at the centre of the central cell in the stencil. This is simple to
do by rotating the sphere in three dimensions so that the radius through
the centre of the cell lies along the z-axis. Projecting the nearby points
onto the plane by method ii. is then done by using only the x and y
coordinates, ignoring the z coordinates altogether. If method i. is to be
used for projection then a specific z-coordinate of the plane would need
to be chosen. We shall be projecting using method ii. since there appears
to be little difference between the projections and it is the simpler one.

In mathematical terms the local coordinates are found by,

COSACOSp cosAsing —sin A x !
—sin @ COS @ 0 y | =1V ; (4.11)
sinAcos@ sinAsing  cos A 2 0

where A and ¢ are the latitude and longitude of the centre of the central
cell, , y and z are the coordinates of a point on the sphere in three

dimensions and 2’ and y’ are the associated coordinates on the plane.
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Figure 4.3: Examples of the stencils chosen over which to fit the desired polynomial. The numbers
shown are the order of the polynomial for which the cells will need to be added to the stencil. These

stencils would be used for the bold edge since the central cell is upwind of this edge.
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We can now integrate a general polynomial over the cells projected
onto the plane and apply a weighting to form B. As before the weighting
can be over just the central cell or this cell and neighbouring ones. Just
as on the triangular grid, whenever the magnitude of the weighting of the
central cell is above a few hundred there is little difference between the
results for either case. A weighting of only the central cell by a factor of
1000 is used in these cases and there was no need to alter this for any of
the tests that follow.

Next we find the singular value decomposition of the B’s and combine
these with the integral of a general polynomial over the regions swept
across the corresponding edges, as before. This integral is found on the
same projection as the corresponding matrix B was formed. This gener-
ates the matrix G, the same as in equation (3.32), which is used along
with the Courant numbers (a), to calculate the flux of the face and the
weighted cell average concentrations of the advected quantity (¢,,).

Performing exact integrations on this grid is no easier than it was on
the triangular grid. The easiest way to perform integrations over the
pentagons and hexagons of the grid is to divide them into three or four
triangles and use the same quadrature rules as before. This is slightly
more computationally expensive but much simpler than finding quadra-
ture rules for pentagons and hexagons.

The flux limiter works in the same way as on previous grids. The
upwind region in this case is given by the cell upwind of the edge, cell A
in Figure 4.3. The two cells that share an edge with this cell and a vertex
of the edge (labelled B) will also be in the upwind region if there is flow
from them across the shared edge. With these changes to the method

in place we can now apply the generated schemes to some test cases to
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check that we have not altered their behaviour.

4.5 Test Cases

The flow used for advection test cases on this grid is that of constant
solid body rotation. This is similar to previous tests on other grids and
to the first test suggested by Williamson et al. [59] for testing numerical
methods for the shallow water equations. These test cases will be referred
to as the Williamson test cases and indexed by their numbers in [59]. Two
initial conditions have been used, a square step and a cosine bell. The
tests using a square step initial condition have been run and measured
in the same way as in previous chapters. The cosine bell condition is
the first of the seven Williamson test cases and the errors are measured
as suggested by the authors. The first test we shall run with the step
profile is to use one scheme and to alter the angle of the flow relative to
the equator. The second test we shall use involves altering the order of
the polynomials and grid resolution used to find the relationship between
cost and accuracy as with the previous grids. The f inal test we shall use
here is Williamson test case 1, advection of a cosine bell over the pole.
Before beginning these tests we need to define the wind fields on the
icosahedral-hexagonal grid. This grid does not have any natural coordi-
nate directions so we have several choices as to how to specify a wind
field. We could simply store the wind field at the edges, cell centres or
vertices using any coordinate system of our choice. In order to maintain
independence from a coordinate system we can store the tangential and
normal components of the wind at each edge. These components can be

found easily from a streamfunction, v, defined at the cell centres. The

122



difference between cell centres is used to find the tangential component,
the values at the vertices are found by interpolation and then differenced
to find the normal component of the wind. For some test cases there will
also be a divergent component of the wind which can be found from a

velocity potential, y, in a similar way.

4.5.1 Flow angle dependence

Many numerical schemes that use dimensional splitting for two dimen-
sional flows also have a dependence on the angle of the flow compared to
the grid. With an evenly spaced grid and a two-dimensional advection
scheme there should be little dependence of the numerical solution on the
angle of flow. On a regular latitude-longitude grid advection around lat-
itude circles is performed at a constant resolution around each latitude.
Advection over the poles is performed over a grid of variable resolution
around each circle of constant wind speed. These differences will lead to
different numerical results, their significance depending on the numerical
method being used. On the icosahedral-hexagonal grid the grid spacings
are uniform in all directions so we would not expect this difference to
occur.

In order to test if there is any flow angle dependence in the numerical
solutions of this scheme we shall run tests with the same initial conditions
and a constant rotational flow at different angles to the grid. The initial
condition is defined as being one in the region —15°< A, ¢ <15° and zero

elsewhere. The winds are given as

u =ug (cos p cosa + sinp cos Asina) (4.11,)

v=—wupsinAsina , (4.11,)
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where « is the angle of the flow relative to the equator. These are defined

in the model in terms of streamfunction and velocity potential,

Y = — aup(sin @ cos a — cos A cos @ sin «)

(4.12,)

J

x =0 . (4.12,)

The model is run with realistic Earth values for parameters, including
the radius of the sphere, gravitational acceleration and rotation rate of
the sphere, though these have no effect in this case. ug is chosen so as to
advect the profile once around the globe in twelve days and has a value of
ug = 2ma /(12 days), around 40 ms~!. Flows used are around the equator
(o =0°), across the poles (« =90°), at a large angle to a latitude-longitude
grid (v =45°) and a small angle to a lat-long grid (« =0.05°).

Figure 4.4 shows the results of applying a second order scheme and the
flux limiter to these conditions on grid 6. The four plots show that there
is no significant difference between the numerical solutions in each case.
This shows that the errors generated are independent of the direction of
the flow relative to the grid orientation. These results also show that we
do not have the same problems the limiter caused on the triangular grid.
There is no noticeable anisotropic distortion caused by the limiter or the

grid. Similar results were found using other schemes generated by this

method.

4.5.2 Order, accuracy and computational cost

In order to investigate the relationship between the order of the schemes
and the accuracy and computational cost, schemes of increasing order
have been applied to one case. The same step initial condition as in

the previous test was used along with the rotational flow that takes the

124



Figure 4.4: Numerical solutions of the advection of a step region around a sphere at an angle « to the
equator. The numerical scheme uses a second order polynomial and the flux limiter on grid number 6.

The contour interval is 0.1 and contours at 1 are dashed.

profile across the poles (« =90°). This test was run on grids 5, 6 and 7
using schemes based on zeroth to sixth order polynomials both with and
without the flux limiter. The same error measures as in previous chapters
have been used to measure the error with the CPU runtime is taken as
the measure of the computational cost.

Figure 4.5 shows a selection of the solutions generated by these schemes.

Using a second order scheme without the limiter on grid 6 gives a solution
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Figure 4.5: Numerical solutions of the advection of a step region around a sphere across the poles. The

terval is 0.1 with contours at 0

tour in

grid, order and limiter used are given above each plot. The con

and 1 as dashed lines.
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which shows a smoothing of the sharp gradients and unphysical oscilla-
tions. When the limiter is used in conjunction with this scheme the
oscillations are removed and there is little further smoothing of the sharp
gradients. If the limiter is not applied but a fourth order polynomial is
used then the steep gradients are better maintained. The higher order
polynomial does however introduce more oscillations into the solution. If
the resolution of the grid is increased instead of the polynomial order the
improvements in the solution are similar. The sharp gradients are better
maintained and more, smaller oscillations are introduced into the numer-
ical solution. These relationships between the orders and the features of
the numerical solutions are the same as in the tests run on other grids in
previous chapters.

Figure 4.6 shows the same error norms as for previous cases for all
orders of polynomials on grids 5, 6 and 7. The schemes again behave in a
very similar way to previous cases using other grids. Without the limiter
the Ly and L, errors decrease as higher order polynomials are used and
the grid resolution is increased. The changes in the L., error at different
resolutions are mainly due to the slightly different representations of the
initial conditions on the different grids. When the limiter is applied the
oscillations generated by these schemes are removed at the expense of
lessening the sharp gradients. The effect of removing the oscillations
outweighs the lessening of the gradients, in terms of the Ly and L. errors
for low order schemes. For schemes of order four and higher the lessening
of the gradients is greater than the accuracy gained from the removal of
the oscillations.

Decomposing the square of the Lo error into diffusive and dispersive

components also shows that the results are similar to tests on other grids.
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Figure 4.6: Error norms for the advection of a step profile around a sphere across the poles.

For all but the zeroth order scheme the diffusion part is an order of
magnitude or more smaller than the dispersion error. Both parts of the
error decrease as the order is increased when the limiter is not used.
When the limiter is applied these errors do not reduce significantly when
schemes above third order are used.

When the CPU runtime is compared to these measures of accuracy
we can see how the two are related. As in previous cases increasing the

resolution or the order of the scheme increases the computational cost
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and generally improves the accuracy of the scheme. The improvement
in the error is large compared to the increased computational cost for
schemes up to and including third order. Increasing the order of the
scheme beyond this does improve the accuracy but also increases the cost
disproportionately. These higher order schemes may still be more cost
effective than increasing the resolution of the grid since this can only be

done in large increments.

4.5.3 Test Case 1: Advection of a cosine bell over the pole

This is the first of the seven Williamson test cases for numerical ap-
proximations to the shallow water equations in spherical geometry. It is
included here since it is a test that involves only pure advection. The
shallow water model that is used is described in the next chapter. The
model is run in this case with the same wind field prescribed at each time
step so that only the advection part of the model is used. The method
for generating advection schemes that has been developed in this work
has been incorporated into this model.

The test is the advection of a smooth cosine bell of radius R = a/3

once around the sphere at various orientations of the advecting winds.

The cosine bell is defined as

W) = % (1 + cos (%)) r<nR (419
0 r>R
where hy = 1000m and r is the great circle distance of (A, ¢) from
(Aey 0e) = (37/2,0):
r=acos” ' (sinp,sin A + cos . cos p cos(A — A,)) . (4.14)

The wind field is the same as that used for the two previous test, defined
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by equations (4.12).

Like all the later tests with the shallow water model, four different
advection schemes are used. The original scheme of Thuburn [52] is used
on the tweaked grid to check that the new grid does not significantly
change the solution. A second order scheme is used on grid 6 for a direct
comparison with the original scheme. A fourth order scheme is also used
on grid 6 to investigate the effect of improving the advection scheme. A
second order scheme is also used on grid 7 to compare the accuracy and
computational cost with the fourth order scheme in the lower resolution
grid. The flux limiter is used in all cases.

Figure 4.7 shows the numerical solution for each scheme (solid con-
tours) along with the true solution (dashed contours). For the second
order scheme on grid 6 there is a significant amount of spreading of the
cosine bell and the phase speed is slightly slower than that of the true
solution. When the order of the polynomial is increased to four there is
a lot less spreading of the profile but the phase speed is still a little slow.
The peak value of the cosine shape is also better maintained in this case.
The same observations can also be made of the second order scheme run
on grid 7. It should also be noted that this solution was computationally
more expensive to obtain than using the higher order scheme on the lower
resolution grid. These features can also be seen in the difference between
the true and numerical solutions shown in Figure 4.8.

Figure 4.9 gives the L, , Ly and L., errors for each scheme. The errors
for the second order scheme on grid 6 are very similar to those of the
original advection scheme used in this model. This scheme was based
on a different method of interpolating a second order polynomial over six

cells, so the similarity is reassuring in that both methods make reasonable
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grid=7, original scheme grid=6, order=2

Figure 4.7: Numerical (solid) and exact (dashed) solutions for test case 1 with @ =90°, advection across

the poles.
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grid=7, original scheme grid=6, order=2

grid=6, order=4 grid=7, order=2

Figure 4.8: Difference between numerical and exact solution for test case 1 with o =90°, advection

across the poles.
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Figure 4.9: Error norms for the same four schemes using test case 1 with a =90°, advection across the

poles.
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approximations. Increasing the order of the polynomial to four reduces
the rate at which the error grows by over one half in this case. These
numerical errors show that the second order scheme on grid 7 does give
slightly more accurate results than the fourth order scheme on grid 6
though at a much increased computational cost.

All these errors grow smoothly with time showing that the scheme does
not encounter problems with any particular part of the grid, i.e. across
the poles. The slight oscillations in the L., error occur as the peak of
the cosine bell crosses cell boundaries and cell centres. Although the
results presented here only show one orientation of the flow, the results
are the same for all the other orientations tested, including those of the

Williamson test cases.

4.6 Summary

The method developed over the previous chapters has been successfully
applied to an icosahedral-hexagonal grid on the sphere. The method
itself did not require any adjustments but we did make a local plane
approximation to the spherical grid for this to be the case. This idea was
investigated in one dimension and shown to make only a small difference
to the schemes generated when grid cells were only a few degrees of arc.

The results gained from the application of the method to the icosahedr-
al-hexagonal grid were similar to those of previous tests on square and
triangular grids. The changes in accuracy of the results as the order of
the scheme is altered behaved in the same way as before. The accuracy
improved rapidly as the polynomial order was increased up to three, after

which the improvements in accuracy become less as the order is increased
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further. Coupling the method with the icosahedral grid gives results that
are independent of the orientation of the flow relative to the grid.

Using the icosahedral-hexagonal grid has the significant advantage that
the results are virtually the same regardless of the orientation of the flow.
This is important because it means that significantly larger errors are not
being introduced in particular regions of the grid. We have also not had
to treat any region of the grid differently from any other as we would
have needed to do at the poles of a latitude-longitude grid.

The results presented in this chapter show that the method can be used
in a spherical geometry. This means that we now have the flexibility to
alter the accuracy and computational cost of advection schemes in the
same as we can on a regular grid on the sphere. The next thing to inves-
tigate is whether this will have a significant effect in a more complicated
model of the atmosphere. Will increasing the accuracy of the advection
scheme improve the overall results of the model or will the extra compu-
tational effort be wasted? This is investigated in the next chapter where

the advection schemes are incorporated into the full shallow water model.
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Chapter 5

Shallow Water Model

5.1 Introduction

In the last chapter we applied the method of generating advection schemes
developed in earlier chapters to an icosahedral-hexagonal grid on the
sphere. The advection schemes generated by the method were shown
to achieve reasonable results in pure advection test cases. In this chapter
we shall investigate the effects the application of the scheme has on a
more complex model, that of the shallow water equations on the sphere.
Advection makes up only a part of this model so in order to make a fair
test we shall adapt an existing shallow water model to run with the new
advection schemes.

The new advection scheme is incorporated into the shallow water model
developed by Thuburn [52] and the remaining six Williamson test cases
are run (Williamson et al. [59]). The aim of running these tests is to
discover if the improved accuracy in the advection routines is carried
through to an overall improvement in the model accuracy. If this is the
case than it should support the use of PV as a prognostic variable since
the advection of PV is important in this case. Investigating the use of PV

as a prognostic variable was one of the motivations for the development
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of the original model.

The original shallow water model will be described in Section 5.2 along
with the changes that have been made to incorporate the new advec-
tion scheme. Sections 5.3-5.8 will detail the results of the remaining six
Williamson test cases. Section 5.9 will discuss these results and what
they tell us about the suitability of this scheme for use in meteorological

applications.

5.2 The Shallow Water Model

The shallow water equations describe the motion of a fluid of depth h* over
a surface of height hg. The height of the free surface h, is therefore given
by h = h* + hg, see Figure 5.1. The shallowness comes from assuming
that waves on the free surface have a long wavelength L, compared to
the average depth of the fluid D. This ensures that the vertical pressure
gradient and gravitational forces are close to equilibrium, meaning that
the hydrostatic approximation is valid.

The hydrostatic approximation assumes that the gravitational force
acting on a fluid parcel is balanced by the force on the parcel due to
vertical pressure gradient. If it is also assumed that the fluid is incom-
pressible and viscosity is ignored then the shallow water equations can be
derived from the equations of motion for a fluid in a rotating system. The
shallow water equations can be written in several different forms, many
of which are summarised in Williamson et al. [59]. The form used here
has the three equations (in two dimensions) in terms of the fluid depth,

the potential vorticity, (), and the divergence, 9,
hiy +V - (vh*) =0, (5.1)
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h h*

Figure 5.1: Heights and depths in the shallow water system

(h*'Q)+ V- (Vh'Q) =0, (5.2)

5t:—V-{h*Qkxv+V(gh+v7z>} , (5.3)
where v is the velocity, g is the acceleration due to gravity and k is the
unit vertical vector.

The basic model used in this work uses potential vorticity, also known

as PV, as a prognostic variable. PV is defined in this system as

_ ¢
=122,

(5.4)

where ( = k.V X v is the relative vorticity. ( is a measure of the rotation
in the flow relative to the rotating co-ordinate system. If the system

is rotating at a rate 2 then f, the Coriolis parameter at latitude ¢, is
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defined as f = 2Qsiny. PV has a number of useful properties in the

study of atmospheric dynamics;

1.

ii.

1il.

1v.

It is conserved following fluid parcels as far as friction and adiabatic
effects are negligible, in that sense it can be thought of as labelling

air parcels;

It can be ‘inverted’ to give wind and mass fields under suitable bal-
ance assumptions, i.e. information about balanced parts of the flow

is contained in the PV;

Even when adiabatic effects and friction are not negligible, it satisfies

a conservation law of the form
(h'Q),+V.F =0, (5.5)

for some flux F in the shallow water system (a similar conservation
law holds for three dimensional flows governed by the primitive equa-

tions),

Its behaviour can be thought of as if some substance of mixing ratio
Q were confined to move along isentropes!, see Hoskins et al. [14],

Haynes and McIntyre [9], McIntyre [32].

Using PV as a prognostic variable to separate the balanced and un-

balanced parts of a flow should enable the use of the most effective nu-

merical method for each part. The use of PV as a prognostic variable in

this way has been limited but has been investigated by Bates et al. [1],

Ringler et al. [37] and was one of the reason for the development of the

original model by Thuburn [53]. Thuburn [53] suggests that;

Tsurfaces of equal potential temperature
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”One possible reason for this may be the lack of adequate advec-

tion schemes.”

PV has also recently been used by Wlasak [60] as a diagnostic tool to
describe balance in data assimilation.

The model used in this work is the same as that used by Thuburn [52,
53]. The original advection scheme used in that model was based on a
quadratic interpolation over regular hexagons that is third order accurate
on the plane. This method is, like the new schemes we shall use, only
formally first order accurate on the grid used. Tests have been run using
advection schemes based on second and fourth order polynomial interpo-
lation using the new method. As before, the new schemes are referred to
according to the order of the polynomial used for interpolation, not the
formal order of accuracy.

The remainder of the model is identical to that of Thuburn described
in detail in [52], only a brief description of the rest of the model is given
here. The Laplacian of a field, ¢, is given by,

> Soi- o) (5.6)
where ¢ runs over the edges and neighbouring cells of cell k, e; and d;
are the length of edge ¢ and distance between the centers of cells k£ ands.
This is a second order accurate approximation on regular hexagons but
is less accurate on the distorted hexagons of this grid. Poisson’s equation
is solved using a multigrid elliptic solver that uses the hierachy of grids
described in the last chapter. A semi-implicit time step is used which
introduces a number of subtleties that are dealt with in [52].

The other difference from the results reported in Thuburn [52, 53] is
that the grid was ’tweaked’ (but not 'twisted’) as described in the last
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chapter and by Heikes and Randall [11] for these tests. The results of
using the original method on the new grid are shown here to distinguish
between the changes due to the advection scheme and those caused by the
grid. Overall, the change to the grid made little difference to the overall
results, what differences there were will be discussed with the relevant
test cases.

The same code as used by Thuburn in [52] was used here with a number
of adaptions. The main changes were the addition of a subroutine outside
the time stepping loop to set up the matrix G and the replacement of the
subroutine that generated the fluxes with one using the new method.
The flux limiter of the original code was the same as that described in
previous chapters and was retained. The only other adaptions to the code
were minor changes made for a different formatting of the output and for
compatibility with Fortran 90.

All the tests have been run on grids 5, 6 and 7 using second and fourth
order advection schemes as well as the original scheme. The results for
each of the schemes on grid 6 and the second order scheme on grid 7
are presented here for each test case. The remaining tests are used for
convergence tests and to compare timings. These schemes have been
chosen because they were amongst the most efficient in earlier tests when
comparing accuracy and computational cost. A time step of 30 minutes
was chosen for all tests wherever possible. For the fast flows in test case 6
and some of the grid 7 tests a shorter time step was required by the flux
limiter, these will be detailed with the individual cases. These occasions
will be highlighted when applicable.

The computational cost of using the schemes varies with the number

of cells and edges on the grid and with the order of the polynomial used.
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Increasing the resolution by one grid level roughly quadruples the number
of edges and cells causing an similar increase in the computational cost of
the entire model. This increase in cost will be larger still if a smaller time
step is required on the finer grid. Increasing the order of the polynomial
used in the advection scheme increases the number of cells in the stencil
which is the main factor in the cost of the scheme. Increasing from second
to fourth order in this case roughly doubles the computational cost of just
the advection scheme, a much smaller cost increase than increasing the
resolution. This should be remembered when comparing the results of

the following test cases.

5.3 Test Case 2:
5.3.1 Global steady state nonlinear zonal geostrophic flow

This case consists of a solid body rotation with a corresponding geostro-
phic height field, a steady state of the non-linear shallow water equations.
The test is run with the poles of the solid body rotation at four differ-
ent angles to the poles of the grid, o = 0.0, 0.05, 7/2 — 0.05, 7/2. The

streamfunction and velocity potential are then given by
Y = — aug (sin ¢ cos a — cos Acos gsina) (5.7y)
x =0 . (5.7y)
The corresponding analytic height field is given by
2

gh = ghy — (aﬂuo + %) (—cosAcospsina +sinpcosa)’ . (5.8)

The Coriolis parameter is a function of latitude and longitude to enable

the axis of rotation to be changed;
f=2Q(—cosAcosgsina +singcos a) . (5.9)
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The other parameter values used are uy = 27a/12 and ghy = 2.94 x 10*
242

Since this is a steady state of the shallow water equations we would
want our scheme to maintain a solution close to the initial conditions. By
discretising the equations onto the icosahedral-hexagonal grid we may no
longer have an exact steady state. It would be hoped that there is a
steady state of the discrete equations close to that of the continuous case

and that the model does not diverge significantly from this state.

5.3.2 Results

The original icosahedral model displayed the five fold symmetry in the
grid in the error field when the axis of the solid body rotation was close
to that of the grid. The global error measures of the height and wind
fields were similar for all the angles of flow relative to the grid. The
errors in the spectral model of Jakob et al. [15] are very small but show
a large increase in the errors close to the poles of the grid. The error also
fluctuates in space between being positive and negative and is also much
larger when the rotation and grid poles are aligned than when they are at
right angles. The results for the original scheme in this case vary slightly
from those presented by Thuburn in [52] and [53] because the tweaked
grid is used in these tests, the un-tweaked grid was used previously.
Figure 5.2 shows the difference between the true and numerical so-
lutions for the four schemes mentioned above. There is little obvious
difference between the result for the original scheme on the tweaked grid
shown here and the un-tweaked grid shown in figure 17 of [52]. Using the
new second order scheme on grid 6 produces a different pattern of the

error but one which still displays the five-fold symmetry of the grid. The
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Figure 5.2: Difference between true and numerical height fields for the northern hemisphere after a five

day run of test case 2 (o = 0). Contour interval is 0.25 m.
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maximum values of the error still correspond with the pentagonal cells
in this case but have a slightly smaller magnitude. The same comments
can be made when comparing the errors of the second and fourth order
schemes. The pattern of error is different again but the five fold sym-
metry is still present and the peak errors occur over the pentagons. The
second order scheme run on grid 7 shows a similar pattern of errors to
that on grid 6 but greatly reduced in magnitude.

The five-fold symmetry of the errors is not unexpected because of the
five-fold symmetry of the grid. The greatest irregularity in the size of
the grid cells occurs at the pentagons so we would expect both the great-
est difference between the continuous and discrete steady states and the

poorest approximation to

()
57 =0, (5.10)

to occur here. This would lead to the larger errors near the pentagonal
cells, particularly in a flow where each lies in a region upwind of another.
The advection scheme being used will affect the numerical steady state
solution. The difference between the three different cases on grid 6 show
that the interactions between the grid and the advection scheme can cause
significant differences in the results.

The time evolution of the normalised global error norms for the height
field is shown in Figure 5.3. The errors from the original scheme are
slightly larger than those from the un-tweaked grid shown in Thuburn [52],
figure 18 . There are fewer oscillations in the error as the model settles
from the continuous balanced state to the model one on the tweaked
grid. These oscillations are more in evidence when the new second order

scheme is used but overall the error grows more slowly using the new
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Figure 5.3: Normalised global errors in the height field for a five day run of test case 2 (a = 0). Errors

sampled at each time step (30 mins.).
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scheme. These Li and Ls errors are roughly halved when the order of
the scheme is increased to four, and quartered if the grid resolution is
increased to grid 7 instead. The L., error shows a similar decrease in
value when the resolution is increased but is similar in both the second
and fourth order cases on grid 6.

This is more evidence for the peak errors being an artifact of the grid
used and not the advection scheme. The oscillations in the errors shortly
after the start of the run are caused by fast moving gravity waves, which
act to restore geostrophic balance. The discrete balanced state on the
more refined grid is closer to the continuous balanced state so the effect
is smaller in this case. The higher order, less diffusive advection scheme
has a smaller effect on the the gravity waves in the advection step than the
lower order scheme. This accounts for the higher errors initially and the
faster settling of the model into its balanced state. The smaller diffusive
effect of the higher order scheme causes the errors to grow more slowly,
as does the even smaller diffusion in the second order scheme on grid 7.

The errors in the diagnosed wind field are shown in Figure 5.4 in the
same form as the height errors were displayed. The errors in this case
behave in a similar fashion to those of the height error. They are slightly
larger for the original scheme on the tweaked grid than the un-tweaked
grid. There is a steady increase in the L; and Ly norms with time but
this is slowed by using the higher order scheme or a higher resolution
grid. The L., error initially displays some of the short time behaviour
of the height field though it is not so pronounced. The larger L., error
in the fourth order case may be due to this scheme better approximating
the discrete steady state where it is significantly different from the true

solution. This is not a failing of the advection scheme itself.
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Figure 5.4: Normalised global errors in the wind field for a five day run of test case 2 (a = 0). Errors

sampled at each time step (30 mins.).
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The global height and wind errors are very similar to these results
for different angles between the rotational and grid poles. The five-fold
symmetry is distorted when a = 0.05 and destroyed when « is close
to m/2, as in the original model. The magnitude of the errors when
using the fourth order scheme is comparable with the model of Heikes
and Randall [12] at this resolution. Where the errors in this case were
growing, those of Heikes and Randall oscillate in time about a uniform
value. The spectral model of Jakob et al. [15] performs exceptionally
well for this test in terms of the global error measures since the initial
conditions have an exact spectral representation. Despite this there are
still unwanted features in the error fields. The error increases significantly
near the poles and the error field is highly oscillatory. These are not
significant problems in this case but they do highlight some shortcomings

of the spectral model.

5.4 Test Case 3:

5.4.1 Steady state non-linear zonal geostrophic flow with compact support

This case is similar to the previous one but with the wind field only non-
zero north of 30°S. The streamfunction and velocity potential are defined

as

/

U (o) = — Pl Pypese / e T da (5.114)

Le

X' =0, (5:11y)

where a primed variable is one in a coordinate system for which the axis
of rotation of the flow and the earth are coincident. The parameters used

are ug = 2ma/(12 days), ¢, = —7/6, ¢, = 7/2 and z, = 0.3. For a flow
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rotating at an angle a to the earths rotation the coordinate systems are

related by
sin ¢’ =sin ¢ cos @ — cos @ cos Asin « | (5.12)
sin A’ cos ¢’ =sinAcos p . (5.13)
The correct quadrant for A’ can be found by ensuring
sin ¢ = sin ¢’ cos o + cos ¢’ sinavcos A . (5.14)
The Coriolis parameter for the two systems is
f =2Q(—cosAcospsina +sinpcosa) , (5.15)
f =2Qsin ¢’ . (5.15)

The analytic height field in the prime coordinate that gives a steady
state solution must satisfy

(u')? tan ' L9 oh'

- E@go’ + fu' =0. (5.16)

The analytic height field is difficult to find exactly from this equation,
instead numerical integration is used to find an accurate approximation

to h,

Al

4 ! t
h=hg— g/ (QQ sin 7 + M) u' (T)dr . (5.17)
g/ a

NE]

The background height is again given by gho = 2.94 x 10* m?s~2.

5.4.2 Results

The results for the original model again showed the five fold symmetry
of the grid when the axis of the the flow coincided with that of the grid.
This was also present but much less evident on grid 6. The h and u errors

oscillated in time
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“... presumably about a balanced state of the discrete equations

which is not exactly the same as the initial state.” (Thuburn [52])

Figure 5.5 shows the difference between the true and model solutions
for the same four advection schemes as test case 2. The original scheme
used with the tweaked grid shows no obvious difference from using the
scheme on the un-tweaked grid. When the new second order scheme is
used the difference between the true and numerical solutions is smaller
but the five fold symmetry is much clearer to see in a broader region in the
error field. If the fourth order scheme is used the height differences at day
five are larger than those for the second order scheme. A possible reason
for this can be seen in the time evolution of the global error measures
which oscillate in time with slightly different phases. When the second
order scheme is used on grid 7 the symmetry of the grid is less visible and
the overall error is smaller

Figure 5.6 shows the global L, , Ly and L, errors in the height field
for these four runs. All cases exhibit the oscillations in the errors seen in
the original model. The change in the grid has made little change to the
height errors when the original scheme is used. The oscillations in the
error are more irregular on the tweaked grid but have a similar magnitude
and period. The oscillations in the global error are very similar in form
when the new second order scheme is used but the error is smaller in
magnitude. Using the fourth order scheme reduces the amplitude of the
oscillations slightly but does not improve the magnitude of the errors.
Increasing the resolution of the grid does reduce the magnitude of the
error but the oscillatory nature of the errors and even the pattern of the

oscillations are very similar.
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grid=6, order=2

Figure 5.5: Difference between true and numerical height fields after a five day run of test case 3

(a = 0). Plots are centred on (2£, Z) Contour interval is 0.5 m.
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Figure 5.6: Normalised global errors in the height field for a five day run of test case 3 (a = 0). Errors

sampled at each time step (30 mins.).
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sampled at each time step (30 mins.).



Figure 5.7 shows these same error measures for the wind field. These
are also oscillatory in nature and again show the same patterns and mag-
nitudes in the L and L, errors for each different advection scheme. This
strongly suggests that these errors are not due to errors caused by the
advection scheme. The similarity of the results on grid 7 further sug-
gests that these errors are not related directly to the grid resolution.
Two possibilities for the cause of this error are the time truncation errors
in the divergence equation and initial errors in the discrete height field.
The initial discrete height field is unlikely to give a steady state solution,
the model state may therefore be oscillating around some discrete steady
state. The errors in modelling the small amount of divergent flow caused
by the discrete height field may also be causing the errors. Comparing
the advection schemes in this case using figures 5.6 and 5.7 cannot there-
fore go much beyond stating that they all do a good enough job not to
seriously affect the results of this test case.

The results for these schemes are very similar when the angle « is
changed to 7/3. The main difference is the disappearance of the five fold
symmetry in the solutions. When the angle « is taken to be 30° there is
a weak four fold symmetry in the pattern of the errors. This is caused
by the alignment of the flow with four of the pentagonal cells in this
orientation.

Comparing this model with that of Heikes and Randall [12] suggests
that there is a significant difference between the two models. Whilst
the L. error is slightly larger and more oscillatory in the Heikes and
Randall model, the L and Ls errors are much smaller. The peak errors
occured where there was the greatest change in cell sizes in the Heikes

and Randall model, where it was suggested that changing the grid so
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that the cell areas vary more smoothly should reduce the error. The
tweaked grid has the effect of smoothing the variations in cell sizes and
the peak values are smaller in this case. This support for the suggestion of
Heikes and Randall is diminished somewhat by the other, larger changes
in the errors between the two models. These could be caused by the
different numerical schemes being used or by the different formulations
of the shallow water equations. It is most likely a combination of these
two factors. Comparison with the Spectral Model is again difficult due to
the highly accurate representation of the initial conditions which is only

limited by round-off error.

5.5 Test Case 4:
5.5.1 Forced non-linear system with a translating low

Having tested the models on non-linear steady states of the shallow water
equations we now move on to tests of unsteady states of the equations.
Analytic solutions of unsteady problems are difficult to come by but we
are able to find an analytic solution to the forced shallow water system
when forcing terms of a certain form are used. The forcings required for
describing a flow of a translating low in a mid-latitude westerly jet are
given in advective form in Williamson et al. [59]

Converting the forcing of the wind in Cartesian form, F',, to normal
and tangential components at box edges, the forcings of the PV, F, and
divergence, Fy, are given by

_VXFU—QFh
= W )

Fo (5.18)

Fs=V-F, (5.19)
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where Fj is the height forcing given along with F, and F, in William-
son et al. [59]. The forcings of height, PV and divergence are applied to
the fields at each time step. Numerical approximations to the curl and
divergence operators are used as would occur in a real application of the
model.

The time varying flow is given by

i B
U =u " (5.20)
P N (5.21)
a cos
gh =gh + f¥ | (5.22)
where
a =ugsin' (2¢) , (5.23)
_ ¢
gh =ghg — / (af(r) +u(r)tan7) a(r)dr , (5.24)
l; (A7 ¥ t) :‘boe_a(i;—g) ) (525>

with parameters 19 = —0.03(gho/fo), 0 = (12.74244)2, ghy = 10°, fy =
2Qsin(7/4), and

C' = sin g sin ¢ + cos @ cos ¢ cos (x\ — %Ot — /\0) : (5.26)

The streamfunction and velocity potential that this gives are
Y =— /S{J aii (1) dr + ¢ (X, ¢, 1) (5.27)
x =0. (5.27)

The low centre is initially located at (Ag, o) = (0,7/4), in the jet pre-
scribed by equation (5.23). Tests are run for values of uy of 20 and

40 ms~!, corresponding to a westward translation of the low of about

15.5° or 31° per day.
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u0=20 m/s u0=40 m/s

Figure 5.8: Exact solutions for test case of a forced non-linear system of a translating low after 5 days.

Plots are centred on longitude of low centre. Contour interval is 100m

5.5.2 Results

Thuburn [52] suggested that the main error in the original model was the

filling of the low centre

b

. consistent with a smoothing of the PV maximum (and to

some extent the depth minimum) by the advection scheme.”

An improved advection scheme should therefore cause less smoothing of
the PV field and less filling of the low centre.

The exact solutions for both cases are shown in Figure 5.8 after 5 days.
This plot and all others in this section have been rotated to the longitude
of the low centre. Looking at the numerical solutions of the height fields
shows little difference between the different schemes so instead we shall

look at the differences between the true and numerical solutions shown

in figures 5.9 and 5.10.

1

Figure 5.9 shows this difference for the case when uy = 20 ms™" using

the same four schemes used in previous tests. The results for the original
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grid=6, original scheme grid=6, order=2

Figure 5.9: Difference between true and numerical height fields after a five day run of test case 4

(ug = 20 ms~1). Contour interval is 5 m.
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scheme on the tweaked grid shows a slight reduction in the filling of the
low centre. This may be due to the grid allowing a better approximation
of the forcing terms in this case. Using the new second order scheme on
the same grid makes very little difference to these results. There is a very
small increase in the filling of the low but little else that can be seen in
these plots.

Increasing the order of the scheme to four makes a large improvement
in the final solution with almost no filling of the low centre. The pattern
of errors around the low centre is very similar but is also much reduced
from the other cases. This improvement in the fourth order scheme is
consistent with a reduced smoothing of the PV maximum (and depth
minimum) by the more accurate advection scheme. Using the second
order scheme on grid 7 gives a slight filling of the low but little other
error.

I are shown in Figure 5.10.

The results for the case with ug = 40 ms~
The patterns of errors and the differences between the various cases on
grid 6 are largely similar. The main point of note is that the errors
are significantly larger in this case. The results for the grid 7 case are
better than any of those on grid 6. This may be a result of the increased
resolution or because of the smaller times step (15 minutes) required by
the flux limiter.

Figure 5.11 shows the global L; , Ly and Lo errors in the height field
for each of the four runs when ug = 40 ms~!. The global height errors for
the original advection scheme are very similar to those of the same scheme
on the un-tweaked grid and to those of new second order scheme. The

results for the fourth order scheme are similar to the previous cases for

about the first day but do not show the same slow growth at later times.
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grid=6, original scheme grid=6, order=2

grid=7, order=2

Figure 5.10: Difference between true and numerical height fields after a five day run of test case 4

(up = 40 ms™1). Contour interval is 10 m.
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Figure 5.11: Normalised global errors in the height field for a five day run of test case 4 (ug = 40 m/s).
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This suggests that using a fourth order polynomial for interpolation in
the advection scheme captures all the features in the advected fields for
this case. A second order polynomial captures many of these features but
not all, as shown by the slow growth in errors for these cases. On the
higher resolution grid using a second order polynomial the height errors
do not grow significantly, suggesting that this combination of grid and
scheme captures all the features of the advected profile. The results for
the slower flow case are broadly the same, the only exception being a very
slow growth of the error for the grid 7 case.

Figure 5.12 shows the global L , Ly and L., wind errors for the same
runs as before. The Ly and L, errors for the original scheme are very
similar to those on the un-tweaked grid but the L; error is greatly reduced.
This may again be because of a better representation of the source terms
on the tweaked grid. Using the new second order scheme makes little
difference to the results but the fourth order scheme does reduce the rate
at which the errors grow. A greater reduction in this rate can be gained
by increasing the resolution instead of the order of the scheme.

The results of the model of Heikes and Randall were poor and were not
presented in full in [12]. From the comparisons that can be made, this
model significantly outperformed that of Heikes and Randall. It correctly
located, and produced less filling of the low centre. Comparison with the
T42 spectral model show that the icosahedral model has some way to go
before it can compete with the spectral model for this case. All the error
measures of the spectral model are around a factor of ten smaller for this
test. The spatial distribution of the errors for the icosahedral model does
not oscillate in the same way as those for the spectral model but this is

the only, small, advantage it has.
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Figure 5.12: Normalised global errors in the wind field for a five day run of test case 4 (ug = 40 m/s).
Errors sampled at each time step (30 mins grid 6, 15 mins grid 7).
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5.6 Test Case 5:

5.6.1 Zonal flow over an isolated mountain

This test case is the only one in this set that involves a non-zero orography.
An isolated mountain is placed in the flow used in case 2 to test the
conservation of integral invariants of the shallow water system along with
the usual measures of errors. The normalised integrals of the mass (h*),
total energy (Joh*v - v +'hg(h? — h?) ) and potential enstrophy (hh*Q?)
are calculated along with the un-normalised integrals of vorticity (h*Q)
and divergence (4). These are all conserved quantities for the shallow
water equations and so their integrals over the domain should not alter
in time. The global integrals of vorticity and divergence are initially zero
in this case and should therefore remain so.

The wind field is described by the stream function and velocity po-
tential of equations (5.7) with the parameters; a = 0, hy = 5960 and

ug = 20 m/s. The height of the surface orography, hg is given by

ho=hao (1 - %) (5.28)
where o = 2000 m, R = 7/9, and 7* = min[R?, (A — A.)? + (¢ — ¢.)?].
The centre of the mountain is taken as (A, ¢.) = (37/2,7/6).

There is no known analytic solution for this case so the results are com-
pared with those of a high resolution spectral model. The high resolution
model is run with T213 truncation with the archived results stored at
T106 truncation. These are used with routines supplied with the data
to calculate point values. The archived data and interpolation routines
are currently maintained by John Truesdale at NCAR [56]. This ref-

erence solution exhibits spectral ringing around the mountain which is

clearly visible in the plots of the difference between this ’true’ solution
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and our numerical one (see figures 5.14 and 5.15). This is an artifact of
the spectral methods used in the spectral model which is not present in
the model we are using and it will contaminate the measures of the error

to an unknown extent.

5.6.2 Results

The original model performed well in this test, resolving the features of

the large scale flow forced by the mountain at a lower resolution than

the one used here. One problem that was noted was the significant drift

away from zero of the global integral of vorticity. The suggested reason

for this was the inconsistency between the updated divergence, ™+ and
m+1

the divergent part of the wind v);™ caused by the approximate solution

of the elliptic equation
Vv = g (5.29)

Changing the advection scheme is unlikely to have a large effect on this
problem but the tweaking of the grid should improve the approximation.

The reference solution for this case at days 5, 10 and 15, as converted
to the icosahedral grid, is shown in Figure 5.13. The numerical results for
this case are again all very similar to these solutions when compared by
eye. For this reason we shall again look at plots of the differences between
this solution and the numerical ones. These are shown in figures 5.14, for
day 5 and 5.15, for day 15.

The first thing that is clear when looking at the difference between the
high resolution spectral solution and those on the icosahedral grid is the
location of the mountain. This is caused by the spectral ringing around

he mountain in the 'true’ solution. but the icosahedral models have no
th t the 'true’ solution, but th hedral dels h
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Figure 5.13: High resolution spectral solution of the height field for test case of flow over a mountain

after 5, 10 and 15 days
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Figure 5.14: Difference between spectral and icosahedral height fields after a five days of a run of test

case 5. Contour interval is 2 m.



such problems representing the mountain. After five days, Figure 5.14,
the errors downwind of the mountain are smaller than those in other
regions of the flow. This suggests that the advection in the flows generated
by the mountain is well modelled but that other dynamic processes are
not so well captured. In both regions, the differences between the different
schemes is remarkably small. The main difference is the slightly higher
errors downwind of the mountain when using the new second order scheme
over the original one. Using the new fourth order scheme improves slightly
over both these schemes and gives similar results to those on the higher
resolution grid.

After fifteen days, Figure 5.15, the differences between the schemes
are clearer in the region downwind of the mountain. The solution in
the southern hemisphere is again similar for all the schemes on grid 6
but appears significantly better on grid 7. This again suggests that the
main cause of these errors are not inaccuracies in the advection scheme
but some other approximation in the model. Altering the time step for
these tests would show if the inaccuracy was caused by time truncation
error in any part of the model. The problem could also be caused by the
different representations of the reference solution or the mountain on the
icosahedral grid. Comparing these results with a high resolution test on
the icosahedral grid would help to isolate these potential problems.

Comparing these plots with the spectral model results, Figure 5.13,
shows that the pattern of ridges and troughs are weaker in the icosahe-
dral model. The original scheme tends to have a weaker ridge than the
reference solution just downwind of the mountain, yet the new second
and fourth order schemes produce an even stronger one. These errors are

reduced as the order of the scheme and resolution are increased. Aside
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Figure 5.16: Normalised global errors in the height field for a fifteen day run of test case 5. Errors are

a comparison between numerical results and a high resolution spectral model, sampled every day.

from this region the main differences are in the peak values of the features
in the error fields, which are again reduced by increasing the order of the
advection scheme and the resolution of the grid.

The evolution of the global height error (compared to the reference
solution) is shown in Figure 5.16. This reinforces the similarities between
the results, irrespective of the advection scheme used. There is a slight
improvement in these results as the scheme order and grid resolution are

increased. This is made more difficult to observe by the relatively small
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Figure 5.17: Normalised global errors in the wind field for a fifteen day run of test case 5. Errors are a

comparison between numerical results and a high resolution spectral model, sampled every day.

errors in this case. The improvements in the global wind field errors as
the schemes are changed, Figure 5.17, are more pronounced than for the
height field. The rapid increase in the L., error after day nine is the same
in all cases but cannot be seen in the L; and Lo errors. This suggests
that the cause of this error is localised.

Figure 5.18 shows the evolution with time of the global invariants of
the shallow water model. The mass is conserved to machine precision

regardless of the advection scheme used and is not shown here. For this
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Figure 5.18: Time evolution of the global integral diagnostics sampled at each time step. The schemes
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original scheme).
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case the energy is also conserved to the accuracy at which the model
output is written for all cases. There is a loss of potential enstrophy in
the model due to its cascade to unresolved scales. This process can be
sped up by inaccuracies in the numerical methods used. This is shown
to be much more of a problem for the second order scheme on grid six.
The test using the original scheme includes the generation of a significant
amount of potential enstrophy. The similarity between these results for
the fourth order scheme on grid 6 and the second order scheme on grid
7 suggest that this is more likely to be the cascade to unresolved scales
that we would expect.

The total vorticity grows for the same reasons as suggested by Thu-
burn [52], mentioned above. The convergence of the elliptic solver for
equation (5.29) will depend on the smoothness of the divergence field.
This in turn is partly dependent on the advection scheme used, the orig-
inal and second order schemes on grid 6 give the smoothest fields and
cause a slower growth in the total vorticity. In all grid 6 cases there is
an initial imbalance in the divergence field which reduces back to balance
after around two days. This initial imbalance is much larger on grid 7
and the balance is not restored.

Comparing the error fields with those from other models shows that
all the models used here perform better than the comparable resolution
models of Heikes and Randall. Comparison between the results using
grid 6 and the T63 spectral model show results that are broadly similar.
Comparing the global diagnostics shows a better conservation of energy
and potential enstrophy by these models over those of Heikes and Randall.
The total vorticity and divergence are similar for these cases. The spectral

model does not conserve mass or energy as the model used here does but
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does improve on these results for the other integral diagnostics.

5.7 Test Case 6:

5.7.1 Rossby-Haurwitz wave

A Rossby-Haurwitz (R-H) wave is an analytic solution of the non-diverg-
ent shallow water equations consisting of steadily propagating profile.
This has become a de facto standard test case due to its use by many
authors, despite the use of different parameters and the fact that R-H
waves are not analytic solutions of the full shallow water equations.

The initial, non-divergent, velocity field is specified by the stream func-
tion

Y = —a*wsing + a*K cos™ ¢ sin ¢ cos R\ | (5.30)

where w, K = 7.848 x 1076 s~! are constants and R = 4 is the zonal
wavenumber. The initial height is obtained from the stream function by
solving a Charney balance equation so that the initial divergence tendency

1S zero, giving
gh = ghg + a>A(p) + a®B(p) cos R\ + a’C(y) cos 2R\ | (5.32)

where functions A, B and C are given by

A(p) :%(QQ—HU) cos? @ (5.334)
—i—%K'Z cos?® [(R—i—l) cos’ go—i—(QRQ—R—Q) —2R? cos™2 99] ,
_ 2@+ w)K R 2 2 2
B(p) _(R+1)(R+2) cos't v [(R +2R+2)— (R+1)“cos 99] ,
(5.335)
1 _.
C(p) :ZKZ cos’ o [(R+1)cos® o — (R+2)] . (5.33¢)
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The background height, hg, is taken to be 8 x 10> m. This test has
significantly stronger winds than those used in other cases, so shorter
time steps of 15 minutes on grid 6 and 10 minutes on grid 7 have been
used.

The ’true’ solution is given as the results from a high resolution spectral
method as in the previous test case. In this case there are none of the
problems with this solution that were seen in the case of flow over a
mountain. The parameter R = 4 was chosen by Williamson et al. [59]

who argued;

Unstable waves [13] are not chosen, since slightly different pertur-
bations may lead to growth of different unstable modes as might

be indicated in Kreiss and Oliger [16].

Thuburn and Li [54] showed, using the icosahedral model amongst others,
that perturbations to this wave can project onto unstable modes in this
case. This was shown to be a particular problem for the icosahedral model
which projected significant errors onto the most unstable mode because
of the wavenumber 5 pattern of the grid. Thuburn and Li [54] concluded

that;

The breakdown of the wavenumber 4 flow pattern must be inter-
preted as a real dynamical instability ... not as a catastrophic

failure of the numerical methods.

This behaviour is reduced at higher resolutions and for smaller time steps

and should not cause catastrophic problems in these model runs.
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5.7.2 Results

The results of the spectral model at days 1, 7 and 14 are shown in Fig-
ure 5.19. Computing this solution has not excited any of the unstable
modes in the solution. When this is compared with the results after 14
days, Figure 5.20, for the icosahedral models the loss of symmetry be-
tween the waves can clearly be seen. This is more pronounced for the
original scheme than for the new schemes suggesting that the original
scheme introduces a larger error onto the unstable modes.

Figure 5.21 shows the difference between the icosahedral and reference
solution after one day of the run. The largest errors correspond with the
gradients of the wave pattern seen in the reference solution and have a
wavenumber four structure. The pattern of errors is consistent across all
these tests, only the magnitude varies. A closer inspection of these error
fields shows some smaller differences between the errors within each wave.
These differences are largest in the original scheme and are reduced as
higher order versions of the new schemes are used. Once these small errors
are introduced they will grow through dynamic instability and produce
the asymmetry between the waves that is seen in Figure 5.20. This shows
the smaller, more regular error at the final time when the higher order
new schemes are used.

The new second order advection scheme has up to now been comparable
with the original scheme. In this case however the results of the new
scheme do not display such a strong asymmetry, this may be because of
the more general treatment of the grid. The original method is based on
a scheme used on regular hexagons so any deviation from this pattern

will create an error. In this case the variations from regular hexagons
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Figure 5.23: Normalised global errors in the height field for a fourteen day run of test case 6. Errors

are a comparison between numerical results and a high resolution spectral model, sampled every day.

had a wavenumber five pattern which was duplicated in the error in this
case. The new advection scheme generates an advection scheme for each
cell and so the error is not so strongly linked to variations in the grid.
This resulted in a weaker wavenumber five component of the error being
generated and resulted in less growth of the unstable modes at any given
time.

The global errors shown in Figure 5.23 illustrate the effect of these

growing modes on the global error. For the first few days the errors
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behave as for previous cases. The global height error increases slightly for
the new second order scheme over the original scheme but the new fourth
order scheme is an improvement over both. As the unstable modes grow,
so the error begins to grow rapidly, this happens sooner and faster for
the original and second order scheme. The fourth order scheme projects
a smaller error onto the unstable mode so it takes longer for this to
grow and contaminate the solution, this also means that the growth is
slower. Using the higher resolution grid introduces much smaller errors
onto the unstable modes with the result that the global error measures
show rapid growth much later in the run. This is partly due to the
increased resolution and partly because of the shorter time step used in
this case. The same observations can be made for the global wind errors
(not shown) for this case.

The normalised global diagnostics, Figure 5.24 again show the im-
proved conservation properties of the new schemes. The mass is again
conserved by the model for all cases and is not shown. There is a greater
loss of energy using the original scheme on the new grid than on the old.
Increasing the resolution appears to be the best way of improving conser-
vation of the energy. The same can be said for the potential enstrophy.
There is a significant cascade to small scales for the original and second
order schemes on grid 6 and the fourth order scheme appears to generate
some potential enstrophy.

The total divergence fluctuates about a value that is slightly larger than
zero. These fluctuations are larger when the new advection schemes are
used which has an effect on the total vorticity. Larger fluctuations in the
divergence field suggest that it is less smooth which will cause the kind

of growth in vorticity seen in the last test and described in Thuburn [52].
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Figure 5.24: Time evolution of the global integral diagnostics sampled at each time step. The schemes
are classified first by the grid resolution (6 or 7) and then by the advection scheme (2, 4, or o-the

original scheme).
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The effect of this can be seen in the time evolution of the total vorticity in
the models. This shows less fluctuation in time when the original scheme
is used resulting in a better balance at later times.

These results are comparable in magnitude to those of the T63 spec-
tral model tested by Jakob et al. [15]. The results presented here show
a significant improvement over those of Heikes and Randall. They dis-
play the same change in the structure of the waves as that seen on the
twisted icosahedral used by Heikes and Randall [12]. One property of the
solutions that was noted in this case was the symmetric nature of the so-
lutions about the equator. In this work the grid is not twisted, the grids
for the two hemispheres can be though of as being 180° out of phase, as
is the solution in the two hemispheres.

We noted in test case three that a wavenumber four pattern was seen
in the error field when the grid was rotated by an angle of 7/3. One way
of further improving these results may be to rotate the grid in this way.
This would mean that the errors generated have a large wave number
four component and only a small fraction of the error is projected onto

the dynamically unstable modes.

5.8 Test Case T:
5.8.1 Analysed 500mb height and wind field initial conditions

Three sets of real atmospheric 500mb height and wind fields from different
atmospheric situations are used as initial conditions. The first case (7a)
is of 0000GMT on December 21, 1978, which has a strong flow over the
north pole. The second case (7b) is of 0000GMT on January 16, 1979,

and contains two cutoff lows in a pattern that develops into a blocking
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situation. The third case (7¢) is of 0000GMT on January 9, 1979, with
an initially strong zonal flow.

The previous test cases have all been idealised situations that have
tested various features of the shallow water model. These test cases are
more realistic in that they test how the features of the model combine
with one another in producing the final numerical forecast’. Included
within these tests are small scale features in the PV field and a cascade
to smaller scales. From previous results we would expect higher order
schemes to better model both the small scale features and the cascade
to small scales. We should now be able to see what overall effect these
improvements will have on the results when interacting with other causes
of inaccuracy in the model.

Since the shallow water equations should not be expected to predict
the atmosphere well in these cases, the test is for the model to deal
with a variety of atmospheric states. The results of the model are again
compared with a reference solution of a high resolution spectral model.
What is perhaps more important from our point of view is whether the
new advection schemes enable us to better resolve the features of the flow.
The schemes may be able to improve the numerical errors but we would
also like to see a qualitative improvement in our 'forecasts’.

The wind speeds in these cases all require that a smaller time step is
used on grid 7 to satisfy the limiter condition on the Courant number. A

20 minute time step is used for all the following grid 7 results.
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grid=6, original scheme grid=6, order=2

Figure 5.25: Height field in the northern hemisphere after a five day run of test case 7Ta. Contour

interval is 100 m
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5.8.2 Results

7a: 21 December 1978

Figure 5.25 shows the final height field after a five day run of test case
7a. The strong flow over the pole in this case should not pose a problem
on the icosahedral grid because of its uniform nature. A close inspection
of these plots reveals that there are important differences between the
results for the different schemes. Looking at the high centre close to the
pole using the original and new second order schemes shows virtually no
difference between the two schemes. The high centre is slightly further
to the east at this time when using the fourth order scheme and is even
further east when the higher resolution grid is used. Another feature is
the small trough at around 85° west. This feature is somewhat smoothed
by the original and second order schemes but is sharper when the fourth
order scheme or higher resolution is used.

Both these features can also be seen in the plots of the difference be-
tween the icosahedral models and the high resolution spectral model,
Figure 5.26. Both features are characterised by positive-negative dipoles
in the error field which are reduced when the higher order and higher
resolution schemes are used. A number of other improvements can be
seen as the higher order scheme or higher resolution grid are used. These
improvements carry through to the global error measures of the height
field, shown in Figure 5.27. There is again little difference between the
original and new second order schemes and a small improvement when
the fourth order scheme is used. There is a significant improvement in
the global errors when the higher resolution grid is used, all the global

error measures being reduced by around a half. The same is true of the
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grid=6, original scheme grid=6, order=2

Figure 5.26: Difference between Icosahedral and spectral height fields in the northern hemisphere after

a five day run of test case Ta. Contour interval is 25 m



grid=6, original scheme

grid=6, order=2

004 T T T T 004 T T T
0.03 A 0.03f .
5 I
i,
8 L
9 0.02F 1 0.02f a
= I
£
(@)
2 I
0.01 41 0.01f .
0 e ——T"—T—__, """"" | 0. . — ,—,—_.—r.'.’.»‘.'..'l'."._'. T
0 1 2 3 4 5 0 1 2 3
grid=6, order=4 grid=7, order=2
004 T T T T 004 T T T
- - Ll
- - L2
0.03 1 0.03f — L .
5 I
i,
8 I i
© 0.02 1 0.02f .
C_U L 4
£
o
z I
0.01} 1 0.01f a
0 S S Sxtatir TRILEA | P sa PSS et Bt
0 1 2 3 4 5 0 1 2 3
Time (days) Time (days)

Figure 5.27: Normalised global errors in the height field for a five day run of test case 7Ta. Errors are a

comparison between numerical results and a high resolution spectral model, sampled every day.
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errors in the wind field (not shown).

Figure 5.28 shows the time evolution of the global diagnostics for this
case, which are very similar to those for the other two initial conditions.
As ever, the model conserves mass exactly to round off error. In these
tests there is a slight loss of energy in all the models. The loss is greatest
for the original and second order schemes on grid 6. Using a fourth order
polynomial on this grid significantly improves the conservation of energy,
using the higher resolution model provides a further slight improvement.
The same relationship can be seen in the conservation of potential enstro-
phy. In this case however, it is clear that the cascade to unresolved scales
is faster at the start of the run than at later times. This suggests there
are a lot of small scale features in the initial conditions which are quickly
lost through inaccuracies in the schemes. This process is faster for the
original and second order schemes initially but the cascade to unresolved
scales appears more even across all schemes later in the run.

The fields for these test cases contain an initial imbalance in the total
vorticity which is maintained by the schemes used in all cases. There are
some differences between the vorticity for the grid 6 schemes however,
they are small compared to the magnitude of the field. The fluctuations
in the total divergence is also similar for the three grid 6 models but
slightly different for the grid 7 model.

The results using the fourth order advection scheme on grid 6 compare
favourably with those of the T42 spectral model tested by Jakob et al. [15].
Increasing the resolution to grid 7 and using a second order scheme makes
the results comparable with those of the T63 spectral model, in terms of
the global error measures.

The reasons for some of the features of the results can be seen in the
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Figure 5.28: Time evolution of the global integral diagnostics sampled at each time step. The schemes
are classified first by the grid resolution (6 or 7) and then by the advection scheme (2, 4, or o-the

original scheme).
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Figure 5.29: Initial PV field in the northern hemisphere for test case 7b. Contour interval is 0.25 x 1078,

and labels are also x1078

PV fields of the models. The initial PV field is shown in Figure 5.29.
This contains a lot of small scale features and “steep” gradients in the
field. These features will be dissipated faster by the original and second
order schemes on grid 6 which will cause the faster cascade of potential
enstrophy to unresolved scales. This was seen in the global diagnostics
and can also be seen in the PV fields after the first day of the run,
Figure 5.30.

Comparing the PV fields of the models after five days, shown in Fig-
ure 5.31, shows the greater improvements in the higher order and higher

resolution tests. Much of the detail that was still present after one day
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grid=6, original scheme grid=6, order=2

Figure 5.30: PV field in the northern hemisphere after one day of test case 7b. Contour interval is
0.25 x 1078, and labels are also x 1078
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grid=6, original scheme grid=6, order=2

grid=6, order=4

Figure 5.31: PV field in the northern hemisphere after five days of test case 7b. Contour interval is
0.25 x 1078, and labels are also x 1078
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has been lost but this has happened to a greater extent to the original
and second order schemes. The higher order and higher resolution cases
have better maintained the extrema in the PV field and have retained
more smaller scale features. One of these can be seen at 85° west where
we noted a significant improvement in the error field. This can now be
seen as an improvement in the position and strength of a dipole feature

in the PV field when the fourth order scheme is used.

7b: 16 January 1979

Looking at the final height fields after five days of case 7b, Figure 5.32
shows few differences between the different models. The main differences
in this case are in the values of the local maxima and minima and the
steepness of gradients. The only feature that is significantly different is
the small trough that appears at around 80° east on grid 7. This region
is marked by a strong positive-negative dipole in the error fields for each
model, shown in Figure 5.33. This error is reduced as the higher order
scheme and higher resolution grid are used but it is still a significant
difference from the high resolution spectral result. Other regions of error
corresponding to local maxima and minima are also improved by the
higher order scheme and higher resolution grid.

The global errors display the same improvements, as in case 7a when
the higher order advection scheme and higher resolution grid are used.
This is shown here by the global wind errors in Figure 5.34 and is also
the true for the height errors and global diagnostics (not shown). These
results compare even more favourably with those of the spectral model.
The global errors on grid 6 are similar to those of the T63 truncation

model of Jakob et al. [15] and those of grid 7 compare well with those of
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grid=6, original scheme grid=6, order=2

Figure 5.32: Height field in the northern hemisphere after a five day run of test case 7b. Contour

interval is 100 m

197



grid=6, original scheme grid=6, order=2

Figure 5.33: Difference between Icosahedral and spectral height fields in the northern hemisphere after

a five day run of test case Tb. Contour interval is 25 m



grid=6, original scheme grid=6, order=2
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Figure 5.34: Normalised global errors in the wind field for a five day run of test case 7b. Errors are a

comparison between numerical results and a high resolution spectral model, sampled every day.
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the T106 version.

7c: 9 January 1979

The northern hemisphere height field after five days is shown in Fig-
ure 5.35. These results display some variation in the strength and loca-
tion of the weak high over the pole and the low centre to its south at
100° east. The low centre corresponds with a positive-negative dipole in
the error field shown in Figure 5.36 for both the original and new second
order schemes. This suggests that the correct location for this low centre
is further to the east. A weaker dipole suggests that the weak high should
be a little to the south along the 45° latitude. Looking at the height field
when the fourth order advection scheme is used shows the low centre fur-
ther to the east. The low centre is in the same location on grid 7 and
shows slightly less filling. The weak high is also shifted a little off the
pole in this case. These improvements in the error, along with others can
be seen in the error field for the fourth order and grid 7 runs.

The global height and wind errors for this case are similar in form
and magnitude to the previous two cases and are not shown. The same
is also true of the global diagnostics. The grid 6 results for this case
are comparable with those of the T43 spectral model and grid 7 results

compare well with those of the T63 truncation version.

5.9 Summary

The method of generating advection schemes developed over the previous
chapters has been incorporated into a shallow water model. The original

model had been tested using the test set of Williamson et al. [59] by

Thuburn [52]. These tests were used again here and the results were

200



grid=6, original scheme grid=6, order=2

Figure 5.35: Height field in the northern hemisphere after a five day run of test case 7c. Contour

interval is 100 m
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grid=6, original scheme grid=6, order=2

Figure 5.36: Difference between Icosahedral and spectral height fields in the northern hemisphere after

a five day run of test case Tc. Contour interval is 25 m

202



compared with both the original model and other published results (the
icosahedral model of Heikes and Randall [12] and the spectral model of
Jakob et al. [15]). The model used here used the tweaked icosahedral grid
whereas the un-tweaked grid was used by Thuburn in [52]. Tests using the
original advection scheme with the tweaked grid were used to distinguish
between changes due to the grid and those due to the advection scheme.

The only significant differences between the results when using the
original scheme on the two grids occured in tests two and three. These test
cases both involved steady states of the equations, so changes to the grid
changed the discrete steady state and the accuracy of the approximation

to

()
- =0 (5.34)

Changing the advection schemes used within the model made little differ-
ence to the overall errors but did change their spatial distribution. This
suggests that the advection scheme used is not the main cause of the
errors in these cases but does have some effect on the results.

In general, the original scheme and the new second order scheme per-
formed in a similar fashion for all the tests. Both these schemes are based
on the fitting of a second order polynomial over a similar region upwind
of each edge. The similarity of the results suggests that the method of
the fitting has little effect on the overall results of the method.

Using the fourth order scheme instead of the second order one made a
larger improvement in the results of some tests than in others. In test four
for example, the fourth order scheme prevented any significant filling of
the low centre. In test case five however, the only significant improvement

was in the region downwind of the mountain, a region dominated by
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advection. The improvements in test case seven appear to be small when
looking at the global errors yet there are significant improvements to the
forecast’ when looking at specific regions of the model.

Increasing the resolution of the model had a greater improvement on
the results than increasing the order of the advection scheme. This came
at an increased computational cost as roughly four times as many cells
and edges were used on grid 7 than on grid 6. In test cases two and
three there was a large improvement in the results for this increase in
computational cost but this was not always the case. Whilst the global
errors for test case 7 were improved over the fourth order scheme on the
coarser grid, the improvements were small. This suggests that the most
cost effective improvement to the second order scheme on any grid is
to increase the order of the scheme used. If better accuracy is all that
is required then the grid should be refined and the computational price
paid.

The results from the test seven cases have shown that the higher order
advection schemes generated by the new method have some advantages
over the lower order schemes. This is despite the global errors showing
only a small improvement in many of the earlier tests. The ability of
the higher order schemes to capture smaller scale features of the flow will
have little effect on the results in some regions and more in others.

In the real atmosphere there are some regions that are more sensitive to
perturbations in a field than others. These perturbations may be caused
by any of the physical and numerical processes that are used in forecasting
or, in a numerical model, by the numerical methods used. Improving the
numerical methods used in these regions can make a big difference to a

particular forecast for a particular region. Though we do not generally
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know where these regions are, improving the global advection scheme
should improve the forecast in these regions. This can be done for a much
smaller computational cost than increasing the resolution of the model.
There are still some extensions that can be made to the advection scheme
that have the potential to make it more efficient. These will be looked
at briefly in the next chapter, after a review of the main results of this

work.
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Chapter 6

Summary and Further Work

6.1 Summary

The aim of this work was to develop accurate numerical approximations
to the advection equation for use on arbitrary grids. The prime rea-
son for wanting to do this was to improve the accuracy of geophysical
models using the icosahedral-hexagonal grid on the sphere. We therefore
wanted to ensure that the scheme was conservative and shape preserv-
ing as well as accurate and computationally efficient. The nature of the
grids necessitated that the method was multidimensional and could be
generated automatically for each grid. Using a finite volume scheme and
approximating the fluxes across cell boundaries guaranteed conservation.
Applying a flux limiter to the fluxes ensured shape preservation but had
an adverse effect on other measures of the accuracy of some schemes.
We began by taking the method used to derive the one dimensional
QUICKEST and ULTIMATE schemes of Leonard [22] and used them to
generate advection schemes on irregularly spaced grids. The method in-
volved fitting an N'™™ order polynomial over N 4+ 1 cells. On a regular
grid (constant Azx) it is easy to write down the fluxes in terms of coeffi-

cients and the values of the advected quantity in the cells of the stencil.
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On an irregular grid this calculation is much more complicated on paper
but can be easily handled by computer code. The numerical results pro-
duced using the automatically generated schemes behaved similarly to
the QUICKEST scheme and its higher order versions, even on irregular
grids.

Leonard [23] extended his ideas to the two-dimensional UTOPIA sch-
eme on a square grid and we did the same. This required being able to
fit an N'*® order polynomial over Jo(N + 1)(N + 2) cells. A method for
selecting a stencil was found that guaranteed a unique polynomial could
be found on a rectangular grid. The Universal Limiter of Leonard [24]
with the refinements of Thuburn [51] can be applied to the approximate
fluxes generated in this way. Both the limited and un-limited schemes
were tested using different orders of polynomials and different resolution
grids for a range of tests.

The accuracy of the schemes improved as the order of the interpolating
polynomial was increased and as the resolution increased. The compu-
tational cost of the schemes also increased along with the polynomial
order and the grid resolution. In non-deformational flows, the relation-
ship between the accuracy and the computational cost was broadly the
same regardless of whether the polynomial order or grid resolution was
changed for the un-limited schemes. This means that a given accuracy
can be achieved by either increasing the order of the advection scheme
or the resolution of the grid. Whichever method is used, the computa-
tional cost will be the same. When the limiter was used it had a greater
detrimental effect on the accuracy of the schemes using high order poly-
nomials. This led us to the conclusion that the most efficient schemes of

this type use between second and fourth order polynomials. It is these
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schemes that best balance the accurate approximation of the advected
field with the need to use the limiter to ensure shape preservation.

Trying to apply the same method of generating advection schemes to
triangular grids provided one significant new problem, selecting a stencil
over which to fit a polynomial. The problem is that there are some grids
for which there is no obvious way to choose between two cells for inclusion
in the stencil without considering the flow field. Using the flow field in
this way is not a satisfactory solution to the problem since it requires
that a computationally expensive part of the algorithm be recomputed
whenever the flow field changes. Instead we select a stencil with more
than the required number of cells and find a ’best fit’ polynomial over
this stencil. The best fit is found using a weighted least squares cost
function where the weights are chosen to favour the fit over the central
cell in the stencil.

The advection schemes generated by this method show a similar re-
lationship between computational cost and accuracy as was seen on the
rectangular grids. The trend is for an improvement in accuracy as the
order of the polynomial or the resolution is increased. The results again
suggest that a polynomial between second and fourth order should be
used for maximum efficiency when the limiter is used. The limiter also
causes some anisotropic distortion, dependent on the flow angle relative to
the grid in this case. This was the only grid for which this was observed.

The same method was then applied to the icosahedral-hexagonal grid
on the sphere. The only difficulty in this case was that the grid was spher-
ical whilst the polynomials and integrations had previously been formed
on two dimensional planes. This problem was overcome by projecting the

region around each cell onto a plane for the polynomial interpolation and
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approximation of the fluxes. The results of test cases using schemes gen-

erated by this method behaved in the same way as on the rectangular and

triangular grids. The general trend was for accuracy to improve as the

polynomial order or resolution were increased. For best efficiency, com-

paring the computational cost and accuracy, schemes of between second

and fourth order should be used.

The final method of generating advection schemes follows the following

pattern;

(A).

(iii).

(iv).

Select a stencil: Begin with one cell and add all cells neighbouring
those in the stencil until there are more cells than there are terms in

polynomial that is to be 'fitted’.

. Set up polynomial matrix: Integrate a general polynomial over

each cell in the stencil to get Ba where a is the vector of the coeffi-
cients of the polynomial. Apply a weighting to B by multiplying by

a diagonal matrix of the weights.

Singular value decomposition: Decompose the weighted matrix
B, so that the coefficients, a, of the best fit polynomial can be found
from V,,X,U! @,,, where ¢,, is the (weighted) amount of the advected

quantity in each cell in the stencil.

Calculate ¢ coefficients: Integrate the polynomial defined by the
relevant a over the approximate region swept across the edge (in terms
of general normal and tangential wind components) to generate the
matrix G,. The relevant a is the one for the cell upwind of the edge
for which the flux is being approximated, this is done treating ¢ as

an unknown vector.
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(v). Calculate approximate flux: Substitute in the appropriate values

of ¢ and the wind to calculate the flux across the edge.

(vi). Apply flux limiter: If required, the flux limiter described in Sec-

tion 2.3.2 can be applied to adjust the fluxes.

(vii). Update: The flux across each edge can now be removed from each

upwind cell and placed in the downwind cell.

(viii). Repeat: Steps v-vii should be repeated for each time step if the flow
continues in the same direction across the edge. Step iv also needs

repeating if a different cell becomes the upwind cell.

The schemes generated by this method were then used in a shallow wa-
ter model in an attempt to discover if the improved treatment of advection
improved the overall results. The model that was used had already been
developed and tested by Thuburn [52] on an icosahedral-hexagonal grid.
Two changes were made from the model reported in [52] and [53], one
being the new advection scheme and the other the use of a tweaked icosa-
hedral grid similar to that suggested by Heikes and Randall [11]. The
results did show several differences between the new fourth and second
order schemes as well as differences from the original scheme that had
been used in the model.

The differences in the results caused by the use of the tweaked grid
were small and confined mainly to the steady state tests. The more
realistic tests showed a small but significant improvement in the results
when a fourth order scheme was used over a second order scheme. A
much larger improvement in accuracy could be gained by increasing the
resolution of the grid. Not only is this computationally expensive but

it may not be entirely necessary. The results of using real data in the
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shallow water model showed that many of the local improvements in the
higher resolution model could be gained by using a higher order advection
scheme on a coarser grid.

The greatest strength of this method is probably it’s flexibility. It
is not restricted to any particular grid or to one particular ’order’. This
flexibility has however, required that a number of approximations be made
and that a significant amount of computation is required for an evolving
flow field. It is this need to recalculate coefficients that means the method
is not yet suitable for use in high resolution models with varying flow
fields, such as a global forecast model. The flexibility of the scheme
does enable a number of potential improvements to the way the scheme
is implemented. These improvements can increase the efficiency of the

scheme but may have some effect on the accuracy.

6.2 Further Work

This thesis has concentrated on the development of a numerical advec-
tion scheme that can be used in global models. The ultimate goal of such
a scheme is its use in a global numerical weather prediction or climate
model. The main problem with the current scheme is computational ef-
ficiency. The requirement that the coefficients of the advection scheme
need recalculating whenever the flow speed or direction changes is a sig-
nificant restriction to achieving computational efficiency.

One way around this problem would be to divide the wind field into
’bins’ based on the magnitude of the normal and tangential components
of the flow at each edge. Step v of the scheme would then only be re-

calculated when the wind regime moved to a different bin. This would
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speed up the overall method but would probably also have a detrimental
effect on the accuracy. Fewer, bigger bins would mean a greater speed-up
but less accuracy. If storage were not a problem then maximum speedup
could be gained by storing the coefficients for each bin rather than re-
calculating them when needed. The relationship between the size of the
bins and the accuracy would need to be investigated by running similar
tests to those in previous chapters.

Another way of improving the efficiency of the method would be to only
use the higher order schemes in regions where this will make a significant
improvement in the results. These regions are likely to be where the
field is less smooth and a more accurate interpolation of the field will
significantly reduce diffusion. By including a simple switch into the model
so that higher order schemes are used in regions with steep gradients,
much of the accuracy of the higher order scheme can be gained without
all the added computational cost. This technique is known as p-type
refinement.

A similar idea could be used when several different fields need to be
advected. Relatively smooth fields (e.g.height) could use a lower order
advection scheme than fields that contain more sharp gradients (e.g.PV).
In terms of the shallow water model used in this work we could use a
second order scheme for the smooth height field and a fourth order scheme
for the PV field. This would require more initial computation and storage
but would speed up the time stepping over the fourth order scheme. The
loss of accuracy caused would need investigating, again by using similar
tests to before.

The accuracy of the schemes depends not only on producing an accu-

rate reconstruction of the advected field but also on the approximation
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Figure 6.1: The region swept across each edge. The dotted region shows the current approximation to

this region. The solid region gives a more accurate representation of this region.

of the region swept across each edge. The spatial interpolations of the
advected field use high order polynomials to increase accuracy. The re-
gion swept across the edge is approximated simply as a projection of the
vertices of the edge in an upwind direction. The direction and magnitude
of the wind are found at the centre of each edge by a second order ap-
proximation to the derivative of the streamfunction, shown as the doted
region in Figure 6.1.

A more accurate approximation of the region swept across the edge
could be found by approximating the flow at the vertices and using this to
find the required region, the solid region in Figure 6.1. On the icosahedral
grid this could be done either by simply interpolating the winds from the
edges or by finding an approximate reconstruction of the streamfunction
and calculating its gradient at the vertices. Linear interpolation can be
used from the three edges or cells associated with each vertex. Quadratic
interpolation of the streamfunction could be used for greater accuracy
by including the three cells that share two edges with the three cells
surrounding the vertex.

Meteorological models are also often used in the studies of particu-
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lar phenomenon or investigations of new theories and ideas, e.g. a cloud
model or the reformulation of equations into new variables. The ad-
vantage of this scheme in this case is that the accuracy can be easily
improved by using a higher order polynomial. A particular accuracy may
be required to capture a certain feature but this may not be known in
advance. This method of generating advection schemes allows greater
accuracy to be achieved without the need to increase the grid resolu-
tion. The overall improvement in accuracy will depend on the relative
importance of advective processes in the model. Each model will behave
differently as the advection scheme is changed or the resolution is in-
creased, which models will benefit from using this method is difficult to
tell in advance. Performing tests comparing accuracy and computational
cost on such a model may help to explain this behaviour.

This method of generating advection schemes may also be of particular
use in oceanography. Oceans pose two particular problems that are not
present in the atmosphere. The first of these is the domain over which
the modelling is performed, which not only contains horizontal bound-
aries but ones that are highly irregular. Using an irregular grid over the
domain is a technique that is not widely used but one which this method
could easily cope with. The other problem is that the dynamics of the
oceans generate strong currents along the western boundaries of ocean
basins. These are very important features but pose difficulties for mod-
elling because of their dimension and the steep gradients they cause in
some model variables. This method has two benefits in this case, the first
is its ability to capture sharper gradients using higher order polynomials.
The second benefit is again its ability to handle irregular grids which may

be useful for providing increased resolution.
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Some of the ideas used with this method could be used to develop
a conservative semi-Lagrangian scheme. Conservative semi-Lagrangian
schemes have proved difficult to develop though there is growing success
in this area, e.g. Nair and Machenauser [33]. Using an exactly fitted local
polynomial resconstruction, the total tracer in each cell can be calculated
from the region that each cell occupied at the previous time step. Cal-
culating this region and integrating over several local polynomials will
cause some problems for this method that must be overcome. A globally
fitted function may help with the second of these problems but finding a
suitably global function may be difficult or computationally expensive.

These adaptions to the present method are largely designed to make the
schemes more efficient. We have already shown that the improvements in
the results gained by using higher order polynomials are significant. At
present these are somewhat expensive to compute but there are several
ways which the efficiency of the scheme may be improved. The automatic
generation of the advection schemes allows great flexibility in the way the
scheme is applied both in terms of the grids used and the accuracy of the
schemes. It is the relation between the accuracy of the schemes and the
computational cost of using them that must be exploited to make the
method more efficient. If this can be done then this method can be used

to advantage in many applications within meteorology and in other fields.
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