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COMPUTATION OF THE COMPLEX ERROR FUNCTION USING
MODIFIED TRAPEZOIDAL RULES

MOHAMMAD AL AZAH∗ AND SIMON N. CHANDLER-WILDE†

Abstract. In this paper we propose a method for computing the Faddeeva function w(z) :=

e−z2erfc(−i z) via truncated modified trapezoidal rule approximations to integrals on the real line.
Our starting point is the method due to Matta and Reichel (Math. Comp. 25 (1971), pp. 339–344)
and Hunter and Regan (Math. Comp. 26 (1972), pp. 339–541). Addressing shortcomings flagged
by Weidemann (SIAM. J. Numer. Anal. 31 (1994), pp. 1497–1518), we construct approximations
which we prove are exponentially convergent as a function of N + 1, the number of quadrature
points, obtaining error bounds which show that accuracies of 2× 10−15 in the computation of w(z)
throughout the complex plane are achieved with N = 11, this confirmed by computations. These
approximations, moreover, provably achieve small relative errors throughout the upper complex half-
plane where w(z) is non-zero. Numerical tests show that this new method is competitive, in accuracy
and computation times, with existing methods for computing w(z) for complex z.
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1. Introduction. The complementary error function is defined by [10, (7.2.2)]

(1) erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt,

for all z = x + iy (x, y ∈ R). This paper is concerned with approximating erfc(z)
through approximating an integral representation for the related Faddeeva function,
defined by [10, (7.2.3)]

(2) w(z) := e−z
2

erfc(−i z).

It is well known [3, (7.1.4)] that

(3) w(z) =
i

π

∫ ∞
−∞

e−t
2

z − t
dt =

iz

π

∫ ∞
−∞

e−t
2

z2 − t2
dt, Im(z) > 0,

and this is our starting point. It is sufficient to devise methods to compute w(z) for
z in the first quadrant since values in the other quadrants can be obtained using the
symmetries [18, (3.1) and (3.2)]

(4) w(−z) = 2e−z
2

− w(z) and w(z) = w(−z).

It follows from (2)–(3) that

(5) erfc(z) =
z e−z

2

π

∫ ∞
−∞

e−t
2

z2 + t2
dt, x = Re(z) > 0.

Starting from this integral representation Chiarella and Reichel [8] and Matta and
Reichel [15] showed, by the contour integration arguments that we recall in §2.1, that,
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for x > 0,

(6) erfc(z) =
hze−z

2

π

∞∑
k=−∞

e−k
2h2

z2 + k2h2
+

2H(π/h− x)

1− e2πz/h
+ E(h).

Here the first term is the trapezoidal rule approximation to (5) using a step size h > 0,
the second is a modification that arises from Cauchy’s residue theorem (expressed
using the standard Heaviside step function H, with H(0) = 1/2), and E(h) is a small
error term. Hunter and Regan [13] (correcting the argument in [8, 15]) show, for x > 0
with x 6= π/h, that

(7) |E(h)| ≤ 2|ze−z2 | e−π2/h2

π1/2(1− e−2π2/h2)|x2 − π2/h2|
.

Thus, for every fixed z = x+ iy with x > 0, the modified trapezoidal rule approxima-
tion obtained by neglecting E(h) in (6) is very rapidly convergent indeed as h→ 0.

As the bound (7) suggests, neglecting the error term E(h) in (6) gives a very
accurate approximation also for x = Re(z) = 0, except that the approximation is
undefined if z = ikh, for some k ∈ Z, and there are stability issues in evaluation if z is
close to one of these points. It is suggested in [13] to solve this issue by switching to
the composite midpoint rule where needed. Precisely, Hunter and Regan [13] propose
to use the formula (6) (neglecting the error term E(h)), if 1/4 ≤ ϕ(y/h) ≤ 3/4, where
y = Im(z) and

(8) ϕ(t) := t− btc ∈ [0, 1)

is the fractional part of t. Otherwise they suggest to use the midpoint-rule-based
formula

(9) erfc(z) =
hze−z

2

π

∞∑
k=−∞

e−(k+1/2)2h2

z2 + (k + 1/2)2h2
+

2H(π/h− x)

1 + e2πz/h
+ E′(h),

neglecting the corresponding error term E′(h) which they show satisfies the same
bound (7) as E(h).

These proposals from [13] are our starting point. In a practical implementation
the sums in (6) and (9) must be truncated, say to −N ≤ k ≤ N . The contributions
of this paper are to:

i) convert a modified version of the proposals of Hunter and Regan [13] into
a fully-specified algorithm, making clear how the choice of h > 0 should be
related to N for optimal accuracy;

ii) provide error estimates for the approximations we propose for w(z), proving
that the maximum absolute error (and the maximum relative error in the
upper-half plane) decrease exponentially with N , reducing by a factor eπ ≈
23.1 for each additional quadrature point;

iii) demonstrate that the claimed exponential convergence in absolute and rela-
tive errors is achieved numerically, and show that the simple approximation
formulae we propose are competitive in accuracy and computation time with
the existing methods for computing w(z).

In carrying out i) we are addressing earlier criticisms of the algorithms in [8, 15, 13]
made by Weideman [24], who observes that the formula (6) with the summation
reduced to −N ≤ k ≤ N
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“is very accurate, provided for given z and N the optimal step size
h is selected. It is not easy, however, to determine this optimal h a
priori.”

Our recommendations address this issue, detailing which approximation formula and
what step size h should be used for each N and z.

The bounds we obtain in carrying out ii) prove that the absolute error in our
approximation for w(z) tends to zero exponentially with N , uniformly in the complex
plane. This is a substantial improvement on the existing bound (7) which blows up
when x = π/h, and does not capture the additional truncation errors due to replacing
infinite by finite sums in the approximations (6) and (9).

Concretely, our proposed approximation to w(z), for z = x+ iy, with x, y ≥ 0, is

wN (z) :=


wM
N (z), if y ≥ max (x, π/h) ,

wMT
N (z), if y < x and 1/4 ≤ ϕ (x/h) ≤ 3/4,

wMM
N (z), otherwise,

(10)

where ϕ is defined by (8), N ∈ N0 := N ∪ {0},

h :=
√
π
/

(N + 1) ,(11)

wM
N (z) :=

2ih z

π

N∑
k=0

e−t
2
k

z2 − t2k
,(12)

wMM
N (z) :=

2 e−z
2

1 + e−2iπz/h
+ wM

N (z),(13)

wMT
N (z) :=

2 e−z
2

1− e−2iπz/h
+

ih

πz
+

2ih z

π

N∑
k=1

e−τ
2
k

z2 − τ2
k

,(14)

tk := (k + 1/2)h, and τk := kh.(15)

We extend the approximation to the full complex plane by using the symmetries
(4), precisely by defining

(16) wN (z) := wN (−z), if y ≥ 0 and x < 0, wN (z) := 2e−z
2

− wN (−z), if y < 0.

We supply in Table 1 of the supplementary materials [5] the Matlab code implementing
the approximation wN (z) that we use for the computations in §4.

The main error estimate that we prove, using standard complex analysis argu-
ments including a Phragmén-Lindelöf principle, is

Theorem 1.1. Suppose wN (z) is given by (10) and (16). Then, for N ∈ N0 and
z = x+ iy,

|w(z)− wN (z)| ≤ C1 e−πN , for all x, y ∈ R, and

|w(z)− wN (z)|
|w(z)|

≤ C2

√
N + 1 e−πN , if x ∈ R and y ≥ 0,

where C1 ≈ 0.67 is given by (75) and C2 ≈ 3.97 by (76).

We remark that approximation of w(z), for z ∈ C, provides an effective route to
the computation of other special functions, including Fresnel integrals (e.g., [6]), Daw-
son’s integral [10, Equation (7.5.1)], and the Voigt functions [10, Equation (7.19.3)].
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Indeed, we have previously used, in the restricted case arg(z) = π/4, an approxima-
tion resembling wMM

N (z) when approximating Fresnel integrals [6], proving results in
the spirit of Theorem 1.1.

Let us summarise the rest of the paper. In the largest §2 we derive the above
formulae and error bounds. In §3 we review the existing, alternative approximate
methods for computing erfc(z) and w(z) for complex z, for none of which has an error
bound been proved, similar to Theorem 1.1. In §4 we carry out numerical experiments
that confirm the accuracy of wN (z), showing that its absolute error is < 2 × 10−15

throughout the complex plane with N = 11, and that the same bound holds for the
relative error in the upper half-plane. We also show that our new approximation is
competitive in accuracy and computing times with the methods that we survey in §3,
specifically those of [24, 27, 26, 2].

We note that this paper is based, in significant part, on Chapter 3 of the first
author’s thesis [4].

2. The proposed approximation and its error bounds. In this section we
derive the approximation given by (10) based on modified trapezoidal rules. We
also derive the error bounds of Theorem 1.1 that demonstrate that the absolute and
relative errors in wN (z) both decrease exponentially as N increases.

2.1. The contour integral argument and its history. Given any f ∈ C(R)
that decays sufficiently rapidly at infinity, let

I[f ] :=

∫ ∞
−∞

f(t) dt,

and, for h > 0 and α ∈ [0, 1), define the generalised trapezoidal rule approximation to
I[f ] by

(17) Ih,α[f ] := h
∑
k∈Z

f((k − α)h).

We note that Ih,α[f ] = Ih,0[fα], where fα(t) := f(t−αh) for t ∈ R, and that Ih,0[f ] is
the trapezoidal rule approximation to I[f ] and Ih,1/2[f ] its composite midpoint rule
approximation.

The approximation (17) for I[f ] converges exponentially when the integrand is
analytic in a strip surrounding the real axis and has sufficient decay at ±∞. The
derivation of this result, using contour integration and Cauchy’s residue theorem,
dates back, for a particular case, at least to Turing [23], and has been analysed in
more general cases by Goodwin [12], McNamee [16], Schwartz [20] and Stenger [21].
For a detailed history and discussion see Trefethen and Weideman [22].

The rate of exponential convergence depends on the width of the strip of an-
alyticity around the real axis, and the accuracy of Ih,α[f ] deteriorates when f has
singularities close to the real line. But, in the case when these singularities are poles,
the contour integral method for establishing the exponential convergence of Ih,α[f ],
that we will recall in Proposition 2.1 below, leads naturally to corrections for modify-
ing the trapezoidal rule and recovering rapid convergence, these corrections expressed
in terms of residues of f at these poles. This appears to have been observed explicitly
first by Chiarella and Reichel [8], in the context of evaluating (5) (and see Matta and
Reichel [15], Hunter and Regan [13], and Mori [17]), and has been developed into a
general theory by Bialecki [7] (and see La Porte [14]).

It is convenient to recall in a proposition the standard arguments ([8, 15, 13] and
cf. [22, pp. 402–403]) that are made to prove exponential convergence, since we will
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Re

Im

H ΓH

−H Γ−H

ζ1

ζ2

ζ3
· · ·

ζm−1

ζm
CH̃,i,j

Fig. 1. The contour C
H̃,i,j

used in the proof of Proposition 2.1. The dots on the real line are

the poles of g(ζ) at (k − α)h, for k ∈ Z.

use these arguments below. These use, for given h > 0 and α ∈ [0, 1), the function
g(ζ) defined by

(18) g(ζ) := i cot (π (α+ ζ/h)) .

This is a meromorphic function with simple poles at ζ = (k − α)h, k ∈ Z, and the
properties that, for ζ ∈ C with η = Im(ζ),

(19) |1− g(ζ)| ≤ 2e−2πη/h

1− e−2πη/h
, if η > 0, |1 + g(ζ)| ≤ 2e2πη/h

1− e2πη/h
, if η < 0.

We also use, for H ∈ R, the notation ΓH for the path {t + iH : t ∈ R} traversed in
the direction of increasing t. It is enough for our purposes to suppose that the poles
of f are simple. For the case of poles of arbitrary order see [7, Theorem 2.2].

Proposition 2.1. Suppose that, for some H > 0, f is analytic in the strip SH :=
{ζ ∈ C : |Im(ζ)| < H}, except for a finite number of simple poles at ζ1, . . . , ζm ∈ SH ,
with ηk := Im(ζk) 6= 0, for k = 1, . . . ,m. Suppose also that f is continuous in
SH \ {ζ1, . . . , ζm} and that, for some r > 1, f(ζ) = O(|ζ|−r) as |Re(ζ)| → ∞,
uniformly in SH . Then

I[f ]− Ih,α[f ] =
1

2

(∫
ΓH

f(ζ)(1− g(ζ)) dζ +

∫
Γ−H

f(ζ)(1 + g(ζ)) dζ

)
+ Ch,α,H [f ],

where

Ch,α,H [f ] := πi

m∑
k=1

(sign(ηk)− g(ζk))Rk,

and Rk := Res(f, ζk) = limζ→ζk(ζ − ζk)f(ζ) denotes the residue of f at ζk.

Proof. Let Ak :=
(
k − α+ 1

2

)
h, for k ∈ Z. Let CH̃,i,j denote the positively

oriented rectangular contour with corners at Ai±iH̃ and Aj±iH̃, choosing H̃ ∈ (0, H)
and the integers i < 0 and j > 0 so that CH̃,i,j encloses the poles ζ1, . . . , ζm (see Figure
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1). Noting that Res(g, (k−α)h) = ih/π, for k ∈ Z, we apply Cauchy’s residue theorem
to ∫

C
H̃,i,j

f(ζ)g(ζ) dζ.

We take the limit H̃ → H, and then the limit as i → −∞ and j → +∞ which leads
(see [22, pp. 402–403] for more detail) to∫

Γ−H

f(ζ)g(ζ) dζ −
∫

ΓH

f(ζ)g(ζ) dζ = −2Ih,α[f ] + 2πi

m∑
k=1

g(ζk)Rk.

Making similar applications of Cauchy’s residue theorem we obtain also that∫
ΓH

f(ζ) dζ +

∫
Γ−H

f(ζ) dζ = 2I[f ]− 2πi

m∑
k=1

sign(ηk)Rk,

and the result follows.

Thanks to the bounds (19) it follows from the above proposition that

(20) |I[f ]− I∗h,α,H [f ]| ≤ e−2πH/h

1− e−2πH/h

∫
ΓH

(|f(ζ)|+ |f(−ζ)|) |dζ|,

where

(21) I∗h,α,H [f ] := Ih,α[f ] + Ch,α,H [f ]

is what we will call the modified generalised trapezoidal rule. If f is analytic in SH ,
so that I∗h,α,H [f ] = Ih,α[f ], this bound reduces to [22, Theorem 5.1], and proves that
Ih,α[f ] is exponentially convergent as h → 0. In the more general case that f has
simple pole singularities in SH , the bound (20) proves the same rate of exponential
convergence for I∗h,α,H [f ], the trapezoidal rule modified to take into account these
poles of f .

Our application of the above proposition and bound will be to the integrals given
by (5) and (3). In these cases (cf. Goodwin [12]) we have additionally that

(22) f(ζ) = e−ζ
2

F (ζ),

where F is even and F (ζ) = O(1) as |Re(ζ)| → ∞, uniformly in SH . This satisfies the

conditions of the above proposition, and, since | exp(−ζ2)| = eH
2−t2 for ζ = t + iH,

and
∫∞
−∞ exp(−t2) dt =

√
π, the bound (20) implies in this case that

(23)
∣∣I[f ]− I∗h,α,H [f ]

∣∣ ≤ 2eH
2−2πH/h

1− e−2πH/h

∫ ∞
−∞

e−t
2

|F (t+ iH)| dt ≤ 2
√
πMeH

2−2πH/h

1− e−2πH/h
,

where

(24) M := sup
t∈R
|F (t+ iH)|.

An important observation, particularly when applying the above bound in cases
where F is meromorphic in the whole complex plane, is that the exponent H2 −
2πH/h is minimised by the choice H = h/π, in which case H2 − 2πH/h = −π2/h2.
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The representations (6) and (9), with the bound (7) (which bounds both |E(h)| and
|E′(h)|), follow from applying (23) to (5). Precisely, we apply (23) with H = π/h
and α = 0 and α = 1/2, in the respective cases (6) and (9), noting that (5) can be
written as erfc(z) = I[f ] with f given by (22) and F (t) := z exp(−z2)/(π(z2 + t2)).
To obtain the bound (7) from (23) and (24) we note further that, for z = x+ iy and
ζ = t+ iπ/h, |z2 + ζ2| = |z + iζ| |z − iζ| ≥ |x− π/h||x+ π/h| = |x2 − π2/h2|.

2.2. Trapezoidal rule error estimates. In this subsection we apply the above
methods and bounds to obtain uniform absolute and relative error estimates as a
replacement for the bound (7). Except where explicitly indicated otherwise, all the
results we prove hold for all h > 0 and all α ∈ [0, 1).

For z = x+ iy with y > 0 we write (3) as w(z) = I[fz] where

fz(t) := e−t
2

Fz(t) and Fz(t) :=
i z

π(z2 − t2)
.(25)

The even function fz is meromorphic with simple poles at t = ±z and residues

R1 := Res (fz, z) =
−i e−z

2

2π
and R2 := Res (fz,−z) = −R1.(26)

Thus, using the notation of Proposition 2.1,

(27) Ch,α,H [fz] =

{
2e−z

2

/(1− e−2iπ(α+z/h)), if H > y,
0, if H < y,

and the trapezoidal rule approximation to w(z) = I[fz] is

Ih,α[fz] = h
∑
k∈Z

iz e−(k−α)2h2

π(z2 − (k − α)2h2)
=


hiz

π

[
1

z2
+ 2

∞∑
k=1

e−τ
2
k

z2 − τ2
k

]
, α = 0,

2hiz

π

∞∑
k=0

e−t
2
k

z2 − t2k
, α = 1

2 ,

(28)

where tk and τk are as defined in (15). It is useful also to introduce the notations

(29) Ch,α[fz] := lim
H→∞

Ch,α,H [fz] =
2e−z

2

1− e−2iπ(α+z/h)
,

and

(30) I∗h,α[fz] := lim
H→∞

I∗h,α,H [fz] = Ih,α[fz] + Ch,α[fz],

where I∗h,α,H [fz] is the modified trapezoidal rule defined by (21). Note that

(31) Ch,α[fz] = Ch,α,H [fz] and I∗h,α[fz] = I∗h,α,H [fz], for y < H,

and that I∗h,α,H [fz] = Ih,α[fz] for y > H. We note also that, as a function of z,
I∗h,α[fz] is entire: Ih,α[fz] and Ch,α[fz] are both meromorphic with simple poles at
z = ±(k − α)h, k ∈ Z, and it is easy to check that the pole contributions cancel in
the sum (30): the singularities in I∗h,α[fz] are removable.

The following proposition (cf. [17, §2]) bounds |w(z) − I∗h,α,H [fz]| for H = π/h.
It also bounds the relative error |w(z) − I∗h,α,H [fz]|/|w(z)| using the lower bound [6,
Theorem 6]

(32) |w(z)| ≥ 1

1 +
√
π|z|

, Im(z) ≥ 0,

this sharp for small and large z as w(0) = 1 and w(z) ∼ i/(
√
πz) as z →∞ [11, (2.6)].



8 MOHAMMAD AL AZAH, SIMON N. CHANDLER-WILDE

Proposition 2.2. Suppose that z = x+ iy with 0 ≤ x ≤ y. Then

(33)
∣∣w(z)− I∗h,α[fz]

∣∣ ≤ 2

√
e

π

e−π
2/h2

1− e−2π2/h2

and

(34)

∣∣∣w(z)− I∗h,α[fz]
∣∣∣

|w(z)|
≤ 4
√

2πe

h

e−π
2/h2

1− e−2π2/h2 ,

if 0 ≤ y ≤ π/h, while

(35) |w(z)− Ih,α[fz]| ≤ 4

√
e

π

e−π
2/h2

1− e−2π2/h2+
√

2π/h

and

(36)
|w(z)− Ih,α[fz]|

|w(z)|
≤ 4
√

2πe(1 +
√
π)

h

e−π
2/h2

1− e−2π2/h2+
√

2π/h
,

if y ≥ π/h and h <
√

2π.

Proof. For H > 0 and y > 0 with H 6= y we have the bound (23) with

(37) M = sup
t∈R
|Fz(t+ iH)| = |z|

π
sup
t∈R

1

|z2 − (t+ iH)2|
.

Since |z2 − (t + iH)2| = |z − t − iH| |z + t + iH| ≥ |y − H| |y + H|, it follows that
M ≤ |z|/(π|y2 −H2|), so that
(38)∣∣w(z)− I∗h,α,H [fz]

∣∣ ≤ 2|z| eH2−2πH/h

√
π
(
1− e−2πH/h

)
|y2 −H2|

≤ 2
√

2 y eH
2−2πH/h

√
π
(
1− e−2πH/h

)
|y2 −H2|

,

since 0 ≤ x ≤ y so that |z| ≤
√

2y. Further, using (32) and 0 ≤ x ≤ y,

(39)

∣∣∣w(z)− I∗h,α,H [fz]
∣∣∣

|w(z)|
≤ 2
√

2(1 +
√

2πy)y eH
2−2πH/h

√
π
(
1− e−2πH/h

)
|y2 −H2|

.

Now suppose that 0 < y ≤ π/h and take H = π/h + ε for some ε > 0. Then,
by (31), I∗h,α[fz] = I∗h,α,H [fz], and since y/(H2 − y2) and (1 +

√
2πy)y/(H2 − y2) are

increasing as functions of y on [0, H), it follows from (38) and (39) with H = π/h+ ε
that

(40)
∣∣w(z)− I∗h,α[fz]

∣∣ ≤ 2
√

2π e−π
2/h2+ε2(

1− e−2π2/h2−2πε/h
)
ε(2π + εh)

and

(41)

∣∣∣w(z)− I∗h,α[fz]
∣∣∣

|w(z)|
≤ 2

√
2π (h+

√
2ππ) e−π

2/h2+ε2

h
(
1− e−2π2/h2−2πε/h

)
ε(2π + εh)

.

Choosing ε = 1/
√

2 to minimise exp(ε2)/ε we obtain, for 0 < y < π/h, the bound
(33), and also the bound (34) on noting that (h +

√
2π π)/(2π + h/

√
2) ≤

√
2; these
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bounds hold also for y = 0 and y = π/h since the left hand sides of the bounds depend
continuously on y on [0, π/h] (recall that I∗h,α[fz] is an entire function of z and that
w(z) is bounded below on y ≥ 0 by (32)).

Now suppose that y > π/h and take H = π/h − ε for some ε ∈ (0, π/h). Then
I∗h,α,H [fz] = Ih,α[fz], and since y/(y2−H2) and (1+

√
2πy)y/(y2−H2) are decreasing

as functions of y on (H,∞], it follows from (38) and (39) with H = π/h− ε that

(42) |w(z)− Ih,α[fz]| ≤
2
√

2π e−π
2/h2+ε2(

1− e−2π2/h2+2πε/h
)
ε(2π − εh)

and

(43)
|w(z)− Ih,α[fz]|

|w(z)|
≤ 2

√
2π (h+

√
2ππ) e−π

2/h2+ε2

h
(
1− e−2π2/h2+2πε/h

)
ε(2π − εh)

.

If π/h > 1/
√

2 we can again choose ε = 1/
√

2, obtaining the bounds (35) and (36) for
y > π/h; these bounds hold also for y = π/h since the left hand sides of the bounds
depend continuously on y on [π/h,∞).

It follows immediately from the definition (29) that, for x ∈ R, y > 0,

|Ch,α[fz]| ≤
2 e−2πy/h

1− e−2πy/h
ey

2−x2

.(44)

Since |I∗h,α[fz]| ≤ |Ih,α[fz]|+ |Ch,α[fz]|, the following corollary follows from the above
proposition, (44), and (32).

Corollary 2.3. If z = x+ iy with x = y ≥ 0 and h <
√

2π, then

(45)
∣∣w(z)− I∗h,α[fz]

∣∣ ≤ ca e−π
2/h2

1− e−2π2/h2+
√

2π/h

and

(46)

∣∣∣w(z)− I∗h,α[fz]
∣∣∣

|w(z)|
≤ cr

h

e−π
2/h2

1− e−2π2/h2+
√

2π/h
,

where

(47) ca :=
2(2e +

√
π)√

eπ
≈ 4.934 and cr :=

2
√

2π (1 +
√
π)(2e +

√
π)√

e
≈ 60.77.

Proof. For 0 ≤ x = y ≤ π/h these bounds follow immediately from the sharper
bounds (33) and (34). Suppose now that x = y ≥ π/h and h <

√
2π. Then it follows

from (44) that

|Ch,α[fz]| ≤
2 e−2π2/h2

1− e−2π2/h2 ≤
2 e−π

2/h2

√
e
(
1− e−2π2/h2

) .
Further, since (1 +

√
2πy)/(e2πy/h − 1) is decreasing as a function of y on [π/h,∞),

it follows from (44) and (32) that

|Ch,α[fz]|
|w(z)|

≤ 2 (h+
√

2ππ)e−2π2/h2

h
(
1− e−2π2/h2

) ≤ 2
√

2π(1 +
√
π) e−π

2/h2

h
√

e
(
1− e−2π2/h2

) .

Since |I∗h,α[fz]| ≤ |Ih,α[fz]| + |Ch,α[fz]|, the required bounds for x = y ≥ π/h follow
from the above bounds and (35) and (36) in Proposition 2.2.
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Proposition 2.2 tells us that I∗h,α,H [fz], withH = π/h, is an approximation to w(z)
with controllable absolute and relative errors for π/4 ≤ arg(z) ≤ π/2. To complement
this result we will show in Proposition 2.6 below that I∗h,α[fz] is an approximation
to w(z) with controllable absolute and relative errors for 0 ≤ arg(z) ≤ π/4, so that
I∗h,α,π/h[fz] and I∗h,α[fz] together provide trapezoidal rule-based approximations to

w(z) across the whole first-quadrant (and, via the symmetries (4), across the whole
complex plane). We will prove Proposition 2.6 via the following Phragmén–Lindelöf
principle applied with a = 4 to the left hand sides of (42) and (43).

Lemma 2.4. [9, Chapter VI, Cor. 4.2] Let a ≥ 1/2 and put

Ω :=
{
z = reiθ : r > 0 and 0 < θ < π/a

}
.

Suppose that f is analytic on Ω and continuous in Ω and that there is a constant P
such that |f(z)| ≤ P for all z ∈ ∂Ω. If there are positive constants Q and b < a such
that |f(z)| ≤ Q exp(|z|b) for all z ∈ Ω, then |f(z)| ≤ P for all z ∈ Ω.

The main step in proving Proposition 2.6 via this lemma is to show that the left hand
sides of (45) and (46) are bounded on ∂Ω when a = 4. We have bounded these left
hand sides already on {reiπ/4 : r ≥ 0} in Corollary 2.3. It remains to bound them on
the positive real axis which we do in the next proposition.

Proposition 2.5. If x ≥ 0 then

(48)
∣∣w(x)− I∗h,α[fx]

∣∣ ≤ 2he−π
2/h2

π3/2
(
1− e−2π2/h2

)
and

(49)

∣∣∣w(x)− I∗h,α[fx]
∣∣∣

|w(x)|
≤
[
8 +

10h

π3/2

]
e−π

2/h2

1− e−2π2/h2 .

Proof. Arguing as in the proof of Proposition 2.2, for x ≥ 0 and 0 < y < π/h we
have the bound (23) with H = π/h. Thus, and since (recall (31)) I∗h,α,H [fz] = I∗h,α[fz]
for y < H, it follows that

(50)
∣∣I[f ]− I∗h,α[fz]

∣∣ ≤ 2e−π
2/h2

1− e−2π2/h2

∫ ∞
−∞

e−t
2

|Fz(t+ iH)| dt ≤ 2
√
πMe−π

2/h2

1− e−2π2/h2 ,

where M is given by (37). Since M and the left and right hand sides of the first of
these inequalities depend continuously on y on [0, π/h), the above inequalities hold
also for y = 0. Since also, for x ≥ 0 and t ∈ R we have that

|x2 − (t+ iπ/h)2| = |x2 − (|t|+ iπ/h)2|

= |x− |t| − iπ/h| |x+ |t|+ iπ/h| ≥ π

h
|x+ iπ/h| ≥ π

h
|x|,(51)

it follows that M ≤ h/π2 for x ≥ 0, and (48) follows from (50) with z = x ≥ 0.
From (32) and (50), with z = x ≥ 0 and H = π/h, it follows that

(52)

∣∣∣I[f ]− I∗h,α[fx]
∣∣∣

|w(x)|
≤ 2(1 +

√
π x)e−π

2/h2

1− e−2π2/h2

∫ ∞
−∞

Gx(t) dt
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for x ≥ 0, where

Gx(t) := e−t
2

|Fx(t+ iπ/h)| = xe−t
2

π |x2 − (t+ iπ/h)2|
.

If x ≥ 0 and −x/2 ≤ t ≤ x/2, then

|x2−(t+iπ/h)2| = |x−t−iπ/h| |x+t+iπ/h| ≥ |x/2−iπ/h| |x/2+iπ/h| = x2 + 4π2/h2

4
,

so that ∫ x/2

−x/2
Gx(t) dt ≤ 4x

π(x2 + 4π2/h2)

∫ ∞
−∞

e−t
2

dt =
4x√

π(x2 + 4π2/h2)
.

But also, using (51), we see that Gx(t) ≤ he−t
2

/π2, for all x ≥ 0, t ∈ R, so that∫
R\[−x/2,x/2]

Gx(t) dt ≤ 2h

π2

∫ ∞
x/2

e−t
2

dt <
2h

π2x
e−x

2/4 ≤ 2h

π2x
,

for x > 0 since, for a > 0,

(53)

∫ ∞
a

e−t
2

dt =
e−a

2

2a
− 1

2

∫ ∞
a

e−t
2

t2
dt <

e−a
2

2a
.

Moreover, ∫
R\[−x/2,x/2]

Gx(t) dt ≤ 2h

π2

∫ ∞
0

e−t
2

dt =
h

π3/2
.

Thus, and since min(a, b) ≤ 2ab/(a+ b) if a ≥ 0, b ≥ 0, and a+ b > 0, it follows that∫
R\[−x/2,x/2]

Gx(t) dt ≤ h

π2
min(

√
π, 2x−1) ≤ 4h

π3/2(2 +
√
π x)

so that ∫ ∞
−∞

Gx(t) dt ≤ 4√
π

(
x

x2 + 4π2/h2
+

h

π(2 +
√
π x)

)
and (49) follows from (52), on noting that x2/(x2+4π2/h2) ≤ 1 and x/(x2+4π2/h2) ≤
h/(4π).

In our final proposition of this subsection (cf. [4, Proposition 3.3.4]) we combine
Corollary 2.3, Proposition 2.5, and Lemma 2.4 to bound approximations to w(z) in
0 ≤ arg(z) ≤ π/4, complementing the bounds in Proposition 2.2 for π/4 ≤ arg(z) ≤
π/2.

Proposition 2.6. Suppose that h <
√

2π and z = x+ iy with 0 ≤ y ≤ x. Then
the bounds (45) and (46) hold with ca and cr given by (47).

Proof. We will prove this proposition by applying Lemma 2.4 with a = 4, so
that Ω = {z = x + iy : 0 < y < x}, to the functions Eh(z) := w(z) − I∗h,α[fz] and
eh(z) := Eh(z)/w(z) = (w(z)− I∗h,α[fz])/w(z).

We have remarked already that w(z) and I∗h,α[fz] are entire as a function of z,
so that Eh is entire and, noting (32), eh is analytic in Im(z) > 0 and continuous in
Im(z) ≥ 0. In particular, Eh and eh are continuous in Ω and analytic in Ω. Further, if
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h <
√

2π, it follows from Corollary 2.3 and Proposition 2.5, on noting that the bounds
in Proposition 2.5 are smaller than those in Corollary 2.3, that Eh and eh satisfy the
bounds claimed in the proposition when z ∈ ∂Ω, i.e. for z on {x + ix : x ≥ 0} and
on the positive real axis. Thus the proposition follows by Lemma 2.4 if we can show
that Eh(z) and eh(z) do not grow too rapidly as z →∞ in Ω.

But, if h <
√

2π, it follows from (31) and (38) applied with H = 3 that, for some
constant C > 0 independent of z, |Eh(z)| ≤ C|z| if z ∈ Ω with y ≤ 2. Similarly,
since I∗h,α,H [fz] = Ih,α[fz] if y > H and I∗h,α[fz] = Ih,α[fz] + Ch,α[fz], it follows from

(38) applied with H = 1 and (44) that, for some constant C̃ > 0 independent of

z, |Eh(z)| ≤ C̃|z| if z ∈ Ω with y ≥ 2. Thus |Eh(z)| ≤ C∗|z| for z ∈ Ω, where

C∗ := max(C, C̃), so that also, applying (32), |eh(z)| ≤ C∗|z|(1 +
√
π |z|) for z ∈ Ω.

Thus the proposition follows by applying Lemma 2.4.

The following corollary summarises and simplifies, at the cost of a little sharpness,
the results of Propositions 2.2 and 2.6 and of this subsection.

Corollary 2.7. Suppose that z = x + iy with x ≥ 0, y ≥ 0, and h <
√

2π.
Then the bounds (45) and (46) hold with ca and cr given by (47) if y ≤ max(x, π/h).
The same bounds hold as bounds on |w(z) − Ih,α[fz]| and |w(z) − Ih,α[fz]|/|w(z)|,
respectively, with the same values of ca and cr, if y ≥ max(x, π/h).

Proof. The first claim of the corollary follows from Proposition 2.6 and (33) and
(34), and the second follows from (35) and (36).

2.3. Truncating the infinite series. Propositions 2.2 and 2.6 together provide
accurate trapezoidal-rule-based approximations to w(z) in the first quadrant of the
complex plane, that can be extended to the whole complex plane using the symme-
tries (4). But in implementation the infinite series in these approximations must be
truncated. We estimate the additional error this introduces in this subsection.

At this point, since we wish to use that fz is even to reduce computation, we
restrict attention to the cases α = 0 and α = 1/2, in which cases the trapezoidal rule
approximation reduces to (28). In these cases we approximate Ih,α[fz] by

INh,α[fz] :=


hfz(0) + 2h

N∑
k=1

fz(τk), α = 0

2h

N∑
k=0

fz(tk), α = 1/2,

(54)

with fz given by (25) and τk and tk defined in (15). We will call the error in approx-
imating Ih,α[fz] by INh,α[fz] the truncation error, given by

(55) TNh,α[fz] := 2h

∞∑
k=N+1

fz(sk),

where sk := (k + α)h. This is also the error in approximating I∗h,α[fz] by I∗,Nh,α [fz],
where I∗h,α[fz] is defined in (30) and

(56) I∗,Nh,α [fz] := INh,α[fz] + Ch,α[fz].

The following result ([4, Proposition 3.3.7]) bounds TNh,α[fz] for π/4 ≤ arg(z) ≤
π/2. We use in this proposition the estimate, obtained since exp(−t2) is decreasing
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on (0,∞) and noting (53), that

(57) 2h

∞∑
k=M

e−s
2
k ≤ 2he−s

2
M + 2

∫ ∞
sM

e−t
2

dt ≤ 2hsM + 1

sM
e−s

2
M , M ∈ N.

Proposition 2.8. Suppose α = 0 or 1/2 and z = x + iy with y ≥ x ≥ 0. Then,
for N ∈ N0,

|TNh,α[fz]| ≤
(1 + 2h τN+1)

πτ2
N+1

e−τ
2
N+1 and(58)

|TNh,α[fz]|
|w(z)|

≤ (1 + 2h τN+1)(1 + 2
√
π τN+1)

πτ2
N+1

e−τ
2
N+1 .(59)

Proof. For z = x+ iy with y ≥ x ≥ 0,

|z2 − s2
k|2 = y4 + s4

k + x4 + 2x2y2 + 2s2
k(y2 − x2) ≥ y4 + s4

k ≥ y4 + τ4
k .

Thus, and recalling (25) and using (57) with M = N + 1,

|TNh,α[fz]| ≤
2
√

2h y

π

∞∑
k=N+1

e−τ
2
k√

y4 + τ4
k

≤
√

2y (1 + 2h τN+1)

πτN+1

√
y4 + τ4

N+1

e−τ
2
N+1 .

Moreover,

y
/√

y4 + τ4
N+1 ≤

1√
2 τN+1

and y2
/√

y4 + τ4
N+1 ≤ 1,

so that (58) follows and also

y |TNh,α[fz]| ≤
√

2(1 + 2h τN+1)

πτN+1
e−τ

2
N+1 .(60)

Since, by (32), |w(z)|−1 ≤ 1 +
√

2πy for 0 ≤ x ≤ y, (59) follows from (58) and (60).

The following result ([4, Propositions 3.3.5, 3.3.6]) bounds TNh,α[fz] for 0 ≤ arg(z)
≤ π/4, so that Propositions 2.8 and 2.9 together bound the absolute and relative
truncation errors in the first quadrant. The case 0 ≤ arg(z) ≤ π/4 is more subtle
because TNh,α[fz] is unbounded, it has simple poles at z = sk, for k ≥ N + 1, and
our bound requires that the distance of z from this set of poles is ≥ h/4. Despite
this restriction, we can construct accurate approximations covering the whole region
0 ≤ arg(z) ≤ π/4 because sk = τk = kh for α = 0 while sk = tk = τk + h/2 for
α = 1/2, so that {z : |z − sk| ≥ h/4 for either sk = τk or tk, for k ≥ N + 1} includes
the whole of {z : 0 ≤ arg(z) ≤ π/4}.

Proposition 2.9. Suppose α = 0 or 1/2 and z = x + iy with 0 ≤ y ≤ x and
|z − sk| ≥ h/4 for k ≥ N + 1. Then, for N ∈ N0,

|TNh,α[fz]| ≤ c(h,N, α) :=
2
√

2 (1 + 2hsN+1) (h+ 4sN+1)

πh s2
N+1

e−s
2
N+1 and(61)

|TNh,α[fz]|
|w(z)|

≤ (1 +
√

2πsN+1) c(h,N, α).(62)
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Proof. From (25) and (55), for 0 ≤ y ≤ x,

(63) |TNh,α[fz]| ≤
2h|z|
π

∞∑
k=N+1

e−s
2
k

|z2 − s2
k|
≤ 2

√
2hx

π(x+ sN+1)

∞∑
k=N+1

e−s
2
k

|z − sk|
.

Thus, and noting (32), the bounds (61) and (62) hold if x = 0.
Choose θ with 0 < θ < 1. Given x > 0 let M be the smallest integer ≥ N + 1

such that sM > θx, so that, if M > N + 1, sk ≤ θx and |z− sk| ≥ (1− θ)x for k < M .
If M > N + 1 it follows, using the bound (57), that

2hx

M−1∑
k=N+1

e−s
2
k

|z − sk|
≤ 2h

1− θ

∞∑
k=N+1

e−s
2
k ≤ 2hsN+1 + 1

(1− θ)sN+1
e−s

2
N+1 ,

while, for M ≥ N + 1, assuming |z − sk| ≥ h/4 for k ≥ N + 1 and again using (57),

2hx

∞∑
k=M

e−s
2
k

|z − sk|
≤ 8x

∞∑
k=M

e−s
2
k ≤ 4x(2hsM + 1)

hsM
e−s

2
M ≤ 4(2hsM + 1)

hθ
e−s

2
M .

Thus, and since (2ht + 1) exp(−t2) is decreasing as a function of t on [h,∞) and
sM ≥ sN+1 ≥ h,

2hx

∞∑
k=N+1

e−s
2
k

|z − sk|
≤ (2hsN+1 + 1)

[
4

hθ
+

1

(1− θ)sN+1

]
e−s

2
N+1

=
2(2hsN+1 + 1)(h+ 4sN+1)

hsN+1
e−s

2
N+1 ,(64)

on choosing θ = 4sN+1/(h+4sN+1) so as to equalise the terms in the square brackets.
From (63) and (64), on noting that x + sN+1 ≥ sN+1 and x/(x + sN+1) ≤ 1, we see
that, for x > 0, (61) holds and also x|TNh,α[fz]| ≤ sN+1c(h,N). From these bounds

and that |w(z)|−1 ≤ 1 +
√

2πx for 0 ≤ y ≤ x by (32), the bound (62) follows.

The following corollary summarises and simplifies, at the cost of a little sharpness,
the results of Propositions 2.8 and 2.9 and this subsection.

Corollary 2.10. Suppose α = 0 or 1/2, z = x + iy with x ≥ 0, y ≥ 0, and
either y ≥ x or |z − sk| ≥ h/4 for k ≥ N + 1. Then, for N ∈ N0,

|TNh,α[fz]| ≤ c(h,N, 0) =
2
√

2 (1 + 2hτN+1) (h+ 4τN+1)

πh τ2
N+1

e−τ
2
N+1 , and also(65)

|TNh,α[fz]|
|w(z)|

≤ (1 +
√

2π τN+1) c(h,N, 0), provided h ≥ 1/(N + 1).(66)

Proof. Proposition 2.8 implies the above bounds hold when y ≥ x. If y ≤ x the
above bounds are immediate from Proposition 2.9 in the case α = 0. They hold also
when α = 1/2 as: i) c(h,N, 1/2) ≤ c(h,N, 0), since s−me−s

2

decreases as s increases
on (0,∞) for m = 0, 1, 2; ii) tN+1c(h,N, 1/2) ≤ τN+1c(h,N, 0) if τN+1 ≥ 1 (i.e.,

h ≥ 1/(N + 1)), since also se−s
2

decreases as s increases on [1,∞).
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2.4. Proof of the main theorem. In this subsection we bring together the
bounds on the error in the trapezoidal rule approximation (Corollary 2.7) and on the
truncation error (Corollary 2.10) to bound the errors in the truncated trapezoidal rule
approximation (54) and its modification (56). Clearly,

|w(z)− INh,α[fz]| ≤ |w(z)− Ih,α[fz]|+ |TNh,α[fz]| and(67)

|w(z)− I∗,Nh,α [fz]| ≤ |w(z)− I∗h,α[fz]|+ |TNh,α[fz]|.(68)

Applying Corollaries 2.7 and 2.10 it follows that, for α = 0 and 1/2 and z = x + iy
with x ≥ 0, 0 ≤ y ≤ max(x, π/h),

|w(z)− I∗,Nh,α [fz]| ≤ ca
e−π

2/h2

1− e−2π2/h2+
√

2π/h
+ c(h,N, 0), where(69)

c(h,N, 0) :=
2
√

2 (1 + 2hτN+1) (h+ 4τN+1)

πh τ2
N+1

e−τ
2
N+1 ,

provided y ≥ x or |z − sk| ≥ h/4 for k ≥ N + 1. Similarly, applying Corollaries 2.7
and 2.10,

|w(z)− INh,α[fz]| ≤ ca
e−π

2/h2

1− e−2π2/h2+
√

2π/h
+ c(h,N, 0)(70)

for α = 0 and 1/2, if z = x+ iy with x ≥ 0 and y ≥ max(x, π/h).
We choose the step size h, as a function of N , to approximately balance the

contributions from the trapezoidal rule error and the truncation error in the above

error bounds. Precisely, we choose h so that the exponents of e−π
2/h2

and e−τ
2
N+1

are equal, i.e. we define h :=
√
π/(N + 1) as in (11). With this choice of h we have

π/h = τN+1 =
√

(N + 1)π,

(71) c(h,N, 0) =
2
√

2 (1 + 2π) (5 + 4N)

π2(N + 1)
e−(N+1)π ≤ 10

√
2 (1 + 2π)

π2
e−(N+1)π,

and

e−π
2/h2

1− e−2π2/h2+
√

2π/h
=

exp(−(N + 1)π)

1− exp
(
−2(N + 1)π +

√
2(N + 1)π

) ≤ c∗ e−(N+1)π,(72)

where

(73) c∗ :=
(

1− exp
(
−2π +

√
2π
))−1

≈ 1.0234.

This leads to our main theorem.

Theorem 2.11. Suppose α = 0 or 1/2, N ∈ N0, h is defined by (11), and z =
x+ iy. If π/h ≥ y ≥ x ≥ 0 or 0 ≤ y ≤ x and |z − sk| ≥ h/4 for k ≥ N + 1, then

|w(z)− I∗,Nh,α [fz]| ≤ C1 e−πN and
|w(z)− I∗,Nh,α [fz]|

|w(z)|
≤ C2

√
N + 1 e−πN ,(74)

where

C1 :=
2(2e +

√
π)

eπ
√

eπ
(
1− exp

(
−2π +

√
2π
)) +

10
√

2 (1 + 2π)

eππ2
≈ 0.6692 and(75)

C2 :=
2
√

2 (1 +
√
π)(2e +

√
π)

eπ
√

e
(
1− exp

(
−2π +

√
2π
)) +

10(1 + 2π)(2π +
√

2)

eππ2
≈ 3.971.(76)
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Further, if x ≥ 0 and y ≥ max(x, π/h), then

|w(z)− INh,α[fz]| ≤ C1 e−πN and
|w(z)− INh,α[fz]|

|w(z)|
≤ C2

√
N + 1 e−πN .(77)

Proof. The bounds on |w(z) − I∗,Nh,α [fz]| and |w(z) − INh,α[fz]| follow from (69),
(70), (71), (72), and the definitions, (47) and (73), of ca and c∗. With h defined by
(11), it follows that h ≥ 1/(N + 1) and

1 +
√

2π τN+1 = 1 + π
√

2(N + 1) ≤
√

2 + 2π√
2

√
N + 1.

Thus Corollaries 2.7 and 2.10, together with (67), (68), (71), and (72), imply, with

h defined by (11), that |w(z)− I∗,Nh,α [fz]|/|w(z)| and |w(z)− INh,α[fz]|/|w(z)| are both
bounded above by(

crc
∗

h
+

10(1 + 2π)(2π +
√

2)

π2

√
N + 1

)
e−(N+1)π = C2

√
N + 1 e−πN ,

under their respective constraints on x and y.

The above theorem justifies approximating w(z) by INh,α[fz], with α = 0 or 1/2, if h
is given by (11), x ≥ 0 and y ≥ max(x, π/h); we choose, arbitrarily, the midpoint-rule-
based approximation wM

N (z) := INh,1/2[fz], given explicitly by (12). If y < max(x, π/h),

the above theorem suggests approximating by I∗,Nh,α [fz], with α = 0 or 1/2. For 0 ≤
x ≤ y < π/h we choose the modified midpoint-rule-based approximation wMM

N (z) :=

I∗,Nh,1/2[fz], given explicitly by (13). This choice ensures that the distance of z from

the set of quadrature points {t0, . . . , tN} is ≥ h/(2
√

2), so that the size of the largest
term in the sum (12) does not exceed 1/(π

√
2) and there is no loss of precision

through cancellation between the two terms in the sum (13). For 0 ≤ y < x we
approximate either by wMM

N (z) or by the modified trapezoidal-based approximation

wMT
N (z) := I∗,Nh,0 [fz], written explicitly in (14). Which of these we use is determined

by the rule (10) which ensures that |z − sk| ≥ h/4 for k ∈ N0, where sk = tk when
α = 1/2, sk = τk when α = 0, so that Theorem 2.11 applies and we avoid loss of
precision through cancellation between terms in (13) and (14).

Proof of Theorem 1.1. Noting the discussion in the above paragraph, the bounds
in Theorem 1.1 follow, for x ≥ 0, y ≥ 0, immediately from those in Theorem 2.11.
That the absolute error bound holds in the whole complex plane, and that the bound
on the relative error holds in {z : y ≥ 0}, follows from the bounds in the first quadrant
and the symmetry relations and definitions (4) and (16).

3. Survey of existing methods. There are a number of other schemes for
computation of w(z) for complex z and we briefly summarise the best of these, making
connections with (10). Most use variations on polynomial or rational approximation,
with different schemes in different regions of the first quadrant (leading, through
(4), to approximation in the whole complex plane). Indeed, our own approximation
(10) uses three formulae (12)–(14), with (12) rational and (13)–(14) rational with
meromorphic corrections in terms of exponential functions.

Gautschi [11] advocated, for larger z, the rational approximation

(78) w(z) ≈ i/
√
π

z−
1/2

z−
2/2

z−
3/2

z−
· · · (n− 1)/2

z
,



COMPUTATION OF THE ERROR FUNCTION USING TRAPEZOIDAL RULES 17

the nth convergent of the beautiful Laplace continued fraction representation for w(z)
(specifically suggesting n = 9). Gautschi notes that: i) by construction the nth
convergent is asymptotically accurate, with error O(|z|−2n−1) as |z| → ∞, uniformly
in the first quadrant; ii) the nth convergent converges to w(z) as n→∞ if and only
if Im(z) > 0; iii) remarkably, for Im(z) > 0, the nth convergent coincides with the
approximation obtained by approximating (3) by an n-point Gauss-Hermite rule. For
smaller z Gautschi [11] proposed (rational) approximations that are truncated Taylor
expansions with the coefficients approximated by convergents of continued fractions.

This methodology, carefully tuned, is the basis of TOMS Algorithm 680 (Poppe
and Wijers [18]) which achieves a relative error of 10−14 over nearly all the complex
plane using, in the first quadrant: i) Maclaurin polynomials of degree ≤ 55 for the
odd function erf(−iz) (substituted into (2)) in an ellipse around the origin; ii) the
convergents (78) with n ≤ 18 outside a larger ellipse; iii) the more expensive mix
of Taylor expansion and continued fraction calculation proposed by Gautschi [11] in
between. This algorithm has been used as a benchmark by several later authors.

Weideman [24, 25] proposed (the derivation starts from (3)) the single rational
approximation

(79) w(z) ≈ 1√
π(L− iz)

+
2

(L− iz)2

N−1∑
n=0

an+1

(
L+ iz

L− iz

)n
, for Im(z) ≥ 0,

where the size of N controls the accuracy of the approximation, L := 2−1/4N1/2,
and the an are discrete Fourier coefficients that can be precomputed by the FFT.
He argues, based on operation counts, that, for intermediate values of |z|, the work
required to compute w(z) to 10−14 relative accuracy is much smaller for (79) than for
the Poppe and Wijers algorithm [18].

Zagloul and Ali proposed a method (see TOMS Algorithm 916 [27] and the re-
finements in [26], and cf. [19] and [3, (7.1.29)]) starting from

(80) erf(z) = erf(x) +
2e−x

2

√
π

∫ y

0

et
2

sin(2xt) dt+
2i e−x

2

√
π

∫ y

0

et
2

cos(2xt) dt,

for z = x+ iy. They approximate

w(z) ≈ u(x, y) + iv(x, y), x, y ≥ 0,(81)

where

u(x, y) := e−x
2

erfcx(y) cos(2xy) +
2a sin2(xy)

πy
e−x

2

+
ay

π
(−2 cos(2xy)S1 + S2 + S3) ,

v(x, y) := −e−x
2

erfcx(y) sin(2xy) +
a sin(2xy)

πy
e−x

2

+
a

π
(2y sin(2xy)S1 − S4 + S5) ,

erfcx(y) := ey
2

erf(y), and Sj , j = 1, . . . , 5, are the following summations reminiscent
of the trapezoidal rule approximations (6):

S1 :=

∞∑
k=1

(
1

a2k2 + y2

)
e−(a2k2+x2), S2 :=

∞∑
k=1

(
1

a2k2 + y2

)
e−(ak+x)2 ,

S3 :=

∞∑
k=1

(
1

a2k2 + y2

)
e−(ak−x)2 , S4 :=

∞∑
k=1

(
ak

a2k2 + y2

)
e−(ak+x)2 ,

S5 :=

∞∑
k=1

(
ak

a2k2 + y2

)
e−(ak−x)2 .

(82)
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Fig. 2. Maximum absolute and relative errors in the approximation (10) and the error bounds
of Theorem 1.1, plotted against N .

The authors have supplied us with their Matlab implementation Faddeyeva_v2(z,M)

[26], where the parameter M is the number of accurate significant figures required,
and the code enforces 4 ≤ M ≤ 13. In this code the choice a = 1/2 is made and the
sums in (82) are truncated, the number of terms retained depending on M . Zagloul
and Ali [27] (and see [26]) present numerical evidence that the approximation (81),
with a = 1/2 and appropriate truncation of the infinite sums (82), is more accurate
and faster than TOMS Algorithm 680 [18].

Abrarov et al. [2] (and see [1]) proposed recently another method for computing
w(z) using modified rational approximations, namely

w(z) ≈


ψ1(z), if z ∈ D1,

ψ2(z), if z ∈ D2,

ψ3(z), if z ∈ D3,

(83)

where D1 := {z = x+iy : |z| < 8 and y > 0.05x}, D2 := {z = x+iy : |z| < 8 and y ≤
0.05x}, D3 := {z : |z| ≥ 8},

ψ1(z) :=

M∑
m=1

Am +Bm(z + iα/2)

C2
m − (z + iα/2)2

, ψ2(z) := e−z
2

+ z

M+2∑
m=1

αm − βmz2

γm − θmz2 + z4
,(84)

the coefficients Am, Bm, Cm, αm, βm, γm and θm are specified in [2], and ψ3(z) is
approximately (78) with n = 10 (see [2, Equation (9)]). Abrarov et al. [2] present
numerical evidence to show that (83) achieves an accuracy of 10−13 using α = 2.75
and M = 23 in (84).

4. Numerical results. In this section we show calculations that illustrate and
support Theorem 1.1, and that compare the accuracy and efficiency of our approxi-
mation wN (z) given by (10) to those of the approximations (79), (81), and (83).

In Figure 2 we plot estimates of the maximum values in the first quadrant of
the absolute and relative errors in our approximation (10) to w(z), implemented
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using the Matlab code wTrap(z,N) provided in Table 1 of the supplementary material
to this paper [5]. The maximum values we plot are discrete maxima taken over
the 16, 020, 801 points z = 10peiθ, with p = −6(0.0006)6 and θ = 0(π/1600)π/2,
a superset of the 40, 401 test values in Weideman [24, 25]. To compute errors we
use as the exact values of w(z) the independent approximation (79) with N = 45,
implemented through a call cef(z,45) to the Matlab code in [24, Table 1]. (The
results in [24, 25, Figure 8], [6, Figure 2] suggest that N = 45 in (79) is ample for
accuracies close to machine precision, and we obtain almost identical results in Figure
2 and Table 1 below if we use, instead, w20(z) given by (10) as the exact value.)

We observe in Figure 2 the rate of exponential convergence predicted by Theorem
1.1. The approximation wN (z) achieves, with N = 11 over this set of discrete points
in the first quadrant, maximum absolute and relative errors which are < 2× 10−15.

Algorithm
Maximum
abs. error

Maximum
rel. error

Computing
time (seconds)

wTrap(z,11) 1.67× 10−15 1.89× 10−15 4.29 (±0.08)
cef(z,40) 2.11× 10−15 2.15× 10−15 4.20 (±0.02)
fadsamp(z) 3.86× 10−14 3.86× 10−14 5.74 (±0.04)

Faddeyeva_v2(z,13) 4.07× 10−15 1.71× 10−13 11.00 (±0.11)
Table 1

Maximum absolute and relative errors for the Matlab codes implementing the approximations
(10), (79), (83), and (81). The computing times are mean and s.d. of 25 executions.

In Table 1 we compare the accuracy and efficiency of our approximation and
Matlab code with Matlab implementations of the approximations (79), (81), and
(83). Results are shown in Table 1 for:

1. Our approximation wN (z) with N = 11 implemented by the call wTrap(z,11)
to the Matlab code provided in [5, Table 1];

2. Weideman’s approximation (79) with N = 40 (this choice of N ensures high
accuracy throughout the whole first quadrant, see [24, 25, Figure 8], [6, Figure
2]), implemented by the call cef(z,40) to the Matlab code in [24, Table 1];

3. The approximation of Abrarov et al., implemented by the call fadsamp(z)
to the Matlab function in [2, Appendix], which uses the method (83) with
α = 2.75 and M = 23 in the formulae for ψ1(z) and ψ2(z);

4. The approximation (81) of Zagloul and Ali [27], implemented by the call
Faddeyeva_v2(z,M) with M = 13 (the maximum value permitted by the
code) to the Matlab code described in [26]: here M is the number of accurate
significant figures required.

For these approximations Table 1 shows estimated maximum absolute and relative
errors in the first quadrant, and computation times (mean and standard deviation of
25 executions, each measured by Matlab timeit) running Matlab version 9.3.0.713579
(R2017b) on a laptop with a single Intel64 Family 6 Model 78 2.40 GHz processor.
The estimated maximum errors are discrete maxima over the same 16, 020, 801 points
as above, and we again use as the exact value the approximation (79) with N =
45 implemented by cef(z,45); the computation times are for where z is a matrix
containing the 16, 008, 001 points z = x+ iy, with x = 0(0.0025)10, y = 0(0.0025)10.

We observe that our approximation w11(z) implemented as wTrap(z,11) is the
most accurate (though Weideman’s approximation is nearly as accurate and all four
methods achieve < 4×10−14 maximum absolute error, < 2×10−13 maximum relative
error). Our Matlab code is marginally slower than that of Weideman, but faster than
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the other two.
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