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An ABC interpretation of the multiple auxiliary variable

method

Dennis Prangle∗and Richard G. Everitt†

Abstract

We show that the auxiliary variable method (Møller et al., 2006; Murray et al.,
2006) for inference of Markov random fields can be viewed as an approximate Bayesian
computation method for likelihood estimation.

Keywords: ABC, Markov random field, annealed importance sampling, multiple auxiliary
variable method

1 Introduction

Markov random fields (MRFs) have densities of the form

f(y|θ) = γ(y|θ)/Z(θ), (1)

where γ(y|θ) can be evaluated numerically but Z(θ) cannot in a reasonable time. This makes
it challenging to perform inference.

This note considers two approaches which both use simulation from f(y|θ). The single
auxiliary variable (SAV) method (Møller et al., 2006) and the multiple auxiliary variable
(MAV) method (Murray et al., 2006) provide unbiased likelihood estimates. Approximate
Bayesian computation (Marin et al., 2012) finds parameters which produce simulations sim-
ilar to the observed data. We will demonstrate that these two methods are in fact closely
linked.

An additional challenge for inference of MRFs is that exact sampling from f(y|θ) is
difficult. It is possible to implement Markov chain Monte Carlo (MCMC) algorithms which
sample from a close approximation to this distribution. These MCMC algorithms have been
used for inference through their use as a replacement for an exact sampler in SAV and MAV
(Caimo and Friel, 2011; Everitt, 2012) as well as ABC (Grelaud et al., 2009). We will use
this approach and discuss it further below.

The remainder of the paper is as follows. Section 2 reviews ABC and MAV methods,
and Section 3 derives our result. Throughout the paper y refers to an observed dataset, and
x variables refer to simulated datasets used in inference.
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2 Background

2.1 Auxiliary variable methods

The SAV method makes use of an unbiased estimate of f(y|θ), given by using the following
importance sampling (IS) estimate of 1/Z(θ)

1̂

Z
=

qx(x|y, θ)

γ(x|θ)
,

where qx is some arbitrary (normalised) density and x ∼ f(·|θ). MAV extends this idea by
instead using annealed IS (AIS) (Neal, 2001) for this estimate

1̂

Z
=

a∏

i=2

γi−1(xi|θ, y)

γi(xi|θ, y)
., (2)

where fi(·|θ, y) ∝ γi(·|θ, y) are bridging densities between fa(·|θ, y) = f(·|θ) and f1(·|θ, y) =
γ1(·|θ, y) = qx(·|θ, y), xa ∼ f(·|θ) and for 2 ≤ i < a, xi ∼ Ki(·|xi+1) where Ki is a reversible
Markov kernel with invariant distribution fi. In this description we have imposed that γ1 is
normalised in order to obtain an estimate of 1/Z. However we note that a common choice
for qx(·|θ, y) is f(·|θ̃) for some estimate θ̃, in which case the normalising constant Z(θ̃) is not
available. In this case we obtain an estimate of Z(θ̃)/Z(θ) from Equation (2).

The SAV and MAV estimates are usually used as constituent parts of other Monte Carlo
algorithms for parameter inference: in MCMC (Møller et al., 2006) or IS (Everitt et al.,
2016). The estimates of f(y|θ) just described may be used here since only an unbiased
estimate of the posterior up to proportionality is required (Andrieu and Roberts, 2009).

As noted in the introduction, the requirement of being able to draw xa exactly from
f(·|θ) is potentially problematic. Caimo and Friel (2011) and Everitt (2012) explore the
possibility of replacing this exact sampler with a long run (of b iterations) of an MCMC
sampler targeting f(·|θ), and taking the final point. Such an approach results in biased
estimates of 1/Z, although as b → ∞ this bias goes to zero. Everitt et al. (2016) observes
empirically that a similar argument appears to hold when b = 0 but a is large.

2.2 Approximate Bayesian computation

ABC refers to a family of inference algorithms (described in Marin et al., 2012) which perform
an approximation to Bayesian inference when numerical evaluation of the likelihood function
is intractable. They instead use simulation from the model of interest. The core of these
algorithms is producing estimates of the likelihood f(y|θ) using some version of the following
method. Simulate a dataset x from f(·|θ) and return the ABC likelihood estimate:

LABC = 1(||y − x|| ≤ ǫ).

Here 1 represents an indicator function, ||.|| is some distance norm, and the acceptance
threshold ǫ is a tuning parameter. The expectation of the random variable LABC is

∫
f(x|θ)1(||y − x|| ≤ ǫ)dx.

2



This is often referred to as the ABC likelihood. It is proportional to a convolution of the
likelihood with a uniform density, evaluated at y. For ǫ > 0 this is generally an inexact
approximation to the likelihood. For discrete data it is possible to use ǫ = 0 in which case
the ABC likelihood equals the exact likelihood, and so LABC is unbiased.

For MRFs empirically it is observed that, compared with competitors such as the ex-
change algorithm (Murray et al., 2006), ABC requires a relatively large number of simula-
tions to yield an efficient algorithm (Friel, 2013).

3 Derivation

3.1 ABC for MRF models

Suppose that the model f(y|θ) has an intractable likelihood but can be targeted by a
MCMC chain x = (x1, x2, . . . , xn). Let π represent densities relating to this chain. Then
πn(y|θ) := π(xn = y|θ) is an approximation of f(y|θ) which can be estimated by ABC. For
now suppose that y is discrete and consider the ABC likelihood estimate requiring an exact
match: simulate from π(x|θ) and return 1(xn = y). We will consider an IS variation on this:
simulate from g(x|θ) and return 1(xn = y)π(x|θ)/g(x|θ). Under the mild assumption that
g(x|θ) has the same support as π(x|θ) (typically true unless n is small), both estimates have
the expectation Pr(xn = y|θ).

This can be generalised to cover continuous data using the identity

πn(y|θ) =

∫

xn=y

π(x|θ)dx1:n−1,

where xi:j represents (xi, xi+1, . . . , xj). An importance sampling estimate of this integral is

w =
π(x|θ)

g(x1:n−1|θ)
(3)

where x is sampled from g(x1:n−1|θ)δ(xn = y), with δ representing a Dirac delta measure.
Then, under mild conditions on the support of g, w is an unbiased estimate of πn(y|θ).

The ideal choice of g(x1:n−1|θ) is π(x1:n−1|xn, θ), as then w = π(xn = y|θ) exactly. This
represents sampling from the Markov chain conditional on its final state being y.

3.2 Equivalence to MAV

We now show that natural choices of π(x|θ) and g(x1:n−1|θ) in the ABC method just outlined
results in the MAV estimator (2). Our choices are

g(x1:n−1|θ) =

n−1∏

i=1

Ki(xi|xi+1)

π(x|θ) = f1(x1|θ, y)

n−1∏

i=1

Ki(xi+1|xi).

3



Here π(x|θ) defines a MCMC chain with transitions Ki(xi+1|xi). Suppose Ki is as in Section
2.1 for i ≤ a, and for i > a it is a reversible Markov kernel with invariant distribution
f(·|θ). Also assume b := n − a → ∞. Then the MCMC chain ends in a long sequence of
steps targeting f(·|θ) so that limn→∞ πn(·|θ) = f(·|θ). Thus the likelihood being estimated
converges on the true likelihood for large n. Note this is the case even for fixed a.

The importance density g(x1:n−1|θ) specifies a reverse time MCMC chain starting from
xn = y with transitions Ki(xi|xi+1). Simulating x is straightforward by sampling xn−1, then
xn−2 and so on. This importance density is an approximation to the ideal choice stated at
the end of Section 3.1.

The resulting likelihood estimator is

w = f1(x1|θ, y)

n−1∏

i=1

Ki(xi+1|xi)

Ki(xi|xi+1)
.

Using detailed balance gives

Ki(xi+1|xi)

Ki(xi|xi+1)
=

fi(xi+1|θ, y)

fi(xi|θ, y)
=

γi(xi+1|θ, y)

γi(xi|θ, y)
,

so that

w = f1(x1|θ, y)
n−1∏

i=1

γi(xi+1|θ, y)

γi(xi|θ, y)
= γ(y|θ)

n∏

i=2

γi−1(xi|θ, y)

γi(xi|θ, y)
.

This is an unbiased estimator of πn(y|θ). Hence

v =

n∏

i=2

γi−1(xi|θ, y)

γi(xi|θ, y)
=

a∏

i=2

γi−1(xi|θ, y)

γi(xi|θ, y)
.

is an unbiased estimator of πn(y|θ)/γ(y|θ) → 1/Z(θ). In the above we have assumed, as
in Section 3.1, that γ1 is normalised. When this is not the case then we instead get an
estimator of Z(θ̃)/Z(θ), as for MAV methods. Also note that in either case a valid estimator
is produced for any choice of y.

The ABC estimate can be viewed by a two stage procedure. First run a MCMC chain of
length b with any starting value, targeting f(·|θ). Let its final value be xa. Secondly run a
MCMC chain xa, xa−1, . . . using kernels Ka−1, Ka−2, . . . and evaluate the estimator v. This
is unbiased in the limit b → ∞, so the first stage could be replaced by perfect sampling
methods where these exist.

The resulting procedure is thus equivalent to that for MAV.

4 Conclusion

We have demonstrated that the MAV method can be interpreted as an ABC algorithm. We
hope this insight will be useful for the development of novel methods for MRFs.
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