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INVERSE OPTICAL TOMOGRAPHY THROUGH PDE

CONSTRAINED OPTIMISATION IN L∞

NIKOS KATZOURAKIS

Abstract. Fluorescent Optical Tomography (FOT) is a new bio-medical imag-
ing method with wider industrial applications. It is currently intensely re-

searched since it is very precise and with no side effects for humans, as it uses

non-ionising red and infrared light. Mathematically, FOT can be modelled as
an inverse parameter identification problem, associated with a coupled elliptic

system with Robin boundary conditions. Herein we utilise novel methods of

Calculus of Variations in L∞ to lay the mathematical foundations of FOT
which we pose as a PDE-constrained minimisation problem in Lp and L∞.
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1. Introduction

Fluorescent Optical Tomography (FOT) is a relatively new and still evolving
bio-medical imaging method, which also has wider industrial applications. FOT is
currently being very intensely studied, as it presents some advantages over more
classical imaging methods which use X-rays, Gamma-rays, electromagnetic radia-
tion and ultrasounds.

The goal of FOT is to reconstruct interior optical properties of an object (e.g.
living tissue) by using light in the red (visible) and infrared (invisible) range. The
principal current use of FOT is in medical applications (e.g. cancer tumours diagno-
sis and general prevention of various diseases), as well as in industrial applications
(e.g. detecting structural flaws in superconductors), see e.g. [1, 3, 11, 12, 13, 25, 27,
32, 35, 36, 48, 50].

FOT improves on quite a few shortcomings of other popular imaging methods.
The vast majority of currently available bio-imaging techniques image merely tissue

Key words and phrases. Nonlinear Inversion; Fluorescent Optical Tomography, Elliptic sys-

tems; Robin Boundary Conditions; Absolute minimisers; Calculus of Variations in L∞; PDE-
Constrained Optimisation; Kuhn-Tucker theory; Lagrange Multipliers.
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2 NIKOS KATZOURAKIS

structure variations created by tumours. However, since some features imaged are
not specific to the presence of actual tumour cells, the unavoidable imaging of
secondary effects might lead to false diagnoses. Additionally, imaging methods
using X-rays and Gamma-rays actually use ionising radiation, which is harmful for
humans and animals as it is potentially cancer-inducing itself. On the other hand,
FOT is an imaging method which does not use harmful radiation and can be made
specific to the presence of designated cell types. Therefore, FOT is more precise
and with no side effects for humans.

Technically, the aim of FOT is to reconstruct the fluorophore distribution in a
solid body from measurements of light intensity through detectors placed on the
boundary. The highly diffusive nature of light propagation implies that in fact FOT
forms a highly nonlinear and severely ill-posed inverse problem, hence mathemati-
cally it is a very challenging problem. FOT can be modelled by a coupled system
of PDEs (partial differential equations) with C-valued solutions and coefficients.
The goal is to reconstruct a space-varying parameter in the system of PDEs in the
interior of a body (e.g. living tissue).

Mathematically, FOT can be modelled as follows. Let Ω ⊆ Rn be an open
bounded set with C1 boundary ∂Ω and n ≥ 3. In medical applications n = 3,
but from the mathematical viewpoint we may include greater dimensions without
any ramifications. A fluorescent dye is injected into the body Ω and in order to
determine the dye concentration ξ = ξ(x), the body is illuminated by a red light
source s = s(x) placed on the boundary ∂Ω. The wavelength of the light is adjusted
to the excitation wavelength of the dye, in order to force it to fluoresce. The light
diffuses inside the body, and wherever dye is present, fluorescent light in the infrared
range is emitted that can then be detected again at the body surface using a camera
and appropriate infrared filters. The goal is then to reconstruct the distribution
ξ = ξ(x) of the dye, from these obtained surface images.

Specifically, for time-periodic light sources modulated at a specific frequency,
the following system of PDEs describes at any x ∈ Ω the C-valued photon fluences
u = u(x) at the excitation wavelength and v = v(x) at the fluorescent wavelength:

(1.1)


−div(AξDu) + kξu = S, in Ω,

−div(AξDv) + kξv = ξhu, in Ω,

(AξDu) · n + γu = s, on ∂Ω,

(AξDv) · n + γv = 0, on ∂Ω.

Here u, v : Ω −→ C are the solutions and n : ∂Ω −→ Rn is the outer unit normal
vector field on the boundary, whilst the ξ-dependent coefficients Aξ, kξ and the
coefficients h, s, S, ξ, γ satisfy γ > 0 and

Aξ : Ω −→ Rn×n+ ,

kξ, h, S : Ω −→ C,
s : ∂Ω −→ C,
ξ : Ω −→ [0,∞)

(1.2)

with the real part of kξ being positive. We note that our general PDE notation will
be either self-explanatory, or otherwise standard, as e.g. in the textbooks [24, 41].
For instance, Rn×n+ symbolises the cone of real non-negative n × n matrices. In
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imaging applications where n = 3, the coefficients above take the following form:

(1.3)


Aξ(x) =

(
3
(
µai(x) + µ′s(x) + ξ(x)

))−1

In,

kξ(x) = µai(x) + ξ(x) + iωc−1,

h(x) = φ
(
1− iωτ(x)

)−1
,

where In is the identity matrix in Rn, the diffusion coefficient Aξ describes the
diffusion of photons, µai is the absorption coefficient due to the endogenous chro-
mophores, ξ is the absorption coefficient due to the exogenous fluorophore, µ′s is
the reduced scattering coefficient, φ is the quantum efficiency of the fluorophore, τ
is the fluorophore lifetime and ω is the modulated light frequency and c the speed
of light. Finally, S, s are the light sources. In applications, some authors model the
problem with either boundary sources or interior light sources (see e.g. [27] versus
[12, 13]). Mathematically, we may include both types of sources without difficulty.

To the best of our knowledge, although the FOT problem has been extensively
studied computationally and numerically, it has not been been considered from the
purely analytical viewpoint. In this paper we utilise novel methods of Calculus of
Variations in L∞ in order to lay the rigorous mathematical foundations of the FOT
problem. Motivated by developments underpinning the papers [38, 39, 40], we pose
FOT as a minimisation problem in L∞ with PDE constraints as well as unilateral
constraints, studying the direct as well as the inverse FOT problem, both in Lp

for finite p and in L∞. Further, we derive the relevant variational inequalities in
Lp for finite p and in L∞ that the constrained minimisers satisfy, which involve
(generalised) Lagrange multipliers. Additionally, we prove convergence of the cor-
responding Lp structures to the limiting L∞ structures as p → ∞, in a certain
fashion that will become clear later.

Calculus of Variations in L∞ is a modern area initiated by Aronsson in the
1960s (see [6]-[9]) who was the first to consider variational problems of functionals
which are defined as a supremum. For a general pedagogical introduction we refer
e.g. to [20, 37]. Except for the endogenous mathematical interest, L∞ cost (or
error) functionals are important for optimisation and control applications because
by minimising the supremum of the cost rather than its average (as e.g. in the case
of least square L2 costs), we obtain better results as we achieve uniform smallness
of the error and small area spike deviations are a priori excluded. Interesting theory
and applications of L∞ variational problems can be found e.g. in [10, 14, 15, 16,
17, 18, 19, 28, 43, 45, 46, 47].

For our purposes in this paper, it will be more convenient to rewrite (1.1) in
vectorial rather than complex form. For any complex valued function f = fR+ifI :
Ω −→ C, we identify f with (fR, fI)

> : Ω −→ R2 and we will consider the following
generalisation of (1.1)-(1.3):

(1.4)


(a) −div(Aξ

•Du) + Kξu = S, in Ω,

(b) −div(Aξ
•Dv) + Kξv = ξHu, in Ω,

(c) (Aξ
•Du)n + γu = s, on ∂Ω,

(d) (Aξ
•Dv)n + γv = 0, on ∂Ω,

where

(1.5) Aξ := A + r(·, ξ)In, r(x, t) :=
λ

κ(x) + t
, Aξ

•Du :=

[
DuRAξ

DuIAξ

]
,
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with

(1.6) Kξ := K + ξI2, K :=

[
kR −kI
kI kR

]
, H :=

[
hR −hI
hI hR

]
,

and

(1.7)


u, v, S : Ω −→ R2, Du, Dv : Ω −→ R2×n,

K, H : Ω −→ R2×2, A : Ω −→ Rn×n+ ,

s : ∂Ω −→ R2, ξ : Ω −→ [0,∞),

γ, λ > 0, κ : Ω −→ (0,∞).

The table of contents gives an idea of the organisation of the material in this
paper. After this Introduction, in Section 2 we delve into the study of the build-
ing stones of the FOT problem, namely of linear elliptic divergence PDE systems
with Robin boundary conditions. To this end, we establish well-posedness of the
direct problem for these in Lp for all p ∈ [2,∞) (Theorems 1-2). In Section 3
we establish the well-posedness of the direct FOT problem in the appropriate Lp

spaces for all p ∈ [2,∞) (Theorem 3). In Section 4 we begin the study of the
inverse FOT problem as a constrained minimisation problem with PDE and uni-
lateral constraints, proving the existence of minimisers in Lp for all p ∈ [2,∞] and
the convergence of the Lp minimisers to the L∞ minimiser as p→∞ (Theorem 5).
In Section 5 we establish the existence of generalised Lagrange multipliers to the
Lp constrained minimisation problem and the relevant variational inequalities, by
invoking the infinite-dimensional counterpart of the Kuhn-Tucker theory (Theorem
8). Finally, in Section 6 we establish the corresponding results for the extreme case
of variational inequalities in L∞ (Theorem 15).

2. Linear elliptic systems with Robin boundary conditions

In this section we begin with an auxiliary result of independent interest, namely
the well-posedness of general linear divergence systems with Robin boundary con-
ditions. Below we start with the case of the L2 theory, which effectively is an
application of the Lax Milgram theorem (see e.g. [24]).

Theorem 1 (Well-posedness in W 1,2). Let Ω b Rn be a domain with C1 boundary
and let also n : ∂Ω −→ Rn be the outer unit normal vector field. Consider the next
boundary value problem with Robin boundary conditions

(2.1)

{
−div(B•Du) + Lu = f − divF, in Ω,

(B•Du− F )n + γu = g, on ∂Ω,

where the coefficients satisfy B : Ω −→ Rn×n+ , L : Ω −→ R2×2, f : Ω −→ R2,
F : Ω −→ R2×n, g : ∂Ω −→ R2 and γ > 0. We suppose that there exists β0 > 0
such that

(2.2)


B ∈ L∞(Ω;Rn×n+ ), B•Du :=

[
DuRB
DuIB

]
, σ(B) ⊆

[
β0,

1

β0

]
,

L ∈ L∞(Ω;R2×2), L :=

[
lR −lI
lI lR

]
, lR ≥ β0

and also that

(2.3) f ∈ L2(Ω;R2), F ∈ L2(Ω;R2×n), g ∈ L2(∂Ω;R2).



AN L∞ APPROACH TO INVERSE OPTICAL TOMOGRAPHY 5

Then, (2.1) has a unique weak solution in W 1,2(Ω;R2) satisfying

(2.4)


ˆ

Ω

[
B : (Du>Dψ) + (Lu) · ψ

]
dLn +

ˆ
∂Ω

[
γu · ψ

]
dHn−1

=

ˆ
Ω

[
f · ψ + F : Dψ

]
dLn +

ˆ
∂Ω

[
g · ψ

]
dHn−1,

for all ψ ∈ W 1,2(Ω;R2). In addition, there exists C > 0 depending only on the
coefficients and the domain such that

(2.5) ‖u‖W 1,2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

In (2.4), the notation “:” symbolises the Euclidean (Frobenius) inner product in
the matrix space Rn×n and “·” the Euclidean inner product in R2.

Proof. As we have already mentioned, the aim is to apply of the Lax Milgram the-
orem. (Note that the matrix L involved in the zeroth order term is not symmetric,
therefore this is not a direct consequence of the Riesz representation theorem.) To
this end, we define the bilinear form

B : W 1,2(Ω;R2)×W 1,2(Ω;R2) −→ R

by setting

B[u, ψ] :=

ˆ
Ω

[
B : (Du>Dψ) + (Lu) · ψ

]
dLn +

ˆ
∂Ω

[
γu · ψ

]
dHn−1.

Since B,L are L∞, we immediately have by Hölder inequality that∣∣B[u, ψ]
∣∣ ≤ C‖u‖W 1,2(Ω)‖ψ‖W 1,2(Ω)

for some C > 0 and all u, ψ ∈W 1,2(Ω;R2). Further, since

(Lu) · u = [uR, uI ]

[
lR −lI
lI lR

] [
uR
uI

]
= lR(uR)2 + lR(uI)

2

= lR|u|2

≥ β0|u|2,

we have that

B[u, u] ≥ β0

(
‖Du‖2L2(Ω) + ‖u‖2L2(Ω)

)
+ γ‖u‖2L2(∂Ω)

≥ β0‖u‖2W 1,2(Ω),

for any u ∈W 1,2(Ω;R2). Hence, the bilinear form B is bi-continuous and coercive,
therefore the conditions of the Lax-Milgram theorem are satisfied. Thus, for any
functional Φ ∈ (W 1,2(Ω;R2))∗, there exists a unique u ∈W 1,2(Ω;R2) such that

B[u, ψ] = 〈Φ, ψ〉, ∀ ψ ∈W 1,2(Ω;R2).

To conclude, it suffices to show that

〈Φ, ψ〉 :=

ˆ
Ω

[
f · ψ + F : Dψ

]
dLn +

ˆ
∂Ω

[
g · ψ

]
dHn−1
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indeed defines an element of the dual space (W 1,2(Ω;R2))∗, and also establish the
a priori estimate. Indeed, by the trace theorem in W 1,2(Ω;R2), there is a C > 0
depending on Ω which allows to estimate∣∣〈Φ, ψ〉∣∣ ≤ (‖f‖L2(Ω) + ‖F‖L2(Ω)

)
‖ψ‖W 1,2(Ω) + ‖g‖L2(∂Ω)‖ψ‖L2(∂Ω)

≤ C
(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)
‖ψ‖W 1,2(Ω),

which shows that Φ is indeed a bounded linear functional. The choice of ψ := u
together with Young inequality with ε > 0, gives∣∣〈Φ, u〉∣∣ ≤ C2

4ε

(
‖f‖L2(Ω) + ‖F‖L2(Ω) + ‖g‖L2(∂Ω)

)2

+ ε‖u‖2W 1,2(Ω).

When combining the above estimate with the lower bound for B[u, u], we conclude
by choosing ε < β0/2. �

Note that in the above proof we have employed the common practice of denoting
by C a generic constant whose value might change from step to step in an estimate.
This practice will be utilised in the sequel freely. Now we show that the obtained
unique weak solution to (2.1) is in fact more regular if the coefficients permit it.

Theorem 2 (Well-posedness in W 1,p). In the setting of Theorem 1, consider again
the boundary value problem (2.1) with Robin boundary conditions. In addition to
the assumptions in Theorem 1, we also suppose that

B ∈ VMO(Rn;Rn×n+ ), f ∈ L
np

n+p (Ω;R2), F ∈ Lp(Ω;R2×n), g ∈ Lp(∂Ω;R2),

for some

p >
2n

n− 2
.

Then, the unique weak solution of (2.1) lies in the space W 1,p(Ω;R2). In addition,
there exists C > 0 depending only on the coefficients, the domain and p such that

(2.6) ‖u‖W 1,p(Ω) ≤ C
(
‖f‖

L
np

n+p (Ω)
+ ‖F‖Lp(Ω) + ‖g‖Lp(∂Ω)

)
.

Proof. The key ingredient is to apply the well-know estimate for the Robin bound-
ary value problem for linear divergence elliptic equations which has the exact same
form as (2.6), but applies to the scalar version of the problem (2.1) with L ≡ 0, see
[5, 21, 23, 29, 33, 42, 44]. Hence, we need some arguments to show that it is still
true in the more general case of (2.1). To this end, we rewrite (2.1) component-wise
as  −div(DuRB) =

{
fR −

(
lRuR − lIuI

)}
− divFR, in Ω,

(DuRB− FR) · n + γuR = gR, on ∂Ω, −div(DuIB) =
{
fI −

(
lRuI + lIuR

)}
− divFI , in Ω,

(DuIB− FI) · n + γuI = gI , on ∂Ω.

By applying the scalar estimate to the each of the boundary value problems sepa-
rately, we have

‖uR‖W 1,p(Ω) ≤C
(
‖fR‖

L
np

n+p (Ω)
+ ‖FR‖Lp(Ω)

+ ‖gR‖Lp(∂Ω) + ‖L‖L∞(Ω)‖u‖
L

np
n+p (Ω)

)(2.7)
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and also

‖uI‖W 1,p(Ω) ≤C
(
‖fI‖

L
np

n+p (Ω)
+ ‖FI‖Lp(Ω)

+ ‖gI‖Lp(∂Ω) + ‖L‖L∞(Ω)‖u‖
L

np
n+p (Ω)

)
.

(2.8)

Note now that since by assumption p > 2n
n−2 , we have

2 <
np

n+ p
< p.

Hence, by the Lp interpolation inequalities, we can estimate

‖u‖
L

np
n+p (Ω)

≤ ‖u‖λL2(Ω) ‖u‖
1−λ
Lp(Ω), where λ =

2p

n(p− 2)
.

By the Young inequality (for a, b ≥ 0, ε > 0, r > 1 and r/(r − 1) = r′)

(2.9) ab ≤
{
r − 1

r
(εr)

1
1−r

}
b

r
r−1 + εar,

for the choice r := (1− λ)−1, we have

r =
n(p− 2)

p(n− 2)− 2n
,

r

r − 1
=
n(p− 2)

2p
, 1− λ =

n(p− 2)

p(n− 2)− 2n
,

and hence we can further estimate

‖u‖
L

np
n+p (Ω)

≤ ‖u‖λL2(Ω) ‖u‖
1−λ
Lp(Ω)

=
(
‖u‖L2(Ω)

) 2p
n(p−2)

(
‖u‖Lp(Ω)

) p(n−2)−2n
n(p−2)

≤
{
r − 1

r
(εr)

1
1−r

}((
‖u‖L2(Ω)

) 2p
n(p−2)

) r
r−1

+
((
‖u‖Lp(Ω)

) p(n−2)−2n
n(p−2)

)r
(2.10)

=

 2p

n(p− 2)

(
εn(p− 2)

p(n− 2)− 2n

)− p(n−2)−2n
2p

 ‖u‖L2(Ω) + ε‖u‖Lp(Ω)

=: C(ε, p, n)‖u‖L2(Ω) + ε‖u‖Lp(Ω).

By (2.7), (2.8) and (2.10), by choosing ε > 0 small enough, we infer that

‖u‖W 1,p(Ω) ≤ C
(
‖f‖

L
np

n+p (Ω)
+ ‖F‖Lp(Ω) + ‖g‖Lp(∂Ω) + ‖u‖L2(Ω)

)
.

The desired estimate (2.6) ensues by combining the above estimate with our earlier
W 1,2 estimate (2.5) from Theorem 1, together with Hölder inequality and the fact
that min

{
p, np

n+p

}
> 2. The theorem has been established. �

3. Well-posedness of the direct Optical Tomography problem

In this section we utilise the well-posedness results of Section 2 to show that the
direct problem of Fluorescent Optical Tomography is well posed.

Theorem 3 (Well-posedness of the direct FOT problem). In the setting of Sec-
tion 1, consider the boundary value problem (1.4) and suppose that the coefficients
A,K,H, ξ, r, s, S, κ, λ, γ satisfy (1.5)-(1.7), where Ω b Rn is a domain with C1

boundary and n ≥ 3.
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In addition, we also suppose that there exists a0 > 0 such that

(3.1)

{
A ∈ UC(Rn;Rn×n+ ), K,H ∈ L∞(Ω;R2×2),

κ ∈ C(Ω), kR, κ ≥ a0 on Ω, γ, λ > 0,

where “UC” is the space of bounded uniformly continuous functions. We further
assume that for some m > n we have

(3.2) S ∈ L
nm

2n+m (Ω;R2), s ∈ Lm
2 (∂Ω;R2)

and also

p > max

{
n,

2n

n− 2

}
.

Then, for any M > 0 and

ξ ∈ C
(
Ω; [0,M ]

)
,

the boundary value problem (1.4) has a unique weak solution

(u, v) ∈ W 1,m2 (Ω;R2)×W 1,p(Ω;R2)

which satisfies
(3.3)

(a)

ˆ
Ω

[
Aξ : (Du>Dφ) +

(
Kξu− S

)
· φ
]

dLn +

ˆ
∂Ω

[
(γu− s) · φ

]
dHn−1 = 0,

(b)

ˆ
Ω

[
Aξ : (Dv>Dψ) +

(
Kξv − ξHu

)
· ψ
]

dLn +

ˆ
∂Ω

[
γu · ψ

]
dHn−1 = 0,

for all test functions

(φ, ψ) ∈ W 1, m
m−2 (Ω;R2)×W 1, p

p−1 (Ω;R2).

In addition, there exists C > 0 depending only on M , the coefficients, p and the
domain such that

(3.4)

 (a) ‖u‖
W 1,m

2 (Ω)
+ ‖u‖Lm(Ω) ≤ C

(
‖S‖

L
nm

2n+m(Ω)
+ ‖s‖

L
m
2 (∂Ω)

)
,

(b) ‖v‖W 1,p(Ω) + ‖v‖
C

0,1−n
p (Ω)

≤ C ‖ξ‖L∞(Ω)‖u‖Lm(Ω).

Proof. The goal is to apply Theorems 1-2. To this end, we begin by showing that
under (1.5)-(1.7) and (3.1) the diffusion matrix Aξ satisfies the assumptions of these
results. Since

Aξ(x) = A(x) + r(x, ξ)In, r(x, t) =
λ

κ(x) + t

and
λ

‖κ‖L∞(Ω) +M
≤ r

(
x, ξ(x)

)
≤ λ

a0

the positive bounded uniformly continuous function

r
(
·, ξ(·)

)
: Ω 3 x 7→ r

(
x, ξ(x)

)
∈ (0,∞)

can be extended to a positive bounded uniformly continuous function r̃ : Rn −→
(0,∞) with the same upper and lower bounds as those of r

(
·, ξ(·)

)
. Then, since A

is bounded and uniformly continuous on Rn with values in Rn×n+ , the matrix valued
mapping

Ã := A+ r̃In : Rn −→ Rn×n+
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is bounded and uniformly continuous, valued in the positive matrices and its eigen-
values are uniformly bounded on Ω away from zero. Additionally, it is evident
that Kξ = K + ξI2 ∈ L∞(Ω;R2×2) and that it satisfies the structural assumptions
in (2.2). Hence, by Theorems 1-2 applied to the Robin boundary value problem
(1.4)(a)-(1.4)(c) for p = m/2 and noting that

m

2
>

n

2
>

2n

n− 2
,

for any S ∈ L
nm

2n+m (Ω;R2) and any s ∈ Lm
2 (∂Ω;R2) there exists a unique solution

u ∈ W 1,m2 (Ω;R2) satisfying (3.3)(a) for all φ ∈ W 1, m
m−2 (Ω;R2), as well as the

estimate (3.4)(a). The only thing which is not already stated in the estimate (2.6)
is the estimate on ‖u‖Lm(Ω), which follows by the Sobolev inequalities.

Again by Theorems 1-2 applied to the Robin boundary value problem (1.4)(b)-
(1.4)(d), there exists a unique solution v ∈ W 1,p(Ω;R2) satisfying (3.3)(b) for all

ψ ∈W 1, p
p−1 (Ω;R2). Further, by applying (2.6), by Hölder inequality we estimate

‖v‖W 1,p(Ω) ≤ C‖ξHu‖
L

np
n+p (Ω)

≤ C‖ξ‖L∞(Ω)‖u‖
L

np
n+p (Ω)

≤ C‖ξ‖L∞(Ω)‖u‖Lm(Ω),

since m > n. The estimate (3.4)(b) therefore follows by the above estimate together
with the Sobolev inequalities. The proof is complete. �

4. The inverse problem through PDE-constrained minimisation

Now that the forward fluorescent optical tomography problem is understood, we
proceed with the solvability of the inverse problem associated with (1.4). Through-
out this and subsequent sections we assume that the hypotheses of Theorem 3 are
satisfied for a domain Ω b Rn with n ≥ 3 and which from now is assumed to have
C1,1 regular boundary.

Fix an integer N ∈ N, m > n, M, δ, α > 0 and p > max
{
n, 2n

n−2

}
. Consider

Borel sets

(4.1)
{

Γ1, ...,ΓN
}
⊆ ∂Ω

and light sources

(4.2)
{
S1, ..., SN

}
⊆ L

nm
2n+m (Ω;R2) ,

{
s1, ..., sN

}
⊆ Lm

2 (∂Ω;R2)

in the interior and on the boundary respectively. Let also

(4.3)
{
vδ1, ..., v

δ
N

}
⊆ L∞(∂Ω;R2)

be predicted approximate values of the solution v of (1.4)(b)-(1.4)(d) on the bound-
ary ∂Ω, at noise (error) level δ. Suppose that for any i ∈ {1, ..., N}, the pair (ui, vi)
solves (1.4) with data (Si, si, ξ). For the N -tuple of solutions (u1, ..., uN ; v1, ..., vN ),
we will be using the notation(

~u,~v
)
∈ W 1,m2 (Ω;R2×N )×W 1,p(Ω;R2×N )

and understand the vectors of solutions (ui)i=1...N and (ui)i=1...N as being R2×N -
valued. Similarly, we will understand the corresponding vectors of test functions
as (

~φ, ~ψ
)
∈ W 1, m

m−2 (Ω;R2×N )×W 1, p
p−1 (Ω;R2×N ).
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The goal of the inverse problem associated with (1.4) is to determine a non-negative
ξ ∈ Lp(Ω, [0,∞)) such that the errors

∣∣(vi−vδi )∣∣Γi

∣∣ which describe the misfit between

the predicted approximate solution and the actual solution become as small as pos-
sible. We will minimise the error in L∞ by means of approximations in Lp for large
p and then take the limit p → ∞. The benefit of minimisation in L∞ is that one
can achieve uniformly small error rather than on average. Since no reasonable error
functional is coercive in the admissible class of N -tuples of PDE solutions without
additional constraints, we add an extra Tykhonov-type regularisation term α‖ξ‖
for a small parameter α > 0 and some appropriate norm.

In view of the above observations, we define for p > max
{
n, 2n

n−2

}
the functional

(4.4) Ep
(
~u,~v, ξ

)
:=

N∑
i=1

∥∥vi − vδi ∥∥L̇p(Γi)
+ α

∥∥D2ξ
∥∥
L̇m(Ω)

, (~u,~v , ξ
)
∈ Xp(Ω)

and its limiting counterpart

(4.5) E∞
(
~u,~v, ξ

)
:=

N∑
i=1

∥∥vi − vδi ∥∥L∞(Γi)
+ α

∥∥D2ξ
∥∥
L̇m(Ω)

(~u,~v , ξ
)
∈ X∞(Ω),

where the dotted L̇p-functionals are the next regularisations of the respective norms
(4.6)

‖g‖L̇p(Γi)
:=

(
−
ˆ

Γi

(|g|(p))p dHn−1

)1/p
, ‖f‖L̇m(Ω) :=

(
−
ˆ

Ω

(|f |(m))
m dLn

)1/m
and | · |(p) is a regularisation of the Euclidean norm away from zero in the corre-
sponding space, given by

(4.7) | · |(p) :=
√
| · |2 + p−2.

The slashed integral symbolises the average with respect to either the Lebesgue
measure Ln or the Hausdorff measure Hn−1. The respective admissible classes
Xp(Ω) and X∞(Ω) are defined by
(4.8)

Xp(Ω) :=



(~u,~v , ξ
)
∈ Wp(Ω) : for any i ∈ {1, ..., N}, (ui, vi, ξ) satisfies

0 ≤ ξ ≤M a.e. on Ω
and

(a)i −div(Aξ
•Dui) + Kξui = Si, in Ω,

(b)i −div(Aξ
•Dvi) + Kξvi = ξHui, in Ω,

(c)i (Aξ
•Dui)n + γui = si, on ∂Ω,

(d)i (Aξ
•Dvi)n + γvi = 0, on ∂Ω,

for A,K,H, Si, si, κ, ξ, λ, γ, p satisfying the hypotheses (1.5)
(1.6), (1.7), (3.1) and (4.1)-(4.3)


and

(4.9) X∞(Ω) :=
⋂

n<p<∞
Xp(Ω),
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whilst the Banach space Wp(Ω) involved in the definition of the admissible class
Xp(Ω) is

(4.10) Wp(Ω) := W 1,m2 (Ω;R2×N )×W 1,p(Ω;R2×N )×W 2,m(Ω).

Note that X∞(Ω) is a subset of a Frechét space, rather than of a Banach space, but
this will not cause any added difficulties.

Remark 4. It might be quite surprising that in the Tikhonov term we include the
Lm norm of the Hessian of ξ, rather than as one would expect the Lm norm of either
the gradient or ξ itself. It turns out that one cannot regularise enough by adding
“+α‖ξ‖L̇m(Ω)” to obtain minimisers (this would be redundant anyway because of

the unilateral constraint). On the other hand, by adding “+α‖Dξ‖L̇m(Ω)”, one can

indeed recover all the results up to and including Section 5, but not the results of
Section 6, as we cannot obtain the variational inequalities in L∞ without higher
regularity in the coefficients of the PDE systems in (4.8) due to the emergence of
quadratic gradient terms.

The main result in this section concerns the existence of Ep-minimisers in the ad-
missible class Xp(Ω), the existence of E∞-minimisers in the admissible class X∞(Ω)
and the approximability of the latter by the former as p→∞.

Theorem 5 (E∞-error minimisers, Ep-error minimisers and convergence as p→∞).
(A) The functional Ep given by (4.4) has a constrained minimiser (~up, ~vp, ξp) in the
admissible class Xp(Ω):

(4.11) Ep
(
~up, ~vp, ξp

)
= inf

{
Ep
(
~u,~v, ξ

)
:
(
~u,~v, ξ

)
∈ Xp(Ω)

}
.

(B) The functional E∞ given by (4.5) has a constrained minimiser (~u∞, ~v∞, ξ∞) in
the admissible class X∞(Ω):

(4.12) E∞
(
~u∞, ~v∞, ξ∞

)
= inf

{
E∞
(
~u,~v, ξ

)
:
(
~u,~v, ξ

)
∈ X∞(Ω)

}
.

Additionally, there exists a subsequence of indices (pj)
∞
1 such that the sequence of

respective Epj -minimisers
(
~upj , ~vpj , ξpj

)
satisfies

(4.13)



~up −−⇀ ~u∞, in W 1,m2 (Ω;R2×N ),

~up −→ ~u∞, in L
m
2 (Ω;R2×N ),

~vp −−⇀ ~v∞, in W 1,q(Ω;R2×N ), for all q ∈ (1,∞),

~vp −→ ~v∞, in C(Ω;R2×N ),

ξp −−⇀ ξ∞, in W 2,m(Ω),

ξp −→ ξ∞, in C1(Ω),

as pj →∞. Further

(4.14) E∞
(
~u∞, ~v∞, ξ∞

)
= lim

pj→∞
Ep
(
~up, ~vp, ξp

)
.

The proof of Theorem 5 is a consequence of the next two propositions, utilising
the direct method of Calculus of Variations ([21]).

Proposition 6 (Ep-minimisers). In the setting of Theorem 5, the functional Ep
has a constrained minimiser

(
~up, ~vp, ξp

)
in the admissible class Xp(Ω), as claimed

in (4.11).
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Proof. Let us begin by noting that Xp(Ω) 6= ∅, and, as we will show right next, in
fact it is a weakly closed subset of the reflexive Banach spaceWp(Ω) with cardinality
greater or equal to that of Lp(Ω). Next note that there is an a priori energy bound
for the infimum of Ep, in fact uniform in p. Indeed, for each i ∈ {1, ..., N} let
(u0i, v0i) be the solution to (1.4) with ξ ≡ 0 and sources (Si, si) as in (4.2). Then,
by Theorem 3, we have v0i ≡ 0. Therefore, by (4.5)-(4.6) we infer that(

~u0,~0, 0
)
∈ Xp(Ω)

for all p ∈ [n,∞], and also, by Hölder inequality and (4.3)-(4.7), we obtain

Ep
(
~u0,~0, 0

)
≤ N + 1

p
+ E∞

(
~u0,~0, 0

)
≤ N + 1

n
+

N∑
i=1

∥∥vδi ∥∥L∞(Γi)

< ∞.

Consider now (for fixed p) a minimising sequence (~uj , ~v j , ξ j )∞j=1 of Ep in Xp(Ω).
Then, for all large enough j ∈ N we have

0 ≤ Ep
(
~u j , ~v j , ξ j

)
≤ 1 +

N + 1

n
+

N∑
i=1

∥∥vδi ∥∥L∞(Γi)
.

By Theorem 3, we have the estimates

(4.15)


∥∥~u j∥∥

W 1,m
2 (Ω)

≤ C

N∑
i=1

(
‖Si‖L nm

2n+m(Ω)
+ ‖si‖Lm

2 (∂Ω)

)
,∥∥~v j∥∥

W 1,p(Ω)
≤ CM

∥∥~u j∥∥
W 1,m

2 (Ω)
.

By the above and (4.4), we have the estimate

∥∥D2ξ j
∥∥
Lm(Ω)

≤
∥∥D2ξ j

∥∥
L̇m(Ω)

≤ 1

α

(
1 +

N + 1

n
+

N∑
i=1

∥∥vδi ∥∥L∞(Γi)

)
.

Further, in view of the unilateral constraint, we readily have

‖ξ j‖L∞(Ω) ≤ M.

By the C1,1 regularity of ∂Ω, the interpolation inequalities in the Sobolev space
W 2,m(Ω) (see e.g. [34, Theorem 7.28, p.173]) imply the existence of C > 0 inde-
pendent of j such that∥∥Dξ j

∥∥
Lm(Ω)

≤ C
∥∥D2ξ j

∥∥
Lm(Ω)

+ ‖ξ j‖Lm(Ω).

Thus, the above estimates yield the uniform bound

(4.16) sup
j∈N
‖ξ j‖W 2,m(Ω) < ∞.

By the estimates (4.15)-(4.18) and standard weak and strong compactness argu-
ments, there exists a weak limit

(~up, ~vp, ξp
)
∈ Wp(Ω)
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and a subsequence (jk)∞1 such that along which we have

~u j −−⇀ ~up, in W 1,m2 (Ω;R2×N ),

~u j −→ ~up, in L
m
2 (Ω;R2×N ),

~v j −−⇀ ~vp, in W 1,p(Ω;R2×N ),

~v j −→ ~vp, in C(Ω;R2×N ),

ξ j −−⇀ ξp, in W 2,m(Ω),

ξ j −→ ξp, in C1(Ω),

as jk → ∞. We note that in this paper we will utilise the common practice of
passing to subsequences as needed without perhaps explicit relabelling of the new
subsequences. To show that in fact the limit (~up, ~vp, ξp

)
lies in the admissible con-

strained class Xp(Ω), we argue as follows. Note now that the pointwise constraint

0 ≤ ξ j ≤ M a.e. on Ω,

is weakly closed in W 2,m(Ω), namely the set

(4.17) W 2,m(Ω; [0,M ]) =
{
η ∈ Lp(Ω) : 0 ≤ η ≤ M a.e. on Ω

}
is weakly closed. This is an immediate consequence of the strong compactness of
the embedding of W 2,m(Ω) into C1(Ω). We thus infer that

(~up, ~vp, ξp
)
∈ Xp(Ω)

by passing to the weak limit in the equations (a)i − (d)i defining (4.8), which is
possible due to the modes of convergence the minimising sequence satisfies.

We finally show that the weak limit (~up, ~vp, ξp
)
∈ Xp(Ω) is indeed the minimiser

of Ep over the same space. To this end, note that for any α > 0 the nonlinear
functional α‖D2( · )‖L̇m(Ω) is convex and strongly continuous on the reflexive space

W 2,m(Ω), by (4.6)-(4.7). Therefore, it is weakly lower semi-continuous on the same
space. Similarly, for each i ∈ {1, ..., N} the functional

∥∥ · −vδi ∥∥L̇p(Γi)
is strongly

continuous on Lp(Γi). Hence, we conclude that

Ep
(
~up, ~vp, ξp

)
=

N∑
i=1

∥∥vpi − vδi ∥∥L̇p(Γi)
+ α

∥∥D2ξp
∥∥
L̇m(Ω)

≤ lim inf
jk→∞

{
N∑
i=1

∥∥v ji − vδi ∥∥L̇p(Γi)
+ α

∥∥D2ξ j
∥∥
L̇m(Ω)

}
= lim inf

jk→∞
Ep
(
~u j , ~v j , ξ j

)
= inf

{
Ep : Xp(Ω)

}
.

The proposition ensues. �

Our next result below concerns the existence of minimisers for the L∞-error
functional and approximation of those by minimisers of Lp functionals, completing
the proof of Theorem 5.

Proposition 7 (E∞-minimisers). In the above setting, the functional E∞ given by
(4.5) has a constrained minimiser (~u∞, ~v∞, ξ∞) in the admissible class X∞(Ω), as
claimed in (4.12).
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Additionally, there exists a subsequence of indices (pj)
∞
1 such that the sequence of

respective Epj -minimisers
(
~upj , ~vpj , ξpj

)
constructed in Proposition 6 satisfy (4.13)

as pj →∞. Further the energies converge as claimed in (4.14).

Proof. We essentially continue from the proof of Proposition 6. The energy bound
(~u0,~0, 0) constructed therein is uniform in p and also, in view of (4.8)-(4.9) we have

(~u0,~0, 0) ∈ X∞(Ω). Fix now q > n and consider large enough p ≥ q. Then, by
Hölder inequality and minimality, we have the bound

Eq
(
~up, ~vp, ξp

)
≤ Ep

(
~up, ~vp, ξp

)
≤ Ep(~u0,~0, 0)

≤ N + 1

n
+ E∞(~u0,~0, 0)

≤ N + 1

n
+

N∑
i=1

∥∥vδi ∥∥L∞(Γi)
,

which is uniform in p. By the above estimate, we have∥∥D2ξp
∥∥
Lm(Ω)

≤
∥∥D2ξp

∥∥
L̇m(Ω)

≤ 1

α

(
N + 1

n
+

N∑
i=1

∥∥vδi ∥∥L∞(Γi)

)
.

On the other hand, by the unilateral pointwise constraint, we immediately have

0 ≤ ξp ≤ M on Ω.

Hence, by the interpolation inequalities in W 2,m(Ω), we deduce the uniform bound

(4.18) sup
p≥n
‖ξp‖W 2,m(Ω) < ∞.

By the above estimates, by Theorem 3 (see (4.15)) and by standard weak and strong
compactness arguments together with a diagonal argument, there exists a limit

(~u∞, ~v∞, ξ∞
)
∈

⋂
n<q<∞

Wq(Ω)

and a subsequence (pj)
∞
1 such that the modes of convergence in (4.13) hold true as

pj → ∞. Further, by passing to the limit as pj → ∞ in the equations (a)i − (d)i
forming the admissible class (4.8) and the closed unilateral pointwise constraint
0 ≤ ξp ≤ M , we see that in fact the limit (~u∞, ~v∞, ξ∞

)
lies in the admissible class

X∞(Ω). It remains to show that (~u∞, ~v∞, ξ∞
)

is indeed a minimiser of E∞ and that

the energies converge as claimed. To this end, fix an arbitrary (~u,~v, ξ
)
∈ X∞(Ω).

Since pj ≥ q for any q > 1 and large enough j ∈ N, by minimality we have

E∞
(
~u∞, ~v∞, ξ∞

)
= lim

q→∞
Eq
(
~u∞, ~v∞, ξ∞

)
≤ lim inf

q→∞

(
lim inf
pj→∞

Eq
(
~up, ~vp, ξp

))
≤ lim inf

pj→∞
Ep
(
~up, ~vp, ξp

)
≤ lim sup

pj→∞
Ep
(
~up, ~vp, ξp

)
≤ lim

pj→∞
Ep
(
~u,~v, ξ

)
= E∞

(
~u,~v, ξ

)
,



AN L∞ APPROACH TO INVERSE OPTICAL TOMOGRAPHY 15

for any (~u,~v, ξ
)
∈ X∞(Ω). Hence

(
~u∞, ~v∞, ξ∞

)
is a minimiser of E∞ over X∞(Ω).

The particular choice of (~u,~v, ξ
)

:=
(
~u∞, ~v∞, ξ∞

)
in the above inequality yields

lim
pj→∞

Ep
(
~up, ~vp, ξp

)
= E∞

(
~u∞, ~v∞, ξ∞

)
.

The proof of Proposition 7 is now complete. �

5. Kuhn-Tucker theory and Lagrange multipliers for the p-error

In this section we return the Lp-minimisation problem (4.11) solved in Theorem
5 for finite p < ∞ (Section 4). Given the presence of both PDE and unilateral
constraints, in general one cannot have an Euler-Lagrange equation, but an one-
sided variational inequality with Lagrange multipliers. The goal here is to derive the
relevant variational inequality associated with (4.11). The main result is therefore
the following.

Theorem 8 (The variational inequalities in Lp). In the setting of Section 4 and
under the same assumptions, for any p > max{n, 2n/(n− 2)}, there exist Lagrange
multipliers (

~φp, ~ψp
)
∈W 1, m

m−2 (Ω;R2×N )×W 1, p
p−1 (Ω;R2×N )

associated with the constrained minimisation problem (4.11) for Ep in the admissible
class Xp(Ω), such that the constrained minimiser

(
~up, ~vp, ξp

)
∈ Xp(Ω) satisfies the

next three relations:
αm

p

ˆ
Ω

(D2η −D2ξp) : µ(D2ξp) dLn ≥

N∑
i=1

ˆ
Ω

(η − ξp)
{
−
(
Hupi

)
· ψpi + ṙ(·, ξp)

[
Dupi : Dφpi

+ Dvpi : Dψpi

]
+ upi · φpi + vpi · ψpi

}
dLn

(5.1)

for any η ∈W 2,m(Ω, [0,M ]); further,
ˆ
∂Ω

~w : d[~νp(~vp)] =

N∑
i=1

{ ˆ
Ω

[
Aξp : (Dw>i Dψpi) +

(
Kξpwi

)
· ψpi

]
dLn

+

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
,

(5.2)

for any ~w ∈W 1,p(Ω;R2×N ), and finally

N∑
i=1

{ ˆ
Ω

[
Aξp : (Dz>i Dφpi) + (Kξpzi) · φpi

]
dLn +

ˆ
∂Ω

(γzi) · φpi dHn−1

}

=

N∑
i=1

ˆ
Ω

ξp
(
Hzi
)
· ψpi dLn,

(5.3)

for any ~z ∈W 1,m2 (Ω;R2×N ).

In the relations (5.1)-(5.2), µ(V ) is defined for any V ∈ Lm(Ω;Rn×n) as

(5.4) µ(V ) :=
(|V |(m))

m−2 V

Ln(Ω)
(
‖V ‖L̇m(Ω)

)m−1 ,
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ṙ(x, t) symbolises the partial derivative of r with respect to t (recall (1.5)) and ~νp(~v)
is a ~v-dependent R2×N -valued matrix Radon measure in M(∂Ω;R2×N ) given by

(5.5) ~νp(~v) :=

N∑
i=1

( (
|vi − vδi |(p)

)p−2
(vi − vδi )

Hn−1(Γi)
(∥∥vi − vδi ∥∥L̇p(Γi)

)p−1 ⊗ ei

)
Hn−1xΓi

.

Note that ~νp(~v) is absolutely continuous with respect to the Hausdorff measure
Hn−1x∂Ω. The notation {e1, ..., eN} symbolises the standard Euclidean basis of
RN and “:” symbolises the standard inner product in R2×N . Additionally, one may
trivially compute that

ṙ(x, t) = − λ

(κ(x) + t)2
.

Remark 9. The reason that we obtain the three different relations (5.1)-(5.3)
of which one is inequality and two are equations can be explained as follows. If
one ignores the PDE constraints defining (4.8) (which give rise to the Lagrange
multipliers), then the admissible class is in fact the Cartesian product of three sets,
two of which are vector spaces (spaces for ~u and ~v), and one is a convex set (space
of ξ), see (5.11) that follows. Hence, since the unilateral constraint is only for ξ,
the variational inequality is only for this variable. The decoupling of the relations
is merely a consequence of linear independence.

The proof of Theorem 8 consists of several particular sub-results. We begin with
computing the Frechét derivative of the functional Ep.

Lemma 10. The functional Ep : Wp(Ω) −→ R given by (4.4)-(4.10) is Frechét
differentiable and its derivative

dEp : Wp(Ω) −→
(
Wp(Ω)

)∗
, (~u,~v, ξ) 7→

(
dEp

)
(~u,~v,ξ)

,

is given by

(5.6)
(
dEp

)
(~u,~v,ξ)

(~z, ~w, η) = p

ˆ
∂Ω

~w : d[~νp(~v)] + αm

ˆ
Ω

D2η : µ(D2ξ) dLn

for any (~u,~v, ξ), (~z, ~w, η) ∈ Wp(Ω).

Proof. The Frechét differentiability of Ep follows from standard results on the geom-
etry of Banach spaces and the p-regularisations of the norms, given by (4.6)-(4.7).
To compute the Frechét derivative, we use Gateaux differentiation. To this end, fix
(~u,~v, ξ), (~z, ~w, η) ∈ Wp(Ω). Then, we have

(
dEp

)
(~u,~v,ξ)

(~z, ~w, η) =
d

dε

∣∣∣
ε=0

Ep

(
(~u,~v, ξ) + ε(~z, ~w, η)

)
=

N∑
i=1

d

dε

∣∣∣
ε=0

(
−
ˆ

Γi

(∣∣vi + εwi − vδi
∣∣
(p)

)p
dHn−1

)1
p

+ α
d

dε

∣∣∣
ε=0

(
−
ˆ

Ω

(∣∣D2ξ + εD2η
∣∣
(m)

)m
dLn

) 1
m



AN L∞ APPROACH TO INVERSE OPTICAL TOMOGRAPHY 17

which by the chain rule yields(
dEp

)
(~u,~v,ξ)

(~z, ~w, η) = p

N∑
i=1

(
−
ˆ

Γi

(∣∣vi − vδi ∣∣(p))p dHn−1

)1
p−1

�

�−
ˆ

Γi

(
|vi − vδi |(p)

)p−2
(vi − vδi ) · wi dHn−1

+αm

(
−
ˆ

Ω

(
|D2ξ|(m)

)m
dLn

) 1
m−1

−
ˆ

Ω

(∣∣D2ξ
∣∣
(m)

)m−2
D2ξ : D2η dLn.

Hence, (5.6) follows in view of the definitions (5.4)-(5.5). The lemma ensues. �

In order to derive the appropriate variational inequality that any minimiser as
in (4.11) satisfies, we need to define a map which incorporates the PDE constraints
of the admissible class Xp(Ω) in (4.8). We define

(5.7) G : Wp(Ω) −→
[(
W 1, m

m−2 (Ω;R2)
)∗ × (W 1, p

p−1 (Ω;R2)
)∗]N

by setting

〈
G(~u,~v, ξ), (~φ, ~ψ )

〉
:=



〈
G1

1(~u,~v, ξ), φ1

〉
〈

G2
1(~u,~v, ξ), ψ1

〉
...〈

G1
N (~u,~v, ξ), φN

〉
〈

G2
N (~u,~v, ξ), ψN

〉


∈ R2N ,(5.8)

where, for each i = 1, ..., N and j = 1, 2, the mapping Gj
i is defined as

(5.9)
〈

G1
i (~u,~v, ξ), φi

〉
:=ˆ

Ω

[
Aξ : (Du>i Dφi) +

(
Kξui − Si

)
· φi
]

dLn +

ˆ
∂Ω

[
(γui − si) · φi

]
dHn−1

and
(5.10)

〈
G2
i (~u,~v, ξ), ψi

〉
:=ˆ

Ω

[
Aξ : (Dv>i Dψi) +

(
Kξvi − ξHui

)
· ψi
]

dLn +

ˆ
∂Ω

[
γvi · ψi

]
dHn−1,

for any test functions

(φi, ψi) ∈W 1, m
m−2 (Ω;R2)×W 1, p

p−1 (Ω;R2).

Let us also define for a fixed M > 0 the next convex weakly closed subset of the
Banach space Wp(Ω):

(5.11) Wp
M (Ω) := W 1,m2 (Ω;R2×N )×W 1,p(Ω;R2×N )×W 2,m(Ω; [0,M ]).

Then, in view of (5.7)-(5.11), we may reformulate the admissible class Xp(Ω) of the
minimisation problem (4.11) as

(5.12) Xp(Ω) =
{(
~u,~v, ξ

)
∈ Wp

M (Ω) : G
(
~u,~v, ξ

)
= 0
}
.
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With the aim of deriving the variational inequality which is the necessary condi-
tion of the minimisation problem (4.11), we compute the Frechét derivative of the
mapping G above and prove that it is a submersion.

Lemma 11. The mapping G defined in (5.7)-(5.11) is a continuously Frechét dif-
ferentiable submersion and its derivative

dG : Wp(Ω) −→ L

(
Wp(Ω),

[(
W 1, m

m−2 (Ω;R2)
)∗ × (W 1, p

p−1 (Ω;R2)
)∗]N)(5.13)

which maps

(~u,~v, ξ) 7→
(
dG
)

(~u,~v,ξ)

is given by

〈(
dG
)

(~u,~v,ξ)
(~z, ~w, η), (~φ, ~ψ )

〉
=



〈(
dG1

1

)
(~u,~v,ξ)

(~z, ~w, η), φ1

〉
〈(

dG2
1

)
(~u,~v,ξ)

(~z, ~w, η), ψ1

〉
...〈(

dG1
N

)
(~u,~v,ξ)

(~z, ~w, η), φN

〉
〈(

dG2
N

)
(~u,~v,ξ)

(~z, ~w, η), ψN

〉


(5.14)

where, for each i ∈ {1, ..., N} and j ∈ {1, 2}, we have

(5.15)



〈(
dG1

i

)
(~u,~v,ξ)

(~z, ~w, η), φi

〉
=ˆ

Ω

[
Aξ : (Dz>i Dφi) + (Kξzi) · φi

]
dLn

+

ˆ
∂Ω

(γzi) · φi dHn−1 +

ˆ
Ω

[
ṙ(·, ξ)

(
Dui : Dφi

)
+ ui · φi

]
η dLn

and

(5.16)



〈(
dG2

i

)
(~u,~v,ξ)

(~z, ~w, η), ψi

〉
=ˆ

Ω

[
Aξ : (Dw>i Dψi) +

(
Kξwi −H(ηui + ξzi)

)
· ψi
]

dLn

+

ˆ
∂Ω

(γwi) · ψi dHn−1 +

ˆ
Ω

[
ṙ(·, ξ)

(
Dvi : Dψi

)
+ vi · ψi

]
η dLn,

for any test functions

(~φ, ~ψ ) ∈W 1, m
m−2 (Ω;R2×N )×W 1, p

p−1 (Ω;R2×N )

and any (~u,~v, ξ), (~z, ~w, η) ∈ Wp(Ω).

Proof. The mapping G is at most quadratic in all arguments and also continu-
ously Frechét differentiable in the space Wp(Ω). The form of the derivative can be
computed by using directional Gateaux differentiation(

dG
)

(~u,~v,ξ)
(~z, ~w, η) =

d

dε

∣∣∣
ε=0

G
(

(~u,~v, ξ) + ε(~z, ~w, η)
)
.
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The exact form of the Gateaux derivative of G is a simple consequence of the
definitions of Aξ,Kξ and the next computations:

d

dε

∣∣∣
ε=0

H(ξ + εη)(ui + εzi) = H(ηui + ξzi),

d

dε

∣∣∣
ε=0

Aξ+εη :
(
(Dui + εDzi)

>Dφi
)

= A :
d

dε

∣∣∣
ε=0

(Dui + εDzi)
>Dφi

+
d

dε

∣∣∣
ε=0

r
(
·, ξ + εη

)
(Dui + εDzi) : Dφi

= A : (Dz>i Dφi) + r(·, ξ
)
(Dzi : Dφi)

+ ṙ(·, ξ
)
(Dui : Dφi) η

= Aξ : (Dz>i Dφi) + ṙ(·, ξ
)
(Dui : Dφi) η ,

and

d

dε

∣∣∣
ε=0

Kξ+εη(ui + εzi) · φi = K
d

dε

∣∣∣
ε=0

(ui + εzi) · φi

+
d

dε

∣∣∣
ε=0

(ξ + εη
)
(ui + εzi) · φi

= (Kzi) · φi + ξ(zi · φi) + (ui · φi) η

= (Kξzi) · φi + (ui · φi) η .

To conclude, we need to show that G is a submersion, namely that for any (~u,~v, ξ) ∈
Wp(Ω), the differential at this point, which is(

dG
)

(~u,~v,ξ)
: Wp(Ω) −→

[(
W 1, m

m−2 (Ω;R2)
)∗ × (W 1, p

p−1 (Ω;R2)
)∗]N

is surjective. To this end, for each i ∈ {1, ..., N} fix functionals

(Φi,Ψi) ∈
(
W 1, m

m−2 (Ω;R2)
)∗ × (W 1, p

p−1 (Ω;R2)
)∗
.

This means that there exist{
(fi, Fi) ∈ L

m
2 (Ω;R2)× Lm

2 (Ω;R2×n),

(gi, Gi) ∈ Lp(Ω;R2)× Lp(Ω;R2×n),

such that the next representation formulas hold true (see e.g. [2])

(5.17)


〈Φi, φi〉 =

ˆ
Ω

(
fi · φi + Fi : Dφi

)
dLn,

〈Ψi, ψi〉 =

ˆ
Ω

(
gi · ψi + Gi : Dψi

)
dLn,

for any φi ∈ W 1, m
m−2 (Ω;R2) and ψi ∈ W 1, p

p−1 (Ω;R2). Then, by (5.13)-(5.17), the
surjectivity of the differential G′(~u,~v, ξ) follows from the solvability in (zi, wi) (for
the choice η ≡ 0) in the weak sense of the PDE systems{

−div(Aξ
•Dzi) + Kξzi = fi − divFi, in Ω,

(A•Dzi − Fi)n + γzi = 0, on ∂Ω,
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and {
−div(Aξ

•Dwi) + Kξwi =
(
gi + ξHzi

)
− divGi, in Ω,

(Aξ
•Dwi −Gi)n + γwi = 0, on ∂Ω,

for all i ∈ {1, ..., N} and with A,K,H, ui, ξ, γ, fi, Fi, gi, Gi being fixed coefficients
and parameters. The solvability of the above systems follows from Theorems 1-3.
The result is therefore complete. �

Now we derive the variational inequality through the generalised Kuhn-Tucker
theory of Lagrange multipliers.

Proposition 12 (The variational inequality). For any p > 2n/(n− 2), there exist
Lagrange multipliers(

~φp, ~ψp
)
∈W 1, m

m−2 (Ω;R2×N )×W 1, p
p−1 (Ω;R2×N )

associated with the constrained minimisation problem (4.11) for Ep in the admissible
class (5.12), such that the constrained minimiser

(
~up, ~vp, ξp

)
∈ Xp(Ω) satisfies the

inequality

1

p

(
dEp

)
(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
≥

N∑
i=1

〈(
dG1

i

)
(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
, φpi

〉

+

N∑
i=1

〈(
dG2

i

)
(~up,~vp,ξp)

(
~z, ~w, η − ξp

)
, ψpi

〉
,

(5.18)

for any (~z, ~w, η) in the convex set Wp
M (Ω) (see (5.11)).

Proof. In view of Lemmas 10-11, Ep is Frechét differentiable and G is a continuously
Frechét differentiable submersion everywhere on Wp(Ω), whilst the set Wp

M (Ω) is
convex and with non-empty interior (with respect to the norm topology). Hence,
the hypotheses of the generalised Kuhn-Tucker theory are satisfied (see e.g. [49,
p. 417-418, Theorem 48B & Corollary 48.10]). Therefore, there exists a Lagrange
multiplier

Λp ∈
((
W 1, m

m−2 (Ω;R2×N )
)∗ × (W 1, p

p−1 (Ω;R2×N )
)∗)∗

which by standard duality arguments regarding product Banach spaces and their
dual spaces that it can be identified with a pair of functions(

~φp, ~ψp
)
∈W 1, m

m−2 (Ω;R2×N )×W 1, p
p−1 (Ω;R2×N )

such that, the constrained minimiser
(
~up, ~vp, ξp

)
satisfies

1

p

(
dEp

)
(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
−

N∑
i=1

〈(
dG1

i

)
(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
, φpi

〉

−
N∑
i=1

〈(
dG2

i

)
(~up,~vp,ξp)

(
~z − ~up, ~w − ~vp, η − ξp

)
, ψpi

〉
≥ 0,

(5.19)
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for any (~z, ~w, η) in the convex set Wp
M (Ω). Recall now that (5.11) implies that the

convex subset Wp
M (Ω) of the Banach space Wp(Ω) can be written as the Cartesian

product of the vector spaces

W 1,m2 (Ω;R2×N )×W 1,p(Ω;R2×N )

with the convex set W 2,m(Ω, [0,M ]), we may replace ~z by ~z + ~up and we may also
replace ~w by ~w + ~vp in (5.19) to arrive at (5.18). The proof of Proposition 12 is
now complete. �

We now use Proposition 12 to deduce that the variational inequality takes the
form (5.20) below, as a direct consequence of Lemmas 10-11, (5.6), (5.4), (5.5),
(5.13)-(5.16).

Corollary 13. In the setting of Proposition 12, in view of the form of the Frechét
derivatives of Ep and G, the variational inequality (5.18) takes the form

ˆ
∂Ω

~w : d[~νp(~vp)] +
αm

p

ˆ
Ω

(
D2η −D2ξp

)
: µ(D2ξp) dLn

≥
N∑
i=1

{ˆ
Ω

[
A : (Dz>i Dφpi) + (Kzi) · φpi

]
dLn +

ˆ
∂Ω

(γzi) · φpi dHn−1

}

+

N∑
i=1

{ˆ
Ω

[
B : (Dw>i Dψpi) +

(
Lwi −H

(
(η − ξp)upi + ξpzi

))
· ψpi

]
dLn

+

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
+

N∑
i=1

ˆ
Ω

(η − ξp)
(
ṙ(·, ξp)

[
Dupi : Dφpi

+ Dvpi : Dψpi

]
+ upi · φpi + vpi · ψpi

)
dLn

(5.20)

for any (~z, ~w, η) ∈ Wp
M (Ω).

We conclude this section by obtaining the further desired information on the
variational inequality (5.20).

Lemma 14. In the setting of Corollary 13, the variational inequality (5.20) for the
constrained minimiser

(
~up, ~vp, ξp

)
is equivalent to the triplet of relations (5.1)-(5.3).

Proof. The inequality (5.1) follows by setting ~z = ~w = 0 in (5.20). The iden-
tity (5.2) follows by setting η = ξp and ~z = 0 in (5.20) and by recalling that
W 1,p(Ω;R2×N ) is a vector space, so the inequality we obtain in fact holds for both
±w. Finally, the identity (5.3) follows by setting η = ξp and ~w = 0 in (5.20) and
by recalling again that W 1,m2 (Ω;R2×N ) is a vector space, so the inequality holds
for both ±z. �

6. Kuhn-Tucker theory and Lagrange multipliers for the ∞-error

In this section we consider the L∞-minimisation problem (4.12) solved in part (B)
of Theorem 5 (Section 4). The goal is to derive the relevant variational inequalities
associated with the constrained minimisation of the functional E∞ (see (4.5)) in
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the admissible class (4.9), by analogy to the results in Theorem 8 of Section 5. To
this aim, let us set

C∞ := lim sup
pj→∞

Cp,

where

Cp := ‖~φp‖W 1, m
m−2 (Ω)

+ ‖~ψp‖W 1,1(Ω)

and
(
~φp, ~ψp

)
are the Lagrange multipliers associated with the constrained minimi-

sation problem (4.12) (Theorem 8). The main result here is therefore the following.

Theorem 15 (The variational inequalities in L∞). In the setting of Section 5 and
under the same assumptions, suppose additionally that m > 2n and also
(6.1)

A ∈ C1
(
Ω;Rn×n+

)
, K,H ∈W 1,∞(Ω;R2×2

)
, κ ∈ C1(Ω), ~S ∈W 1,m2 (Ω;R2×N ).

Then, there exists a subsequence (pj)
∞
1 and a limiting measure

~ν∞ ∈M(∂Ω;R2×N )

such that

(6.2) ~νp(~vp)
∗−−⇀ ~ν∞ in M(∂Ω;R2×N ),

as pj →∞, where ~νp(~vp) is given by (5.5), and:

(I) If C∞ = 0, then ~ν∞ = ~0.

(II) If C∞ > 0, then there exist (rescaled) limiting Lagrange multipliers(
~φ∞, ~ψ∞

)
∈W 1, m

m−2 (Ω;R2×N )×BV (Ω;R2×N ),

such that

(6.3)

( ~φp
Cp

,
~ψp
Cp

)
∗−−⇀
(
~φ∞, ~ψ∞

)
in W 1, m

m−2 (Ω;R2×N )×BV (Ω;R2×N )

as pj → ∞. Then, for the above Lagrange multipliers, the constrained minimiser(
~u∞, ~v∞, ξ∞

)
∈ X∞(Ω) satisfies the next three relations:

N∑
i=1

ˆ
Ω

(η − ξ∞)

[(
Hu∞i

)
· ψ∞i −

(
u∞i · φ∞i + v∞i · ψ∞i

))
dLn

≥
N∑
i=1

ˆ
Ω

(η − ξ∞)ṙ(·, ξ∞)
(

Du∞i : Dφ∞i

)
dLn

+

N∑
i=1

ˆ
Ω

(η − ξ∞)ṙ(·, ξ∞) Dv∞i : d[Dψ∞i]

(6.4)

for any η ∈ Cξ∞(Ω; [0,M ]) (namely η ∈ C(Ω; [0,M ]) with η = ξ∞ on ∂Ω); further,

1

C∞

ˆ
∂Ω

~w : d~ν∞ =

N∑
i=1

{ ˆ
Ω

Aξ∞ : (Dwi)
>d[Dψ∞i]

+

ˆ
∂Ω

(
Kξ∞wi

)
· ψ∞i dLn +

ˆ
∂Ω

(γwi) · ψ∞i dHn−1

}
,

(6.5)
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for any ~w ∈ C1
0 (Ω;R2×N ), and finally

N∑
i=1

ˆ
Ω

[
Aξ∞ : (Dz>i Dφ∞i) + (Kξ∞zi) · φ∞i − ξ∞

(
Hzi
)
· ψ∞i

]
dLn

= −
N∑
i=1

ˆ
∂Ω

(γzi) · φ∞i dHn−1

(6.6)

for any ~z ∈ C1(Ω;R2×N ).

Note the interesting fact that the limiting variational inequality (6.4) has no
dependence on the regularisation parameter α, as the corresponding term in (5.1)
is annihilated.

Proof. We begin by showing that for any p > n and any ~v ∈ W 1,p(Ω;R2×N ), we
have the next total variation bound for the measure (5.5):∥∥~νp(~v)

∥∥(∂Ω) ≤ N.(6.7)

Indeed, by Hölder inequality we have

∥∥νpi(~v)
∥∥(∂Ω) ≤

−
ˆ

Γi

(
|vi − vδi |(p)

)p−2|vi − vδi |dHn−1

(
−
ˆ

Γi

(∣∣vi − vδi ∣∣(p))p dHn−1

)p−1
p

≤
−
ˆ

Γi

(
|vi − vδi |(p)

)p−1
dHn−1

(
−
ˆ

Γi

(∣∣vi − vδi ∣∣(p))p dHn−1

)p−1
p

≤ 1,

for any i ∈ {1, ..., N}. By the sequential weak* compactness of the spaces of Radon
measures, the estimate (6.7) implies the existence of a subsequence (pj)

∞
1 and of

the claimed limit measure ~ν∞ in (6.2).
Now we proceed with establishing (I) and (II) of the theorem.

(I) Suppose that C∞ = 0. Then, it follows that

(6.8)
(
~φp, ~ψp

)
−→

(
~0,~0
)

in W 1, m
m−2 (Ω;R2×N )×BV (Ω;R2×N )

as pj → ∞, where
(
~φp, ~ψp

)
are the Lagrange multipliers associated with the con-

strained minimisation problem (4.12). By (6.2) and (6.10), by passing to the limit
as pj →∞ in (5.2), we obtain

ˆ
∂Ω

~w : d~ν∞ = 0 = lim
pj→∞

N∑
i=1

{ˆ
Ω

[
Aξp : (Dw>i Dψpi) +

(
Kξpwi

)
· ψpi

]
dLn

+

ˆ
∂Ω

(γwi) · ψpi dHn−1

}
,

for any ~w ∈ C1(Ω;R2×N ). Therefore, ~ν∞ = ~0, as claimed.

(II) Suppose now C∞ > 0. Then, the desired relations (6.4)-(6.6) follow directly

from (5.2)-(5.3) by rescaling the Lagrange multipliers
(
~φp, ~ψp

)
and passing to the
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limit as pj → ∞, since the rescaled Lagrange multipliers
(
~φp/Cp, ~ψp/Cp

)
are

bounded in the product space

W 1, m
m−2 (Ω;R2×N )×BV (Ω;R2×N )

and therefore the sequence is weakly* precompact. (Recall also that on a reflexive
space the weak and the weak* topology coincide.) Note first that we have∣∣∣∣ˆ

Ω

D2(η − ξp) : µ
(
D2ξp

)
dLn

∣∣∣∣ =

∣∣∣∣∣−
ˆ

Ω

D2(η − ξp
)

:
(|D2ξp|(m))

m−2 D2ξp(
‖D2ξp‖L̇m(Ω)

)m−1 dLn
∣∣∣∣∣

≤ −
ˆ

Ω

∣∣D2(η − ξp)
∣∣ (|D2ξp|(m))

m−1(
‖D2ξp‖L̇m(Ω)

)m−1 dLn

≤ C
∥∥D2(η − ξp)

∥∥
Lm(Ω)

,

by the definition of µ and by Hölder inequality. In order to conclude, we need to
justify the weak* convergence as pj →∞ of the quadratic terms

Dupi :
Dφpi
Cp

, Dvpi :
Dψpi
Cp

.

To this end, we will show that under the higher regularity assumptions on the coef-
ficients, we in fact have the next strong modes of convergence for the p-minimisers:

Dupi −→ Du∞i in L
m
2

loc(Ω;R2),(6.9)

Dvpi −→ Dv∞i in C(Ω;R2),(6.10)

as pj →∞, for all i ∈ {1, ..., N}. Before proving (6.9)-(6.10), we demonstrate how
to conclude by assuming them. Since we have

Dφpi
Cp

−−⇀ Dφ∞i in L
m

m−2 (Ω;R2),(6.11)

Dψpi
Cp
Ln ∗−−⇀ Dψ∞i in M(Ω;R2)(6.12)

and also ξp −→ ξ∞ in C1(Ω) as pj → ∞, by choosing any O b Ω with Lipschitz
boundary (for instance the union of finitely many balls), (ηpj )∞1 ⊆W 2,m(Ω; [0,M ])

and η ∈W 2,m(Ω; [0,M ]) with

ηp ≡ ξp on Ω \ O, ηp −→ η in W 2,m(O) ⊆ C1(O),

we have η − ξp ∈W 2,m
0 (O) and

ηp − ξp −→ η − ξ∞ in W 2,m
0 (O)

as pj →∞. Hence, (6.4)-(6.6) follow by (6.9)-(6.12), together with the weak-strong

continuity of the duality pairing between L
m
2 (O;R2) and L

m
m−2 (O;R2) and the

weak*-strong continuity of the duality pairing between C0(O;R2) and M(O;R2),

at least for test functions η ∈W 2,m
ξ∞

(O; [0,M ]). The general case for test functions

η ∈ Cξ∞(Ω; [0,M ]) follows by a standard approximation argument.
Now we establish (6.9)-(6.10). Fix i ∈ {1, ..., N}, e ∈ Rn with |e| = 1, h 6= 0 and(

~u,~v, ξ) ∈ Xp(Ω) for some p large. Fix also ζ ∈ C1
c (Ω) and let D1,h

e symbolise the
difference quotient with step size h along the direction of e. By testing in the weak
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form of the equations (a)i − (b)i appearing in the constrained class (4.8) against
test functions of the form

φi = ψi := D1,−h
e ζ,

standard regularity arguments imply that the directional derivatives Deui and Devi
solve weakly the divergence systems

−div(Aξ
•D(Deui)) =

{
−Kξ(Deui) + DeSi − (DeKξ)ui

}
+ div

(
(DeAξ)•Dui

)
,

in Ω,(6.13)

and

−div(Aξ
•D(Devi)) =

{
−Kξ(Devi) + ξH(Deui) + De(ξH)ui − (DeKξ)vi

}
+ div

(
(DeAξ)•Dvi

)
, in Ω.(6.14)

In view of (1.5)-(1.6) we have

DeAξ = DeA + De(r(·, ξ))In, DeKξ = DeK + (Deξ)I2,

and

De(r(·, ξ)) = −
λ
(
Deκ+ Deξ

)
(κ+ ξ)2

.

Due to our assumption (6.1) and the embedding W 2,m(Ω) ⊆ C1(Ω), we have that

DeAξ ∈ C
(
Ω;Rn×n+

)
, DeKξ ∈ L∞(Ω;R2×2

)
as

De(r(·, ξ)) ∈ C(Ω), K ∈W 1,∞(Ω;R2×2
)
, ξ, κ ∈ C1(Ω).

Further, in view of our assumptions and Hölder inequality we have that

−Kξ(Deui) + DeSi − (DeKξ)ui

(DeAξ)•Dui
−Kξ(Devi) + ξH(Deui) + De(ξH)ui − (DeKξ)vi

(DeAξ)•Dvi

 ∈ L
m
2 (Ω)

because

ξ, |H|, |DeH|, |De(ξH)|, |DeKξ|, |Kξ|, |DeAξ| ∈ L∞(Ω),

|ui|, |Deui|, | vi|, |Devi|, |DeSi|, |Dui|, |Dvi| ∈ L
m
2 (Ω),

for p > 2m. By the interior L2 and L
m
2 regularity estimates for the systems (6.13)-

(6.14) (see e.g. [31, Sections 4.3.1 & 7.1.2]), for any O b Ω there exists C > 0
independent of p such that∥∥D2~up

∥∥
L

m
2 (O)

+
∥∥D2~vp

∥∥
L

m
2 (O)

≤ C.

Since by assumption m > 2n, by the Morrey estimate we have∥∥D~up
∥∥
C0,1− 2n

m (O)
+
∥∥D~vp

∥∥
C0,1− 2n

m (O)
≤ C.

By standard compact embedding arguments in Hölder spaces, (6.9)-(6.10) ensue as
a consequence of the above estimates. The proof of the theorem is complete. �
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