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Abstract

In a large category of wetting phenomena, the
contact line was always regarded as a compact,
one-dimensional object with only microscopic
length scales involved. This prevailing opin-
ion had a certain impact and repercussions on
the developing theories, interpretation of exper-
imental results and the subsequent modeling
methodologies. In this report, we will demon-
strate, on the basis of first principles of molec-
ular dynamic simulations, that this is not al-
ways the case. In particular, this is not true
in the complete wetting case, when the advanc-
ing contact line motion is often accompanied
by a running ahead precursor film. We study
the onset of the dynamic wetting regime with
the precursor film present and its main char-
acteristic properties, such as dimensions. We
show how the contact line becomes wide and
practically macroscopic, and how the presence
of the precursor film influences the macroscop-
ically observed dynamic contact angle, which
is the main parameter in the fluid mechanics
of capillary flows. It is directly demonstrated
that this effect of the contact line widening by
the running ahead precursor film can not be in
principle captured by a localized approach.

Keywords: wetting, nano-scale, meso-scale,
contact line, molecular dynamics simulations.

Introduction

In 1805, Thomas Young proposed an equation
to predict the value of the equilibrium contact
angle formed by the free surface of a liquid on a
solid substrate.1,2 The Young’s equation, in the
case of a partially wetting liquid, states that

γGS − γLS = γ cos θ0, (1)

where θ0 is the equilibrium contact angle, γGS,
γLS and γ are gas-solid, liquid-solid and liquid-
gas equilibrium interfacial tensions respectively.
Equation (1) represents a balance of all sur-
face tension forces acting on the contact line
in the tangential to the substrate direction. At
the same time, it is also manifestation of the
contact line microscopic dimensions, implying
that the contact line can be regarded as a one-
dimensional, string-like object in the macro-
scopic description.

The Young’s equation has been revisited
and debated many times in the past, see for
example,3–6 but ultimately verified down to
nanoscale in static conditions.7 At the same
time, as it has been shown recently in the case
of advancing contact line motion, this equation,
in a slightly modified form, also works well in
dynamic situations.8 In this case, when the con-
tact line is in motion, the modified Young’s law

γ cos θ0 = γGS − γLS = F + γ cos θc (2)

relates dynamic contact angle θc with an extra
friction force F acting on the moving contact
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line. In equilibrium, at zero contact line ve-
locity, the friction force F = 0 vanishes and
the contact angle should attain the equilibrium
value θ0 in the absence of the hysteresis effects.

In both static and dynamic scenarios recre-
ated in molecular dynamics simulations (MDS),
the local character of the contact line was di-
rectly established. It was found that the con-
tact line region, including the domain where
the contact line friction force F was generated,
was on the microscopic length scale of a few
or so atomic distances, that is basically around
one or two nanometers in dimensional units.7,8

In fact, the analysis and simulations performed
in8 have confirmed the longstanding hypothesis
postulated in the molecular kinetic theory9,10

about the existence of a friction force of non-
hydrodynamic, that is of microscopic origin act-
ing directly on the contact line and leading to
the modified Young’s law (2).

As one can see, the locality of the contact
line region has important repercussions for the
modelling of the dynamic wetting phenomena.
In the current study, we consider a situation,
when the local character of the contact line re-
gion is completely broken.

In general, non-locality in dynamic wetting
is often associated with the presence of surface
tension gradients (Marangoni effect) created by
gradients of temperature or relative concentra-
tions of surface phase components.11 In this
case, hydrodynamic motion can influence sur-
face tension gradients on macroscopic length
scales and therefore affect the local contact an-
gle. The contact angle can be influenced di-
rectly if the system size is on the length scale
comparable to the size of the contact line re-
gion, basically in the nanoflow conditions.12 In
simple liquids at constant temperature, the in-
terfaces are supposed to be at equilibrium with-
out any gradients of surface tensions. So that, if
the system size is macroscopic, one may expect
that the contact line dynamics will be local and
follow the modified Young’s equation (2).

In our study, we consider a situation, when
the contact line dynamics is accompanied by
the presence of a precursor film. One may ex-
pect then that even for simple fluids and large
size of the systems, the wetting dynamics is go-

ing to be non-local. One may seek to answer the
following questions: would the concept of the
moving contact line be only applicable to the
tip of the moving precursor film or to a much
larger region? How can the contact angle be
defined in this case and how would it be influ-
enced by the presence of the film?

Setup and simulations

To study dynamic wetting at the onset of the
precursor film regime, we make use of large
scale MDS. The methodology of simulations
and evaluation of the system parameters, such
as the contact angle, can be found in Meth-
ods. The geometry of our nano-scale simula-
tions is periodic in the x-direction with reflec-
tive boundary conditions at the simulation box
ends in the z-direction, Fig. 1. The size of the
system in the z-directions has been varied, and
dictated by the extend of the precursor film.
The box length in the z-direction was set to
such a value so that to exclude any possibility
for the liquid particles at the tip of the precur-
sor film be influenced by the reflective potential
at the z-end of the simulation domain.

The size of the system in the y-direction,
height H was set to H = 60± 3σff (the height
was kept constant within the runs, Table 1) to
have sufficiently small aspect ratio of the inter-
facial width (hs ≈ 4σff to 8σff ) to the size of
the bulk region. Test runs with H ≈ 102σff

have shown no effects on the bulk region of this
parameter.

The layer thickness in the periodic x-direction
(droplet depth) was set at ∆x ' 18σff for the
simulations with short chain molecules NB = 5
and at ∆x ' 28σff for simulations involving
longer chains. A test run with a larger depth
∆x ' 50σff at NB = 50 has shown no influence
of this parameter on the macroscopic observ-
ables. The results have been averaged over the
droplet depth, that is in the x-directions with
no, on average, any structure observed over the
droplet depth. The cylindrical geometry of the
droplet has also helped to avoid any line ten-
sion effects, which may become influential at
the nanoscale.
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Figure 1: Snapshots of the cylindrical droplets
in a steady state in MDS set-up at H ≈
57σff and two dynamic contact angles: θc =
122.7 ± 1◦ at U = 0.06u0 and θc = 68.7 ± 1◦

at U = 0.009u0. The set-up is periodic in
the x-direction with the total number of liq-
uid particles in the simulations varied between
90, 000 to 140, 000. The solid wall was mov-
ing along the z-direction aligned in the [1,0,0]
crystallographic direction of the fcc lattice com-
prising the solid substrate. The steady state
was reached following an equilibration period
of 10000 τ0.

To mimic the forced wetting regime, the solid
wall particles were moving with velocity U in
the z-direction ([1,0,0] crystallographic direc-
tion), where the reflective wall was acting as a
piston at rest. After initial equilibration during
∆teq = 10000 τ0 with the time integration step
∆ts = 0.01 τ0, which was used in the study, we
reached a steady state and measured dynamic
contact angle and other interfacial parameters.
We note that, the essential part of the current
methodology was based on the ability to reach a
steady state to obtain good signal-to-noise ratio
results.

The onset of the precursor

film regime
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Figure 2: Illustration of the onset and develop-
ment of the precursor film with variations of the
liquid drop velocity U by particle density distri-
butions in a steady state in MDS at NB = 50,
T0 = 1 εff /kB and εwf = 1.3 εff . Distance y
is measured from the equimolar surface of the
solid wall particles, while distance z is measured
from the centre of the simulation box.

Precursor films have been regularly observed
experimentally and in MDS with the film thick-
ness being found on mesoscopic (a few tens of
nanometers) and microscopic (molecularly thin
precursor films) length scales.13–19 It has been
established that in the case of molecularly thin
films, the wetting front of the film emanating at
the foot of the contact line region always prop-
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agates according to the diffusion law,

Lp =
√
Dst (3)

similar to the well-known in the capillary sci-
ence Lucas-Washburn propagation dynamics.
Here Lp is the length of the precursor film
counted from the foot of the macroscopic liq-
uid region and Ds is effective coefficient of sur-
face diffusion. As one can readily observe, the
velocity of the moving film front

dzf
dt

=
1

2

√
Ds

t
=

Ds

2Lp
(4)

vanishes with time as the film length increases.
This in turn implies that in a moving contact
line problem, when, for example, a droplet is
moving with macroscopic velocity U and the
tip of the precursor film is propagating indepen-
dently at the rate dzf/dt in the same direction,
the length of the precursor film is expected to
attain a constant value defined by the droplet
velocity and the coefficient of the surface diffu-
sion

Lp =
Ds

2U
(5)

when
dzf
dt
− U =

dLp
dt

= 0. (6)

In our MDS, the precursor film is only ob-
served in the complete wetting cases (θ0 = 0),
when the droplet velocity is below some criti-
cal value U < UT , Tables 1 and 2. The steady
state of the precursor film is indeed observed
and is illustrated in Fig. 2. As one can see
from the averaged density profiles at the foot of
the wetting volume, the thickness of the film is
about one atomic diameter σff . This is the typ-
ical morphology of the precursor films observed
in our MDS in the liquids consisting of both
short chain (NB = 5) and long chain (NB = 50)
molecules. Consider now the obtained steady
state in detail.

Results and discussion

Consider first how do our MDS results corre-
spond to the predictions of the diffusion theory

represented by equation (3).
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Figure 3: Illustration of the precursor film
dynamics while the system was reaching the
steady state in MDS set-up. Precursor film
length Lp as a function of time t at different
contact line velocities U and molecular length
NB at T = 1εff /kB. The solid lines are the fit
given by equation (8).
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Figure 4: Precursor film length Lp as a func-
tion of the droplet velocity U in a steady state
at different system parameters T , NB and εwf .
The solid lines are the fit Lp = Ds/2U .

Evolution of the precursor film

Integrating the evolution equation

dLp
dt

=
Ds

2Lp
− U (7)
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Table 1: Parameters of the MDS systems and dynamic wetting regimes: NB is the number of beads
in the molecules, kBT is the temperature of the liquid, ρ is the liquid particle density, µ is liquid
viscosity, γ is the surface tension of the liquid at the free surface, εwf is the liquid-solid particle
LJ interaction energy, Πs is the particle density of the substrate, γSL is the surface tension of the
liquid at the solid, γGS is the surface tension of the gas at the solid, θ0 is the static contact angle,
and Fc and Uc are the characteristic force per unit length and the characteristic velocity used to
generate the master curve in Fig 5. Parameters µ0, γ0 and u0 are used to obtain reduced quantities
in MDS, see Methods for details.

Set NB kBT/εff ρσ3
ff µ/µ0 γ/γ0 εwf /εff Πsσ

3
ff γSL/γ0 γGS/γ0 θ0 (deg) Fc/γ0 Uc/u0

(a) 5 0.8 0.91 10.5 0.92 0.9 4 -0.66 0 44 1.57 0.03
(b) 15 1 0.88 18 0.83 0.8 4 -0.21 0 75 1.03 0.042
(c) 5 0.8 0.91 10.5 0.92 1.2 1.4 -2.3 0 0 3 0.025
(d) 5 0.8 0.91 10.5 0.92 1.4 1.4 -3.48 0 0 3.96 0.011
(e) 5 1 0.86 5.7 0.71 1.4 1.4 -1.62 0 0 1.31 0.0049
(f) 50 1 0.89 61.8 0.92 1.3 1.4 -2.2 0 0 2.73 0.0074
(g) 50 1 0.89 61.8 0.92 1.4 1.4 -2.6 0 0 2.86 0.0033

Table 2: Parameters of the MDS systems and the precursor films in the full wetting regimes: NB is
the number of beads in the molecules, kBT is the temperature of the liquid, ρ is the liquid particle
density, µ is liquid viscosity, γ is the surface tension of the liquid at the free surface, εwf is the
liquid-solid particle LJ interaction energy, Πs is the particle density of the substrate, γSL is the
surface tension of the liquid at the solid, Ds is the effective coefficient of surface diffusion obtained
by fitting velocity dependencies Lp(U) in the steady state, Fig. 4, and FT and UT are the values
of the force per unit length and velocity at the transition point into the wetting regime with the
precursor film present. Parameters µ0, u0 and γ0 are used to obtain reduced quantities in MDS,
see Methods for details.

Set NB kBT/εff µ/µ0 γ/γ0 εwf /εff γSL/γ0 Ds/σff

√
εff

mf
UT/u0 FT/Fc UT/Uc

(c) 5 0.8 10.5 0.92 1.2 -2.3 0.09± 0.01 0.04 0.83 1.6
(d) 5 0.8 10.5 0.92 1.4 -3.48 0.07± 0.01 0.017 0.81 1.55
(e) 5 1 5.7 0.71 1.4 -1.62 0.27± 0.04 0.008 0.85 1.63
(f) 50 1 61.8 0.92 1.3 -2.2 0.09± 0.01 0.012 0.81 1.62
(g) 50 1 61.8 0.92 1.4 -2.6 0.084± 0.01 0.005 0.84 1.52

in the range Lp ∈
[
0,
Ds

2U

]
with the initial con-

dition Lp = 0 at t = 0, one gets implicitly a
relationship describing the precursor film dy-
namics

t =
Lp
U
− Ds

2U2
ln

(
1− 2ULp

Ds

)
. (8)

To compare development of a precursor film
at a fixed value of the droplet velocity U below
the critical value U < UT with the evolution law
(8) obtained from the linear diffusion (3), we
initiated MDS from a steady state configuration
attained at a velocity value above the critical

U > UT , so that no precursor film was initially
present.

The evolution of the precursor film then was
monitored using the density profiles integrated
in the y-direction. The tip (front) of the precur-
sor film has been conveniently ascribed to the
point where the integral of the particle density
distribution

∫
ρ dy = 0.9σ−2ff . The evolution of

the precursor film front observed in MDS is il-
lustrated in Fig. 3 at different conditions.

As one can see, the film length did indeed
attain a constant value with time. One can also
observe that the evolution equation (8) provides
a good approximation to the obtained dynamics
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of the film. Note, in the fitting procedure, only
one parameter Ds in (8) has been allowed to
vary.

The length of the film at the steady state
given by (5) also provides a good approxima-
tion to the observable steady state length, Fig.
4. From the dependence, Lp = Lp(U) in the
steady state, one can obtain the value of the ef-
fective coefficient of diffusionDs, Table 2, which
was found to be consistent with the values re-
quired to fit temporal dependencies in Fig. 3.
For example, at NB = 5 and T = 1 εff /kB,

Ds = 0.27± 0.04σff

√
εff

mf
, while the most prob-

able value found in fitting the curves in Fig. 3

was Ds = 0.3± 0.06σff

√
εff

mf
.

Parametric dependencies of the diffusion co-
efficient demonstrate the trends, which are in-
tuitively expected. As one can anticipate, an
increase in the solid wall potential εwf would
reduce the ability of molecules to diffuse along
the substrate and hence would lead to the re-
duced coefficient of diffusion Ds, as it is seen in
the simulations, Table 2. At the same time, an
increase in the liquid temperature is expected
to produce an opposite effect, and indeed, it re-
sults in an increase in the diffusion coefficient
Ds. An increase in the chain length NB also has
a strong effect on the coefficient of diffusion.
Longer chain molecules have substantially de-
creased ability to move along the solid surface,
so that Ds was found to be much smaller in the
case of NB = 50 than that at NB = 5 and at
similar values of T and εwf , Table 2.

One can conclude in this part of the study
that the steady state of the precursor film cor-
responds well to that expected according to the
linear diffusion model, when the liquid motion
in the film is initiated by the force generated at
the tip of the film, while the energy is dissipated
through the friction at the substrate.

Precursor film and dynamic con-
tact angle

The transition to the wetting regime with the
precursor film present can be also observed in
the dependence of the out-of-balance contact

line force

F = γ(cos θ0 − cos θc) (9)

as a function of the droplet velocity U , Fig. 5.
In the case of complete wetting, when θ0 = 0,
the out of balance force can be formally cal-
culated on the basis of the equilibrium surface
tensions

F = γGS − γLS − γ cos θc. (10)

The dynamic contact angle used to generate
the velocity dependencies F = F (U) in Fig 5
has been obtained from the particle density pro-
files as is illustrated in Figs. 14 and 15 and is ex-
plained in Methods. That is the dynamic con-
tact angle was defined at the interface between
the bulk of the liquid and the liquid-gas, liquid-
solid interfacial layers, exactly as it would have
been defined in the macroscopic description.

The transition to the new regime with the
precursor film present occurs at the branching
point shown in Fig. 5, when the substrate ve-
locity drops down below a critical value UT , see
Table 2. We will analyse this regime in detail
further, but first consider the processes taking
place at the contact line region in the absence
of the precursor film.

Dynamic processes at the contact line re-
gion in the absence of the precursor film

In the previous study,8 we have already estab-
lished that in the absence of the precursor film,
the dynamic contact angle θc is solely condi-
tioned by the non-linear friction force acting on
the first layer of liquid particles at the solid sub-
strate, which is distributed in a narrow region
about a few atomic diameters corresponding to
the local contact line domain. This is illustrated
in Fig. 6 in the case of complete wetting, when
the substrate velocity is above the critical level
U > UT .

The distribution of the tangential to the sub-
strate friction force density δF along the sub-
strate (the force per unit area as a function of
z) has been obtained by sampling the force act-
ing on each liquid particle from the solid wall
particles in a box adjacent to the solid substrate
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with characteristic dimensions ∆z = 1σff and
∆y = 3σff , and by averaging over the time in-
terval ∆t = 10000τ0 and over the droplet depth
in the x-direction. The distribution as a func-
tion of the tangential coordinate z has two char-
acteristic regions, Fig. 6 (a). The first part of
the distribution has a characteristic bell-shaped
form and begins at the tip of the density distri-
bution at the substrate. Further along the sub-
strate, the bell-shaped region goes into a tail.
We note that the characteristic length scale of
the friction force variations is definitely micro-
scopic.

The tail of the friction force distribution in
our simulations is due to the small, finite size of
the system H and corresponds well to the shear
stress developed in the rectilinear flow between
the solid substrates. Indeed, in the example
shown in Fig. 6 (a), the shear stress in the
tail region at z > 20σff at the solid substrate
was found to be Θyz = −0.082± 0.006 f0, while
the value of Θyz = −6µU

Heff
= −0.073 f0 is ex-

pected assuming the Hagen-Poiseuille flow be-
tween the planes, where Heff = H − 2∆S ≈
52σff is the effective gap between the plates
taking into account the size of the solid sub-
strate ∆S ≈ 2.75σff .

As the system size increases, the value of the
friction force in the tail region is observed to
decrease at a given substrate velocity, as is ex-
pected in the rectilinear Hagen-Poiseuille flow
conditions, and to eventually disappear in the
macroscopic limit H →∞.8 At the same time,
the bell-shaped region in this limiting procedure
is shown to be qualitatively invariant (subject
to relatively minor quantitative changes), Fig.
6 (a), dashed line, corresponding to the force
acting on the contact line.8

The transition to the bulk zone with the de-
veloped Hagen-Poiseuille flow can be also seen
in the distribution of the surface velocity along
the substrate (in the z-direction) measured in
the boundary layer ∆y = 1.5σff adjacent to
the substrate, Fig. 6 (b). One can observe that
in the bell-shaped region of the force distribu-
tion, the velocity at the solid surface substan-
tially differs from the substrate velocity U , but
quickly approaching it in the tail region. The
velocity difference, which always exists irrespec-

tive of the system size H, is the main reason for
the contact line friction force.

Consider now the force balance given by equa-
tion (10). We first note that due to the lim-
ited observation time and the use of long chain
molecules there is practically no gas phase, and
neglecting deformations of the solid substrate,
the gas-solid surface tension can be set to zero
γGS = 0. The exact size, shape and loca-
tion of the contact line zone on the microscopic
length scale is the subject of a convention to
some extent. For example, one can define the
three-phase contact line region as an overlap
(crossover) of the interfacial layers defined as
the regions with strong variations of density.
This is indicated by a dashed box in Fig. 7.
In the macroscopic limit H → ∞, the contact
line zone is usually attributed to a point in the
continuum, where at equilibrium the balance of
surface tension forces is observed.

If we were to ascribe the out-of-balance force
F to the action of the friction force only F = FD
and integrate the distribution of the tangential
force δF along the z-direction FD =

∫ zc
z0
δF dz,

Fig. 8, one can see that the friction force alone
should only balance the surface tension forces at
zc = 14.3σff , that is on the length scale larger
than that of the three-phase contact line de-
fined as the crossover region. The friction force
acting on the length scale of the crossover re-
gion is insufficient to get the full balance. As
one can see from Fig. 8, the disbalance is on
the level of the surface tension force, that is of
the order of γ0. At the same time, the velocity
distributions in the steady states clearly indi-
cates that there is no strong force disbalance on
the level suggested. This directly implies that
the whole region in the vicinity of the dashed
box in Fig. 7 is the subject of strong forces of
non-hydrodynamic origin developed as a result
of the prolonged action of the surface friction
force.

To illustrate this statement, we determine the
force (per unit length in the x-direction) acting
on the surface element oriented perpendicular
to the z-axis and of variable side size ∆y, Fig.
9. The MDS data behave linearly with ∆y as
FS = A + B(∆y − ∆y0), A = −2.3 ± 0.1 γ0,
B = 0.78 ± 0.02f0 and ∆y0 = 0.44 ± 0.1σff ,
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which is manifestation of invariableness of pres-
sure across the gap, as is expected in rectilinear
fully developed viscous flows. The surface ten-
sion contribution to the force generated in the
vicinity of the substrate, ∆y = ∆y0 (∆y0 is the
gap between the solid wall particles and the first
layer of liquid molecules), can be approximately
extracted by taking the limit ∆y → ∆y0. One
can observe that γLS = −2.3 γ0 found indepen-
dently, Table 1, is within the error band of the
value A = −2.3 ± 0.1 γ0. The order of magni-
tude of the surface force is on the level of the
surface tension.

The total force balance on the dashed box in
Fig. 7, which is certainly expected according to
the distribution of the surface velocity vS, Fig.
6 (b), is made of the surface tension forces, the
friction force

∫ zc
z0
δF dz, zc = 6σff and the non-

hydrodynamic forces developed as a result of
the friction force (FS for example), all acting
on the dashed box.

The example shown in Fig. 6 is interesting
since it also illustrates the effect of non-locality
due to the nano-scale size of the system. The
prolonged mesoscopic tail of the tangential fric-
tion force distribution δF is able to influence
the much smaller contact line region.

In the macroscopic limit, the tail would van-
ish, and the friction force would be localised.
This is illustrated in Fig. 8, where we have
shown the integral of the friction force dis-
tribution in the macroscopic limit H → ∞,
the brown line. Remarkably, the integral of
the surface force distribution in the limit satu-
rates within the three phase contact line region,
Fig. 8, though the force magnitude becomes
slightly lower. Since the friction force would
be localised within the cross-over region in the
macroscopic limit, all other non-hydrodynamic
forces apart from the friction force are expected
to vanish as well, so that the force balance is ex-
pected to be made, in this limit, of the surface
tensions and the friction force only, as is mani-
fested in the modified Young’s equation (2).

Dynamic contact angle

The velocity dependencies of the dynamic con-
tact angle represented in terms of the out-of-
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Figure 5: Out-of-balance contact line force F
as a function of velocity U . The solid line is the
fit given by equation (11) at λ = 0.5.

balance force F at different parameters of the
wetting system have been reduced to a single
master curve, in the absence of the precursor
film, by renormalizing the contact line velocity
and force, Fig. 5. This has been done by inter-
polating each dependence by a functional form

F

Fc
=

U
Uc(

1 +
(
U
Uc

)2)λ (11)

with two adjusting parameters Fc and Uc, and a
fixed value of λ = 1/2. The functional form (11)
was inspired by the MDS of the liquid slip be-
haviour,20,21 where the liquid-solid friction, also
the mechanism of the dynamic contact angle
generation,8 was directly measured. The choice
of λ = 1/2 in the fitting function is dictated by
the observed saturation of the friction force (F
tends to a constant value) in the high velocity
limit. The fact that all the force-velocity depen-
dencies F = F (U) after the re-normalisation
confine to a single master curve implies that
the mechanism of the dynamic contact angle
generation due to the friction force is indeed
universal, at least in the systems in hands, and
all the friction force parameters are changing in
the congruent way during variations of the sur-
face interaction potential, liquid properties and
the temperature in the system.

The velocity dependencies in the complete
wetting cases followed the trend (11) initially,
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in the high velocity region, but deviated from
the master curve at a branching point when the
velocity fell below a critical value UT , Table 2.
While the values of the critical velocity UT and
the corresponding friction force FT strongly de-
pend on the system parameters, remarkably,
the normalised quantities UT/Uc ≈ 1.6 and
FT/Fc ≈ 0.83 are practically invariant, Table
2. This is also an indication (direct) that the
mechanism of the precursor film generation is
universal and defined by the friction force pa-
rameters.

At the critical point, the velocity dependen-
cies deviated from the master curve and instead
developed into a plateau. The appearance of
the plateau coincided with the onset of the pre-
cursor film.

Dynamic processes at the contact line re-
gion in the presence of the precursor film

Consider the dynamics in the plateau regime
in more detail. The distribution of the friction
force δF , the surface density ρS and the tangen-
tial surface velocity vS along the substrate are
shown in Fig. 11. The surface variables have
been obtained by averaging over the boundary
layer ∆y = 1.5σff adjacent to the substrate.
The case shown in the picture corresponds to a
sufficiently developed tail at U = 0.009u0, see
distribution of the particle density in Fig. 10.
The contact line zone defined again as the over-
lapping region of the two interfaces is shown by
the dashed box.

As one can see, both distributions, sur-
face density ρS(z) and surface velocity vS(z),
demonstrate variations within the tail region, if
we compare them with the distribution of the
number density in the tail region shown in Fig.
10.

The surface velocity distribution has three re-
gions. Initially, at the precursor film tip, the
particles at the surface are moving away from
the tip pushed by the molecular forces from
the film. Further down the substrate the veloc-
ity distribution conforms to the rolling motion,
that is the velocity is increasing while attain-
ing the velocity of the substrate with a small
slip component in the bulk. The result of the

velocity and the density distribution is the fric-
tion forces acting on the first layer of liquid
molecules, Fig. 11. The friction force vanishes
at the dashed box, so that the main contribu-
tion, in total, comes from the extended tail re-
gion, as one can see from the integral of the
friction force distribution in Fig. 12. So, one
can immediately see the difference between the
two cases, with and without the precursor film
(shown in Fig. 7). While the balance of forces
on the dashed box is still expected to provide
the value of the contact angle, as is shown in
Fig. 10, the balance itself is completely differ-
ent from the modified Young’s law (10) due to
the presence of the precursor film. Basically,
the tail region plays the role of the solid-gas
interface providing the total force Fp, which is
supposed to be balanced by the friction force
and the surface tension γ, that is

F + γ cos θc + Fp = 0.

Qualitatively, the contribution from the precur-
sor film Fp should not be velocity dependent, as
the film structure is not changing a lot at the
foot of the bulk volume, Fig. 2. The friction
force F contribution is roughly proportional to
the precursor film length Lp ∝ U−1 multiplied
by the characteristic value of the friction force
distribution δF ∝ U . So, qualitatively, the con-
tact angle is expected to stay almost constant
with variations of the velocity, as is indeed ob-
served as the plateau in Fig. 5.

Given the contact angle, for example θc =
68.7◦ in the case shown in Fig 10, and the
friction force distribution, Fig. 12, one can
estimate the contribution from Fp, which is
Fp = −1.85 ± 0.1 γ0. A similar estimate at
a lower velocity and θc = 64.4◦ gave Fp =
−1.89 ± 0.1 γ0, so that indeed within the ac-
curacy, the value is invariant. Note, that as is
expected Fp > γLS = −2.3 γ0.

Conclusions

We have demonstrated from the first princi-
ples of statistical mechanics, that the concept of
the contact line in the context of the complete
wetting case spreading is undergoing significant
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changes, though the concept itself is still useful.
In a nutshell, the usually microscopic object,
the contact line becomes geometrically macro-
scopic due to the developing precursor film. As
a result, the processes usually taking place on
the scale of a nanometer, are now occurring
over much larger, tens of nanometers length
scales. In terms of the macroscopic observables,
the contact angle velocity dependence attains a
quite visible plateau, so that the dynamic con-
tact angle is not varying much in this regime.
The results have direct repercussions to applica-
tions, where the contact angle can be assumed
to be a constant in simulations, without the
need to invoke any microscopic models in this
case.

Methods

The main part of our methodology is based
on the use of large scale MDS. In our simula-
tions, a large, cylindrical liquid droplet consist-
ing of 90000−140000 particles is placed between
two identical solid substrates each containing
three layers of particles, Fig. 1. The numerical
method is similar to that used in the previous
study.8

Molecular Dynamics Simulations

All particles in the simulations interact by
means of LJ potentials

Φkl
LJ(r) =

{
4εkl

((
σkl
r

)12 − (σkl
r

)6)
; r ≤ rc

0; r > rc

with the cut-off radius rc = 2.5σkl . Here r is
the distance between the beads, εkl and σkl are
the characteristic energy and length scale of LJ
interactions.

One can distinguish between two kinds of par-
ticles: liquid (index k, l = f) particles of mass
mf and solid wall (index k, l = w) particles
of mass mw = 10mf . The larger mass of the
substrate particles was used to compensate for
the particle number disparity between the liq-
uid and the solid.

All units in the model are non-dimensional, so
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Figure 6: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity
U = 0.06u0 and the dynamic contact angle
θc = 123◦: (a) Distribution of the tangential to
the substrate friction force density δF as a func-
tion of z. The dashed line is the projected force
distribution in the macroscopic limit H →∞ at
the same system parameters. (b) Distribution
of the surface velocity vS/u0 in the boundary
layer ∆y = 1.5σff as a function of z.
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Figure 11: MDS in the complete wetting case,
set (c) in Table 1, at the substrate velocity U =
0.009u0 and the dynamic contact angle θc =
68.7◦. (a) Tangential component of the friction
force δF , (b) surface density ρS and (c) surface
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dimensions as in Fig. 7. The surface variables
have been obtained in the boundary layer ∆y =
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set (c) in Table 1, at the substrate velocity U =
0.009u0 and the dynamic contact angle θc =
68.7◦. The integral of the tangential component
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∫ z
z0
δF dξ as a function of z.

that mf , σff , εff and τ0 = σff

√
mf

εff
provide basic

scales for mass, length, energy and time respec-

tively. At the same time, σ−3ff , u0 =
√
εffm

−1
f ,

f0 = εff σ
−3
ff , γ0 = εff σ

−2
ff and µ0 =

√
εffmfσ

−2
ff

provide necessary scales for particle density, ve-
locity, pressure, surface tension and viscosity.

The liquid particles are connected into linear
chains of NB beads, 5 ≤ NB ≤ 50, by the
finitely extensible non-linear elastic (FENE)
springs (the Kremer-Grest FENE model), the
strength of the spring potential ΦFENE being
adjusted so that the chains cannot cross each
other,

ΦFENE(r) = −k
2
R2

0 ln

(
1−

(
r

R0

)2
)

where R0 = 1.5σff is the spring maximum ex-
tension and k = 30 εff σ

−2
ff is the spring con-

stant.22 The state of the liquid, its temperature
0.8 εff /kB ≤ T ≤ 1 εff /kB (kB is the Boltzmann
constant) was controlled by means of a DPD
thermostat with the cut-off distance of 2.5σff

and friction ςdpd = 0.5τ−10 , to have minimal side
effects on particle dynamics.

Each solid substrate consists of three [0, 0, 1]
face-centered cubic (fcc) lattice layers of anchor
points. The solid wall particles are attached
to the anchor points (forming fcc layers) by
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means of harmonic potential Φa = ξx2, with the
strength ξ = 800

εff

σ2
ff

chosen such that the root-

mean-square displacement of the wall atoms√
< δr2 > was small enough to satisfy the

Lindemann criterion for melting
√
< δr2 > <

0.15σww. The strength of the harmonic poten-
tial was sufficient to guarantee rigidity of the
solid wall, so that elasto-capillarity effects can
be neglected, that is (γ/ξ)1/2 � 1, where γ
is equilibrium liquid-gas surface tension.23 The
anchor points in the layer of the solid wall facing
the liquid molecules have been slightly random-
ized in the vertical y direction, with the ampli-
tude

√
< δy2 > = 0.3σff . This small roughness

allowed to avoid undesirably large slip lengths
observed in MDS21 and any bias towards ideal
substrates in this study. The substrate density
ΠS was set to ΠS = 1.41σ−3ff with the liquid-
solid interaction length scale σwf = σff and the
solid-solid interaction length scale σww = σff .
Two parameters of the model, temperature T
and strength of the liquid-solid interactions εwf
have been varied in the simulations to obtain
liquids with different viscosities and to emulate
various wetting conditions (partial, θ0 > 0, or
full wetting, θ0 = 0), Tables 1 and 2.

Calculation of the Equilibrium Parame-
ters: Surface Tension and Viscosity

Before conducting simulations in dynamic con-
ditions, a set of measurements in static, plain
configurations, as is shown in Fig. 13, was done
to obtain equilibrium parameters (surface ten-
sion and viscosity) relevant to the problem, Ta-
bles 1, 2. The configurations were periodic in
the x, z-directions with dimensions Lx = 32σff ,
Ly = 22σff and Lz = 32σff sufficient to work
with long chain molecules up to NB = 50, and
with the solid walls generated as in the dynamic
cases, Fig. 1. To evaluate surface tension of a
liquid-gas interface, the upper solid wall was re-
moved to allow for a free surface to be created.

The value of the surface tension generated in
the interfacial layers is calculated from the mi-

H
=
22

σ
ff

Figure 13: Illustration of the MDS set-up used
in evaluation of the equilibrium parameters.

croscopic stress tensor Θαβ defined by

Θαβ(r) =
1

2

∑
i,j 6=i

〈
rαij
rij

dΦ

drij

∫
Cij

dlβδ(r− l)

〉
−

(12)〈∑
i

vαi v
β
i δ(r− ri)

〉
.

Here, Φ = ΦLJ + ΦFENE is the total potential
of all the forces acting between the liquid par-
ticles, the double summation goes over i, j 6= i,
that is all the particles in the set up and vi is
the velocity of particle i. The contour Cij is a
straight line connecting particles i and j, which
corresponds to the Irving-Kirkwood choice of
the contour connecting the interacting parti-
cles,

l =
1

2
{ri + rj + λ (rj − ri)} , −1 ≤ λ ≤ 1,

and 〈...〉 is the ensemble or time average.24,25

In the simulations, the averaging is done by
evaluating five statistically independent MDS
configurations with averaging over time inter-
val ∆t = 10000 τ0.

In the plane configuration, Fig 13, the micro-
scopic stress tensor is a function of y only, and
the surface tension then is given by the integral
of the difference of the normal and tangential
components of the stress tensor

γ =

∫ Ly

0

(
Θzz + Θxx

2
−Θyy

)
dy (13)
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in the case of a free surface, and by

γLS =

∫ Ly

0

(
Θzz + Θxx

2
−Θyy − yρ(y)

dΦS

dy

)
dy

(14)
for a solid-liquid interface, where ΦS is the po-
tential of the solid wall forces acting on the liq-
uid particles and ρ is the particle density.25,26

The liquid-solid surface tension is calculated in
the assumption of undeformable solid substrate,
so that γLS is in fact the surface tension of the
liquid.

The value of the zero shear rate viscosity in
the liquid in the bulk conditions is evaluated by
considering the correlation function

µ =
V

kBT

∫ ∞
0

< Θαβ(t)Θαβ(0) > dt

at α 6= β, details can be found in.27

The methodology of the surface tension eval-
uation in MDS has been verified either by com-
parison with the Laplace law (by independently
evaluating surface tension γ and the pressure in
a large, levitating liquid drop)28 or by compar-
ison with the Young-Dupré equation in equi-
librium γ cos θ0 = −γLS + γGS.29 The Young-
Dupré equation was probed by evaluating inde-
pendently surface tensions and by directly mea-
suring the equilibrium contact angle θ0 from
the shape of the free-surface profiles of cylin-
drical droplets.29,30 The difference between two
static contact angles (measured geometrically
and calculated via the Young-Dupré equation)
was found not to exceed the accuracy of the
contact angle evaluations.

Evaluation of the contact angles in MDS

The contact angle in our study has been in-
ferred from the free-surface profiles defined as
the locus of equimolar points and averaged over
the x-direction, Fig. 1 and during the time pe-
riod of ∆t = 10000 τ0. The profiles were devel-
oped by means of a circular fit

(y − y0)2 + (z − z0)2 = R2 (15)

having three-parameters (R, y0, z0), the radius
of the circle and its position. The circular fit
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Figure 14: Illustration of the free surface pro-
files (equimolar surfaces approximated by the
fit (15), shown by the dashed line) developed
from the particle density distributions obtained
in MDS in a steady state in the case of complete
wetting θ0 = 0◦ at NB = 5, T0 = 0.8 εff /kB
and εwf = 1.2 εff . Here, (a) θc = 100.7 ± 1◦,
U = 0.03u0, Ca = 0.34 and (b) θc = 68.7± 1◦,
U = 0.009u0, Ca = 0.1. In both cases hs =
6σff and the distance y is measured from the
equimolar surface of the substrate particles of
the bottom plate, while the distance z is calcu-
lated from the centre of the simulation box, as
in Fig. 1.
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Figure 15: Illustration of the free surface pro-
files (equimolar surfaces approximated by the
fit (15), shown by the dashed line) developed
from the particle density distributions obtained
in MDS in a steady state in the case of complete
wetting θ0 = 0◦ at NB = 50, T0 = 1 εff /kB
and εwf = 1.3 εff . Here, (a) θc = 90 ± 1◦,
U = 0.01u0, Ca = 0.67 and (b) θc = 128.3±1◦,
U = 0.1u0, Ca = 6.7. In both cases hs =
8σff and the distance y is measured from the
equimolar surface of the substrate particles of
the bottom plate, while the distance z is calcu-
lated from the centre of the simulation box, as
in Fig. 1.

has been applied to a part of the free-surface
profile of length ≈ 20σff excluding hs layer
adjacent to the substrate corresponding to the
liquid-solid interface, similar to the methodol-
ogy developed in.30 The accuracy of this ap-
proach is illustrated in Figs. 14 and 15. One
may notice that the interface shape is very well
described by the fit even at Ca > 1. The value
of the cut-off distance hs was varied in between
4σff ≤ hs ≤ 8σff to exclude the area strongly
affected by the solid wall potential with density
variations on the scale of one atomic distance
σff .
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