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SOLUTIONS OF VECTORIAL HAMILTON-JACOBI EQUATIONS

ARE RANK-ONE ABSOLUTE MINIMISERS IN L∞

NIKOS KATZOURAKIS

Abstract. Given the supremal functional E∞(u,Ω′) = ess supΩ′ H(·,Du)

defined on W 1,∞
loc (Ω,RN ), Ω′ b Ω ⊆ Rn, we identify a class of vectorial rank-

one Absolute Minimisers by proving a statement slightly stronger than the

next claim: vectorial solutions of the Hamilton-Jacobi equation H(·,Du) = c

are rank-one Absolute Minimisers if they are C1. Our minimality notion is
a generalisation of the classical L∞ variational principle of Aronsson to the

vector case and emerged in earlier work of the author. The assumptions are

minimal, requiring only continuity and rank-one convexity of the level sets.

1. Introduction

In this paper we are concerned with the construction of a special class of appro-
priately defined vectorial minimisers in Calculus of Variations in L∞, that is for
supremal functionals of the form

(1.1)

 E∞(u,Ω′) := ess sup
x∈Ω′

H
(
x,Du(x)

)
,

u ∈W 1,∞
loc (Ω,RN ), Ω′ b Ω.

In the above, n,N ∈ N, Ω ⊆ Rn is an open set and H : Ω × RN×n −→ [0,∞) is a
continuous function. Calculus of Variations in L∞ has been pioneered by Aronsson
in the 1960s who studied the scalar case N = 1 quite systematically ([A1]-[A6]).
A major difficult associated to the study of (1.1) is that the standard minimality
notion used for the respective more classical integral functional

(1.2) E(u,Ω) =

∫
Ω

H
(
x,Du(x)

)
dx,

is not appropriate in the L∞ case due to the lack of “locality” of (1.1). The
remedy is to require minimality on all subdomains Ω′ b Ω, a notion now known
as Absolute Minimality (hence the emergence of the domain as second argument
of the functional). The field has seen an explosion of interest especially after the
1990s when the development of Viscosity solutions ([CIL, C]) allowed the rigorous
study of the non-divergence equation arising as the analogue of the Euler-Lagrange
for (1.1) (for a pedagogical introduction to the scalar case and numerous references
we refer to [K7]). In the special case of H(x, P ) being the Euclidean norm |P | on
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2 NIKOS KATZOURAKIS

Rn, the respective PDE is the ∞-Laplace equation

(1.3) ∆∞u := Du⊗Du : D2u =

n∑
i,j=1

DiuDjuD2
iju = 0.

Despite the importance for applications and the deep analytical interest of the area,
the vectorial case of N ≥ 2 remained largely unexplored until the early 2010s. In
particular, not even the correct form of the respective PDE systems associated to
L∞ variational problem was known. A notable exception is the early vectorial con-
tributions [BJW1, BJW2] wherein (among other deep results) L∞ versions of lower
semi-continuity and quasiconvexity were introduced and studied and the existence
of Absolute Minimisers was established in some generality with H depending on u
itself but for min{n,N} = 1.

The author in a series of recent papers (see [K1]-[K6], [K8]-[K11] and [K13]) has
laid the foundations of the vectorial case and in particular has derived and studied
the analogues of (1.3) associated to general L∞ functionals. In the model case of
H being the Euclidean norm on RN×n and independent of x

H(x, P ) = |P | =

(
N∑
α=1

n∑
i=1

(Pαi)
2

)1/2

,

the respective equation is called the ∞-Laplace PDE system and when applied to
smooth maps u : Ω ⊆ Rn −→ RN reads

(1.4) ∆∞u :=
(

Du⊗Du+ |Du|2[Du]⊥⊗ I
)

: D2u = 0.

Here [Du(x)]⊥ is the orthogonal projection on the orthogonal complement of the
range of gradient matrix Du(x) ∈ RN×n:

[Du]⊥ := Proj(R(Du))⊥ .

In index form, (1.4) reads

N∑
β=1

n∑
i,j=1

(
DiuαDjuβ + |Du|2[Du]⊥αβ δij

)
D2
ijuβ = 0, α = 1, ..., N.

In the full vector case of (1.4), even more intriguing phenomena occur since
a further difficulty which is not present in the scalar case is that the coefficient
involving [Du]⊥ is discontinuous even for C∞ maps; for instance, u(x, y) = eix−eiy
is a smooth 2×2∞-Harmonic map near the origin and the rank of gradient is 1 on
the diagonal, but it is 2 otherwise. The emergence of discontinuities is a genuine
vectorial phenomenon which does not arise if min{n,N} = 1 (see [K1, K3, K4]).
For N = 1 the scalar version (1.3) has continuous coefficients, whilst for n = 1 (1.4)
reduces to

∆∞u = (u′ ⊗ u′)u′′ + |u′|2
(
I − u′

|u′|
⊗ u′

|u′|

)
u′′ = |u′|2u′′.

A problem associated to the discontinuities is that Aronsson’s notion of Absolute
Minimisers is not appropriate in the vectorial case of rank rk(Du) ≥ 2. Actually, by
the perpendicularity of Du and [Du]⊥, ∆∞u = 0 actually consists of 2 independent
systems and each one is characterised in terms of the L∞ norm of the gradient via
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different sets of variations. In [K2] we proved the following variational characteri-
sation in the class of classical solutions. A C2 map u : Ω ⊆ Rn −→ RN is a solution
to

(1.5) Du⊗Du : D2u = 0

if and only if it is a Rank-One Absolute Minimiser on Ω, namely when for all D b Ω,
all scalar functions g ∈ C1

0 (D) vanishing on ∂D and all directions ξ ∈ RN , u is a
minimiser on D with respect to variations of the form u+ ξg (Figure 1):

(1.6) ‖Du‖L∞(D) ≤
∥∥Du+ ξ ⊗Dg

∥∥
L∞(D)

.

Figure 1.

Further, if rk(Du) ≡ const., u is a solution to

(1.7) |Du|2[Du]⊥∆u = 0

if and only if u(Ω) has ∞-Minimal Area, namely when for all D b Ω, all scalar
functions h ∈ C1(D) (not vanishing on ∂D) and all vector fields ν ∈ C1(D,RN )
which are normal to u(Ω), u is a minimiser on D with respect to normal free
variations of the form u+ hν (Figure 2):

(1.8) ‖Du‖L∞(D) ≤
∥∥Du+ D(hν)

∥∥
L∞(D)

.

Figure 2.

We called a map ∞-Minimal with respect to functional ‖D(·)‖L∞(·) when it is a
Rank-One Absolute Minimiser on Ω and u(Ω) has ∞-Minimal Area.

Perhaps the greatest difficulty associated to (1.1) and (1.4) is how to define and
study generalised solutions since for the highly nonlinear non-divergence model sys-
tem (1.4) all standard arguments based on the maximum principle or on integration
by parts seem to fail. In the very recent work [K8] the author proposed the theory
of so-called D-solutions which applies to general fully nonlinear PDE system of any
order

F
(
·, u,Du, ...,Dpu

)
= 0

and allows for merely measurable solutions u to be rigorously interpreted and stud-
ied. This notion is duality-free and is based on the probabilistic representation of
derivatives which do not exist classically. D-solutions have already borne substan-
tial fruit and in [K8]-[K12] we have derived several existence-uniqueness, variational
and regularity results. In particular, in [K10] we have obtained a variational char-

acterisation of (1.4) in the setting of general D-solutions for W 1,∞
loc (Ω,RN ) appro-

priately defined minimisers which is relevant to (1.5)-(1.8) but different.
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In this paper we consider the obvious generalisation of the rank-one minimality
notion of (1.6) adapted to the functional (1.1). To this end, we identify a large class
of rank-one Absolute Minimisers: for any c ≥ 0, every solution u : Ω ⊆ Rn −→ RN
to the vectorial Hamilton-Jacobi equation

(1.9) H
(
x,Du(x)

)
= c, x ∈ Ω,

actually is a rank-one absolute minimiser. Namely, for any Ω′ b Ω, any φ ∈
W 1,∞

0 (Ω′) and any ξ ∈ RN , we have

ess sup
x∈Ω′

H
(
x,Du(x)

)
≤ ess sup

x∈Ω′
H
(
x,Du(x) + ξ ⊗Dφ(x)

)
.

For the above implication to be true we need the solutions to be in C1(Ω,RN ) and

not just in W 1,∞
loc (Ω,RN ). This is not a technical difficulty: it is well known even in

the scalar case that if we allow only for 1 non-differentiability point, strong solutions
of the Eikonal equation |Du| = 1 are not absolutely minimising for the L∞ norm
of the gradient (e.g. the cone function x 7→ |x|). However, due to regularity results
which available in the scalar case, it suffices to assume everywhere differentiability
(see [CEG, CC]).

Our only hypothesis imposed on H is that for any x ∈ Ω the partial function
H(x, ·) : RN×n −→ R is rank-one level-convex. This means that for any t ≥ 0, the
sublevel sets

{
H(x, ·) ≤ t

}
are rank-one convex sets in RN×n. A set C ⊆ RN×n is

called rank-one convex when for any matrices A,B ∈ C with rk(A − B) ≤ 1, the
convex combination λA + (1 − λ)B is in C for any 0 ≤ λ ≤ 1. An equivalent way
to phrase the rank-one level-convexity of H(x, ·) is via the inequality

H
(
x, λA+ (1− λ)B

)
≤ max

{
H(x,A), H(x,B)

}
,

when

x ∈ Ω, A,B ∈ RN×n, rk(A−B) ≤ 1 and 0 ≤ λ ≤ 1.

This convexity assumption is substantially weaker than the L∞ versions of quasi-
convexity which we call “BJW-quasiconvexity”, named after Barron-Jensen-Wang
who introduced it in [BJW2].

We note that Hamilton-Jacobi equations are very important for L∞ variational
problems and their equations. In the scalar case, C1 solutions are viscosity solu-
tions to the respective second order single equations in L∞ (see e.g. [K7]). Heuris-
tically, for the case of the ∞-Laplace equation this can be seen by rewriting (1.3)
as DuD

(
1
2 |Du|

2
)

= 0 and this reveals that solutions of |Du| = c are ∞-Harmonic.
In the vectorial case, Hamilton-Jacobi equations give rise to certain first-order dif-
ferential inclusions of the form

Du(x) ∈ K ⊆ RN×n, x ∈ Ω,

for which the Dacorogna-Marcellini Baire category (the analytic counterpart of
Gromov’s Convex Integration) method can be utilised to establish existence of D-
solutions to the L∞ systems of PDE with extra geometric properties (see [K8] and
[DM, D]).

The main result of the present paper is the following:
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Theorem 1. Let Ω ⊆ Rn be an open set, n,N ∈ N and H : Ω× RN×n −→ [0,∞)
a continuous function, such that for all x ∈ Ω, P 7−→ H(x, P ) is rank-one level-
convex, that is{

H(x, ·) ≤ t
}
is a rank-one convex in RN×n, for all t ≥ 0, x ∈ Ω.

Let u ∈ C1(Ω,RN ) be a solution to the vectorial Hamilton-Jacobi PDE

H(·,Du) = c on Ω,

for some c ≥ 0. Then, u is a rank-one Absolute Minimiser of the functional

E∞(u,Ω′) = ess sup
x∈Ω′

H
(
x,Du(x)

)
, Ω′ b Ω, u ∈W 1,∞

loc (Ω,RN ).

In addition, the following marginally stronger result holds true: for any Ω′ b Ω,
any φ ∈W 1,∞

0 (Ω′) and any ξ ∈ RN , we have

E∞(u,Ω′) ≤ inf
B∈B(φ,Ω′)

E∞
(
u+ ξφ,B

)
where B(φ,Ω′) is the set of open balls centred at local extrema (maxima or minima)
of φ inside Ω′:

(1.10) B(φ,Ω′) :=
{
Bρ(x) b Ω′

∣∣∣ x is a point of local extremum of φ in Ω′
}
.

An immediate consequence of Theorem 1 is the following result:

Corollary 2. In the setting of Theorem 1, we additionally have

ess sup
Ω′

H
(
·,Du

)
≤ lim

ρ→0

(
ess sup
Bρ(x)

H
(
·,Du+ ξ ⊗Dφ

))
,

for any x ∈ Ω′ at which φ achieves a local maximum or a local minimum.

The quantity of the right hand side above is known as the local functional at x
and in the scalar case has been used as a substitute of the pointwise values due to
its upper semi-continuity regularity properties.

2. The proof of Theorem 1.

Let H, c, u,Ω be as in the statement and fix Ω′ b Ω and a unit vector ξ ∈ RN . We
introduce the following notation for the projections on span[ξ] and the orthogonal
hyperplane span[ξ]⊥:

(2.1)

{
[ξ]> := ξ ⊗ ξ,

[ξ]⊥ := I − ξ ⊗ ξ.

Let ψ ∈W 1,∞
u (Ω′,RN ) such that [ξ]⊥

(
ψ − u

)
≡ 0, that is the projections of ψ and

u on the hyperplane span[ξ]⊥ ⊆ RN coincide. Then, ξ · (ψ − u) ∈ W 1,∞
0 (Ω′) and

because the scalar function ξ · (ψ−u) vanishes on ∂Ω′, there exist at least one local
extremum of ξ · (ψ − u) in Ω′, whence the set

B
(
ξ · (ψ − u),Ω′

)
given by (1.10) is non-empty. Fix a ball Bρ(x) b Ω′ centred at such an extremal
point of ξ · (ψ − u).
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We illustrate the idea by assuming first in addition that ψ ∈ W 1,∞
u (Ω′,RN ) ∩

C1(Ω′,RN ). In this case, the point x is a critical point of ξ · (ψ − u) and we have
D
(
ξ · (ψ − u)

)
(x) = 0. Hence,

D(ψ − u)(x) = [ξ]>D(ψ − u)(x) + [ξ]⊥D(ψ − u)(x)

= ξ ⊗D
(
ξ · (ψ − u)

)
(x) + D

(
[ξ]⊥(ψ − u)

)
(x)

= 0

because [ξ]⊥ψ ≡ [ξ]⊥u on Ω′. Thus,

E∞(u,Ω′) = c = H(x,Du(x))

= H
(
x, ξ ⊗D(ξ · u)(x) + [ξ]⊥Du(x)

)
and hence

E∞(u,Ω′) = H
(
x, ξ ⊗D(ξ · ψ)(x) + [ξ]⊥Dψ(x)

)
= H(x,Dψ(x))

≤ ess sup
y∈Bρ(x)

H(y,Dψ(y))

= E∞
(
ψ,Bρ(x)

)
(2.2)

for any Bρ(x) ⊆ B
(
ξ · (ψ − u),Ω′

)
, whence the conclusion ensues.

Now we return to the general case of ψ ∈ W 1,∞
u (Ω′,RN ). We extend ψ by u on

Ω \ Ω′ and consider the sets

(2.3) Ωk :=


{
x ∈ Ω′ : dist(x, ∂Ω′) >

d0

k

}
, k ∈ N,

∅, k = 0,

where d0 > 0 is a constant small enough so that Ω1 6= ∅. We set

(2.4) Vk := Ωk \ Ωk−1, k ∈ N

and consider a partition of unity (ζk)∞k=1 ⊆ C∞c (Ω′) over Ω′ so that

(2.5)


ζk ≥ 0 on Ω′,

∞∑
k=1

ζk ≡ 1 on Ω′,

ζk > 0 on Vk,

supp(ζk) ⊆ Vk−1 ∪ Vk ∪ Vk+1.

(Such a partition of unity can be easily constructed explicitly by mollifying the
characteristic functions χVk and rescaling them appropriately.) Let (ηε)ε>0 be the
standard mollifier (as e.g. in [E]) and set

(2.6) ψε := ξ ⊗

( ∞∑
k=1

ζk
(
(ξ · ψ) ∗ ηε/k

))
+ [ξ]⊥Dψ, 0 < ε < d0.

We claim that ψε ∈ W 1,∞
u (Ω′,RN ) ∩ C1(Ω′,RN ) and ψε −→ ψ in C(Ω′,RN ) as

ε → 0. To verify these claims, fix l ∈ N. If l ≥ 2, then by (2.4)-(2.5) and because
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|ξ| = 1, we have

‖ψε − ψ‖C(Vl)
= sup

Vl

∣∣∣∣∣ξ ·
( ∞∑
k=1

ζk
(
ψ ∗ ηε/k)− ψ

∞∑
k=1

ζk

)∣∣∣∣∣
≤ sup

Vl

∞∑
k=1

ζk
∣∣ψ ∗ ηε/k − ψ

∣∣
= sup

Vl

l+1∑
k=l−1

ζk
∣∣ψ ∗ ηε/k − ψ

∣∣
≤ 3 max

k=l−1,l,l+1

∥∥ψ ∗ ηε/k − ψ
∥∥
C(Ω′)

,

(2.7)

whilst, for l = 1 we similarly have

‖ψε − ψ‖C(V1) ≤ 2 max
k=1,2

∥∥ψ ∗ ηε/k − ψ
∥∥
C(Ω′)

.(2.8)

By the standard properties of mollifiers, we have that the function

(2.9) ω(t) := sup
0<τ<t

∥∥ψ ∗ ητ − ψ
∥∥
C(Ω′)

, 0 < t < d0,

is an increasing continuous modulus of continuity with ω(0+) = 0. By (2.7)-(2.9),
we have that

(2.10) ‖ψε − ψ‖C(Vl)
≤

{
3ω
( ε

l − 1

)
, l ≥ 2,

2ω(ε), l = 1.

Since the C1 regularity of ψε is obvious (because u by assumption is such and
[ξ]⊥ψ ≡ [ξ]⊥u), the claim has been established.

Note now that since ψ − u ∈ W 1,∞
0 (Ω′,RN ), the set B

(
ξ · (ψ − u),Ω′

)
given by

(1.10) is non-empty because the scalar function ξ · (ψ − u) which vanishes on ∂Ω′

necessarily attains an interior extremum. Fix a ball

Bρ(x0) ∈ B
(
ξ · (ψ − u),Ω′

)
.

Since ψε − u −→ ψ − u in C(Ω′,RN ) as ε → 0, by a standard stability argument
of maxima/minima of scalar-valued function under uniform convergence (see e.g.
[K8]), there exists a local extremum xε ∈ Ω′ of ξ · (ψε − u) such that xε −→ x0

as ε → 0. By the differentiability of u and by choosing ε small enough, we may
arrange

(2.11) D
(
ξ · (ψε − u)

)
(xε) = 0, |xε − x| < ρ

2
.

Hence,

D(ψε − u)(xε) = ξ ⊗D
(
ξ · (ψε − u)

)
(xε) + D

(
[ξ]⊥(ψ − u)

)
(xε) = 0.

Then, by arguing as in (2.2), we have

(2.12) ess sup
Ω′

H(·,Du) ≤ ess sup
Bρ/2(x0)

H(·,Dψε).

Since

Dψε = ξ ⊗

[ ∞∑
k=1

Dζk
(
(ξ · ψ) ∗ ηε/k

)
+

∞∑
k=1

ζk

((
D(ξ · ψ)

)
∗ ηε/k

)]
+ [ξ]⊥Dψ
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our continuity assumption and the W 1,∞ regularity of ψ imply that there exists a
positive increasing modulus of continuity ω1 with ω1(0+) = 0 such that on the ball
Bρ/2(x0) we have

H(·,Dψε) = H

(
· , ξ ⊗

[ ∞∑
k=1

ζk

((
D(ξ · ψ)

)
∗ ηε/k

)
+

∞∑
k=1

Dζk
(
(ξ · ψ) ∗ ηε/k

)]
+ [ξ]⊥Dψ

)

≤ H

(
· , ξ ⊗

[ ∞∑
k=1

ζk
(
D(ξ · ψ) ∗ ηε/k

)]
+ [ξ]⊥Dψ

)

+ ω1

(∣∣∣∣∣
∞∑
k=1

Dζk
(
(ξ · ψ) ∗ ηε/k)

∣∣∣∣∣
)

=: A + B.

(2.13)

By further restricting ε < ρ/2, we may arrange

(2.14)
⋃

x∈Bρ/2(x)

Bε(x) ⊆ Bρ(x0)

and by (2.4)-(2.5), there exists K(ρ) ∈ N such that

(2.15) Bρ(x0) ⊆
⋃

k=1,...,K(ρ)

Vk.

This implies that for any x ∈ Bρ(x0),

(2.16)

∞∑
1

ζk(x) =

K(ρ)+1∑
1

ζk(x) = 1

forming a convex combination. We now recall for immediate use right below the
following Jensen-like inequality for level-convex functions (see e.g. [BJW1, BJW2]):
for any probability measure µ on an open set U ⊆ Rn and any µ-measurable function
f : U ⊆ Rn −→ [0,∞), we have

(2.17) Φ

(∫
U

f(x) dµ(x)

)
≤ µ− ess sup

x∈U
Φ
(
f(x)

)
,

when Φ : Rn −→ R is any continuous level-convex function. Further, by our rank-
one level-convexity assumption on H and if ψ is as above, for any x ∈ Ω and ξ ∈ RN
with |ξ| = 1, the function

(2.18) Ψ(p) := H
(
x , ξ ⊗ p + [ξ]⊥Dψ(x)

)
, p ∈ Rn,

is level-convex. Indeed, given p, q ∈ Rn and t ≥ 0 with Ψ(p),Ψ(q) ≤ t, we set{
P := ξ ⊗ p + [ξ]⊥Dψ(x),

Q := ξ ⊗ q + [ξ]⊥Dψ(x).

Then, P −Q = ξ⊗ (p−q) and hence rk(P −Q) ≤ 1. Moreover, H(x, P ) = Ψ(p) ≤ t
and H(x,Q) = Ψ(q) ≤ t which gives

Ψ
(
λp + (1− λ)q

)
= H

(
x, λP + (1− λ)Q

)
≤ t
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for any λ ∈ [0, 1], as desired.
Now, by using (2.4)-(2.5), (2.14)-(2.16) and the level-convexity of the function

Ψ of (2.18), for any x ∈ Bρ/2(x0) we have the estimate

A(x) = H

x , ξ ⊗ [K(ρ)+1∑
k=1

ζk(x)
((

D(ξ · ψ)
)
∗ ηε/k

)
(x)

]
+ [ξ]⊥Dψ(x)


= Ψ

K(ρ)+1∑
k=1

ζk(x)
((

D(ξ · ψ)
)
∗ ηε/k

)
(x)


≤ max

k=1,...,K(ρ)+1
Ψ
(((

D(ξ · ψ)
)
∗ ηε/k

)
(x)
)

= max
k=1,...,K(ρ)+1

Ψ

(∫
Bε/k(x)

D(ξ · ψ)(y) ηε/k(|x− y|) dy

)
.

(2.19)

Since for any x and ε, k, the map

µ := ηε/k(|x− ·|)Ln

is a probability measure on the ball Bε/k(x) which is absolutely continuous with
respect to the Lebesgue measure Ln, in view of (2.17), (2.19) gives

A(x) ≤ max
k=1,...,K(ρ)+1

(
ess sup
y∈Bε/k(x)

Ψ
(

D(ξ · ψ)(y)
))

= max
k=1,...,K(ρ)+1

(
ess sup
y∈Bε/k(x)

H
(
x , ξ ⊗D(ξ · ψ)(y) + [ξ]⊥Dψ(x)

))
≤ ess sup

y∈Bε(x)

H
(
x , ξ ⊗D(ξ · ψ)(y) + [ξ]⊥Dψ(x)

)
.

(2.20)

By the continuity of H and Du, there is a positive increasing modulus of continuity
ω2 with ω2(0+) = 0 such that

∣∣∣H(x, P ) − H(y,Q)
∣∣∣ ≤ ω2

(
|x− y| + |P −Q|

)
,∣∣Du(x) − Du(y)

∣∣ ≤ ω2

(
|x− y|

)
,

for all x, y ∈ Bρ(x0) and |P |, |Q| ≤ ‖Dψ‖L∞(Ω′) + 1. By using that [ξ]⊥ψ ≡ [ξ]⊥u
on Ω′, (2.20) and the above give

A(x) ≤ ess sup
y∈Bε(x)

H
(
x, [ξ]>Dψ(y) + [ξ]⊥Dψ(x)

)
≤ ess sup

y∈Bε(x)

{
H
(
y, [ξ]>Dψ(y) + [ξ]⊥Dψ(y)

)
+ ω2

(
|x− y| +

∣∣∣[ξ]⊥(Dψ(y)−Dψ(x)
)∣∣∣)}

= ess sup
y∈Bε(x)

{
H
(
y, Dψ(y)

)
+ ω2

(
|x− y| +

∣∣∣[ξ]⊥(Du(y)−Du(x)
)∣∣∣)}.

(2.21)
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By (2.14), (2.21) gives

A(x) ≤ ess sup
y∈Bε(x)

H
(
y, Dψ(y)

)
+ sup
y∈Bε(x)

ω2

(
|x− y| +

∣∣Du(y)−Du(x)
∣∣)

≤ ess sup
y∈Bρ(x0)

H
(
y ,Dψ(y)

)
+ ω2

(
ε + ω2(ε)

)
,

(2.22)

for any x ∈ Bρ/2(x0). We now estimate the term B of (2.13) on Bρ/2(x0) as above
and by using (2.9):

B = ω1

(∣∣∣∣∣ξ ·
[ ∞∑
k=1

Dζk
(
ψ ∗ ηε/k)

]∣∣∣∣∣
)

≤ ω1

(∣∣∣∣∣
∞∑
k=1

Dζk
(
ψ ∗ ηε/k)

∣∣∣∣∣
)

≤ ω1

∣∣∣∣∣
∞∑
k=1

Dζk ψ

∣∣∣∣∣ +

K(ρ)+1∑
k=1

|Dζk|
∣∣∣ψ ∗ ηε/k − ψ

∣∣∣


and since
∑∞
k=1 Dζk ≡ 0, we get

B ≤ ω1

K(ρ)+1∑
k=1

|Dζk|
∣∣∣ψ ∗ ηε/k − ψ

∣∣∣


≤ ω1

(
C(ρ) max

k=1,...,K(ρ)+1

∥∥∥ψ ∗ ηε/k − ψ
∥∥∥
C(Ω′)

)
≤ ω1

(
C(ρ)ω(ε)

)
,

(2.23)

on Bρ/2(x0). By putting together (2.12), (2.13), (2.22) and (2.23), we have

ess sup
Ω′

H(·,Du) ≤ ess sup
Bρ(x0)

H
(
· ,Dψ

)
+ ω1

(
C(ρ)ω(ε)

)
+ ω2

(
ε + ω2(ε)

)
and by letting ε→ 0, the conclusion follows. �
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