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We have established previously, in a lead-in study, that the spreading of liquids in particulate
porous media at low saturation levels, characteristically less than 10% of the void space, has very
distinctive features in comparison to that at higher saturation levels. In particular, we have found
that the dispersion process can be accurately described by a special class of partial differential
equations, the super-fast non-linear diffusion equation. The results of mathematical modelling have
demonstrated very good agreement with experimental observations. However, any enhancement of
the accuracy and predictive power of the model, keeping in mind practical applications, requires the
knowledge of the effective surface permeability of the constituent particles, which defines the global,
macroscopic permeability of the particulate media. In the paper, we demonstrate how this quantity
can be determined through the solution of the Laplace-Beltrami Dirichlet problem, we study this
using the well-developed surface finite element method.

I. INTRODUCTION

Liquid distributions and transport in particulate
porous media, such as sand, at low saturation levels s,
defined in our study as the ratio of the liquid volume VL
to the volume of available voids VE in a sample volume
element V , s = VL

VE
, have many distinctive features. The-

oretically, as we have shown previously, the liquid disper-
sion can be described by a special class of mathematical
models, the superfast non-linear diffusion equation [1].
Unlike in the standard porous medium equation, which
is a paradigm of research in porous media [2], in this
special case, the non-linear coefficient of diffusion D(s)
demonstrates divergent behaviour as a function of satu-
ration s, D(s) ∝ (s− s0)−3/2, where s0 is some minimal
saturation level.

In practical applications, the analysis of this regime
of wetting is crucial for studies of biological processes,
such as microbial activity, and spreading of persistent
(non-volatile) liquids in soil compositions and dry porous
media commonly found in arid natural environments and
industrial installations [1, 3].

If we consider liquid distributions on the grain size
length scale, one would observe that when the satura-
tion level s is reduced to (or below) the critical level
sc ≈ 10%, the liquid domain predominantly consists of
isolated liquid bridges formed at the point of particle con-
tacts [1, 4–8], see Fig. 1 for illustration. The formation
of liquid bridges is characteristic for the so-called pendu-
lar regime of wetting. In this regime, the liquid bridges
are only connected via thin films formed on the rough
particle surfaces and serve as variable volume reservoirs,
where the capillary pressure p depends directly on the
amount of the liquid in the bridge Vb

p ≈ −p0

(
R3

Vb

)1/2

. (1)

Here, p0 = 2γ
R , γ is the coefficient of the surface tension

of the liquid and R is an average radius of the porous
medium particles [1, 4]. The spreading process in such

conditions only occurs over the rough surface of the ele-
ments of the particulate porous media, Fig. 1.

Microscopically, the liquid creeping flow through the
surface roughness of each particle can be described by
a local Darcy-like relationship between the surface flux
density q and averaged (over some area containing many
surface irregularities) pressure in the grooves ψ

−κm
µ
∇ψ = q. (2)

Here, µ is liquid viscosity and km is the local coefficient of
permeability of the rough surface, which proportional to
the average amplitude of the surface roughness δR, that
is the width of the surface layer conducting the liquid
flux, km ∝ δ2

R [9].

FIG. 1. Illustration of the liquid distribution in particulate
porous media (grey) with pendular rings (blue) at low satu-
ration levels.

Macroscopically, that is after averaging over some vol-
ume element containing many particles of the porous
medium, the diffusion process in the slow creeping flow
conditions can be described by a non-linear superfast dif-
fusion equation

∂s

∂t
= ∇{D(s)∇s} , t > 0, (3)
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D(s) =
D0

(s− s0)3/2
, s > s0,

which directly follows from the conservation of mass prin-
ciple

∂(φs)

∂t
+∇Q = 0. (4)

Here D0 is the effective, macroscopic coefficient of non-
linear diffusion, s0 is the minimal level of saturation,
which can be only achieved when the liquid bridges cease
to exist (s0 ≈ 0.5%, see details in [1, 7, 8]), φ is poros-

ity defined as φ =
VE
V

, which is further assumed to be

constant, and Q is macroscopic flux density. The macro-
scopic flux density Q is defined in such a way that the to-
tal flux through the surface of a macroscopic sample vol-
ume element is given by the surface integral

∫
Q · n dS,

where n is the normal vector to the surface of the ele-
ment.

Equation (3) can be obtained from (4) using (1)-(2)
and the spatial averaging theorem formulated in [13] as-
suming that [1]:

• the rough surface area of the porous media particles
is fully saturated with the liquid;

• the liquid is incompressible;

• the local Darcy’s law (2) is observed on the rough
particle surface elements.

All three criteria are usually very well satisfied in prac-
tical applications, and we will further assume that this
is the case. The approximation of the fully saturated
rough surface layer is well fulfilled, if the characteristic
pressure ψ is less than the capillary pressure defined on
the length scale of the surface roughness δR, which is
of the order of δR ∼ 1µm in typical sands [14], as is
demonstrated in [9]. That is, |ψ| < γ

δR
, and, for example

for water (γ = 72 mN/m) at δR = 1µm, this results in
|ψ| < 7.2 × 104 Pa. Otherwise, at larger capillary pres-
sure values, the liquid volume within the surface rough-
ness layer would start to vary leading to variations of
the effective surface layer thickness δR, though, it is not
difficult to introduce a correction [3, 10–12].

The effective coefficient of diffusion D0 = fφ
K
µ com-

prises of the global permeability of the surface elements

K = km
Se

S [1]. Here, parameter fφ = p0
2φ

√
3Nc

4π
1−φ
φ , Nc

is a coordination number of the particles, that is average
number of contacts per a particle (in sands, typically,
Nc ≈ 7) and Se/S is the ratio of the effective area of
entrances and exits of the liquid flow in a sample vol-
ume element with surface area S, see details in [1]. Note,
that the ratio Se/S is defined in such a way, that the
microscopic flux density q averaged over the liquid vol-
ume Vl within a macroscopic sample volume element V ,
〈q〉l =

∫
Vl

q dV , if multiplied by the ratio 〈q〉l Se

S = Q,

would result in the macroscopic average flux density Q.

The global surface permeability of the particles K is
one of the main elements of the model that enables an
accurate representation of the liquid dispersion at low
saturation levels. On the other hand, this quantity is dif-
ficult to accurately estimate a priori. It is fully defined by
the particle shape and the dimension of the liquid bridge
area. In this paper, we determine this important param-
eter on the basis of a solution to the Laplace-Beltrami
problem in a representative case of a spherical particle,
which provides a reasonable approximation for the con-
stituent elements of particulate porous media, such as
sands.

II. MICROSCOPIC MODEL OF THE SURFACE
PERMEABILITY OF THE ELEMENTS.

Consider a spherical particle of radius R with a closed
surface Γ, which is split into three sub-domains Ω0, Ω1

and Ω2 with the surface boundaries between them ∂Ω1

and ∂Ω2, as is shown in Fig. 2. The location of the sub-
domains Ω1 and Ω2 to each other on the surface is fixed
by the tilt angle α. The sub-domains Ω1 and Ω2 corre-
spond to the area covered by the liquid in the bridges,
while the surface flow, described by (2), takes place in
Ω0.

Since the rough surface area of the particles is assumed
to be fully saturated in creeping flow conditions [9], liq-
uid pressure ψ, due to incompressibility of the liquid,
should satisfy the Laplace-Beltrami equation defined on
the surface of the sub-domain Ω0

∆Ω0
ψ = 0, (5)

as it follows from (2). Here, ∆Ω0 designates the Laplace-
Beltrami operator, which is defined on the surface ele-
ment Ω0 through the surface gradient ∇Ω0 tangential to
the surface. Formally, let nΩ0 denote the unit normal to
the surface Ω0 then we define the surface gradient of ψ
as ∇Ω0ψ := ∇ψ − (∇ψ · nΩ0)nΩ0 and then the Laplace-
Beltrami operator is defined as ∆Ω0

ψ = ∇Ω0
· ∇Ω0

ψ.
Note, that in fact, the condition of the fully saturated

surface layer is not essential in calculation of the flows
over one particle element of the porous media. It is suffi-
cient to presume that the variation of the capillary pres-
sure on the length scale of the particle δψ is negligible,
that is δψ � γ/δR. This is usually the case in slow
creeping flow conditions in porous media, and in fact, it
is a criterion for the use of macroscopic approximation
to such flows [15].

At the same time, liquid pressure variation in the
bridges is negligible in slow creeping flows in compari-
son to that in Ω0. So that, one can assume that

ψ|∂Ω1
= ψ1 = const, ψ|∂Ω2

= ψ2 = const, (6)

which are the boundary conditions to the Laplace-
Beltrami Dirichlet boundary value problem. The Dirich-
let boundary value problem (5)-(6) has a unique solution,
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which, if it is found, allows to calculate the total flux
through the particle element

QT = δR
κm
µ

∫
∂Ω1

∂ψ

∂n
dl = −δR

κm
µ

∫
∂Ω2

∂ψ

∂n
dl,

where n is the normal vector to the domain boundaries
∂Ω1,2 on the surface, δR is the average amplitude of the
surface roughness, that is the width of the surface layer
conducting the liquid flux and the line integral is taken
along a closed curve in Ω0, for example the boundary
∂Ω1.

If the total flux QT is determined, one can define the
global permeability coefficient of a single particle K1.
This can be done, if we assume that the particle has
a characteristic size D and so that it can be enclosed in
a volume element V = D3 with the characteristic side
surface area D2. Then, the effective flux density Q can
be represented in terms of K1 (and the total flux QT )

Q =
QT
D2

= −K1

µ

ψ2 − ψ1

D
,

if the flow is driven by the constant pressure difference
ψ2 − ψ1 applied to the sides of the volume element.

α

Ω0

Ω1

Ω2

∂Ω1

∂Ω2

Γ

θ0

FIG. 2. Illustration of the solution domains on a spherical
particle.

A. Surface permeability of a sphere in the case of
azimuthally symmetric domain boundaries.

Consider now an azimuthally symmetric case, when
the domain boundaries ∂Ω1 and ∂Ω2 are oriented at the
reflex angle α = π and have a circular shape. We use a
spherical coordinate system with its origin at the particle
centre and the polar angle θ counted from the axis of sym-
metry passing through the centre of the circular contour
∂Ω1. In this case, the Dirichlet boundary value problem
(5)-(6) admits an analytical solution, so that particle per-
meability can be determined explicitly. Indeed, problem

(5)-(6), if we assume that the liquid pressure ψ is a func-
tion of θ only and independent of the azimuthal angle, is
equivalent to

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= 0, θ0 < θ < π − θ1, (7)

with the boundary conditions

ψ|θ=θ0 = ψ1, ψ|θ=π−θ1 = ψ2. (8)

The analytic solution to problem (7)-(8) after apply-
ing the boundary conditions can be represented in the
following form

ψ = Ψ0(ψ2 − ψ1) ln

{
sin θ

sin θ0

1 + cos θ0

1 + cos θ

}
+ ψ1, (9)

where

Ψ0 =
1

ln
{

sin θ1
sin θ0

1+cos θ0
1−cos θ1

} .
One can now calculate the total flux

QT = −K1

µ
D(ψ2 − ψ1) = −2π sin θ0δR

km
µ

∂ψ

∂θ

∣∣∣∣
θ=θ0

= −(ψ2 − ψ1)2πδRΨ0
km
µ
.

So that, taking D = 2R,

K1 = πΨ0
δR
R
km. (10)

One can see that, if we take θ1 = θ0, the permeability
coefficient K1 is divergent at θ0 = π/2, as is expected,
when the two contours move closer to each other and, at
the same time, their radius R sin θ0 increases, that is

K1 ≈
δR
2R

πkm
(π2 − θ0)

as θ0 →
π

2
.

In the opposite limit, at θ0 = 0, when the two contours
move further away from each other and their radius de-
creases, the permeability coefficient tends to zero, that
is

K1 ≈
δR
2R

πkm
| ln θ0|

as θ0 → 0.

Parametrically, the coefficient of permeability (10) is in-
versely proportional to the particle radius R, so that
larger particles create stronger resistance to the flow. No-
ticeably, the coefficient demonstrates strong dependence
on the surface layer thickness δR, that is K1 ∝ δ3

R since
it is anticipated that km ∝ δ2

R, so that evaluation of this
parameter in applications is crucial for the accurate esti-
mates of the liquid dispersion rates.
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How does the result affect the super-fast diffusion
model (3), and basically how can it be incorporated into
the main diffusion equation? If we approximate the per-
meability coefficientK byK1 obtained in the azimuthally
symmetric case at θ1 = θ0, and, using an approximate re-
lationship between the radius of curvature R sin θ0 of the
boundary contour ∂Ω1 and the pendular ring volume [6],
one can show

sin2 θ0 ≈
√
s− s0

and at θ0 � 1 or (s− s0)� 1

K ≈ 2
δR
R

πkm
| ln(s− s0)|

. (11)

As one can see from (11), the distinctive particle shape
results in logarithmic correction to the main non-linear
superfast-diffusion coefficient D(s) = D0

(s−s0)3/2
, such that

D(s) ∝ 1

| ln(s− s0)|(s− s0)3/2
.

Apparently, the correction will mitigate to some extent
the divergent nature of the dispersion at the very small
saturation levels s ≈ s0, smoothing out the characteristic
dispersion curves.

∂Ω2

∂Ω1

nΩ0

Ω0

FIG. 3. Illustration of the triangular tessellation of the trun-
cated spherical surface domain Ω0 with a normal vector nΩ0

at α = 150◦ and θ0 = θ1 = 22.5◦.

Before we proceed to a general case, this would be in-
structive to consider, in qualitative terms, how specific is
the permeability of spherical particles. We now compare
coefficient of permeability (10) with the permeability of
a cylinder of radius R sin θ0 and length 2R with the same
surface layer of thickness δR. Such an element was of-
ten used in simple estimations of permeability in porous
media [16]. It is not difficult to calculate the total flux
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FIG. 4. Verification of the numerical scheme in the az-
imuthally symmetric scenario. We plot the inverse mesh size
against the error measured in the energy norm [17]. We ob-
serve the rate of convergence proven in [17] verifying that,
asymptotically, the numerical approximation converges to the
exact solution.

through this element when there is a constant pressure
difference (ψ2 − ψ1) applied to its ends

QT = −(ψ2 − ψ1)
km
µ
π sin θ0δR = −Kc

µ
2R(ψ2 − ψ1),

so that

Kc = πkm sin θ0
δR
2R
∝ (s− s0)1/4,

where Kc is the effective permeability of the cylindrical
element.

One can observe, that in contrast to the case of spheri-
cal elements, the cylindrical approximation provides com-
pletely different correction to the non-linear coefficient of
diffusion, if we presume similar scaling sin2 θ0 ≈

√
s− s0.

Consider now a general case.

B. Surface permeability of a sphere in the case of
arbitrary oriented boundaries.

In the arbitrary case, when α 6= π, the Dirichlet bound-
ary value problem (5)-(6) does not possess known explicit
solutions, so that we will apply a classical surface finite
element technique introduced in [17]. See also [18] for an
in depth review of state of the art innovations and uses
pertaining to this class of method. Using this method
we are able to numerically investigate the total flux and
hence the permeability of the particle.

We begin by approximating the truncated spherical
surface with a piecewise linear approximation through
triangular elements, see Fig. 3 for an example. In this
setting, we are approximating the geometry with a poly-
gon. This inherently introduces an error through the
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∂Ω1
ψ=ψ1

∂Ω2
ψ=ψ2

FIG. 5. Distribution of non-dimensional pressure ψ/ψc (ψc =
γ/R) on a unit sphere R = 1 at ψ1 = 0.8, ψ2 = 0.2, θ1 = θ0 =
22.5◦ and α = 150◦.

approximation of the geometry. It is, however, well un-
derstood appearing as a ’variational crime’ [18]. We then
discretise the Laplace-Beltrami operator over the polygon
using piecewise linear finite elements. To test our numer-
ical model we examine the azimuthally symmetric case,
where the exact solution is known and given in (9). We
then check convergence of the finite element approxima-
tion to (9). The results are shown in Fig. 4.

We make use of the numerical model generated to ex-
amine the dependency of the total flux, and hence the
permeability of the truncated spherical element as a func-
tion of the tilt angle α, that is the position of the bound-
aries on the sphere. As in the azimuthally symmetric
case, without much loss of generality, we consider circu-
lar boundaries. The size of the boundary contour, that
is its radius R sin θ0 (or R sin θ1), will be characterized
by the polar angle θ0 (or θ1) counted from the axis of
symmetry of each contour and the particle radius R.

C. Results of numerical analysis and discussion

The distribution of pressure on the spherical surface
is illustrated in Fig. 5, while the typical total flux de-
pendence on the tilt angle α is presented in Fig. 6 at
θ0 = θ1. The distribution of pressure demonstrates rel-
atively smooth variations in the range bounded by the
prescribed boundary values, such that, as is expected in
a diffusion problem, ψ2 ≤ ψ ≤ ψ1. The value of the total
liquid flux QT through the spherical element decreases
when the tilt angle increases and the boundary contours
move further away from each other. At the same time,
one readily observes, Fig. 6, that at relatively large tilt
angles, close to the reflex angle in the azimuthal symmet-

rical case, the total flux value and hence permeability of
the surface elements, is close to that predicted on the ba-
sis of the azimuthally symmetric solution (10). This im-
plies that the analytical result (10) and (11) can be used
in practical applications to obtain first order corrections
to the effective non-linear coefficient of dispersion in the
super-fast diffusion model. One may notice that even at
small tilt angles, when the two boundaries are located
close to each other, one can still approximate coefficient
of permeability with the accuracy of 50 %. We have veri-
fied numerically that in the general case the permeability
coefficient of the particles demonstrates the same trends
with variations of parameters θ0 and θ1 as in the az-
imuthally symmetric case.
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FIG. 6. Non-dimensional total flux QT /Q0 as a function of
the tilt angle α at θ0 = θ1. Here Q0 is the total flux value at
α = 180◦.

CONCLUSIONS

We have demonstrated how the permeability coefficient
of constituent particle surface elements of a porous ma-
trix can be estimated on the basis of a solution to the
Laplace-Beltrami problem using, as an example, trun-
cated spherical particles with arbitrary oriented bound-
aries. In the azimuthally symmetric case, we obtained an
observable analytical solution, which has been incorpo-
rated into the macroscopic super-fast dispersion model
to calculate a correction to the effective non-linear co-
efficient of diffusion. We have shown, that in the case
of arbitrary oriented boundaries, the analytical solutions
provide a reasonable approximation in the general case.
The analytical, (10) and (11), and numerical solutions
are the main results of our paper. The methodology de-
veloped in our study can be used in practical applica-
tions involving more sophisticated shapes of constituent
elements. This will be the subject of future studies.
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