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Abstract

With the development of convection-permitting numerical weather prediction the
efficient use of high resolution observations in data assimilation is becoming increas-
ingly important. The operational assimilation of these observations, such as Doppler
radar radial winds, is now common, though to avoid violating the assumption of un-
correlated observation errors the observation density is severely reduced. To improve
the quantity of observations used and the impact that they have on the forecast will
require the introduction of the full, potentially correlated, error statistics. In this
work, observation error statistics are calculated for the Doppler radar radial winds
that are assimilated into the Met Office high resolution UK model using a diag-
nostic that makes use of statistical averages of observation-minus-background and
observation-minus-analysis residuals. This is the first in-depth study using the diag-
nostic to estimate both horizontal and along-beam correlated observation errors. By
considering the new results obtained it is found that the Doppler radar radial wind
error standard deviations are similar to those used operationally and increase as the
observation height increases. Surprisingly the estimated observation error correlation
length scales are longer than the operational thinning distance. They are dependent
on both the height of the observation and on the distance of the observation away
from the radar. Further tests show that the long correlations cannot be attributed
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to the use of superobservations or the background error covariance matrix used in
the assimilation. The large horizontal correlation length scales are, however, in part,
a result of using a simplified observation operator.

1 Introduction

With the recent development of convection permitting numerical weather prediction (NWP),
such as the Met Office UK variable resolution (UKV) model [Lean et al., 2008, Tang et al.,
2013], the assimilation of observations that have high frequency both in space and time has
become increasingly important [Park and Zupanski, 2003, Dance, 2004, Sun et al., 2014,
Ballard et al., 2015, Li et al., 2015]. The potential for assimilating one such set of obser-
vations, the Doppler radar radial winds (DRWSs) [Lindskog et al., 2004, Sun, 2005], has
been explored by a number of operational centers e.g., Lindskog et al. [2001], Salonen et al.
[2007], Rihan et al. [2008], Salonen et al. [2009]. The assimilation of the DRWSs has been
shown to provide a significant positive impact on the forecast [Xiao et al., 2005, Lindskog
et al., 2004, Montmerle and Faccani, 2009, Simonin et al., 2014] and as a result they are
now included in operational assimilation [Xiao et al., 2008, Simonin et al., 2014].

Currently at the Met Office the error statistics associated with DRWs are assumed un-
correlated [Simonin et al., 2014]. To reduce the large quantity of data and ensure the
assumption of uncorrelated errors is reasonable the DRW observations are ‘superobbed’
and thinned before assimilation [Simonin et al., 2014]. These processes result in a large
number of observations being discarded. Having accurate estimates of the error statistics
that are well understood and correctly represented in the assimilation will allow better use
of the observational data.

The errors associated with the observations can be attributed to four main sources:
1. Instrument error.

2. Error introduced in the observation operator - including omissions in the observation
operator e.g. the misrepresentation of the radar beam bending, and errors due to the
approximation of a continuous function as a discrete function.

3. Errors of representativity - errors that arise where the observations can resolve spatial
scales that the model cannot.

4. Pre-processing errors - errors introduced by pre-processing such as clutter removal.

For DRWs the instrument errors are independent and uncorrelated. Observation error
correlations, which may be state dependent and dependent on the model resolution, are
likely to arise from the other sources of error [Janjic and Cohn, 2006, Waller, 2013, Waller
et al., 2014a,b]. The inclusion of correlated observation errors in the assimilation has been
shown to lead to a more accurate analysis, the inclusion of more observation information
content and improvements in the forecast skill score [Stewart et al., 2013, Stewart, 2010,



Healy and White, 2005, Stewart et al., 2008, Weston et al., 2014]. Significant benefit may
even be provided by using only a crude approximation to the observation error covariance
matrix [Stewart et al., 2013, Healy and White, 2005].

A number of methods exist for estimating the observation error covariances e.g. Hollingsworth
and Lonnberg [1986], Dee and Da Silva [1999]. Xu et al. [2007] presented an innovation
method based on that of Hollingsworth and Lonnberg [1986] for estimating DRW error
and background wind error covariances. Simonin et al. [2012] previously calculated ob-
servation error statistics for DRWs using the method of Xu et al. [2007]. The work of
Simonin et al. [2012] suggests that the observation error standard deviation increases with
the height of the observation and that the observations errors have a correlation length
scale of 1-3km. However, the Hollingsworth and Lonnberg [1986] method was designed
to provide estimates of the background error statistics under the assumption of uncorre-
lated observation errors. When using the method to estimate both correlated background
and correlated observation errors, determining how to split the estimated quantity into
observation and background errors is non-trivial [Bormann and Bauer, 2010]. Indeed the
result is subjective. To overcome this difficulty most recent attempts to diagnose the ob-
servation error correlations have made use of the diagnostic proposed in Desroziers et al.
[2005]. Initially designed as a consistency check, the diagnostic provides an estimate of
the observation error covariance matrix using the statistical average of observation-minus-
background and observation-minus-analysis residuals. However, in theory it relies on the
use of exact background and observation error statistics in the assimilation. Despite this
limitation, the diagnostic has been used to estimate inter-channel observation error statis-
tics [Stewart et al., 2009, 2014, Bormann and Bauer, 2010, Bormann et al., 2010, Weston
et al., 2014] even when the error statistics used in the assimilation are not exact. The
method of Desroziers et al. [2005] has also been used by Wattrelot et al. [2012] to calculate
observation error statistics for the Doppler radial winds assimilated into the Météo-France
system. Their results, published as a conference paper, show a similar error standard devi-
ation to those found in Simonin et al. [2012], but suggest that the observation errors have
a larger correlation length scale of approximately 10km. (we cannot determine the length
scale precisely due the data thinning they have applied).

Here we present the first in-depth study using the diagnostic of Desroziers et al. [2005]
to calculate observation error statistics for the DRWs assimilated into the Met Office high
resolution UK (UKV) model. We consider the sensitivity of the estimated observation error
statistics to the choice of assimilated background error statistics, the use of superobserva-
tions and the use of a more sophisticated observation operator. We find that the DRW
error standard deviations are similar to those used operationally, though surprisingly, the
observation error correlation length scales are longer than the operational thinning dis-
tance. Further tests show that the long correlations cannot be attributed to the use of
superobservations or the background error covariance matrix used in the assimilation. The
large horizontal correlation length scales are, however, in part, a result of using a simplified
observation operator in the assimilation.

This paper is organised as follows. In Section 2 we give a description of the diagnostic of



Desroziers et al. [2005]. We describe the DRW observations and their model representations
in Section 3 and in Section 4 we describe the experimental design. In Section 5 we consider
the estimated observation error statistics from four different cases. Finally we conclude in
Section 6.

2 The diagnostic of Desroziers et al. [2005]

Data assimilation techniques combine observations y € RY” with a model prediction of the
state, the background x* € RY"™ often determined by a previous forecast. Here N? and
N™ denote the dimensions of the observation and model state vectors respectively. In the
assimilation the observations and background are weighted by their respective errors, using
the background and observation error covariance matrices B € RV *N™ and R € RV"™*N?,
to provide a best estimate of the state, x* € RV™, known as the analysis. To calculate the
analysis the background must be projected into the observation space using the possibly
non-linear observation operator, H : RV — RN™. After an assimilation step the analysis
is evolved forward in time to provide a background for the next assimilation.

Desroziers et al. [2005] assume that the analysis is determined using,
x = X'+ K(y - H(x")), (1)

where H is the observation operator linearised about the current state and K = BH (HBH” +
R)~! is the gain matrix.

The diagnostic described in Desroziers et al. [2005] estimates the observation error covari-
ance matrix by using the observation-minus-background and observation-minus-analysis
residuals. The background residual,

dj =y - H(x"), (2)

is the difference between the observation y and the mapping of the forecast vector, x°, into
observation space by the observation operator H. The analysis residual,

d, = y—H(x"), (3)
~ y— H(x") - HKd]. (4)

is similar to the background residuals, but with the forecast vector replaced by the anal-
ysis vector x®. By taking the statistical expectation of the product of the analysis and
background residuals results in

Eld;d}"] ~ R, (5)
assuming that the forecast and observation errors are uncorrelated. Equation (5) is exact
if the observation and background error statistics used in assimilation are exact. The
theoretical work of Waller et al. [2015] provides insight on how results from the diagnostic
can be interpreted when the incorrect background and observation error statistics are used
in the assimilation. Due to the statistical nature of the diagnostic the resulting matrix will
not be symmetric. Therefore, if the matrix is to be used it must be symmetrised.
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3 Doppler Radar radial wind observations and their
model representation

3.1 The Met Office UKV model and 3D variational assimilation
scheme

The operational UKV model is a variable resolution convection permitting model that
covers the UK [Lean et al., 2008, Tang et al., 2013]. The model has 70 vertical levels.
The horizontal grid has a 1.5km fixed resolution on the interior surrounded by a variable
resolution grid which increases smoothly in size to 4km. The variable resolution grid
allows the downscaled boundary conditions, taken from the global model, to spin up before
reaching the fixed interior grid. The initial conditions are provided from a 3D variational
assimilation scheme that uses an incremental approach [Courtier et al., 1994] and is a
limited-area version of the Met Office variational data assimilation scheme [Lorenc et al.,
2000, Rawlins et al., 2007]. The assimilation uses an adaptive mesh, that allows the
accurate representation of boundary layer structures [Piccolo and Cullen, 2011, 2012] . The
background error covariance statistics used in this study are described in Section 4.

3.2 Doppler radar radial wind data

Doppler radar is an active remote sensing instrument that provides observations of radial
wind by measuring the phase shift between a transmitted electromagnetic wave pulse and
its backscatter echo. The radial velocity of a scattering target is then estimated from the
‘Doppler shift” [Doviak and Zrnic, 1993]. While it is possible to derive clear air radar
returns e.g. Rennie et al. [2010, 2011], in this work we consider only observations where
the scattering targets are assumed to be raindrops. The DRW data used at the Met Office
are acquired using 18 C-Band weather radars. Each radar completes a series of scans
out to a range of 100km every 5 minutes at different elevation angles (typically 1°, 2°,
4°,6° and 9°) with a 1° x 600m resolution volume. Before being assimilated the data is
processed and a quality control procedure is applied. This ensures that no observations
that disagree with neighboring observations or have a large departure from the background
are assimilated. The observations errors are assumed Gaussian and uncorrelated in space or
time with standard deviations that range from 1.8ms~! for observations close to the radar
to 2.8ms~! for observations furthest away from the radar. Further details of the operational
assimilation of DRWs at the Met Office can be found in Simonin et al. [2014].

3.2.1 The current operational observation operator

To compare the background with the observations it is necessary to map the model state
into observation space. The current operational observation operator, following Lindskog



et al. [2000], first interpolates the NWP model horizontal and vertical wind components u,
v and w to the observation location. The horizontal wind is then projected in the direction
of the radar beam and projected onto the slant of the radar beam using,

v, = (usin ¢ + v cos ¢) cos(#) + wsin(f), (6)

where ¢ is the radar azimuth angle clockwise from due north and 6 is the beam center
elevation angle. The elevation angle § = € 4+ « includes a correction term, «, that must be
added to the measurement elevation angle €. The correction term

1 7 cos(€)
rsin(e) + ae + h,

a = tan~ ), (7)
where h, is the height of the radar above sea level, r is the range of the observation and
a. is the effective earth radius (1.3 times the actual earth radius) required to take account
of the earth’s curvature and the radar beam refraction [Doviak and Zrnic, 1993]. The
correction term is not exact. The value of a, is only valid in the international standard
atmosphere. This simple operational observation operator does not account for the beam
broadening or reflectivity weighting. Additionally, only the horizontal wind components
are updated in the minimisation, the vertical component of wind remains at its fixed
background value.

This operational observation operator is used in the majority of results discussed in this
article.

3.2.2 An improved observation operator

In recent research experiments the Met Office trialed a more sophisticated observation
operator [Simonin, 2014]; it includes a beam broadening model, as well as a weighting with
reflectivity. The beam broadening model, W, takes the form,

2
Wia(6.) = capl-2in (2= )) 0
3dB

with 62 = 62 — 07 where 6 is the beam centre elevation as in equation (6), 6, is the lower
beam elevation (the lower limit of the beam spread) and 0345 is the half power bandwidth
(angular range of the antenna pattern in which at least half of the maximum power is
still emitted [Toomay and Hannen, 2004]). For the reflectivity weighting, a climatological
profile with height A is used,

Wief(h) = Zh + ¢, 9)

where,

7 { —6dB : h < Brightband, (10)

—2dB : h > Brightband ’

c is a constant scaling factor, Brightband; is the lower limit of the Bright band and
Brightbandy is the upper limit of the Bright band. The height of the Bright band (a layer
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of melting ice resulting in intense reflectivity return [Kitchen, 1997]) is derived from the
forecast model temperature field, and has a thickness set to 250m. The reflectivity profile
increases by 10dB from the bottom to the centre of the bright band and then decreases
linearly. The beam broadening and reflectivity weighting are combined to give a single
weight, W = W,y Wy, and this weighting is included in the new observation operator,

Uy = Z W (usin ¢ + v cos ¢) cos(6). (11)

Gbeam

The implementation of this new observation operator has been shown to reduce the error in
the background residuals. This new observation operator may be further improved [Fabry,
2010], though the operational use of a more complex observation operator may not be
feasible. While these simplifications and omissions in the observation operator exist, they
will introduce additional error when the model background is projected into observation
space. These errors may well be correlated and should ideally be accounted for in the
observation error covariance matrix.

3.2.3 Superobservation creation

To reduce the density of the observations, multiple observations are made into a single
superobservation. Only observations that have passed the quality control procedure de-
scribed in Simonin et al. [2014] are combined to make the superobservations. There are a
number of methods for calculating the superobservations. The Doppler radar superobser-
vations used at the Met Office are calculated following the method of Salonen et al. [2008].
The radar scan is divided into 3° by 3km cells and one observation is created per cell using
the following procedure:

Project background winds into observation space using equation (6);
Calculate the background residual at each observation location;

Average all background residuals that fall within a superobservation cell;

Ll

Add the average residual to the simulated background radial wind at the center of
the superobservation cell to give a value for the superobservation.

The calculated superobservations are subject to a second quality control procedure [Si-
monin et al., 2014]. They are then further thinned to 6km, where is assumed that the
observations will have uncorrelated error, using Poisson disk sampling [Bondarenko et al.,
2007].

3.2.4 Superobservation error
The calculated superobservations have an associated superobservation error, ¢*°. Berger

and Forsythe [2004] showed that the covariance of the superobservation error will be equiv-
alent to the averaged observation error covariance matrix for the raw observations (i.e.
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creating the superobservations using the background does not introduce any background
error into €*°) if:

1. The observation and background errors are independent;
2. The background state errors are fully correlated within the superobservation cell;

3. The background state errors in a superobservation cell all have the same magnitude
and

4. The background residuals are equally weighted within a superobservation cell.

However, for DRWs it is not clear that all the assumptions will hold. In particular assump-
tions 1 and 2 are valid at close range to the radar where the superobservation cells are small.
However, at far range the superobservation cells are large and the assumptions are likely
to be invalid. Therefore, it is possible that at large ranges there is a small influence of the
background errors on the error associated with the superobservation.

4 Experimental Design

To calculate estimates of the observation error covariances we require background and
analysis residuals. Results from four different assimilation runs are considered, all use
background, df, and analysis, d?, residuals from June, July and August 2013. Observations
in this study come from 9 of the 18 radars in the network.

Case 1 uses residuals produced by running the UKV under the January 2014 operational
set up. This uses superobservations (calculated as described in Section 3.2.3) thinned to
6km and the observation operator given in equation (6). The background error covariance
(‘New’) has been derived using the Covariances and VAR Transforms (CVT) software which
is the new Met Office covariance calibration and diagnostic tool that analyses training data
representing forecast errors (either using the so-called NMC lagged forecast technique or
ensemble perturbations). Here a NMC method has been applied to (T+46 hour)-(T+3 hour)
forecast differences to diagnose a variance and correlation length scale for each vertical
mode.

Case 2 considers the effect of using the old operational (used prior to January 2013) UKV
background error covariance matrix (‘Old’). These statistics were generated from (T+24
hour)-(T+12 hour) forecast differences and, contrary to the CVT approach, the correlation
functions used specific fixed length scales [Ballard et al., 2015]. This background error
covariance matrix has larger variances than the matrix used in Case 1 and the correlations
length scales are slightly longer.

Case 3 uses the same background error covariance as Case 1, but used raw observations
(thinned to 6km) rather than using the superobservations.

Case 4 uses the same design as Case 3, but the operational observation operator is replaced



with the observation operator described in equation (11). We summarise the different cases
in Table 1.

Table 1 — Summary of experimental design for different cases

Case | B Superobservations | Observation Operator
1 New Yes Old
2 Old Yes Old
3 New No Old
4 New No New

For each case the available data for each radar scan is stored in 3D arrays of size N*® x
N7 x N* where N? is the number of scans containing data, N” = 16 is the number of
ranges and N = 120 is the number of azimuths. Figure 1 shows a radar scan with the
typical superobservation cells. The data is also separated by elevation, with data available
at elevation angles 19, 2°, 4° and 6°. (We do not estimate the observation error statistics
for the 9° beam due the lack of avaliable data). The position of these observations at these
elevations are shown in Figure 2, we note that the color scheme for each given elevation
is used throughout the figures in this manuscript. It is important to note that these
observations are only available in areas where there is precipitation and it is possible that
only part of the scan contains observations. Furthermore, the use of the superobservations,
thinning and quality control results in a limited amount of data in each scan. The amount
of data available differs for each elevation, with data for the lower elevations available at
far range, and for higher elevations available for near range. This lack of data means that
standard deviations and correlations are not available for every range at each elevation.
Results are not plotted for standard deviations unless 1500 samples were available; for
correlations the required number of samples is 500. Observations may be correlated along
the beam, horizontally or vertically. Here we consider both horizontal correlations and
those along the beam.

Horizontal correlations consider how observations at a given height are correlated. The blue
cells in Figure 1 show a set of observations that would be compared for a given height. For
each radar scan, data is sorted into 200m height bins. Here the height takes into account
the height of the radar above sea level. All observations that fall into a particular height
bin are considered. The data is binned by separation distance for each pair of observations
and from this the correlations are calculated.

When calculating along-beam correlations we consider how observations in the same beam
are correlated to each other, where correlations are expressed for the separation distance
along the beam. The red cells in Figure 1 show one set of observations that would be
considered in this case. Here the samples used for calculating equation (5) are taken to
be the individual scans along the azimuth. Samples are taken on all dates, from all radars
and from each azimuth. When calculating results along the beam we do not expect to
obtain symmetric correlation functions. When considering the along-beam correlations at
any given range the positive separation distance will result in a different correlation to
the negative separation distance. For example, say we are considering the correlations for
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Figure 1 — A typical radar scan where each box is the location of a superobservation. The
blue cells show a group of observations, all at the same height, that would be compared to
calculate horizontal correlations. The red cells show observations that would be compared to
calculate the along-beam correlations.
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the observation located at 30km range, the correlation with the 18km observation (-12km
separation) will have a smaller measurement volume whereas the observation at 42km
(+12km separation) will have a larger measurement volume. This is an important factor
to consider when analysing the along-beam correlation results.

For both horizontal and along-beam correlations it is possible to calculate an average
correlation function using all available data that is homogeneous for all elevations, heights
and ranges. These average correlation functions provide an overall impression of how the
calculated covariance differs between cases. The average along-beam correlation functions
are also comparable to those calculated in Wattrelot et al. [2012]. The disadvantage of this
method is that different elevations represent different heights in the atmosphere, and also
have interaction with different model levels. Therefore it is difficult to distinguish how the
error correlations arise, whether they are a result of errors in the observation operator, or
arise from the misrepresentation of scales. In an attempt to understand exactly what is
contributing to the error we also calculate the correlations for different elevations separately
as this allows us to better understand the origin and behaviour of the errors.

5 Results

5.1 Case 1 - Results from the operational system

We begin by calculating the observation error covariances for Case 1. Here data was ac-
quired using the January 2014 operational system. This uses superobservations (calculated
as described in Section 3.2.3) thinned to 6km, the observation operator given in equation
(6) and the ‘new’ background error covariance statistics.

5.1.1 Horizontal correlations

We first calculate the average horizontal correlation function using all data from all el-
evations. We show the standard deviation for this case in Table 2 and the correlation
in Figure 3. (Note that the table and figure contain results for all cases; in this section
we discuss the results for Case 1 only). The standard deviation falls within the range of
operational DRW standard deviations. We see that the correlation length scale (defined
to be the distance at which correlation becomes insignificant (< 0.2) [Liu and Rabier,
2002]) is approximately 24km. This is much larger than the distance calculated in Simonin
et al. [2012] (1-3km) and the operational thinning distance of 6km. This indicates that the
assumption of uncorrelated errors is incorrect.

We now consider the horizontal correlations for different heights and each elevation sepa-
rately. In Figure 4 we plot the standard deviation with height for each elevation. We see
that the standard deviations increase with height with the exception of the lowest levels,
and are similar for each elevation. For each elevation the volume of atmosphere sampled by
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Figure 2 — A typical radar beam at elevations 1° (black), 2° (blue), 4° (red) and 6° (cyan).

Table 2 — Horizontal and along-beam standard deviations calculated for Cases 1-4 using all
available data up to a height of 5km.

Case

Horizontal standard
deviation (ms™1)

Along-Beam standard
deviation (ms™1)

= O N
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Figure 3 — All elevation horizontal observation error correlations for Case 1 (Control,
squares), Case 2 (Alternate background error statistics, diamonds), Case 3 (Thinned raw
data, triangles) and Case 4 (New observation operator, circles) .
deemed to be insignificant below the horizontal line at 0.2.
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the observation increases with height. (Note that at any given height the volume sampled
by the 6° beam will be smaller than the 1° beam). Observations that sample larger vol-
umes are expected to have a larger instrument error as the Doppler shift is calculated from
multiple scattering targets in the measurement volume. In addition these observations will
be subject to more error from the observation operator as only information from the model
level nearest to the centre of the sample volume is utilised, even when the sample volume
spans several model layers. The increased errors at the lowest height may be a result of
larger representativity errors as the observations at the lower heights sample smaller vol-
umes than the model resolution. Our results support previous work in Simonin et al. [2014]
and we find that the standard deviations are similar to those used operationally.
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Figure 4 — Horizontal observation error standard deviation for elevations 1° (black), 2°
(blue), 4° (red) and, 6° (cyan) for Case 1 (Control, squares), Case 2 (Alternate background
error statistics, diamonds), Case 3 (Thinned raw data, triangles) and Case 4 (New observation
operator, circles).

Next we consider how the horizontal correlation length scale changes for a given elevation
at different heights. We plot the calculated correlation functions for a range of heights in
Figure 5. We see that the correlation length scale increases with height and ranges between
17km and 32km. For all heights the correlation length scale is longer than the operational
thinning distance. An increase in height corresponds to an increase in both the distance
of observation away from the radar and the volume of the measurement box and therefore
the change in correlation length scale could be attributed to either of these variables.

In an attempt to determine the cause of the change in length scale we consider the horizontal
correlations at the 2.5km height for the different elevations. At any given height the
measurement volume of the observation is larger for lower elevations. Figure 6 shows that
the correlation length scales are larger for the lower elevations. This suggests that it is the
change in measurement volume that affects the correlation length scale. As in this case
the observation operator does not account for the observation volume, it is likely that the
correlated error is, in part, caused by the error in the observation operator.
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Figure 5 — Horizontal observation correlations for elevation 2° at height 1.1km (dot), 2.7km
(dash), 3.5km (solid) and 4.3km (dot-dash) for Case 1 (control). Error correlations are
deemed to be insignificant below the horizontal line at 0.2.
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Figure 6 — Horizontal correlations at height 2.5km for elevations 1° (black), 2° (blue), 4°
(red) and, 6° (cyan) for Case 1 (Control). Error correlations are deemed to be insignificant
below the horizontal line at 0.2.

14



It is also possible to compare observations at the same range, observations will have the
same measurement volume but will be at different heights in the atmosphere. In this case
we find that for each elevation the correlation length scale is similar, e.g. at a range of
40km each elevation has a correlation length scale of ~ 23km (not shown). This suggests
that the the measurement volume of the observation has the largest impact on the hori-
zontal correlation length scale, with correlation length scale increasing with measurement
volume.

5.1.2 Along-beam correlations

Next we calculate the along-beam observation errors using the data from Case 1. We begin
by calculating the average observation error covariance and comparing these results with
those from Météo-France [Wattrelot et al., 2012]. We do not expect estimated statistics
to be equal to those found by Météo-France as there are differences in the operational set
up (e.g. observation and background error covariance statistics, observation processing,
observation operators and thinning distances) and the region and time scale covered by
the data.

Our estimated standard deviation (Table 2) is larger than the standard deviation found
by Météo-France which is 1.51ms™!. This is likely to be the result of the different op-
erational set up and observation processing. We plot our estimated correlation function
along with the correlation found by Météo-France in Figure 7. We see that the correlation
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Figure 7 — All elevation along-beam observation error correlation for Cases 1 (Control,
squares), 2 (Alternate background error statistics, diamonds), 3 (Thinned raw data, trian-
gles) and 4 (New observation operator, circles) and those found previously by Météo-France
(crosses). Error correlations are deemed to be insignificant below the horizontal line at 0.2.

length scales are approximately 5km longer than those found by Météo-France. Given the
different operational setup used by Météo-France the similarities between the results are
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reassuring and suggest that we are obtaining a reasonable estimate of the observation error
correlations.

Next we calculate the error statistics along the beam for each elevation. In Figure 8 (square
symbols) we plot the change in standard deviation with height for beam elevations 1°, 2°,
4° and 6°. (For the horizontal correlations the height of the radar above sea level was
accounted for; here height is calculated assuming that the radar is at sea level). For all
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Figure 8 — Along-beam observation error standard deviation for elevations 1° (black), 2°
(blue), 4° (red) and, 6° (cyan) for Case 1 (Control, squares), Case 2 (Alternate background
error statistics, diamonds), Case 3 (Thinned raw data, triangles) and Case 4 (New observation
operator, circles).

elevations the observation error standard deviation generally increases with height, with the
exception of the lowest levels. This is similar to the behaviour of the standard deviations for
the horizontal case. Unlike the horizontal case the standard deviations for each elevation
are not so similar. For any given height the standard deviations are larger for the lower
elevations. At any given height the lower elevations will be sampling larger volumes of the
atmosphere. Observations sampling large volumes are subject to both larger instrument
error and more error in the observation operator.

We now consider how the correlation length scale changes for a given elevation at different
heights. The estimated observation error correlations for a range of heights are plotted
in Figure 9. The along-beam correlation length scales are shorter than the horizontal
correlations, though the correlation length scale still increases with height for any given
elevation. This highlights the relationship between the increase in correlation length scale
with the increasing height, range and volume measurement of the observation.

In Figure 10 we consider how the correlation function differs with measurement volume.
We plot the along-beam correlation function for each elevations at a height of 2.5km. Here
the height for each observation is the same, but the measurements are taken at different
ranges with the lowest elevation at the furthest range. Figure 10 shows that the correlation
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Figure 9 — Along-Beam observation correlations for elevation 2° at height 1.1km (dotted
line), 3.0km (dashed line) and 3.5km (solid line) for Case 1 (Control).

length scale increases with range. Again this likely to be a result of the larger measurement
volumes at far range.
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Figure 10 — Correlations along the beam at height 2.5km for elevations and approximate
ranges 1° ~ 100km (black), 2° ~ 64km (blue), 4° ~ 35km (red) and , 6° ~ 22km (cyan) for
superobbed data (squares/solid lines) and thinned raw data (triangles/dashed lines). Error
correlations are deemed to be insignificant below the horizontal line at 0.2.
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In Figure 11 we plot the correlation function for each elevation at a range of 40km. Here
the volume of measurement for each observation is the same, but measurements from
lower elevations are at lower heights. We see that the correlation length scale differs with
elevation and decreases with height. We hypothesise that the change in correlation is
a result of the different levels of the atmosphere sampled by different beam elevations.
For the low elevation angles the beam gradient is shallow, hence different gates measure
similar heights in the atmosphere; this results in larger error correlations. Larger elevation
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angles have larger beam gradients, different gates sample a wider range of heights in the
atmosphere; this results in small observation error correlations.
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Figure 11 — Correlations along the beam at range 40km for elevations and approximate
heights 1° ~ 0.8km (black), 2° ~ 1.5km (blue), 4° ~ 3.0km (red) and , 6° ~ 4.3km (cyan)
for superobbed data (solid lines) and thinned raw data (dashed lines). Error correlations are
deemed to be insignificant below the horizontal line at 0.2.

5.1.3 Summary

For this case we have calculated observation error statistics using data from the January
2014 operational UKV model and assimilation. We find that:

e DRW standard deviations increase with height (with the exception of the lowest
heights). This is likely due to the increasing measurement volume with height. The
larger errors at the lowest height are likely to be a result of representativity errors.

e The correlation length scale is larger than the thinning distance of 6km chosen to
ensure that the assumption of uncorrelated errors is valid.

e For both horizontal and along-beam correlations and for all elevations the observation
error correlation length scale increases with height. We hypothesise that this is in part
due to the larger errors in the observation operator and correlated superobservation
errors at large range. This will be the subject of further investigation (see sections
5.3 and 5.4).

5.2 Case 2 - The effect of changing the assimilated background
error statistics

The diagnostic of Desroziers et al. [2005] uses the assumption that the observation and
background error covariance matrices used in the assimilation are exact. In the operational
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assimilation, Case 1, the observation errors are assumed uncorrelated and the background
error variance and correlation length scale are believed to be too large. Results given in
Waller et al. [2015] relating to the diagnostic suggest that under these circumstances the
diagnostic will underestimate the observation error correlation length scale. Therefore it
is possible that the true observation error statistics have longer correlation lengths than
those calculated for Case 1.

To provide information on how results in Case 1 may compare to the true observation
error statistics, we consider the sensitivity of the estimated observation error statistics to
using different background statistics. Here we use previous operational background error
statistics that have larger variances and larger length scales than the background error
statistics used in the previous experiments.

5.2.1 Horizontal correlations

The average standard deviation given in Table 2 shows that the use of background error
statistics with larger variance and longer length scales results in a lower estimate of the
observation error standard deviation. The correlation function, plotted in Figure 3, shows
clearly that using a different background error covariance matrix has reduced the estimated
observation error correlation length scale. These results agree with the theoretical results
in Waller et al. [2015] (larger overestimates of variance and correlation length scale in the
assimilated background statistics results in more severe underestimates of observation error
variance and correlation length scale) and suggest that the theoretical results developed
under simplifying assumptions are still applicable in an operational setting. The theoretical
work and results from Cases 1 and 2 suggest that if the variances and length scales in the
assumed covariance matrix B were further reduced compared to Case 1, the estimated
observation error correlation length scales would be larger.

Figure 4 shows that the change in standard deviation with height for each elevation is
similar to Case 1. However, the standard deviations for Case 2 are smaller than those from
Case 1, a result of the larger background error variances used in the assimilation.

As with the average correlations, results relating to the correlations for each individual
elevation and height have smaller correlation length scales than Case 1 (not shown). How-
ever, we still find that the qualitative behaviour of the correlation length scales remains
the same; that is, for any elevation the correlation length scale increases with height and
for any given height the length scale decreases as elevation increases.

5.2.2 Along-beam correlations
For the average along-beam correlation we find the standard deviation (Table 2) is reduced

compared to Case 1. The correlations plotted in Figure 7 also have a shorter length scale
(approximately 10km) and are more comparable to those found by Météo-France.
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When considering the standard deviations for each elevation we again see that they are
reduced (see diamonds Figure 8). Though the change in standard deviation with height
is qualitatively similar to Casel. We find that the the shape of the correlation function
is similar, but the length scales are shorter than those calculated in Case 1 (not shown).
The variation in the correlation length scale with elevation, height and range is, however,
unaltered.

5.2.3 Summary

For this case we have calculated observation error statistics using different background error
statistics which have larger variances and correlation length scales. We find that:

e Estimated observation error standard deviations (length scales) are smaller (shorter)
when using the alternative background error statistics. However, changes in standard
deviation and correlation length scale with height remain qualitatively similar to
Case 1.

e Results from Case 1 and Case 2 follow the theoretical work of Waller et al. [2015].
Given that the standard deviation and background statistics in Case 1 are believed to
be too large (though smaller than Case 2), it is possible that the true error statistics

have larger standard deviations and longer length scales than those calculated in
Case 1.

5.3 Case 3 - The effect of the superobservations

The creation of the superobservations, discussed in section 3.2.3, results in an observation
error that is only independent of the background error if the errors in the background
states used in the calculation of each superobservation are of the same magnitude and are
fully correlated [Berger and Forsythe, 2004]. This assumption is true at close range to the
radar, but it is possible that it is violated at far range resulting in increased observation
error correlation length scales. To determine if the superobservations have this effect we
consider the results from Case 3, where the assimilation uses thinned raw data. We return
to using the ‘New’ background error statistics.

5.3.1 Horizontal correlations

Table 2 shows that the average standard deviation for this case is very similar to that
of Case 1. However, the correlation length scale is slightly reduced compared to Case 1
(Figure 3). This suggests that the use of superobservations may introduce some observation
error correlation, but does not appear to be the main source of correlations.

Figure 4 shows that the standard deviations for individual elevations are similar to those
found in Case 1. In general we find that the use of the thinned data results in slightly shorter
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observation error correlation length scales for observations that are at lower elevations
and far range. For example, Figure 12 shows, for the 2° elevation, that the use of the
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Figure 12 — Horizontal observation correlations for elevation 2° at a range of 24km (solid)
and 90km (dash) for Case 1 (control, squares) and Case 3 (Thinned raw data, triangles).
Error correlations are deemed to be insignificant below the horizontal line at 0.2.

superobservtions has little impact on the correlation length scale at short range. However,
at far range the correlation length scale for Case 1 is approximately 5km longer than that
for Case 3. This result supports our hypothesis that the use of superobservations increases
the observation error correlation length scale at far range. This is a result of the invalid
assumption that the errors in the background states used in the superobservation creation
are of the same magnitude and fully correlated.

5.3.2 Along-beam correlations

From Table 2 we see that the average along-beam observation error standard deviation
is similar to that found using the data from Case 1. Figure 7 shows that the correlation
length scale is also slightly reduced.

Figure 8 shows that the standard deviations for separate elevations are similar to Case 1.
Figures 10 and 11 show that using the raw observations results in a similar shaped corre-
lation function to Case 1 but with a slightly reduced length scale. The exception is the
highest elevation (closest range) where the length scales are slightly larger. These results
suggest that using the superobservation has the opposite effect, namely the introduction
of correlation at far range, but a reduction of correlation in the higher elevations.

5.3.3 Summary

We have calculated observation error statistics using thinned raw observations. We find
that:
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e Using thinned raw data has little impact on the estimated observation error standard
deviations; these are similar to Case 1.

e In general, horizontal correlation length scales at far range are slightly reduced. This
implies that using superobservations introduces correlated error at far range, possibly
as a result of an invalid assumption in the superobservation creation.

e In general along-beam correlation length scales are reduced for the lower elevations,
however they slightly increased for the 6° beam.

5.4 Case 4 - The effect of an improved observation operator

The previous cases have all used the simplified observation operator described in equation
(6). The omission of the more complex terms introduces both additional error variance
and correlation [Fabry, 2010]. It may not be possible to use a full observation operator
in operational assimilation, though the use of the sophisticated observation operator in
equation (11) may be considered. In this case we use this new observation operator to see
if including beam broadening and reflectivity weighting in the observation operator has any
affect on the observation error statistics. Here we use the thinned raw observations rather
than the superobservations (the creation of the superobservation involves the observation
operator, and ideally we wish to isolate the impact of the observation operator in the
assimilation), hence the results here must be compared to Case 3.

5.4.1 Horizontal correlations

For the average horizontal error statistics both the standard deviation and correlation
length scale have decreased compared to Case 3 (see Table 2 and Figure 3).

For the separate elevations, as with all previous cases, we find that the standard devia-
tions increase with height (Figure 4), though here the actual values for the lower elevations
are reduced compared to the standard deviations found in Case 3. The reduction is not
seen in the higher elevations as observations are at near range where the effects of beam
bending and broadening, accounted for in the new observation operator, are not so sig-
nificant. In general we find that the correlations for every elevation are slightly decreased
when using the improved observation operator (not shown). When considering horizontal
correlations we compare observations at the same range away from the radar that have
the same measurement volume, and hence the new observation operator should have the
same improvement for each observation we compare. The reduction in error standard de-
viation and correlation shows that the inclusion of the beam broadening and reflectivity
weighting has improved the observation operator. It also suggests that the use of an even
more sophisticated observation operator may further reduce the observation error correla-
tion.
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5.4.2 Along-beam correlations

In this case Table 2 and Figure 8 show that the error standard deviation is reduced com-
pared to Case 3 suggesting that the more sophisticated observation operator is indeed an
improved map from background to observation space. Both Figure 7 and the correlations
for separate elevations suggest that introducing the new observation operator slightly in-
creases the correlation length scale. We hypothesize that this is a result of the inclusion of
the beam broadening. When using the old observation operator observations at different
ranges at any elevation were unlikely to consider data from the same model levels. With
the introduction of the beam broadening different observations will now use information
from the same model levels and this is likely to be the cause of the increased correlation
length scales.

5.4.3 Summary

For this case we have calculated observation error statistics using thinned raw observations
and an improved observation operator. We find that:

e Using the new observation operator reduces the error standard deviations for the
lower elevations. Less impact is seen in the higher elevations where the effects of
beam bending and broadening (accounted for in the new observation operator) are
not so significant.

e For the horizontal correlations using the new observation operator reduces the esti-
mated observation correlation length scale. This suggests that error in the observation
operator may be in part responsible for the large correlation length scales.

e Using the new observation operator increases the along-beam correlation. This is
likely to be the result of close observation residuals sharing increased amounts of
background data.

6 Conclusions

With the development of convection-permitting NWP the assimilation of high resolution
observations is becoming increasingly important. To use the observations to their full po-
tential their associated error statistics must be well understood and correctly specified.
Observation errors can be attributed to a number of different sources, some of which may
be state dependent and dependent on the model resolution. Calculation of observation
error statistics is difficult as they cannot be measured directly. Recently the diagnostic
of Desroziers et al. [2005] has been used to estimate inter-channel observation error cor-
relations for a number of different observation types. In this work we use the diagnostic
to estimate spatially correlated errors for Doppler radar radial wind (DRW) observations
that are assimilated into the Met Office UKV model. Errors for DRWs may be correlated
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horizontally, vertically or along the path of the radar beam. In this work we consider both
the horizontal and along-beam error statistics.

Initially error statistics were calculated for observations assimilated into the UKV model
operational in January 2014. This provided information on the general structure of the
observation errors and how they vary throughout the atmosphere. Error statistics were
also calculated using data from an assimilation run using alternative background error
statistics. This provided information on how sensitivity of the results to the specification
of the background error statistics. The diagnostic was then applied to data from a further
two assimilation runs. These evaluated the impact that the use of superobservations and
errors in the observation operator have on the estimated observation error statistics.

Results from all four cases showed similar behaviour for the estimated statistics. We are
able to conclude that most DRW error standard deviations, horizontal and along-beam
correlation length scales increase with height, as a function of the increase in measurement
volume. Thus at least part of the correlated errors are likely to be related to the uncertainty
in the observation operator. The exceptions are the standard deviations at the lowest
heights. Observations at the lowest heights have the smallest measurement volumes, smaller
than the model grid spacing, and hence representativity errors may well account for the
larger standard deviations at lower heights.

Results showed that the estimated standard deviations are similar those used operationally.
However for the majority of cases, with exception of the 6° beam, the correlation length
scales are much larger than those found in Simonin et al. [2012] and the operational thinning
distance of 6km. Despite the differences in operational system, our estimated average along-
beam correlations are similar to those calculated by Météo-France [Wattrelot et al., 2012].
Furthermore, observation error statistics estimated when using an alternative background
error covariance matrix in the assimilation and the results from Waller et al. [2015] imply
that the observation error correlation length scale is underestimated. This suggests that the
errors are correlated to a degree that it should be accounted for in the assimilation.

In an attempt to understand the source of the error correlations, the effect of using su-
perobservations and an improved observation operator are considered. The use of the
superobservations does not affect the error standard deviations. However, results suggest
that the use of superobservations introduces correlated error at far range, possibly as a
result of an invalid assumption in the superobservation creation. The use of an improved
observation operator reduces the error standard deviations, particularly at low elevations
and at far range where observations have large measurement volumes. This is expected
since the new observation operator takes into account the beam broadening and bending,
both of which affect the beam most at far range. The improvement in the low elevations is
related to the inclusion in the observation operator of information from more model levels.
These are denser in the lower atmosphere where the low elevations provide observations.
The use of the new observation operator results in an increase of the along-beam correla-
tion length scale. We hypothesize that this is a result of nearby observation residuals now
sharing information from the same model levels. However, the horizontal correlations were
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slightly reduced. This suggests not only that some of the horizontal correlations previously
seen were a result of omissions in the observation operator, but also that the horizontal
correlation length scale may be further reduced with the use of on even more complex
observation operator.

These results provide a better understanding of DRW observation error statistics and the
sources that contribute to them. We have shown that these observation errors exhibit
large spatial correlations that are much larger that the operational thinning distance. This
implies that either the data must be thinned further to ensure the errors are uncorrelated
or the correlated errors must be accounted for in the assimilation.
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