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Abstract

We show that for any regular bounded domain Ω ⊆ R
n, n = 2, 3, there exist infinitely many global diffeomorphisms

equal to the identity on ∂Ω which solve the Eikonal equation. We also provide explicit examples of such maps

on annular domains. This implies that the ∞-Laplace system arising in vectorial Calculus of Variations in L∞

does not suffice to characterise either limits of p-Harmonic maps as p → ∞, or absolute minimisers in the sense

of Aronsson.

Résumé

Nous montrons que pour tout domaine borné régulier Ω ⊆ R
n, n = 2, 3, il existe une infinité de difféomorphismes

globaux solutions de l’équation iconale, égaux à l’identité sur ∂Ω. Nous donnons également des exemples explicites

de telles cartes dans des domaines annulaires. Ceci implique que le systéme du type ∞-Laplacien apparaissant

dans le Calcul des Variations vectoriel dans L∞ ne suffit pas à caractériser les limites pour p → ∞ des cartes

p-harmoniques, ni les minimiseurs absolus au sens d’Aronsson.

Contre-exemples dans le Calcul des Variations dans L∞ par l’équation iconale vectorielle

1. Introduction

Calculus of Variations in L∞ is concerned with the variational study of supremal functionals, as well as
with the necessary conditions governing their extrema. The archetypal model of interest is the functional

E∞(u,O) := ess supO|Du|, for u ∈ W1,∞(Ω;RN ), O ⊆ Ω measurable, (1)

where n,N ∈ N, Ω ⊆ R
n is a fixed open set and Du(x) = (Diuα(x))

α=1...N
i=1...n ∈ R

N×n is the gradient
matrix. We note that our general notation is either self-explanatory or standard. In (1) and throughout
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the remainder of this note, all norms appearing will be the Euclidean ones. In particular, on R
N×n we

use the norm induced by the inner product A : B :=
∑

α,iAαiBαi. Aronsson was the first to consider
such problems in the 1960s [2,3], in the scalar-valued case N = 1. In the general case of (1), the PDE
system which arises from (1) as the analogue of the Euler-Lagrange equations is the ∞-Laplace system

∆∞u :=
(

Du⊗Du + |Du|2[[Du]]⊥⊗ I
)

: D2u = 0, (2)

and has its origins in the paper [13]. Here, for any linear map A : Rn −→ R
N , [[A]]⊥ denotes the orthogonal

projection on the orthogonal complement of the range (R(A))⊥ ⊆ R
N . In index form, (2) reads

∑

1≤β≤N

∑

1≤i,j≤n

(

Diuα Djuβ + |Du|2[[Du]]⊥αβδij

)

D2
ijuβ = 0, 1 ≤ α ≤ N.

A fundamental difficulty in the variational study of (1) is that the usual global minimisers in the space
g +W1,∞

0 (Ω;RN ) are not truly optimal and may not solve any PDE. To this end, the notion of absolute
minimisers has been introduced. Indeed, in the scalar case it is known that absolute minimisers of (1) cor-
respond uniquely to (viscosity) solutions of the scalar version of (2), which reduces to

∑

i,j DiuDjuD
2
iju =

0 (see e.g. [7,12,4,9,16]). The “localised” concept of absolute minimisers is what forces to define (1) on
subsets of Ω. In the vectorial case, the situation is more delicate and not fully understood yet, particularly
when Du has rank greater than two [6,5,1,14]. A by now standard mechanism to study (1)-(2) is through
approximation by the respective Lp variational notions as p→ ∞, namely by using

Ep(u) := ‖Du‖Lp(Ω), for u ∈ W1,p(Ω;RN ) and ∆pu := div
(

|Du|p−2Du
)

= 0, (3)

which are known as the p-Dirichlet functional and the p-Laplacian. Hence, the identification of necessary
and sufficient conditions for a mapping u ∈ W1,∞(Ω;RN ) to occur as a (weak) limit u of p-harmonic maps
up is of interest (see [6,7,12,14]). Intuitively, we expect such limits to be “optimal” solutions, possibly
absolute minimisers of (1). In the case N = 1, a complete picture is known: the family (up)p≥1 converges
to a unique limit which is an absolute minimiser. Additionally, it follows from the form of the PDE that
differentiable Eikonal functions solving |Du| = const, also satisfy (2) and therefore is a p-harmonic limit.
On the other hand, in the case N ≥ 2, one can show the existence of infinitely-many (appropriately

defined) generalised W1,∞ solutions to (2) which are not minimising for (1), let alone absolutely minimis-
ing, see [15,8]. A natural question is whether this phenomenon is a defect of the notion of solution used.
The principal results of this note are Theorem 1.1 and Corollary 1.2, which answer this to the negative.
Accordingly, we show for n = N ∈ {2, 3} the existence of infinitely many arbitrarily regular orientation
preserving Eikonal diffeomorphisms u : Ω −→ R

n with given affine boundary conditions. These maps are
a fortiori ∞-Harmonic, since [[Du]]⊥= 0 when det(Du) 6= 0 and (2) can be recast as the two independent
systems

DuD
(

|Du|2
)

= 0 and |Du|2[[Du]]⊥∆u = 0.

Theorem 1.1 Let Ω ⊆ R
n be a bounded connected domain such that n ∈ {2, 3} and ∂Ω is Cm+4 for

m ≥ 2. Then, there exist infinitely many maps u ∈ Cm
(

Ω;Rn
)

satisfying

|Du| ≡ const in Ω, det(Du) > 0 in Ω and u = id on ∂Ω.

Any such u is an Eikonal orientation preserving diffeomorphism, equal to the identity on the boundary.

Corollary 1.2 Let n,m,Ω be as in Theorem 1.1. Then, the Dirichlet problem for the ∞-Laplacian

∆∞u = 0 in Ω and u = id on ∂Ω,

possesses infinitely-many classical solutions u ∈ Cm
(

Ω;Rn
)

\ {id}. In addition, none of these solutions
minimises E∞(·,Ω) among all maps in W 1,∞(Ω,Rn) with u = id on ∂Ω.
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We note that the results above improve and supersede one of the main results in [17] which required Ω
to be a punctured ball. Since the unique solution to the Dirichlet problem for ∆pu = 0 in Ω with u = id
on ∂Ω is u(x) ≡ x when p <∞, it follows that none of our diffeomorphisms is a limit of p-harmonic maps
as p → ∞. Thus, we confirm that (2) by itself cannot suffice to identify limits of p-harmonic maps and
that additional selection criteria are needed to have a situation analogous to the scalar case.
The proof of Theorem 1.1 is based on the next result of independent interest.

Proposition 1.1 Let n,m,Ω be as in Theorem 1.1. Then, the nonlinear problem

|Du|2 + 2div u ≡ C in Ω and u = 0 on ∂Ω,

has infinitely many non-trivial solutions (u,C) ∈ (Cm ∩ C0
0)
(

Ω;Rn
)

× (0,∞). Additionally, the set of all
solutions has the trivial solution (0, 0) as an accumulation point with respect to the topology of Cm

(

Ω;Rn
)

.

Since the proofs of the above results are non constructive, we include in Section 3 explicit examples of
smooth ∞-Harmonic maps defined on annular domains which coincide with affine maps on the boundary.

2. Proofs

We begin with the proof of Proposition 1.1, which is an immediate consequence of the next lemma and
of the Morrey estimate, in the form of inclusion of spaces Hm+2(Ω;Rn) ⊆ Cm

(

Ω;Rn
)

(since n ∈ {2, 3}).

Lemma 2.1 Let n,m,Ω, be as in Theorem 1.1 and let us define the nonlinear mapping

M : (Hm+2 ∩ H1
0)(Ω;R

n) −→ Hm+1
♯ (Ω) :=

{

w ∈ Hm+1(Ω) :

∫

Ω

w(x) dx = 0

}

by setting (here the slashed integral denotes the average)

M[u] :=
1

2
|Du|2 + div u −

1

2
−

∫

Ω

|Du(x)|2 dx.

Then, the inverse image M−1[{0}] contains infinitely-many elements accumulating at zero. In addition,
for any ε > 0, there exists ϕε ∈ (Hm+2 ∩ H1

0)(Ω;R
n) \ {0} such that M[ϕε] = 0 and ‖ϕε‖Hm+2(Ω) < ε.

Proof of Lemma 2.1. First note that M is well defined, namely its image lies in the subspace Hm+1
♯ (Ω)

of zero average. Indeed, for any u ∈ (Hm+2 ∩ H1
0)(Ω;R

n), the divergence theorem gives
∫

Ω

M[u](x) dx =

∫

Ω

div u(x) dx =

∫

∂Ω

u(x) · n(x) dHn−1(x) = 0,

where n : ∂Ω −→ R
n denotes the outward pointing normal vector to ∂Ω and Hn−1 is the (n−1)-Hausdorff

measure. Additionally, we need to confirm that |Dp(|Du|2)| ∈ L2(Ω) for all p ∈ {0, ...,m + 1}. Indeed,
by the Leibniz formula we have |Dp(|Du|2)| ≤

∑p
i=0 Ci,p|D

p+1−iu||D1+iu|, where Ci,p is the binomial
coefficient. Since min{p+ 1− i, 1 + i} ≤ m for all p, Hölder’s inequality gives |Dp+1−iu||D1+iu| ∈ L2(Ω)
for any i and p, because by the Sobolev inequality we have u, |Du|, ..., |Dmu| ∈ L∞(Ω). Next, note that
M is Fréchet differentiable at each u ∈ (Hm+2 ∩ H1

0)(Ω;R
n) with

M′[u]ϕ = Du : Dϕ + divϕ − −

∫

Ω

(Du : Dϕ)(x) dx, for all ϕ ∈ (Hm+2 ∩ H1
0)(Ω;R

n).

In particular, M′[0] = div and also M′[0] is a bounded linear surjection from (Hm+2 ∩ H1
0)(Ω;R

n) into
Hm+1

♯ (Ω); the surjectivity of M′[0] is a consequence of Lemma 2.2 that follows. Next, since ker(M′[0]) =
{

v ∈ (Hm+2 ∩ H1
0)(Ω;R

n) : div v ≡ 0
}

is a closed subspace of the Hilbert space (Hm+2 ∩ H1
0)(Ω;R

n), it
possesses an orthogonal complement V ⊆ (Hm+2 ∩ H1

0)(Ω;R
n):

ker(M′[0])⊕ V = (Hm+2 ∩ H1
0)(Ω;R

n).

3



By noting that M′[0]|V : V −→ Hm+1
♯ (Ω) is a linear isomorphism, the canonical isomorphism between

ker(M′[0])⊕V and ker(M′[0])×V allows us to viewM as a map on ker(M′[0])×V by settingM[(u, v)] :=
M[u+v]. Then, the implicit function theorem (see e.g. [18, Th. 4.E]) implies that, for ε > 0 small enough,
there exists a continuous map γ : ker(M′[0]) ∩ {v : ‖v‖Hm+2(Ω) < ε} −→ V with γ(0) = 0 and

M[ϕ+ γ(ϕ)] = 0 for all ϕ ∈ ker(M′[0]) with ‖ϕ‖Hm+2(Ω) < ε.

Consequently, since ker(M′[0]) 6= {0} (as for instance curl∗ψ ∈ ker(M′[0]) for any ψ ∈ C∞
c (Ω;Rn×n

skew))
and γ is continuous with γ(0) = 0 we deduce that, for every ε > 0, there exists ϕε ∈ (Hm+2 ∩H1

0)(Ω;R
n)

such that M[ϕε] = 0 and ‖ϕε‖Hm+2(Ω) < ε. ✷

The next result completes the proof of Lemma 2.1.

Lemma 2.2 For any f ∈ Hm+1
♯ (Ω), the next Dirichlet problem admits a solution in (Hm+2∩H1

0)(Ω;R
n):

div u = f in Ω and u = 0 on ∂Ω.

Proof of Lemma 2.2. The claim follows from the Sobolev version of arguments presented in [10, Ch.
9] and standard regularity results for the Neumann problem, which we sketch briefly for completeness.
Since ∂Ω is assumed to be Cm+4, regularity theory for Poisson’s equation implies that we can always
find w ∈ Hm+3(Ω) such that ∆w = f in Ω and Dnw = 0 on ∂Ω. It remains to show that we can find
b ∈ Hm+2(Ω;Rn) such that div b = 0 in Ω and b = −Dw on ∂Ω (since we can then take u := Dw − b
as our desired solution). To this end, let us fix (i, j) ∈ {1, . . . , n}2 and set cij := (nj Diw − ni Djw)n.
Consider then the Biharmonic function dij ∈ Hm+3(Ω) solving the Dirichlet problem (see [11, Th. 2.2])

∆2dij = 0 in Ω and dij = 0 on ∂Ω and Ddij = cij on ∂Ω.

Defining b := curl∗d ∈ Hm+2(Ω;Rn), where
(

curl∗d
)

i
:=

∑

j<i Djdji −
∑

j>i Djdij , we see that div b = 0
in Ω and by using that Dnw = 0 on ∂Ω, we can easily confirm that b = −Dw on ∂Ω. ✷

Now we may establish our main result.

Proof of Theorem 1.1. By continuity of the determinant, there exists ε > 0 such that |A| < ε implies
det(I+A) > 1

2 . Using Proposition 1.1, we can find ϕ ∈ Cm
(

Ω;Rn
)

\{0} with φ|∂Ω = 0 and ‖Dϕ‖C0(Ω) < ε,
satisfying

|Dϕ|2 + 2divϕ ≡ C and det(I + Dϕ) > 1/2 in Ω,

for some C > 0. Defining u ∈ Cm
(

Ω;Rn
)

by u := id + ϕ, we have u = id on ∂Ω. Additionally,

|Du|2 = |I + Dϕ|2 = |I|2 + 2 I:Dϕ + |Dϕ|2 = n2 +
(

2 divϕ + |Dϕ|2
)

= n2 + C

and also det(Du) ≥ 1/2 on Ω, as required. Evidently, u is a local diffeomorphism from Ω into R
n. The fact

that u is a global diffeomorphism follows from standard degree theory results (see e.g. [10, Th. 19.12]). ✷

Proof of Corollary 1.2. Evidently, for any u as above we have ∆∞u = 0 in Ω and u = id on ∂Ω. Further,
since |Du|2 ≡ n2 + C = |I|2 + C > |I|2 and also D(id) = I, we obtain E∞(u,Ω) > E∞(id,Ω). ✷

3. Explicit constructions

Lemma 3.1 Let n ∈ 2N, Ω := {x ∈ R
n : 1 < |x| < e2π} and S ∈ R

n×n an orthogonal, skew-symmetric
matrix whose spectrum satisfies σ(S) ⊆ {±i, 0} so that e2πS = I. Let u : Ω −→ R

n be given by u(x) :=
elog(|x|)Sx. Then, u ∈ C∞

(

Ω;Rn
)

\ {id}, u = id on ∂Ω, |Du|2 ≡ n2 + 1 in Ω and det(Du) ≡ 1 in Ω. In
particular, u is a global ∞-Harmonic orientation preserving diffeomorphism.

Proof of Lemma 3.1. It is clear that u ∈ C∞
(

Ω;Rn
)

\ {id}, u = id on ∂Ω. By using standard properties

of the matrix exponential (in particular that ef(t)SS = Sef(t)S and Dt(e
f(t)X) = f ′(t)Sef(t)S for any

f ∈ C1(R;R)) and setting for convenience sgn(x) := x/|x|, when x ∈ R
n \ {0}, we easily compute that

Du(x) = elog(|x|)S
(

I + (S sgn(x)) ⊗ sgn(x)
)

, for x ∈ Ω.

4



Since elog(|x|)S is orthogonal and |OA| = |A| for any A,O ∈ R
n×n with O being orthogonal, we have

|Du(x)|2 =
∣

∣I + (S sgn(x)) ⊗ sgn(x)
∣

∣

2
= n2 + 2 (S sgn(x)) · sgn(x) + |S sgn(x)|

2
|sgn(x)|

2
.

Because S is both skew-symmetric and orthogonal, we have (Se) · e = 0 and also |Se| = 1 when |e| = 1.
We therefore have |Du|2 ≡ n2 + 1 on Ω. By using once again that elog(|x|)S is orthogonal, we have

det(Du(x)) = det
(

elog(|x|)S
)

det
(

I + (S sgn(x)) ⊗ sgn(x)
)

= det
(

I + (S sgn(x))⊗ sgn(x)
)

.

By the Matrix Determinant Lemma, det(I + a⊗ b) = 1 + a · b for any a, b ∈ R
n and so we can use again

the skew-symmetry of S to deduce det(Du(x)) = 1 + (Ssgn(x)) · sgn(x) = 1 for any x ∈ Ω. ✷

Lemma 3.2 For any n,N ≥ 2, there exists an explicit smooth ∞-Harmonic map defined on a cylindrical
subdomain of Rn with values in R

N which coincides with an affine map on the boundary of the domain.

Proof of Lemma 3.2. Let u : R2 ⊇ Ω −→ R
2 be the mapping constructed in Lemma 3.1. Then, by setting

v(x) := (u(x), 0)⊤, we obtain a map v : Ω −→ R
2+k for any k ∈ N with the desired properties. Indeed, we

have |Dv|2 = |Du|2, which gives Dv⊗Dv : D2v ≡ 0. Further, for any x ∈ Ω we have R(Dv(x)) = R
2×{0}

and ∆v(x) ∈ R
2 × {0}, which gives [[Dv]]⊥∆v ≡ 0. Hence, ∆∞v ≡ 0 in Ω, whilst v = (id, 0) on ∂Ω.

Further, by setting w(x, y) := v(x), we obtain a map w : R2+l ⊇ Ω × R
l −→ R

2+k for any k, l ∈ N

defined on a cylindrical annulus with |Dw|2 = |Dv|2, which gives Dw ⊗ Dw : D2w ≡ 0. Also, for any
(x, y) ∈ Ω×R

l we have R(Dw(x, y)) = R(Dv(x)) and ∆w(x, y) = ∆v(x), giving [[Dw]]⊥∆w ≡ 0 and thus
∆∞w ≡ 0 in Ω× R

l. Finally, note that w = (Proj
R2 , 0) on ∂(Ω× R

l). ✷
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