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Abstract Implicit dynamic-algebraic equations, known in contraainy as descrip-
tor systems, arise naturally in many applications. Suclkesys may not be regular
(often referred to as singular). In that case the equatiansmot have unique solu-
tions for consistent initial conditions and arbitrary ingpand the system may not be
controllable or observable. Many control systems can balagged by proportional
and/or derivative feedback. We present an overview of rmashieal theory and nu-
merical techniques for regularizing descriptor systenisgieedback controls. The
aim is to provide stable numerical techniques for analyaimgjconstructing regular
control and state estimation systems and for ensuringlieaetsystems are robust.
State and output feedback designs for regularizing line@-tnvariant systems are
described, including methods for disturbance decouplimdy mixed output prob-
lems. Extensions of these techniques to time-varying tia@a nonlinear systems
are discussed in the final section.

1 Introduction

Singular systems of differential equations, known in cohtheory asdescrip-
tor systemsr generalized state-space systemave fascinated Volker Mehrmann
throughout his career. His early research, starting withHabilitation [33, 35],
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concerned autonomous linear-quadratic control probleonstcained by descrip-
tor systems. Descriptor systems arise naturally in manlicgijopns, including air-
craft guidance, chemical processing, mechanical bodyanptiower generation,
network fluid flow and many others, and can be considered a$ncous or dis-
crete implicit dynamic-algebraic systems [32, 41]. Sucsteys may not be regular
(often referred to as singular). In that case unique saigtio initial value problems
consistent with the system may not exist and the system mapeoontrollable
or observable. An important aspect of control system deisiginerefore to ensure
regularity of the system.

In this chapter we review the work of Volker and his colleagyap mathematical
theory and numerical techniques for regularizing deserigpgstems using feedback
controls. Two key elements contributed initially to thegasch: the establishment of
conditions for the regularizability of descriptor systelmydeedback [25, 30] and the
development of stable numerical techniques for the rednctf descriptor systems
to condensed matrix forms [33, 34, 36]. Following a stimualgtmeeting at the
International Conference on Linear Algebra and Appligagiin Valencia in 1987,
these two research threads were brought together in a rpéeedback design for
descriptor systems [5] and later published in [6] and [7].

Since that time, Volker has contributed to a whole sequefegaiting results on
the regularization of descriptor systems [3, 8, 9, 10, 11,182 20, 21, 22, 24, 31,
37] . The development of sound numerical methods for systesigd, as well as
techniques for guaranteeing ttebustnessf the systems to model uncertainties and
disturbances, has formed the main emphasis throughoueesirch. We describe
some of this work in the next sections.

We start with preliminary definitions and properties of dgsor systems and
then discuss regularization by state feedback for lineae-iinvariant systems. Dis-
turbance decoupling by state feedback is also discussedhrbiblem of regulariza-
tion by output feedback is then considered. Further deveéoys involving mixed
output feedback regularization are given next, and finaiykvon time-varying and
nonlinear systems is briefly described.

2 System Design for Descriptor Systems

We consider linear dynamical control systems of the form

EX(t) = AX(t) +Bu(t), x(to) = o,
y(t) = Cx(t), 1)

or, in the discrete-time case,

Ex(k+1) = Ax(k) +Bu(k), x(0) = xo,
y(k) = Cx(k), 2)
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whereE, A € R™" B e R™™M C e RP*", Herex(-) is the statey(-) is the outpurt,
andu(-) is the input or control of the system. It is assumed tmap < n and that
the matricesB,C are of full rank. The matrixe may besingular. Such systems
are known aslescriptoror generalized state-spacystems. In the cage = I, the
identity matrix, we refer to (1) or (2) assaandardsystem.

We assume initially that the system is time-invariant; ihathe system matrices
E,A B, C are constant, independent of time. In this context, we aerésted in
proportional and derivative feedback control of the fauth) = Fy(t) — Gy(t) + v(t)
or u(k) = Fy(k) — Gy(k+ 1) + v(k), where F ,G € R™P are selected to give the
closed-loop system

(E+BGO)X(t) = (A+ BFC)X(t) + By(t) 3)

or
(E+BGO)x(k+ 1) = (A+ BFC)x(K) + Bv(K) (4)

desired propertiesroportional outputfeedback control is achieved in the special
caseG = 0. Derivative outputfeedback control corresponds to the special case
F = 0 and derivative and proportionstatefeedback control corresponds to the
special cas€ = | . The dual of the control system, abserver(or state-estimator),

is attained with an appropriate choice foiin the special cas® = | . The aim of

the feedback designs is to alter the behaviour of the systsponse. Proportional
feedback acts to modify the system mathixwhilst derivative feedback alters the
system matriE. Different properties of the system can, therefore, beeasd using
different feedback combinations.

2.1 Structure of the System Response

The response of the descriptor system (1) or (2) can be thescim terms of the
eigenstructure of the matrix pendiE — BA, which we denote byE,A). The sys-
tem isregularif the pencil (E,A) is regular, that is,

defaE — BA) # 0 for some(a,B) € C2. (5)

The generalized eigenvalues of a regular pencil are defingdthle pairs
(aj,Bj) € C?\{0,0} such that

defa;E-BjA) =0, j=12,....n. (6)

If Bj # 0, the eigenvalue pair is said to bBaite with value given byA; = aj/B; and
otherwise, if3; = 0, then the pair is said to be amfinite eigenvalue. The maximum
number of finite eigenvalues that a pencil can have is lessdhaqual to the rank
of E.
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If the system (1) or (2) is regular, then the existence andueress of classical
smooth solutions to the dynamical equations is guarantesifficiently smooth
inputs and consistent initial conditions [14, 43]. The $iolus are characterized in
terms of the Kronecker Canonical Form (KCF) [26]. Nonsirguhatrices< andY
(representing right and left generalized eigenvectors @ntipal vectors of the
system pencil, respectively) then exist such that

XEY = [gg] XAY = [(J)ﬂ (7

where the eigenvalues of the Jordan malrooincide with the finite eigenvalues of
the pencil andN is a nilpotent Jordan matrix such thiit =0, N1 0, i > 0,
corresponding to the infinite eigenvalues. Tie@exof a descriptor system, denoted
by ind(E,A), is defined to be the degreef nilpotency of the matriXN, that is, the
index of the system is the dimension of the largest Jordackldssociated with an
infinite eigenvalue of the KCF (7). The index is a fundamentaracteristic of a
descriptor system, determining the existence and smosgtofesolutions.

By convention, a descriptor system is regular and of index @nd only if E
is nonsingular. In this case the system can be reformulegedd siandard system.
However, the reduction to standard form can be numericalhgliable if E is ill-
conditioned with respect to inversion. Therefore it is daslie to work directly with
the generalized state-space form even wikeienonsingular.

A descriptor system is regular and has index at most one ifoatyif it has
exactlyq=rank(E) finite eigenvalues and— g non-defectivénfinite eigenvalues.
Conditions for the system to be regular and of indeg are given by the following
important result.

Theorem 1.[25, 30] Let E Ac R™"and let $(E) and T.(E) be full rank matri-
ces whose columns span the null spag$E) and.# (EM) respectively. Then the
following are equivalent:

(i) aE — BAis regular and of index 1;

(i) rank([E,AS.(E)]) =n;

(i) ranl([TJ(EE)A ) =n;
(iv) rankT,] (E)AS.(E)) = n—rank(E).

Systems that are regular and of index at most one can be segpant purely
dynamical and algebraic parts (fast and slow modes) [14,a28] in theory the
algebraic part can be eliminated to give a reduced-ordadata system. The re-
duction process, however, may be ill-conditioned for nuoarcomputation and
lead to large errors in the reduced order system [28]. If yiséesn is not regular or
if ind(E,A) > 1, then impulses can arise in the response of the system daihe
trol is not sufficiently smooth [27, 42]. Since the linear stant coefficient system
is usually only a model that approximates a nonlinear madisturbances in the
real application will in general lead to impulsive solutiifithe system is of index
higher than one.
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2.2 Controllability and Observability

If the descriptor system (1) or (2) isgular, then the following controllability and
observability conditions are sufficient for most classidasign aims. To simplify
the notation, we hereafter denote a matrix with orthonornaimns spanning the
right nullspace of the matrid by S.(M) and a matrix with orthonormal columns
spanning the left nullspace & by T..(M). The controllability conditions are de-
fined to be:

CO: rank([aE — BA, B]) = nforall (a,B) € C2\{(0,0)}.
Cl:rank[AE—A,B]) =nforallA € C. ®8)
C2: rank([E, AS.(E), B]) = n, where the columns &, (E) span the

null space oE.

The observability conditions are defined as the dual of tinérothability conditions:

00: rank| /% CPA|) = nforall (a,B) € €2\{(0,0)}.
O1: rank )\EC_ A} )=nforallA € C.
T 9)
02: rank | T.] (E)A | ) = n, where the columns Of.(E) span the
C

right null space of.

For systems that are regular, these conditions charaetérézcontrollability of
the system. The conditid@0 ensures that for any given initial and final states of the
systemxg, X;, there exists an admissible control that transfers thesyftom xg
to x5 in finite time [43]. ConditionC1 ensures the same for any given initial and
final statesxg, X belonging to the solution space of the descriptor system][3
regular system that satisfies the conditi@sandOO0 is said to becompletely con-
trollable (C—controllable) andompletely observablg€—observable) and has prop-
erties similar to those of standard control systems. A i@ggystem istrongly con-
trollable (S—controllable) iC1 andC2 hold andstrongly observabléS—observable)
if 01 andO2 hold. Regular systems that satisfy conditi©2arecontrollable at in-
finity or impulse controllabld27, 42]. For these systems, impulsive modes can be
excluded. ConditiorC2 is closely related to the second condition in Theorem 1,
which characterizes regular systems of index at most on¢h®yefinition, a regu-
lar descriptor system of index at most one is controllablafatity.

The controllability and observability conditio@f, C1, C2, andO0, O1, O2 are
all preserved under non-singular “equivalence” transttioms of the pencil and
under proportional state and output feedback,®2tis not necessarily preserved
under derivative feedback. Therefore, if derivative fesrlbis used to modify the
system dynamics, it is necessary to avoid losing contriifiplt infinity [5, 7].

Whilst regularity is required for controllability and obsability, it is notneeded
in order to regularize the system by feedback. Many desurytstems that are not
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regular can be regularized by proportional and/or dexesfieedback. Conversely,
systems that are regular can easily be transformed by fekdbt closed-loop

systems that are not regular. It is important, thereforestablish conditions that
ensure the regularity of systems under feedback and toaenelmerically reliable

techniques for constructing regular feedback systemsdefimt most one.

Theorem 1 defines conditions that must be satisfied by a closgsystem pen-
cil (3) or (4) for it to be regular and of index 1. These conditions are closely
related to the propertigsl, C2, O1, O2, but regularity is needed for controllability
and observability, whereas it is not required for regukgion. In [25, 30] it was
first shown that these conditions can be used to determinesadiloop descriptor
feedback system that is both regular and of index at mostusieg proportional
feedback. The system itself does not need to be regular tevecthis result.

In a standard system, derivative feedback does not altesygtem behaviour in
any way that could not be achieved by proportional feedbémkea However, for
descriptor systems, it is possible that derivative feekllzan decrease the suscep-
tibility to noise and change the dynamic order of the desaripystem. One of the
applications of derivative feedback is to shift infinitedteencies to finite frequen-
cies in order to regularize and control the system. ThessilpiiSes together with
the implications of Theorem 1, provided a challenge to Volked his colleagues
and motivated their initial work on feedback design for dggor systems [5, 6, 7].
The work is based on numerically stable methods for redud@sgriptor systems to
condensed forms using unitary transformations. In the segtion we summarize
this research.

3 Regularization by Feedback for Time-Invariant Systems

The problem of regularizing a descriptor system of form (1§2) by feedback is
defined as:

Problem 1. Given real system matricds, A, B, C, find real matrice$ andG such
that the closed-loop pencil

(E+BGC, A+ BFC) (10)

is regular and in(E +BGC A+BFC) < 1.

If C =1 this is thestatefeedback regularization problem and otherwise it is the
outputregularization feedback problem.

In the report [5], both the output and the state feedbacklagigation problems
are investigated initially, but the published version féfts only the state feedback
problem. A complete solution to the state feedback proble achieved, but the
output case proved to be more elusive, and a number of pagkiing this prob-
lem followed later. The state feedback problem has its owpoitance in real ap-
plications, so here we consider first the state feedbacKgmohnd then the output
feedback problem separately.
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3.1 Regularization by State Feedback

In the papers [5, 6, 7], two major contributions are made. fliisé provides con-
ditions for the existence of solutions to the state feedlvagklarization problem.
This is achieved by numerically stable transformationsoiodensed forms that en-
able the required feedback matrices to be constructed a@etyin practice. The
second establishes ‘robust’ system design techniquesBurimg that the proper-
ties of the closed-loop system pencil are insensitive téupleations in the system
matriceskE + BG, A+ BF, B.

The following theorem gives the complete solution to théesteedback regular-
ization problem.

Theorem 2.[7] Given a system of the form (1) or (2),idnk[E ,AS.(E),B]) = n,
that is, if C2 holds, then there exist real feedback matrice & E R™" such
that the pencil (E + BG,A + BF) is regular, ind(E + BG,A+ BF) < 1, and
rank E+BG) = r, where0 <rank([E,B]) —rankB) < r <rank([E,B]).

To establish the theorem, we compute the QR factorizatioB afhd the URV
factorization [28] ofT,! (B)E to obtain orthogonal matricésandQ such that

E;1 O O 0 A11 A12 Ax3
PEQ= |ExnEx 0|, PB=|B2|, PAQ= A AxAx]|. (11)
0 00 0 Agy Azp Ass

Here E;1 and B, are nonsingular ané,; is full column rank. BothE;; and By
can be further reduced by orthogonal transformations teréuk positive diagonal
matrices. The theorem then follows by selecting feedbacdkices to ensure that
the closed-loop pencil

(E+BG,A+BF) (12)

satisfies condition (ii) of Theorem 1. I€1 holds as well asC2, the resulting
closed-loop system is then strongly controllable [7]. T$yistem could be reduced
further to a standard system, but in this case the feedbaticesmwould have to be
selected with care to ensure that the reduction is numéristable.

Additional results on state feedback regularization uginty proportional or
derivative feedback are also given in [5, 6, 7]. The existesfaegularizing propor-
tional state feedback designs is easily shown in the caseaw®2 holds using the
condensed form (11). For the derivative feedback case ethdts are the same as
in Theorem 2, with the exception that the potential rank efrimatrix (E + BG) is
now restricted from below. The maximum rank that can be olethremains equal
to rank[E, B]).

In general the feedback designs that regularize the sysigror((2) are not
uniquely determined by Theorem 2 and additional degreezetibm in the design
can be exploited to obtain robustness and stability of tetesy as well as regularity.
For robustness we want the system to remain regular and ef iatdmost one under
perturbations to the closed-loop system matrices. Fronofeme 1 the closed-loop
pencil (12) is regular and of index 1 if and only if
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E+BG
ranK[TJ(E+BG)(A+ BF)]) =n (13)

Itis well-known that for a matrix with full rank, the distaato the nearest matrix of
lower rank is equal to its minimum singular value [28]. Hefimerobustness of the
closed-loop pencil (12) we aim to seleetand G such that the pencil is unitarily
equivalent to a pencil of the forraS; — 8BS, where

_[2r0 _ | A1 A
R P

and the assigned singular valuesXy{, 2| are such that the condition numbers of
Jr and 2| are minimal. This choice ensures regularity of the systedmaaximizes
a lower bound on the minimum singular value of (13), whilsai@ing an upper
bound on the magnitude of the gaiRsand G. Details of the algorithm to achieve
these results are givenin [5, 7, 39]. This choice also eisdted the reduction of the
closed-loop descriptor system to a standard form is asewgltlitioned as possible.
In practice such robust systems also have improved perfurenzharacteristics (see
[40]).

In addition to regularity, it is desirable to ensure that stsgn design has stability
and even that it has specified finite eigenvalues. The foligweésult, shownin [5, 7],
holds for descriptor systems.

Theorem 3.[5, 7] Given a system of the form (1) or (2), if the conditi@andC2
hold and r is an integer such th&t < rank([E,B]) —rank(B) < r <rank[E,B]),
then for any arbitrary set” of r self-conjugate finite poles there exist feed-
back matrices FG € R™" such that the pencilE + BG,A+ BF) is regular,
ind(E +BG,A+BF) < 1,rankE +BG) =r and all pairs in ./ are the finite
generalized eigenvalues of the pend@ + BG,A+ BF).

For robustness of the closed-loop system, we require thenmoax number of
finite eigenvalues to be assigned and both the finite and t@faigenvalues to be
insensitive to perturbations in the closed-loop systenrioces. One strategy for
obtaining a robust solution to the eigenvalue assignmeottlem for a descriptor
system is to apply derivative feedback alone to obtain asplegular index-one
system with rank€ +BG) =r = rank([E, B]) using singular value assignment, and
then to useobustproportional state feedback to assigfinite eigenvalues to the
system. The problem of eigenvalue assignment by propattistate feedback in
descriptor systems is treated in [17, 25, 30]. Techniquesdibust eigenstructure
assignment ensuring that the assigned eigenvalues of eseccloop system are
insensitive to perturbations in the system matrices asbbished in [29, 30, 38].

The problem of designing an observer, or state-estimatting dual of the state
feedback control problem. An observer is an auxiliary dyitairsystem designed
to provide estimatex of all the statesx of the system (1) or (2) using measured
output datay andy . The estimator is a closed-loop system that is driven by the
differences between the measured outputs and derivativibe aystem and their
estimated values. The system pencil is given by
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(E+GC,A+FC), (15)

where the matriceB andG must be selected to ensure that the responeéthe
observer converges to the system statfor any arbitrary starting condition; that

is, the system must be asymptotically stable. By dualithwiite state feedback
problem, it follows that if the conditio®2 holds, then the matricds and G can be
chosen such that the corresponding closed-loop pencilgt&yular and of index at
most one. If conditioD1 also holds, then the closed-loop system is S-observable.
Furthermore, the remaining freedom in the system can betseléo ensure the
stability and robustness of the system and the finite eigeesaf the system pencil
can be assigned explicitly by the techniques describedh#ostate feedback control
problem.

3.2 Disturbance Decoupling by State Feedback

In practice control systems are subject to disturbancesihas include modelling
or measurement errors, higher order terms from lineadmatr unknown inputs
to the system. For such systems it is important to desigrbfeidcontrollers and
observers that suppress the disturbance so that it doedfect the input-output
of the system. In research strongly inspired by the earliekveof Volker and his
colleagues on state feedback regularization, the probfatisturbance decoupling
is treated in [20, 21].

In the case that disturbances are present, the linear tivagiant system takes
the form

ExX(t) = Ax(t) + Bu(t) + Hq(t), x(to) = Xo,
y(t) = Cx(t), (16)

or

Ex(k+ 1) = Ax(k) +Bu(k) + Hq(k), x(0) = xo,
y(k) = Cx(k), (17)

whereE, Ac R™" Be R™™ Ce R™" H e R™P andq(-) represents a vector
of disturbances.

To suppress the disturbances, a state feedback cont®llesed to modify the
input-output map, or transfer function, of the system. Thstudbance decoupling
problem for the descriptor system (16) or (17) is then to firmpprtional and deriva-
tive feedback matrice§, G such that the closed-loop pen¢t + BG,A+ BF) is
regular and of index at most one and

T(s) =C(s(E+BG) — (A+BF))"'H =0, (18)
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whereT (s) defines the transfer function of the closed-loop system filoeninput
disturbancey(-) to the outputy(-). This condition ensures that the disturbance does
not affect the input-output response of the closed-loopesydor any choice of
the input controlu(-). Necessary and sufficient conditions for the existence of a
solution to this problem are established in [21]. In additiconditions are derived
under which the feedback matrices can be chosen such theloted-loop system
is also stable. The derivations are constructive and a naallgrstable algorithm is
given for implementing the procedure.

In [20] the problem of designing a disturbance-decoupleskoler system for
estimating (a subset of) the states of the system (16) oigéveloped. The aimis
to select feedback matrices such that the closed-loopwatrssiregular and of index
at most one and such that the disturbances have no influertbe @nror in the es-
timated states of the system. Necessary and sufficient ttomslare derived for the
existence of disturbance-decoupled observers of this &rdnalso for the observer
to be stable, ensuring that the estimated states conveegéime to the correspond-
ing states of the original system. The main results are ksl constructively and
are again based on a condensed form that can be computed imeaicaily stable
way using unitary matrix transformations.

3.3 Regularization by Output Feedback

The output feedback regularization problem is to find dékieaand state output
feedback matrice§, G such that the closed-loop system pencil (10) is regular and
has index at most one.

Meeting at the Institute for Mathematics and Its Applicaian Minnesota in
1992 and following up the earlier research on regulariratitlker and his col-
leagues tackled the difficult output feedback problem imest. The results of the
research are published in an extensive report [8] and inpeteers [9, 10]. In these
papers, a condensed form of the descriptor system penadriged that displays
the conditions under which the system can be transformedaimégular system of
index at most one by output feedback using numerically stanthogonal trans-
formations. For proportional output feedback the solutiorthe design problem
follows immediately from this condensed form. Necessad/sufficient conditions
for a feedback matrik € R™P to exist such that the pen¢E, A+BFC) is regular
and has index at most one are given®g and O2. The closed-loop system is then
S-controllable and S-observable@fl and O1 also hold [8, 10].

For combined derivative and proportional output feedbédg,also established
in [8, 10], using the condensed form, that@2 and O2 hold, then there exist
matricesF, G € R™P such that the closed-loop penciE + BGC,A+ BFC) is
regular, has index at most one, and r@bk BGC) lies in a given range. Techniques
such as those used for the state feedback problem to engimabgonditioning, or
robustness of the closed-loop system to perturbations|soedescribed in [8, 39].
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With proportional output feedback alone, if the system Imalex < 1, then the
number of finite eigenvalues of the closed-loop per&l A+ BFC) is fixed at
r =rank(E) . With derivative and proportional feedback, the systencj@ecomes
(E+BGC, A+BFC) and the system properties that depend on the left and ridiht nu
spaces ok, such asC2 andO2, may be altered and the rank Bf+ BGC may be
increased or decreased from thatof If the closed-loop system is regular with
index= 1, then the system may be separated inte rank E + BGC) differential
or difference equations amd-r purely algebraic equations. In applications, it may
be useful to have more or fewer differential or differenceaopns. A complete
characterization of the achievable rank$or systems that are regular and of index
at most one is, therefore, desirable.

Variations of the condensed form of [8, 10] that can be oleiiby stable or-
thogonal transformations have subsequently been denvé§til 18, 19, 22] and
different approaches to the output feedback problem hage developed. A com-
prehensive summary of the extended results, based on tbasertsed forms, is
given in [3]. The main result can be expressed as follows.

Theorem 4.[3, 11, 18, 19, 22]
Let Ta=To(ES:(C)), Sa=S»((T=(B))"E), and

E
E
o= Tul(E,AS| G| B 8= <Tm[E,B]>TA} )
C
Then the following statements are equivalent:

(i) There exist feedback matrices & € R™P such that the closed-loop pencil

(E+BGC,A+BFC) is regular and of index at most one.

(i) TS AS, has full column rank, JfAS, has full row rank and

rank T ([E, B]) TAS,( {a )) > n—rank {CE: g’])

Moreover, if the closed-loop pendiE + BGC, A+ BFC) is regular and of index at
most one with & rank E + BGC) then

ranI([E,B])Jrranl({a)—rank([(E: (Iﬂ) <r<

<rank([E,B]) —ranK T, AS)) = rank {CE:] ) —rank T, AS).
The matrices in the theorem and their ranks are easily adddinom the follow-

ing condensed form [3, 18, 22], whdieV, e R™", P € R™M andW < RP*P are
orthogonal matrices:
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h L 3 s S

tt [E;g O O 0 O
tp |Ex1 Ex2 O 0O O
UEV=t3 |Es1 Es2 Ez3 Ezs O,
t4 |Esa BEg2 O Eag O
|0 0 0 0 0
i3 7]
11 [0 0
to 0 0
UBP=t3 | Bs1 Baz|, (19)
t4 | O Ba2
5 i 0 0
h b 3 9 s
% [Cip Ci2 0 Cg O
WeV = t1 | C; 0 O O o’

where the block&; 1, Cp1, Eo2, Ezs, B31, B2, andCy4 are nonsingular.

Theorem 4 follows directly from the condensed form (19). Ttineorem gives a
complete characterization of the possible rankB efBGC for systems that are reg-
ular and of index at most one. Additional results on outpatifeack regularization
using only proportional or derivative feedback are alsspnéed in the references.
Corresponding results for observer designs can be detedndiinectly by duality.

In practice, it is desirable not only that the closed-loopatiptor system is regu-
lar and has index at most one, but also that it is robust inghsesthat it is insensitive
to perturbations in the system matrices. As in the statebi@eldcase, the aim is to
chooseF andG such that the closed-loop pencil is unitarily equivalena tpencil
of the form (14) where the matricek and > are well-conditioned for inversion.
This choice ensures that the reduction of the closed-losigryto a standard system
is computationally reliable. Partial solutions to this Ipleam are provided in [8, 9],
based on the results of [24], and an algorithm is given foiimizing upper bounds
on the conditioning of>r and 2. using unitary transforms to condensed forms.
This procedure generally improves the conditioning of tlesed-loop system.

3.4 Regularization by Mixed Output Feedback

Systems where different states and derivatives can be batme commonly in
mechanical multi-body motion. In such systems, velocitind accelerations can
often be measured more easily than states (e.g. by tachmeetaccelerometers).
Time-invariant systems of this type can be written in therfor
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yi(t) = Cx(t), (20)

or, in the discrete time case

Ex(k+1) = Ax(k) +Bu(k), X(to) = Xo,
y1(k) = Cx(k), (21)
yo(k+1) = M'x(k+1),

|
9]

where E,A ¢ R™" B ¢ R™M C ¢ RP*". [ ¢ RN, In this case we are inter-
ested in proportional and derivative control of the fouft) = Fy;(t) — Gy»(t) or
u=Fy;(k) —Gy»(k+ 1), whereF andG are chosen to give the closed-loop system
pencil

(E+BGIr, A+BFC) (22)

desired properties. In particular the aim is to ensure tiatctosed-loop system is
regular and of index at most one. The mixed output feedbapkaezation problem
for this system is stated explicitly as follows.

Problem 2. For a system of the form (20) or (21), give necessary and gufticon-
ditions to ensure the existence of feedback matrieesR™ P, G ¢ R™9 such that
the closed-loop system penci(E + BGI,A + BFC) is regular and
ind(E+BGIr, A+BFC) <1.

The mixed feedback regularization problem and its variantsch are signif-
icantly more difficult than the state and output feedbackilagization problems,
have been studied systematically by Volker and his colleagn [22, 37]. These
have not been investigated elsewhere, although system® wlifterent states and
derivatives are output arise commonly in practice.

Examples frequently take the second order form

M Z+Kz+Pz=Biu+Bou (23)
and can be written in the generalized state space form
MO|[z] [O01]]|z B;
T B =L eol (1 + 52 &

If the velocitiesz of the states of the system can be measured, then the gtates
Mz— Byu are also available and the outputs

ylch:[oum,yz:rxz[lo} [\Zf} (25)

can be used separately to modify the system by either pliopaitor derivative
feedback, respectively. The corresponding closed-loate stpace system matrices
then take the form
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0 1+BiF
—P BF

M+B;GO

K +BoG | (26)

E+BGI'_{ ] A+BFC_{

Different effects can, therefore, be achieved by feedirgk leéther the derivatives
or the states. In particular, in the case wheké is singular, but ranlM, B;] = n, the
feedbackG can be chosen such thdt+ B, G is invertible and well-conditioned [7],
giving arobustclosed-loop system that is regular and of index zero. Thelfaek
matrix F can be chosen separately to assign the eigenvalues of tieensjg0], for
example, or to achieve other objectives.

The complete solution to the mixed output feedback regzaéion problem is
givenin [22]. The theorem and its proof are very technicalv&bility is established
using condensed forms derived in the paper. The solutiohgmutput feedback
problem given in Theorem 4 is a special case of the complstdtrior the mixed
output case given in [22]. The required feedback matricecanstructed directly
from the condensed forms using numerically stable transfitions.

Usually the design of the feedback matrices still contaregdom, however,
which can be resolved in many different ways. One choice s&ltect the feedbacks
such that the closed-loop system is robust, or insensibiygetturbations, and, in
particular, such that it remains regular and of index at mastunder perturbations
(due, for example, to disturbances or parameter varigtidinés choice can also be
shown to maximize a lower bound on the stability radius of ¢lesed-loop sys-
tem [13]. Another natural choice would be to use minimum négedbacks, which
would be a least squares approach based on the theory ifd4Japproach is also
investigated in [22, 37]. The conclusion is that althoughimum norm feedbacks
are important in other control problems, such as eigenadsgnment or stabiliza-
tion because they remove ambiguity in the solution in a lsqsares sense, for the
problem of regularization they do not lead to a useful sohytunless the rank of E
is decreased. Heuristic procedures for obtaining a systeoutput feedback that is
robustly regular and of index at most one are discussed i&, [89].

4 Regularization of Time-Varying and Nonlinear Descriptor
Systems

Feedback regularization for time-varying and nonlineacdtor systems provided
the next target for Volker's research. Extending the presiavork to the time-
varying case was enabled primarily by the seminal paper erattalytic singular
value decomposition (ASVD) published by Volker and colleagjin 1991 [4]. The
ASVD allows condensed forms to be derived for the time-vagyproblem, just as
the SVD does for the time-invariant case, and it provides emically stable tech-
niques for determining feedback designs.

The continuous form of the time-varying descriptor systergiven by the im-
plicit system
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E(O)x(t) = At)x(t) +B(t)u(t), x(to) = o,
y(t) = CO)x(t), (27)

whereE(t), A(t) e R™", B(t) e R™™ C(t) € RP*" are allcontinuoudunctions of
time andx(t) is the statey(t) is the output, andi(t) is the input or control of the
system. (Corresponding discrete-time systems with tiamging coefficients can
also be defined, but these are not considered here.)

In this general form, complex dynamical systems includingstraints can be
modelled. Such systems arise, in particular, as lineaoizabf a general nonlinear
control system of the form

Z(t,x,x,u) = 0, X(to) = Xo,
y=9(t,x), (28)

where the linearized system is such tBét), A(t), B(t) are given by the Jacobians
of .7 with respect tox, x, u, respectively, ancC(t) is given by the Jacobian of
with respect tox (see [31]).

For the time-varying system (27) and the nonlinear systeé8j)y (Be system prop-
erties can be modified by time-varying state and output faekilas in the time-
invariant case, but the characterization of the systemaitiqular the solvability
and regularity of the system, is considerably more comfditto define than in the
time-invariant case and it is correspondingly more diffitalanalyse the feedback
problem. The ultimate goal remains, however, to obtainlstabmerical approaches
to the problem using time-varying orthogonal transforrgito condensed forms.

If time-varying orthogonal transformatioms(t), V(t), W(t), Y(t) are applied to
the system (27), and all variables are assumed to be timeadept, then the system
becomes

UTEVZ= (UTAV—UTEVSz+UTBWW
y=YCVz (29)

wherex(t) = V(t)z(t), u(t) =W(t)w(t), §=YyandS(t) =V (t)TV(t) is a skew-
symmetric matrix. We see that applying time-varying transfations alters the sys-
tem matrix A, and this must be taken into account where reducing the system
equivalent condensed forms.

In[1, 2] itis shown that the ASVD can be used to produce a cosele form for
system (27), similar to the form derived in [10]. A time-vanry system is defined
here to be regular and of index at most one if the condition§reforem 1 hold
for all t and the system can be decoupled into purely dynamic andraliggiarts.
In order to establish regularizability of system (27), th@isg assumption is made
that ranKE(t)) is constant and that ranks in the condensed form are alséactins
Time-varying output feedback matrices are then constduttieproduce a closed-
loop pointwise regular pencil of the form (10) with index absh one. The rank
assumptions ensure the solvability of the closed-loopesysiThe system matrices
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E, A B, C, are assumed to be analytic functionstofbut these conditions can be
relaxed provided the ASVD decompositions remain suffi¢jesrhooth.

In the papers [12, 31], a much deeper analysis of the regatémn problem
is developed. Detailed solvability conditions for the tiwerying system (27) are
established and different condensed forms are derive agimg the ASVD. Con-
stant rank assumptions do not need to be applied, althoegéxiktence of smooth
ASVDs are required. The analysis covers a plethora of diffepossible behaviours
of the system. One of the tasks of the analysis is to deterrashendancies and in-
consistencies in the system in order that these may be edltdm the design
process. The reduction to the condensed forms displaybealntariants that de-
termine the existence and uniqueness of the solution. Téerigéor system is then
defined to be regularizable if there exist proportional aivdgive feedback matri-
ces such that the closed-loop system is uniquely solvabkeviery consistent initial
state vector and any given (sufficiently smooth) controlnditions for the system
to be regularizable then follow directly from the condenteds.

In [31] a behaviour approach is taken to the linear time-wayproblem where
state, input and output variables are all combined into gséem vector and the
combined system is studied. This approach allows inhomagencontrol problems
also to be analysed. Instead of forming a derivative arrayfwhich the system in-
variants and the solutions of the original system can berchéted, as in [14, 16],
the behaviour approach allows the invariants to be foundowit differentiating the
inputs and thus avoids restrictions on the set of admissiterols. Reduction of
the behaviour system to condensed form enables an undgdgiscriptor system
to be extracted and the conditions under which this systembearegularized by
proportional and derivative feedback are determined. Dimsttuction of the feed-
back matrices is also described. The reduction and conistnumethods rely on
numerically stable equivalence transformations.

More recent work of Volker and his colleagues [15] extendsliehaviour ap-
proach to a general implicit nonlinear model of the form

Z(t,x%u,y) =0, Xto) =Xo. (30)

The property of ‘strangeness-index’ is defined and usedaratialysis. This prop-
erty corresponds to ‘index’, as defined for a linear timeaimant descriptor system,
and ‘strangeness-free’ corresponds to the condition thiateinvariant system is
of index at most one. Conditions are established under whibkhaviour system
can be reduced to a differential-algebraic system, and edieterpretation of the

variables, to a typical implicit nonlinear system consigtof differential and al-

gebraic parts. Locally linear state feedback can then béeapim ensure that the
system is regular and strangeness-free. Standard sionylatntrol, and optimiza-
tion techniques can be applied to the reformulated feedbgstem. Further details
of Volker's work on nonlinear differential-algebraic sgsts can be found in other
chapters in this text.
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5 Conclusions

We have given here a broad-brush survey of the work of Volkehivhann on
the problems of regularizing descriptor systems. The éxiéthis work alone is
formidable and forms only part of his research during higearWe have concen-
trated specifically on results from Volker's own approacteethe regularity prob-
lem. The primary aim of his work has been to provide stable enizal techniques
for analyzing and constructing control and state estimatistems and for ensuring
that these systems are robust. The reduction of systemsttensed forms using
orthogonal equivalence transformations forms the majmihin this work. Whilst
some of the conclusions described here can also be obtaiaeather canonical
or condensed forms published in the literature, these damnalerived by sound
numerical methods and the required feedbacks cannot beageddrom these by
backward stable algorithms. Volker's work has therefore &aeal practical impact
on control system design in engineering as well as prodwsonge beautiful theory.
It has been a pleasure for us to be involved in this work.
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