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Abstract

A 1-D moving-mesh finite difference scheme based on local conservation is constructed for a class of second-
order nonlinear diffusion problems with moving boundaries that (a) preserves scaling properties and (b) is
exact at the nodes for initial conditions sampled from similarity solutions. Details are presented and the ex-
actness property confirmed for two moving boundary problems, the porous medium equation and a simplistic
glacier equation.

The scheme is also tested for non self-similar initial conditions by computing relative errors in the approx-
imate solution (in the l∞ norm) and the approximate boundary position, indicating superlinear convergence.

Keywords: Nonlinear diffusion, moving-meshes, scale-invariance, similarity, conservation, finite
differences, porous medium equation, glacier equation.

1. Introduction

Partial differential equations (PDEs) govern many physical processes which occur in branches of applied
mathematics. However, due to the complexity of these equations the solution cannot always be determined
analytically and numerical approximation becomes fundamental both for extracting quantitative solutions and
for achieving a qualitative understanding of the behaviour of the solution.

In this paper we consider one-dimensional second-order nonlinear diffusion equations of the general form

ut = (uq)x (a(t) < x < b(t)) (1)

for a function u(x, t), where q is of the form {p(u)x}s and s is an odd integer, posed on finite moving domains.
Typical boundary conditions for this problem consist of a Dirichlet condition on u and a flux condition on uv,
where v is the boundary velocity, at each moving boundary. Here we shall assume that u = 0 at the moving
boundaries. In general the position of the boundary depends on the solution.

Many PDE problems that arise in practical applications possess symmetries involving simultaneous scal-
ing of the variables t, x, and u which are in some sense more fundamental than the equations themselves. In
approximating such problems by numerical schemes it is desirable to construct algorithms that preserve these
scaling properties, an objective beyond the reach of conventional numerical schemes based on fixed meshes
in which the mesh depends on neither time nor the solution. The geometric integration of scale-invariant or-
dinary and partial differential equations (PDEs) was reviewed in Budd and Piggott in [11, 12] who considered
the effectiveness of numerical methods in preserving the geometric structures of PDE problems, pointing to
the need for moving meshes (see also [13]).

Moving-mesh schemes, referred to as r-adaptive methods, are well suited to problems posed on finite
moving domains since they are able to track the movement of the boundaries. Construction of these schemes
varies but can be classified into two broad categories; mapping-based and velocity-based methods [19]. The
former, which have been extensively studied in [10, 19, 14, 13], control the location of mesh points and are
based on equidistribution. Velocity-based methods, on the other hand, rely on determining a velocity for
each computational node in the mesh and advancing the nodal positions in time. In this paper we shall be
concerned with a particular velocity-based moving-mesh finite difference method that uses local conservation
and has been successfully applied to a number of different problems in [7, 18, 1, 34, 2, 3, 26, 4, 25, 24, 6, 16].
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The main thrust of this paper is the construction of a scale-invariant moving mesh scheme for nonlinear
diffusion problems of the form (1) that is exact for initial conditions that coincide with a self-similar scaling
solution (thus preserving a scaling symmetry) and accurate for general initial conditions. The layout of the
paper is as follows. In section 2 we recall the scaling properties of a general PDE problem of the form
(1) and the construction of self-similar solutions. Details are given for two nonlinear diffusion equations of
the form (1); a porous medium equation (PME) and a simplified glacier equation (SGE). A moving-mesh
finite difference scheme based on conservation of the local integral of u is then described in section 3 which
propagates solutions exactly when the initial condition coincides with a self-similar solution. Numerical
calculation confirms that relative errors in the approximate solution and approximate boundary position are
zero to within rounding error. Section 4 contains numerical results from the numerical algorithm when the
initial condition does not coincide with a similarity solution. Both the PME and SGE are used to assess the
accuracy of the numerical method for a non self-similar initial condition by computing the relative errors in
the approximate solution and the approximate boundary position for varying numbers of mesh points.

The paper ends with concluding remarks.

2. Background

The work of Budd et al [10, 11, 12, 13] has underlined the importance of preserving the geometric struc-
tures of the underlying PDE problem in constructing a moving-mesh method. In this section scale-invariance
and similarity solutions are recalled and illustrated in the context of two nonlinear diffusion equations, a
porous medium equation and a simplified glacier equation.

2.1. Scale-invariance

A PDE problem of the form (1) exhibits scale-invariance if the scaling transformation

t = λt̂, x = λβ x̂, u = λαû, q = λδ q̂ (2)

maps the variables (t, x, u, q) to another set (t̂, x̂, û, q̂) for some arbitrary positive (group) parameter λ such
that equation (1) remains the same in the transformed coordinates.

Substituting the scaling transformation (2) into the PDE (1), it is easy to show that the powers α, β and δ
satisfy α− 1 = α+ δ − β (leading to β − δ = 1). A further relation between the scaling powers depends on
the particular form of the function p(u) and will be described for each example in section 2.3.

The total integral (mass)

θ =

∫ b(t)

a(t)

u(χ, t) dχ (3)

has rate of change
dθ

dt
=

∫ b(t)

a(t)

ut dχ+ u(b(t), t)ḃ− u(a(t), t)ȧ

=

∫ b(t)

a(t)

(uq)χ dχ+ u(b(t), t)ḃ− u(a(t), t)ȧ

= u(b(t), t){q(b(t), t) + ḃ} − u(a(t), t){q(a(t), t) + ȧ} = 0

by the u = 0 boundary condition. Hence the total mass is constant in time. After substitution from (2),

θ =

∫ b(t̂)

a(t̂)

λαû(χ̂, t̂) d(λβχ̂) = λα+β
∫ b(t̂)

a(t̂)

u(χ̂, t̂) dχ̂

where the moving boundaries a(t) and b(t) transform in the same way as x, and thus θ is constant in time if
and only if α+ β = 0.
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2.2. Self-similar solutions
A systematic approach in which the scaling transformation (2) may be used to construct exact solutions to

scale-invariant PDE problems is as follows. Solutions are sought such that λαu(x, t) is a function of λβx and
λt, which allows the number of independent variables of the differential equation to be reduced by one [8].
These solutions, termed similarity solutions or self-similar solutions, have contributed some of the greatest
insights into nonlinear flows [8, 15]. Such symmetries are structurally important and are useful since the
resulting equation may be more easily solved than the original problem.

In order to construct such solutions we define a ‘similarity’ transformation which is invariant under the
action of (2). Introduce the so-called similarity variables

η =
u

tα
, π =

q

tδ
, ξ =

x

tβ
. (4)

By assuming functional relationships of the form

η = f(ξ), π = g(ξ), (5)

(where f and g are sufficiently differentiable functions) and substituting (2) into equation (1), a time-independent
ODE satisfied by η(ξ) and π(ξ) is obtained. From (4) and (5), in terms of x and t,

u(x, t) = tδf

(
x

tβ

)
, q(x, t) = tαg

(
x

tβ

)
. (6)

For a fixed parameter ξ the solutions may be described in terms of the moving coordinate

x̂(ξ, t) = tβξ (7)

and the functions

û(ξ, t) = u(x̂(ξ, t), t) = u(tβξ, t) = tαf(ξ), q̂(ξ, t) = q(x̂(ξ, t), t) = q(tβξ, t) = tαg(ξ), (8)

returning (6) on elimination of ξ. The velocity effecting the movement of x̂(ξ, t) is given by

v(x̂(ξ, t), t) = v̂(ξ, t) =
∂x̂

∂t
= βξtβ−1 =

βx̂

t
. (9)

As shown in [8, 9, 30], self-similar solutions often act as attractors to a wide class of other solutions, in
the sense here that solutions of nonlinear diffusion problems of the form (1) with s = 1 and arbitrary initial
data evolve asymptotically into a self-similar form. The result may be stated as follows: for a self-similar
solution (6) of (1) and an arbitrary solution w(x, t) ≥ 0 of (1) with the same mass and centre of mass, the
function u will be a global attractor for w such that

lim
t→∞

tβ‖u− w‖ = 0

where β is the scaling power found from scale invariance and || · || is some norm. A proof of this result can
be found in [22, 33, 29] which uses either the maximum principle or Lyapunov functions.

2.3. Examples
2.3.1. A porous medium equation

In one dimension the porous medium equation (PME) is given by

ut = (umux)x (a(t) < x < b(t)) (10)

where m > 0, which is of the form (1) with s = 1 and p(u) = umux = (um)x/m. Typical boundary
conditions are u = 0 at x = a(t), b(t), implying zero net flux and hence constant global mass.

The porous medium equation has stimulated considerable interest from mathematicians, applied and pure,
as well as in many field; biology, heat radiation in plasmas, ground-water hydrology and more. A well-
known application is to the flow of an isentropic gas through a porous medium. Other applications include
biological modelling, where for example bone cartilage and muscle are modelled as porous media, assisting
understanding of pathological conditions [23].

A simple derivation of equation (10) is as follows. The flow through a porous medium in 1D is governed
by three model equations:
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ρt = −(ρv)x (continuity equation)
v = −κpx/µ (Darcy’s law)
p = ργ (equation of state)

where ρ is the density, v is the velocity (given by Darcy’s law), µ is the viscosity, κ is the permeability of the
medium (taken to be a constant), p is the pressure and γ > 0 is the ratio of specific heats.

By substituting the equation of state into Darcy’s law we obtain

v = −κ(ργ)x/µ = −γκργ−1ρx/µ.

The continuity equation then becomes ρt = γκ(ργρx)x/µ. By scaling the constant γκ/µ to unity and setting
ρ = u and γ = m we obtain (10) where u = u(x, t) is the density and m = γ − 1.

Due to the form of p(u) and the boundary conditions equation (10) is scale invariant with δ = mα − β
and conserves global mass, so α+ β = 0 and β − δ = 1, leading to

α = − 1

m+ 2
, β =

1

m+ 2
and δ = −m+ 1

m+ 2
.

A solution of the ODE obtained from the substitution of (6) into (1) is f(ξ) = tα(1− ξ2)1/m, leading to
the self-similar scaling solution

u(x, t) =
1

t1/(m+2)

(
m

2(m+ 2)

)1/m
(

1−
(

x

t1/(m+2)

)2
)1/m

+

, (11)

discovered independently by Barenblatt [8] and Pattle [28]. The notation + in equation (11) indicates restric-
tion to the positive part of u, thus determining the support of the solution. The boundary at ±t1/m+2 moves
with velocity v = ±(1/(m+ 2))t1/(m+2)−1, in accordance with (9).

2.3.2. A simplified glacier equation
For a glacier to form, snow must accumulate in one area over each year. This snow compresses into ice

over years (or centuries). The weight of the accumulated snow and ice causes the glacier to move, and a
simplistic one-dimensional glacier equation (SGE) for the ice thickness u = u(x, t) is given by

ut = (u5u3x)x (0 < x < b(t)), (12)

posed on the finite moving domain 0 ≤ x ≤ b(t), omitting any ongoing ice-accumulation and/or ice-removal
processes. Equation (12) is a nonlinear evolution equation that contains the essential singularities inherent in
the flow of ice in an ice sheet. The boundary conditions are ux = 0 at x = 0 (the ice divide) and u = 0 at
x = b (the ice margin), implying zero net fluxes and hence constant total mass. Equation (12) is of the form
(1) with s = 3, q = u4u3x and p(u) = (3/7)u7/3.

We give a brief derivation of equation (12). Under the assumption that there is no accumulation of snow
or basal melting affecting the glacier, the continuity equation for the ice thickness in 1D is

ut = −(uv)x (13)

where v(x, t) represents the vertically-averaged ice velocity. Under the shallow ice approximation, see [21],
and Glen’s flow law (an established law for steady state ice deformation) the velocity is modelled as v =
−cu4u3x where c is a constant, assuming constant bed elevation (flat bed). In accordance with Van Der Veen
in [32], c = 2Aρ3g3/5 > 0, where ρ is the ice density and g represents gravity. By a choice of units, c = 1
and so the velocity can be written as

v = −u4u3x = −(3/7)3{(u7/3)x}3.

Hence we obtain equation (12) by substituting v into equation (13).
It can be shown that equation (12) with the given boundary conditions is scale-invariant under the scaling

transformations in (2) if the scaling powers α and β satisfy α− 1 = 8α− 4β and α+ β = 0, implying that

−α = β = 1/11.
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A self-similar scaling solution, given in [20, 17], is therefore

u(x, t) =
1

t1/11

(
7

4 3
√

11

)3/7
(

1−
{

x

t1/11

}4/3
)3/7

+

(14)

where the notation + denotes the positive part of the solution, thus determining the extent b(t) of the domain.
The position b(t) of the boundary is given by x̂(t) = t1/11 and its velocity v = (1/11)t−10/11, in accordance
with (9).

3. A moving domain

In general the extent of the domain of the solution of (1) depends on the solution itself, and so the approach
taken to solve the equation is crucial. A standard approach is to solve for u on a fixed domain and then adjust
the boundary according to the boundary conditions by interpolation. Another way is to solve for u and the
boundary position simultaneously. A useful device is to stretch the domain in proportion to the (unknown)
boundary position and solve a modified PDE, although this procedure may affect the structure of the PDE [5].
A more physical way of deforming the domain is based on a local conservation of mass, which determines
a nodal velocity v (in terms of the solution u) and has the advantage that the subsequent recovery of u is
algebraic [1, 24]. This approach is summarised below.

The Eulerian equation of conservation (continuity) for a conserved quantity u is

ut + (uv)x = 0 (15)

where v is the Eulerian velocity. Equation (15) is scale-invariant under (2) when v scales as λβ−1. Combining
(15) with the scale-invariant PDE (1),

(uq)x + (uv)x = 0,

yielding (given q and a boundary or anchor condition on v) the velocity

v(x, t) = −q (16)

at all points of the domain (provided that u 6= 0). For the nonlinear diffusion equations (1) the velocity (16)
is

v(x, t) = −{p(u)x}s. (17)

If u is constant (in time) at the moving boundary x = b(t), say, then for all t

Du

Dt
= 0 = ut + vbux = (uq)x + vbux

where vb is the boundary velocity, from which

vb = −{(uq)x/ux} (18)

if ux 6= 0. From (18) the boundary velocity depends on the solution, which is often the case in moving
boundary problems. In particular, if u→ 0 as x→ b(t),

vb = − lim
u→0
{(uq)x/ux} = − lim

u→0
{q}u=0 = − lim

u→0
{p(ux)}s (19)

by l’Hopital’s Rule. Note that equation (19) is identical to the velocity (17) derived from the local mass
principle (15) at the boundary.

Given the velocity (17) a deformation of the domain is defined by integrating the ODE

dx̂

dt
= v(x̂(t), t) (20)

for a moving coordinate x̂(t) with initial condition x̂ = x.
Once the moving coordinate has been found the current solution u(x̂(t), t) may be determined from the

Lagrangian form of conservation, ∫ x̂2(t)

x̂1(t)

u(χ, t)dχ = constant (21)

for any a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t).
Each of the steps (17), (20), and (21) are scale-invariant under the transformation (2).
We now describe a finite difference scheme based on this approach.
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3.1. A moving-mesh finite difference scheme
Consider a one-dimensional mesh with time-dependent mesh points

a(t) = x0(t) < xi(t) . . . , < xN (t) = b(t)

where a(t) and b(t) are the (moving) boundaries.

3.1.1. Generating the mesh velocities
The velocity is taken to be a finite difference approximation of (17) (cf. [24]). In the case where s = 1

a convenient second-order centred accurate approximation for vj at any time tn consists of a barycentric
average of the two first-order approximations to p(u)x in adjacent cells (see e.g. [26, 6]). Thus the mesh-
velocity vj at any point xj is calculated as

vj = −
p(uj+1)−p(uj)
(xj+1−xj)2

+
p(uj)−p(uj−1)
(xj−xj−1)2

1
xj+1−xj

+ 1
xj−xj−1

(22)

with truncation error
Tj =

1

6
(xj − xj−1)(xj+1 − xj) p(u)xxx

∣∣
x=ϑi

(23)

where ϑi is an intermediate value. It is straightforward to confirm that the formula (22) is scale-invariant
under the transformation (2).

In the case of similarity the instantaneous velocity is proportional to x by (9) and equal to −p(u)x when
s = 1 by (17). Thus p(u)x is proportional to x̂, the truncation error (23) vanishes, and the general second-
order formula (22) is exact in this case.

Remark 1. The same result is obtained by evaluating the derivative of the quadratic interpolating polynomial
through p(uj−1), p(uj) and p(uj+1) at x = xj , as we now show.

For general values of the odd integer s (including s = 1) the velocity is v = −{p(u)x}s by (17). Because
the velocity is proportional to x in the case of similarity by (9), it follows that p(u)x is proportional to x1/s.
Then by integration (taking the origin of x at a point where p(u) vanishes) the function p(u) is proportional
to x1+1/s and hence {p(u)}s is a monomial Q(x) of degree 1 + s. The velocity in terms of Q(x) is then

v = −{p(u)x}s = −
(
{Q(x)1/s}x

)s
= −

{
(1/s)

(
Q(x)1/s−1Qx

)}s
= −(1/s)sQ(x)1−s(Qx)s. (24)

The evaluation of Q(xj) = {p(uj)}s at x = xj is straightforward. Moreover, since Q(x) is a monomial of
degree 1 + s the evaluation of Qx at x = xj is exact if it is calculated by differentiating the interpolating
polynomial of degree 1 + s through three adjacent values of Q(xj).

PME
For the PME we have s = 1 and p(u) = (um)x/m with v = −(um)x/m. The velocity can there-

fore be calculated either from (22) or from (24) with Q(xj) = (uj)
m/m and the derivative Qx found by

differentiating the quadratic interpolating polynomial through adjacent values of umj /m.

SGE
For the SGE s = 3 and p(u) = (3/7)u7/3 with v = −{p(u)x}3. The velocity can therefore be cal-

culated from (24) with Q(xj) = (3/7)3(uj)
7 and the derivative Qx found by differentiating the quadratic

interpolating polynomial through adjacent values of (3/7)3(uj)
7.

3.2. Advancing x(t)
The mesh point locations xj(t) can now be obtained via time integration of the ODE system

dxj
dt

= v(xj , t), (j = 1, ..., N − 1)

(dropping the hats for clarity). Let tn be the time at the nth time step and xnj be the computed mesh point at
the nth time step, i.e. xnj is xj(t) at t = tn. Also, let ∆t = tn+1− tn be the time step from tn to tn+1, where
∆t is constant, and vnj be the velocity at xnj at the n’th time step.
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We seek a time-stepping scheme which is scale invariant and exact for self-similar solutions. Often used
is the explicit Euler time-stepping scheme,

xn+1
j = xnj + ∆t vnj , j = 1, ..., N − 1 (25)

which although scale invariant is not exact for self-similar solutions.
Observe from (7) that the function y = x1/β is linear in t in the case of similarity. Hence the formula

yn+1 = yn + ∆t

(
dy

dt

)n
generates yn+1 from yn exactly. Since

dy

dt
=

dy

dx

dx

dt
= β−1x(1/β)−1 v,

the formula

yn+1 = yn + ∆t

(
dy

dt

)n
= yn + β−1∆t (yn)(1−β) vn (26)

is exact in the case of similarity. Since y = x1/β the formula (26) can be written in terms of x as

xn+1 = xn
(

1 + β−1∆t
vn

xn

)β
.

We therefore choose the discrete time-stepping scheme

xn+1
j = xnj

(
1 + β−1∆t

vnj
xnj

)β
, j = 1, ..., N − 1, (27)

which is exact when vj is the similarity velocity (9). It is straightforward to confirm that the formula (27) is
scale-invariant under the transformation (2).

A similar device was described in [2, 6, 31] using a scaled (variable) time step. In particular, in [31] a
similarity-based time-stepping scheme is implemented which is exact in the case of the similarity velocity for
the simplistic glacier equation, obtained by rescaling the time variable rather than the spatial variable. The
scheme (27) implemented here uses equal time steps.

3.3. Recovering the solution
The final step of the conservation-based finite difference method is to obtain the updated approximate

solution uj at the next time step. From the Lagrangian form (21) of the Eulerian conservation principle (15)
we have ∫ xj+1(t

n+1)

xj−1(tn+1)

u(χ, tn+1) dχ = cj , (28)

independent of t. The value of cj is determined by the left hand side of (28) at the initial time.
A consistent approximation of (28) is the algebraic formula

(xn+1
j+1 − x

n+1
j−1 )un+1

j = c̄j (29)

say, where the c̄j are the values of the left hand side of (29) initially, which yields

un+1
j =

c̄j

(xn+1
j+1 − x

n+1
j−1 )

. (30)

The formula (29) is scale-invariant under the transformation (2).

Remark 2. Provided that the xn+1
j values are exact when vj is the similarity velocity (9), the un+1

j values
calculated from (30) are also exact at the nodes when the initial c̄j values are calculated from the initial
solution in a consistent way. Any linear quadrature of (28) can be used: (29) is the most convenient since it
gives un+1

j explicitly.
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3.4. The numerical algorithm

In summary, a scale-invariant moving mesh algorithm for the approximate solution of nonlinear diffusion
equations of the form (1) is as follows:

Given initial data with mesh points x0j and values u0j , evaluate the c̄j’s from (29) at the initial time. Then
for each time step:

(1) Compute the mesh velocities vj using (22) (when s = 1) or (24) (for any s).

(2) Move the mesh from tn to tn+1 to obtain xn+1
j using the time-stepping scheme (27).

(3) Update the values un+1
j values at the next time step from equation (30).

Remark 3. The solution is propagated exactly when the initial condition is sampled from a self-similar
solution initially. Any vector of nodal values sampled from a self-similar solution is a fixed point of the
scheme.

4. Numerical results

When the moving-mesh algorithm of section 3.4 is implemented in Matlab for the examples described in
section 2.3 (the PME (10) for various positive values of m) and the SGE (12)) the scheme propagates initial
self-similar solutions exactly at the nodes (to within rounding error), as expected.

Where the time-stepping scheme (step 2 of the algorithm) is replaced by the forward Euler scheme corre-
sponding to putting β = 1 in (27) (as is common with many authors) the scheme reverts to the finite difference
scheme described in [24] where tests on the PME with m = 1 indicate second order convergence in the l∞

norm of the solution error and in the position of the boundary. For m = 2, 3 the convergence rate reduced to
superlinear, apparently due to the infinite slope of the exact solution at the boundary in these cases (cf. [1]).

It is of interest to study the application of the scheme of section (3.4) for general initial conditions.
We therefore investigated the accuracy of the scheme numerically using the convergence rate obtained from
a sequence of solutions in which the number of points N is progressively doubled (see e.g. [31]). The
numerical algorithm is implemented using Matlab for the PME (for m = 2) and the SGE on an (initially)
equally spaced mesh with a non self-similar initial condition. Convergence of the solutions are investigated
at time t = 2 with N = 10 × 2k where k = 0, 1, 2, 3 and ∆t = O(1/N2), chosen on stability grounds (see
e.g. [24]), using the relative l∞ error calculated from

eN (u) =
‖uN − u160‖∞
‖u160‖∞

where uN is the approximate value found from the algorithm and u160 is regarded as a highly accurate
solution. Similarly, the error in the boundary position is calculated from

eN (X) =
|XN −X160|

X160

where XN is the approximate value found from the algorithm and X160 is regarded as a highly accurate
solution.

4.1. PME

The initial condition for the PME (10) with m = 2 is taken as

u(x, t0) =
1

4
(1− x2)1/2 +

1

2
(1− x2) (−1 < x < 1) (31)

at t0 = 1, differing from the self-similar solution (11) but avoiding the complication of waiting times [24].
Computed values of the relative errors eN (u) and eN (X) for N = 10, 20, 40, 80 against those for N =

160 (a highly accurate solution) are shown in Table 1. A relative error eN of 1.2% is obtained with as
few as 20 nodes. As N increases the relative errors for both the solution and the moving boundary suggest
superlinear convergence.
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N ∆t Relative error eN (u) Relative error eN (X)
10 0.01 1.2× 10−2 2.6× 10−3

20 0.0025 5.5× 10−3 9.0× 10−4

40 0.000625 2.4× 10−3 3.0× 10−4

80 0.00015625 8.7× 10−4 7.3× 10−5

Table 1: Relative errors eN (u) and eN (X) at t = 2 for the PME with m = 2 when the initial condition is (31).

4.2. SGE

The initial condition for the SGE is taken to be

u(x, t0) = c(1− x4/3)3/7 − 1

2
(1− x2) (0 < x < 1) (32)

at t0 = 1 where c = (7/4 3
√

11)3/7, again differing from the self-similar solution (14) and avoiding the
complication of waiting times [27, 16].

Computed values of relative error eN (u) and eN (X) for N = 10, 20, 40, 80 against those for N = 160
(taken to be a highly accurate solution) are shown in Table 2. For the smallest number of nodes (N = 10) the
boundary position is computed very accurately (better than a 0.1% relative error). As in the case of the PME,
as N increases the results for both the relative error of the solution and the relative position of the moving
boundary suggest superlinear convergence.

N ∆t Relative error eN (u) Relative error eN (X)
10 0.01 9.2× 10−3 5.4× 10−4

20 0.0025 2.7× 10−3 5.7× 10−4

40 0.000625 9.0× 10−4 1.5× 10−4

80 0.00015625 3.0× 10−4 3.9× 10−5

Table 2: Relative errors eN (u) and eN (X) at t = 2 for the SGE when the initial condition is (32).

5. Conclusion

In this paper we have shown that for a class of second order scale-invariant nonlinear diffusion equations
the moving-mesh finite difference numerical method of section 3.4 is scale-invariant and propagates self-
similar solutions exactly in the l∞ norm. The properties are described and the result confirmed numerically
for two examples, the porous medium equation and a simplistic glacier equation. The main conclusion is that
a scaling symmetry is preserved in time by the algorithm of section 3.4 for this class of problems.

The results appear to generalise to multi-dimensional problems for which self-similar solutions exist,
where the discrete algorithm is based on linear finite elements [1, 4]. This is a target for further work.

Adaptive moving-mesh methods have accumulated much research over recent years due to their ability
to replicate scaling properties of the equations and to follow moving boundaries [10, 11, 12, 13, 1, 34, 2, 3,
4, 5, 24, 16, 31]. Previous work has demonstrated that these methods provide highly accurate (but not exact)
results when the initial condition coincides with the self-similar solution (see e.g. [24, 31]), but less work has
been done for more general initial conditions. We therefore implemented the algorithm for non self-similar
initial conditions, both in the case of the porous medium equation (with m = 2) and the simplistic glacier
equation, and studied convergence of the results which indicated superlinear convergence in each case.
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