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Abstract

A number of methods exist for solving the problem of electromagnetic scattering by atmospheric ice crystals.
Amongst these methods, only a few are used to generate “benchmark” results in the atmospheric science commu-
nity. Most notably, the T-matrix method, Discrete Dipole Approximation, and the Finite-Difference Time-Domain
method. The Boundary Element Method (BEM), however, has received considerably less attention in this community
despite its extensive use and development in other areas of applied mathematics and engineering. Recently the group
of Betcke et. al. [4] at University College London has released a high performance open source boundary element
library called BEM++. In this paper, we employ BEM++ to calculate the scattering properties of hexagonal ice
columns of fixed orientation, as well as more complicated particles such as hollow columns and bullet-rosettes. The
results for hexagonal columns are compared to those of a highly accurate and well-established T-matrix method [3]
for a range of different wavelengths and size parameters. It is shown that the results are in excellent agreement and
that BEM++ is a fast alternative to the T-matrix method and others for generating benchmark results. However, the
large memory requirements of BEM++ cause it to be limited to size parameters∼15 on a standard desktop PC if an
accuracy of roughly 1% is required. The main advantages of BEM++ over many other methods are its flexibility to
be applied to homogeneous dielectric particles of arbitrarily complex shape, and its open availability. This flexibility
is illustrated by the application of BEM++ to scattering by hollow columns with different cavity types, as well as
bullet-rosettes with 2 to 6 branches.

Keywords: Electromagnetic scattering, boundary element method, cirrus

1. Introduction

It has been well established that understanding the
scattering properties of atmospheric ice crystals is im-
portant in modelling the radiation balance of cirrus
clouds [1, 2, 17]. Due to the wide coverage of cir-
rus over the Earth (∼30% at any one time in the mid-
latitudes, and∼60-80% in the tropics [1, 17, 26]), these
clouds in turn play an important role in the earth-
atmosphere radiation balance.

The ice crystals within cirrus exhibit a large array of
sizes and shapes [14, 10, 16]. This, combined with the
frequency range of radiation incident upon the clouds
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(from microwave to ultraviolet), leads to a huge vari-
ety of scattering problems to be solved. Over the years,
many methods have been developed for tackling differ-
ent problems within the myriad combinations of parti-
cle shape, size and incident radiation frequency. These
methods fall into two main camps.

The first contains asymptotic or “approximate” meth-
ods which utilise the high-frequency behaviour of light
to justify the implementation of geometrical techniques.
Examples include Geometric Optics [18], the Kirch-
hoff approximation [23, 32, 5], and Ray Tracing with
Diffraction on Facets [13]. These methods are applica-
ble to particles of large size parameter.

The second camp contains so-called “exact” meth-
ods which either discretise the underlying Maxwell’s
equations and solve the resultant discrete system, or
propose a separation of variables ansatz and obtain the
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coefficients by enforcing the boundary conditions at
the ice crystal’s surface. Such methods include the T-
matrix method [12, 22, 15], the invariant imbedding
T-matrix method [6], the Discrete Dipole Approxima-
tion (DDA) [34], and Finite-Difference Time-Domain
method (FDTD) [29]. These methods have a computa-
tional cost that scales with size parameter and hence are
typically feasible only at small to moderate size param-
eters. We note briefly that exact methods which bridge
these two camps exist. However their development is
still in its early stages and, at present, they are limited
to scalar problems (see e.g. [9, 11]).

One “exact” method that has received scant attention
in the atmospheric physics community, apart from some
application to simple shapes with exploitable symme-
tries [19, 24], is the Boundary Element Method (BEM)
which, in it most standard form (i.e., not hybrid, see
[9]), is applicable to small to moderate size parame-
ter particles of arbitrary shape and at any wavelength.
Moreover, a high-performance boundary element li-
brary called BEM++ has recently been developed and
made open-source athttp://www.bempp.org by the
group of Betcke et. al. [27].

Within the BEM framework, Maxwell’s equations are
reformulated as a system of boundary integral equations
on the particle’s surface via the Stratton-Chu formulae.
This has the advantage of reducing a problem defined on
a three-dimensional infinte domain to a problem defined
on a two-dimensional finite domain. The equations are
solved to obtain the electric and magnetic surface cur-
rents which may then be substituted into the Stratton-
Chu formulae (or their far-field asymptotic form) to ob-
tain the field anywhere.

This paper analyses the performance of BEM++
in its application to the scattering problems as-
sociated with atmospheric non-spherical ice. In
particular, its performance is compared to that of
a well-established standard T-matrix method [12]
for the problem of scattering by hexagonal ice
columns. We go on to demonstrate BEM++’s utility
for scattering problems involving complex particle
shapes, such as hexagonal columns with cavities and
bullet-rosettes. The single-scattering properties we
consider in this paper are not at present direct outputs
from BEM++. However, example Python scripts
which generate these from BEM++’s output can be
downloaded from the corresponding author’s webpage
http://www.personal.reading.ac.uk/~xk023928/.

The paper is organised as follows. In section 2,
we state the electromagnetic scattering problem to be
solved. Section 3 gives a brief outline of the reformu-
lation of the problem as a system of boundary integral

equations, which is performed utilising the Stratton-Chu
formulae. Section 4 recalls the definitions of the am-
plitude scattering matrix and other important scattering
properties, and also how they are computed from the
outputs of BEM++. In section 5, the settings of vari-
ous error tolerances within BEM++ are discussed. Sec-
tions 6,7 and 8 comprise the results portion of the pa-
per. Section 6 compares the solution of scattering by a
sphere with BEM++ to the exact solution, obtained via
Mie-Lorenz theory, in order to ascertain the accuracy of
BEM++ and decide upon the appropriate mesh resolu-
tion to be used. Section 7 looks at scattering by hexago-
nal columns, comparing the solution with BEM++ to
that obtained using a T-matrix method. In section 8
BEM++ is applied to scattering by hexagonal columns
with different types of cavity, and bullet-rosettes, prob-
lems which are beyond the applicability of current stan-
dard T-matrix methods. The final section contains some
discussion and concluding remarks.

2. Problem statement

Consider the scattering of a monochromatic plane
wave with time-dependencee−iωt by a homogeneous,
isotropic dielectric scattererΩ1 (see Figure 1) with a
complex refractive indexn =

√
ǫµ, whereǫ andµ are

the permittivity and permeability, respectively, of the
material composingΩ1. It is assumed thatΩ1 is sur-
rounded by a homogeneous mediumΩ2 := R

3\Ω1 with
unit refractive index.

x

z

y

Scattering direction

ϑ

Incident direction

Ω1 Ω2

Figure 1: Scattering setup

The transmission problem is to find the fields{E1,H1}
and {E2,H2} in Ω1 and Ω2 respectively, satisfying
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Maxwell’s equations

∇ × E1 = iωµ1H1, ∇ × H1 = −iωǫ1E1 in Ω1, (1)

∇ × E2 = iωµ2H2, ∇ × H2 = −iωǫ2E2 in Ω2, (2)

along with thetransmission conditionson the interface
Γ := ∂Ω1:

n × E1 = n × E2 and n × H1 = n × H1. (3)

In addition, the scattered fields, defined asEs := E2−Ei ,
Hs := H2 − H i where{Ei ,H i} is the incident electro-
magnetic field, are required to satisfy the Silver-Müller
radiation condition

√
µx̂ × Hs +

√
εEs = o

(

1
r

)

as r := |x| → ∞ (4)

uniformly in all directionsx̂ := x/r.
In this paper, we are considering scattering by ice

crystals in air for whichµ1 = µ2 = 1. Also, all ex-
amples considered here are for particles in fixed orien-
tation with the incident wave travelling in the positive
x-direction, as shown in Figure 1.

3. Boundary Integral Equations

We briefly summarise the reformulation of the trans-
mission problem as a system of boundary integral equa-
tions. The exposition here follows that of [27] which
in turn closely follows [8]; the latter gives an in-depth
review of the the boundary integral formulation for this
problem.

It is sufficient to solve for one of the two fieldsE and
H due to their relationship in Maxwell’s equations (1-
2) . Here we choose the electric fieldE, for which the
transmission conditions onΓmay be written as

n×E1 = n×E2, n× (∇×E1) =
µ1

µ2
n× (∇×E2). (5)

We begin by defining the trace operators necessary for
restricting our attention to the boundary of the scatterer.
The Dirichlet trace is defined as

γDE(x) := n(x) × E(x)|Γ,

wheren is the outward normal toΓ. The Neumann trace
is defined as

γNE(x) :=
1
ik

n(x) × (∇ × (E(x))|Γ.

Note that here (for the Neumann trace) we are following
[27]. This differs from the definition in [8] in that it

includes an extrai factor in the denominator. The traces
from the exterior and interior shall be writtenγ+D, γ

+
N and

γ−D, γ
−
D, respectively. Now the transmission conditions

(5) can be stated in the concise way:

γ+DE1 = γ
−
DE2 and

k1

µ1
γ+NE1 =

k2

µ2
γ−NE2 onΓ. (6)

In order to state the Stratton-Chu formulae, as well as
the following formulae, it is useful to define the single-
layer potential operatorΨS L and double-layer potential
operatorΨDL:

ΨS Lv(x) :=ik
∫

Γ

Gk(x, y)v(y)dΓ(y)

− 1
ik
∇

∫

Γ

Gk(x, y)∇ · v(y)dΓ(y)

and

ΨDLv(x) := ∇ ×
∫

Γ

Gk(x, y)v(y)dΓ(y),

whereGk is the Green’s function of the Helmholtz equa-
tion with wavenumberk:

Gk(x, y) =
exp(ik|x − y|)

4π|x − y| .

Now an integral representation forE in Ω1 can be writ-
ten succinctly as

E(x) = ΨDLγ
+
DE(x) + ΨS Lγ

−
NE(x), x ∈ Ω1. (7)

Similarly, E in Ω2 possesses the representation

E(x) = −ΨDLγ
+
DE(x) − ΨS Lγ

+
NE(x), x ∈ Ω2. (8)

These are the Stratton-Chu representation formulae and
are often written in a more explicit form without poten-
tial operators. For these expressions the reader is re-
ferred to [20] and [25].

Boundary integral operators are constructed by ap-
plying the Dirichlet and Neumann tracesγ±D, γ

±
N to the

potentialsΨS L andΨDL. We might expect to obtain four
different boundary integral operators, however due to
the fact that∇ × ΨS L = kΨDL and∇ × ΨDL = kΨS L, we
have that

γ±NΨS L = γ
±
dΨDL, γ

±
NΨDL = γ

±
DΨS L.

Hence two different boundary integral operators are suf-
ficient for electromagnetic scattering. We define them
as

Sk := γDΨS L = γNΨDL, Ck := γDΨDL = γNΨS L.
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Applying the interior and exterior traces to the Stratton-
Chu formulae, we arrive at the boundary integral equa-
tions [8]

(

−1
2

I + C−
)

γ−DE + S−γ−NE = 0 (9)

−Siγ
−
DE +

(

−1
2

I + C−
)

γ−NE = 0 (10)

(

1
2

I + C+
)

γ+DE + S+γ+NE = γ+DEi (11)

−S+γ+DE +
(

1
2

I + C+
)

γ+NE = γ+NEi . (12)

Writing (9) and (10) in terms of exterior traces by us-
ing the transmission conditionsγ+Du = γ−Du, k2

µ2
γ+Nu =

k1
µ1
γ−Nu, and writingρ = µ2k1

µ1k2
:

(

−1
2

I + C−
)

γ+DE +
1
ρ
S−γ+NE = 0 (13)

−S−γ+DE +
1
ρ

(

−1
2

I + C−
)

γ+NE = 0. (14)

We have arrived at four boundary integral equations for
the two unknownsγDE and γNE. There are numer-
ous ways to select two equations or two linear combi-
nations of (13), (14), (11) and (12); see [20] for a dis-
cussion of five of these. Here we choose the simplest,
the combined-field formulation, which is known to be
uniquely solvable [21]. This consists of taking the two
combinations

(11)+ (13) and (12)+ (14).

After dropping the± on the traces, we have the system
of boundary integral equations to be solved:

(

C+ + C− S+ + 1
ρ
S−

−S+ − ρS− C+ + C−

) (

γDE
γNE

)

=

(

γDEi

γNEi

)

. (15)

Once this system is solved forE and its normal deriva-
tive onΓ, the solution is simply substituted into (7) or
(8) to obtain the solution anywhere inR3. If it is the
far-field solution which is of interest, we must use the
asymptotic (largekr) form of (8). This is discussed in
the following section.

4. Single scattering properties and problem setup

4.1. Amplitude scattering matrix

In the application of interest in this paper, it is the
scattered far-field which is of most importance. This

is due to the fact that ice crystals in cirrus tend to be
separated by large enough distances such thatkr >> 1,
hence they are in each other’s far-fields. The scattered
far-field is obtained using the asymptotic form of equa-
tion (8), i.e.

Es(x) ∼ −eikr

r
F(x), askr → ∞, (16)

where
F(x) = ΨF

DL(γ+DE) + ΨF
S L(γ

+
NE).

Here we are using the far-field versions of the single-
and double-layer potentials, defined as

[ΨF
DLv](x) =

−ik
4π

∫

Γ

e−ik(x·y)/|x|
(

x
|x| × v(y)

)

dΓ((y) (17)

[ΨF
S Lv](x) = − ik

4π

∫

Γ

e−ik(x·y)/|x|v(y)dΓ(y)

+
ik
4π

∫

Γ

e−ik(x·y)/|x|v(y) · x
|x|dΓ(y). (18)

These far-field potentials are functions in BEM++ and
so the far-field pattern is easily calculated. Equation
(16) encapsulates the standard far-field definition in the
boundary integral equation literature. However, it must
be noted that it differs from the definition in physics
texts (such as [7]), where we find it written

Es(x) ∼ −eikr

ikr
F̃(x).

In order to account for this difference, the far-field out-
put of BEM++ must be multiplied byik since

F̃(x) = ikF(x).

The output of the above far-field calculation in (16)
in BEM++ is of the scattered field in Cartesian coordi-
nates (x, y, z) in a given scattering direction̂er , as shown
in Figure 1. It is useful to define the directionêr in terms
of the anglesϑ andφ. φ dictates the scattering plane and
is a rotation about they-axis, andϑ describes the scat-
tering direction within that scattering plane. Explicity,
the direction vector is written

êr = (cos(ϑ), cos(φ) sin(ϑ), sin(φ) cos(ϑ)). (19)

When calculating the scattering matrix entries, we shall
focus on the planeφ = 0, hence

êr = (cos(ϑ), sin(ϑ),0)

for 0 < ϑ < 2π.
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We note that the scattered far-field is transverse,
êr · F̃ = 0, hence it may be written

Es = (Es
‖ ê‖s + Es

⊥ês
⊥s)e

ikr ,

where (in the caseφ = 0)

ê‖s = êϑ, ê⊥s = ẑ, ê⊥s × ê‖s = êr ,

following the notation of [7]. The BEM++ output far-
field can be converted to this new form simply by the
transformation

Es
‖s = − sin(ϑ)Es

x + cos(ϑ)Es
y, Es

⊥s = Es
z. (20)

In a similar way, the incident field is written in terms of
its frame as

Ei = (Ei
‖i ê‖i + Ei

⊥i ê⊥i)e
ikx,

where, in this case,

ê‖i = ŷ and ê⊥i = ẑ.

The Amplitude Scattering Matrixdefines the relation-
ship between the scattered far-field and thearbitrarily
polarised incident field in their respective coordinate
frames, i.e.

(

Es
‖s

Es
⊥s

)

=
eik(r−x)

−ikr

(

A11 A12

A21 A22

) (

Ei
‖i

Ei
⊥i

)

(21)

In order to calculate all entriesAi j , we consider two sep-
arate incident waves with different polarisations: one
polarised in thêz-direction and the other polarised in
the ŷ-direction. Each wave has unit amplitude and trav-
els in the positivex-direction, as depicted in Figure 1.
Let us consider these two problems separately.

4.1.1. ẑ-polarised incident wave
In this case the incident wave has the form

Ei = (1 · ê⊥i + 0 · ê‖i)eikx

and thus it is possible to calculate two of the matrix en-
tries, namelyA12 andA22. They are given as

A12 = − sin(ϑ)Es
x + cos(ϑ)Es

y, A22 = Es
z. (22)

4.1.2. ŷ-polarized incident wave
In this case the incident wave has the form

Ei = (1 · ê‖i + 0 · ê⊥i)e
ikx

and thus it is possible to calculate two of the matrix en-
tries, namelyA11 andA21. They are given as

A11 = − sin(ϑ)Es
x + cos(ϑ)Es

y, A21 = Es
z. (23)

4.2. Scattering phase function; scattering, extinction
and absorption cross sections; and asymmetry pa-
rameter

Now that the amplitude scattering matrix has been
obtained, one may proceed to calculate the entries of
the so-calledscattering matrixas in, e.g., [7]. Its first
entry is given as

S11 =
1
2

(|A11|2 + |A22|2 + |A21|2 + |A12|2). (24)

This entry is often normalised in the following manner

P11 =
4πS11

k2Csca

and referred to as thedimensionless phase functionand
denotedP(ϑ). HereCsca is the scattering cross section
defined as

Csca=

∫ 2π

0

∫ π

0

S11

k2
sinϑdϑdφ, (25)

that is, the scattering cross section is the integral of the
far-field amplitude over all scattering directionsêr . The
extinction cross section is defined as

Cext =
4π
k2

Re{(S11 · ê)ϑ=0} . (26)

The absorption cross section is defined as the difference
of the two:

Cabs= Cext−Csca. (27)

The quantities that shall be discussed later are the nor-
malised version of these parameters. More precisely
they are the scattering, extinction and absorption effi-
ciencies defined as

Qsca=
Csca

P
, Qext =

Cext

P
, Qabs=

Cabs

P
,

where P is the geometric cross section of the parti-
cle projected onto a plane perpendicular to the incident
wave direction. Another useful quantity for which we
present calculated values is thesingle-scattering albedo,
defined as

ω0 =
Qsca

Qext
.

Finally, theasymmetry parameteris defined as

g =
∫

4π
pcosϑdΩ =

∫ 2π

0

∫ π

0
pcosϑ sinϑdϑdφ,

=
1

k2Csca

∫ 2π

0

∫ π

0
S11 cosϑ sinϑdϑdφ, (28)
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wherep is thephase function p= P/4π.
These quantities are, at present, not direct outputs of

BEM++. However, as illustrated above, can be gener-
ated from BEM++ far-field calcuations. In what fol-
lows, we shall compare the calcuations of these scatter-
ing properties in BEM++ to those obtained using Mie-
Lorenz theory in the case of scattering by spheres, and
using the T-matrix method of [12] in the case of hexag-
onal columns. We shall go on to calculate these scat-
tering properties with BEM++ alone for more complex
particles for which this current T-matrix code is not ap-
plicable.

5. Solution with BEM++

Currently BEM++ provides a single discrete approx-
imation space for approximatingγDu andγNu, namely
the space of lowest-order Raviart-Thomas functions.
This leaves mesh refinement as the only way to increase
the accuracy of the approximation. In the next section,
we illustrate how the accuracy of BEM++, in approx-
imating scattering by a dielectric sphere, varies with
mesh refinement. That is, we vary the number of mesh
elements per wavelength. It is found that the standard
engineering rule of thumb of “10 elements per wave-
length” is sufficient to achieve approximately 1% accu-
racy. Higher resolution meshes generate more accurate
approximations (as we shall we in§6) however at the
cost of increased CPU time and memory requirements.

There are various tolerances to be set in BEM++ for
the different algorithms it employs. These tolerance val-
ues were chosen after experiementation and led by ex-
amples provided on the BEM++ webpage, along with
[4]. It was found that these values are sufficient to
cause the accuracy of the solution to be dominated by
the mesh size. We state the tolerances, although they
can be found in the example Python scripts provided
on the corresponding author’s webpage. The adaptive
cross approximation (ACA) tolerance is set as 1e− 5,
and the generalised minimal residual (GMRES) toler-
ance as 1e− 8. The accuracy of the LU decomposition
is chosen as 1e− 2. Finally, the accuracy of the single
and double regular integral quadrature was increased by
2.

It should be noted that there are other ACA set-
tings such as the maximum rank and maximum block
size that may be altered to improve the performance of
BEM++. It was found here, however, that for the rela-
tively small scale computations performed in this paper,
altering these settings from their defaults made a neg-
ligible difference. For large scale computations, it is
expected that adjusting these ACA settings will affect

the performance of BEM++, with the optimal settings
being dependent on the specifications of the computer/s
being used.

6. Scattering by spheres - comparison with Mie-
Lorenz theory

To get a measure of the speed, accuracy and conver-
gence rate of BEM++, we first examine the case of scat-
tering by an ice sphere withka= 5 and refractive index
n = 1.0893+ 0.18216i, wherea is the radius of the
sphere. The complex refractive indices used in this pa-
per are taken from the study in [31].

In the following numerical experiments, we consider
meshes of increasing refinement, starting from an ele-
ment size ofh = λ/2.5 and doubling the refinement for
each successive numerical experiment until we reach
an element size ofh = λ/40. For each level of re-
finement, we record the memory requirement for the
operatorS−, the total run time, along with the errors
of the asymmetry parameter and the scattering and ex-
tinction efficiencies. The errors given are relative, e.g.
|Qsca(BEM) − Qsca(Mie)|/Qsca(Mie). Table 1 displays
this information. It can be seen from the table that the

h Mem. Time Qsca Qext g
(MB) (s) err.(%) err.(%) err.(%)

λ/2.5 1.73 2.15 1.27e1 1.12e1 1.23e0
λ/5 10.6 9.07 5.41e0 4.38e0 2.55e-1
λ/10 53.6 37.0 1.87e0 1.34e0 4.93e-2
λ/20 313 199 5.33e-1 2.99e-1 8.14e-3
λ/40 1500 933 2.59e-1 8.81e-2 3.50e-3

Table 1: Scattering by a sphere withka = 5 and
n = 1.0893+ 0.18216i. Memory use for operatorS−,
run time, and relative error (%) in the approximation of
Qsca,Qext andg at each mesh refinement.

memory cost of BEM++ increases by approximately a
factor 5 each time the refinement of the mesh is doubled.
We observe that the BEM is around 1-2% accurate at a
mesh size ofh = λ/10 when approximatingQsca and
Qext, but 0.05% accurate when approximatingg at this
resolution. Hence it appears that ifg is the only parame-
ter of interest, such a fine mesh is not necessary. In fact,
with 2.5 elements per wavelength, we achieve∼1% ac-
curacy ing.

Figure 2 shows the scattering phase function calcu-
lated using Mie-Lorenz theory and BEM++ at two dif-
ferent resolutions:λ/2.5 andλ/10. It is evident that
at theλ/10 resolution, BEM++ approximates the phase

6



Figure 2: Phase function for a sphere with size parame-
ter ka = 5 and refractive indexn = 1.0893+ 0.18216i.
Convergence ofP11 to exact Mie solution as the mesh is
refined.

function extremely well. In fact, the relativeL2 error of
the approximation of the phase function here is 0.69%.

Figure 3 showsP11 for a sphere with size parameter
ka = 15 and refractive indexn = 1.311+ 2.289e− 9i.
There is no discernible difference in the phase function,

Figure 3: Phase function for a sphere with size parame-
terka= 15 and refractive indexn = 1.311+ 2.289e− 9i
calculated with Mie-Lorenz theory and BEM++ at a
resolution ofλ/10.

in fact, its error in theL2 norm is 0.4%. The errors in
Csca and Cext are again between 1% and 2%. In the
next section, we examine the capabilities of BEM++
when applied to a commonly occuring ice crystal shape
in cirrus - the hexagonal column.

7. Scattering by hexagonal ice columns - compari-
son with T-matrix

In this section, we compare the performance of
BEM++ to that of the T-matrix method of [12] for scat-
tering by hexagonal ice columns. In the previous sec-

tion it was established that a mesh resolution ofλ/10 is
sufficient to produce approximately 1% accuracy with
BEM++. The simulations run in this section shall be
at this resolution. Comparisons are made for hexagonal
ice columns with refractive indexn = 1.311+2.289e−9i
of three size parameters (ka = 5,10,15). The incident
wave direction and orientation of the hexagonal ice col-
umn are both as illustrated in Figure 1.

The aspect ratio of the hexagonal column is the ratio
L/a whereL is the height of the column anda is the
radius of the smallest circle which enscribes the hexag-
onal face. Throughout we take this ratio to be 2. We
note that we maintain the definition of size parameter as
ka, whereas some authors use the definitionkL which
would lead to a doubling of all the size parameter fig-
ures given here for the hexagonal ice columns.

Table 2 displays some of the performance details for
the two methods. BEM++, which has been optimised
for computations in parallel, was run on 4 core machine
with a total of 16.4 Gigabytes of RAM, whereas the T-
matrix code was run on a single core of the same ma-
chine. The memory requirements for BEM++ shown

ka CPU (s) CPU (s) Mem. (MB) Mem. (MB)
(T) (BEM) (T) (BEM)

5 319 65.5 3.81 496
10 7470 471 34.3 2420
15 27600 1720 92.3 7050

Table 2: CPU time and memory load utilised (given
to 3 significant figures) by the T-matrix and BEM++
to calculate the scattering properties of hexagonal ice
columns of different size parameters.

in the table are those required to store the four opera-
torsS+,S−,C+,C− that compose the system matrix in
(15). Simiarly, the memory requirement figures shown
for the T-matrix relate to the memory required to store
the system matrix arising in that method. It is evident
from the table that the memory utilised by the BEM is
currently much greater than that utilised by the T-matrix
code. This memory consumption is the main drawback
of most BEMs (with the exception of some 2D high fre-
quency BEMs, see [9]) and is the reason why BEM++
is limited to relatively small size parameters. However,
we notice that due to its parallelisation and high-level
implementation, BEM++ is extremely fast, with a CPU
time more than 16 times faster than the T-matrix for
ka= 15.

Figure 4 displays phase matrix elements forka= 10.
It is clear from the figure that both methods are in ex-
cellent agreement. We have omittedP22 since it has a
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Figure 4: Phase matrix elements as calculated by the T-matrix and BEM++ for ka= 10 andn = 1.311+ 2.289e− 9i.

value very close to 1 for all scattering angles.
We display the approximations to the scattering and

extinction efficiencies, and asymmetry parameter in Ta-
ble 3. We observe a difference of approximately 2% or
less between the two methods at all the size parameters
considered.

ka Qsca Qsca Qext Qext g g
(T) (BEM) (T) (BEM) (T) (BEM)

5 3.74 3.69 3.74 3.72 0.87 0.87
10 2.98 2.92 2.98 2.95 0.78 0.77
15 2.54 2.50 2.54 2.52 0.74 0.74

Table 3:Qsca, Qext andg calculated using T-matrix and
BEM++ for n = 1.311+ 2.289e− 9i.

8. Scattering by complex ice crystal shapes using
BEM++

In this section we demonstrate the utility of BEM++
for scattering by ice crystal shapes which are beyond the
scope of standard T-matrix approaches (although within
the scope of the invariant imbedding T-matrix method
of [6], the code of which, however, is not as yet in the
public domain). Such shapes include bullet-rosettes, ag-
gregates and hexagonal ice columns with cavities. Here
we shall focus on hexagonal ice columns with cavities
and bullet-rosettes with 1 to 6 branches.

8.1. Hexagonal columns with cavities

We first perform an investigation into the impact of
assuming different cavity constructions on the scattering
matrix elements. The scattering characteristics are com-
pared for a solid hexagonal column similar to that in§7
to those of columns with both stepped cavities [28] and
the more regular pyramidal inclusions [18]. The three
shapes are shown in Figure 5. We shall consider two re-

Figure 5: Hexagonal columns: without cavity, with con-
ventional cavity, with stepped cavity.

fractive indices: 1.0833+ 2.04e− 1i (λ = 10.87µm) and
1.311+2.289e−9i (λ = 0.55µm) in order to observe the
effect absorption has upon the differentiation of these
particles by their scattering properties. The shape of the
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Figure 6: Scattering matrix elements forn = 1.0833+ 2.04e− 1i andka= 10 for the three scatterers in Figure 5.

column with a standard cavity is the same as in [33].
That is, the aspect ratio isL/a = 1/0.35 ≈ 2.857, and
the depth of the cavity isd = L/4. The stepped cav-
ity contains three steps, each of depthd/3. The radius
of the hexagonal faces as we progress down the steps is
a1 = 0.5a,a2 = 0.35a,a3 = 0.2a. The mesh resolution
for these experiments is set atλ/10, also the incident
wave direction and orientation of the columns are both
as illustrated in Figure 1.

Figure 6 shows the phase matrix elements for the
three shapes atka= 10 and forn = 1.0833+ 2.04e− 1i.
It is clear that at this highly absorbing wavelength, the
phase matrix is almost idential for all 3 shapes. One
exception is at the scattering angle of 156◦. Here we
observe the scattering pattern from the hollow columns
differs slightly from that of the solid column.

Table 4 shows the scattering efficiencies and the
asymmetry parameter to 2 decimal places (all figures
from here onwards shall we presented likewise) for each
shape. These provide a measure of the overall difference
in the scattering of the three shapes. We note that the
hexagonal column and the column with stepped cavities
have almost idenitical efficiencies and asymmetry pa-
rameter, whereas the efficiencies for the regular cavity
column are lower, in particular the extinction efficiency.
This is likely due to the angled cavity shape in this parti-
cle. This leads to a deflection of a greater portion of the
incident wave’s energy upwards, away from the scatter-
ing planeφ = 0.

Shape Qsca Qext g ω0

Hex. col. 1.00 2.23 0.96 0.45
Reg. cav. 0.86 1.98 0.96 0.44
Step. cav. 0.97 2.18 0.96 0.44

Table 4: Scattering efficiencies and asymmetry parame-
ter for the three scatterers atka= 10 and
n = 1.0833+ 2.04e− 1i.

Now let us consider the same problem at a weakly
absorbing wavelength, namely atλ = 0.55µm for which
n = 1.311+2.289e−9i. Figure 7 displays the same phase
matrix elements as Figure 6 but at this second wave-
length. We immediately see that the scattering patterns
differ from each other more that forλ = 10.87µm. How-
ever, the elements can still be said to be similar until we
exceed a scattering angle of 135◦. Perhaps most no-
tably, we observe thatP22 (the departure of which from
1 is a measure of non-sphericity) for the stepped cavity
appears markedly different. P22 for the stepped cavity
fluctuates from 0 to 7% away from the constant lines of
P22 ≈ 1 for the other two columns.

The efficiencies in Table 5 suggest a greater differ-
ence in the scattering properties of these particles. We
observe thatQsca andQext increase from the solid col-
umn to the regular cavity, and then further again to the
stepped cavity, with this overall increase being almost
50%. However,ω0 is much more similar for all three
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Figure 7: Scattering matrix elements forn = 1.0833+ 2.04e− 1i andka= 10 for the three scatterers in Figure 5.

shapes.g shows an increase of about 4% when going
from the regular column to the stepped cavity (which is
consistent with the increase inQext).

Shape Qsca Qext g ω0

Hex. col. 2.05 2.06 0.79 0.99
Reg. cav. 2.62 2.64 0.80 0.99
Step. cav. 3.05 3.08 0.82 0.99

Table 5: Scattering efficiencies and asymmetry parame-
ter for the three scatterers atka = 10 andµ = 1.311+
2.289e− 9i.

8.2. Bullet-rosettes with 2 to 6 branches

Here we consider pristine bullet-rosettes. Each con-
stituent branch of the bullet-rosettes is as in Figure 8,
the dimensions of which are also illustrated in the fig-
ure. We takeL/(2R) = 2.5 andL/H = 3.09 in accor-
dance with the bullet-rosettes studied in [30]. The only
difference between the bullet-rosettes here and those
in [30] is that we introduce a small cube at the centre
where the branches meet so that the scatterer’s bound-
ary is Lipschitz continuous. This requirement ensures
that all the convergence theory for the BEM holds.
The introduction of the cube makes a negligible differ-
ence to the scattering properties since it is chosen to be
much smaller than the other dimensions of the shape,
more precisely, the cube’s side length is (L + H)/50.

L H

R

Figure 8: Illustration of a single constituent branch of
the 2 to 6-branched bullet-rosettes.

The results presented here are for a refractive index of
n = 1.311+ 2.289e− 9i at a size parameterkA = 15
whereA := L + H is the radius of the smallest sphere
which encloses the bullet-rosette. We shall use a mesh
resolution ofλ/20 in this section with the expectation
of achieving 0.5% or better in the approximation accu-
racy for the scattering parameters, as indicated by the
experiments in section 6.

Figure 9 shows the scattering matrix elements for
bullet-rosettes with 3 to 6 branches. We have left out the
2 branch bullet as its scattering pattern is similar to the
hexagonal column as presented in the previous section.
For 4 branches onwards, a similar pattern inP11 begins
to appear, with the peaks and troughs being located in
approximately the same regions. The other matrix el-
ements for these different bullet-rosettes are also simi-
lar, except for in the scattering region 80◦ < ϑ < 130◦
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Figure 9:P11 for n = 1.311+ 2.289e− 9i andkA= 15 for the bullet-rosettes with 3 to 6 branches.

where we see some strong differences. P22 has been
omitted since, for all the bullet-rosettes here, it is ap-
proximately 1 for all scattering angles.

Table 6 shows the scattering efficiencies, asymmetry
parameter and single-scattering albedo for the bullet-
rosettes with 2 to 6 branches. We observe that the
single-scattering albedo is very close to 1 for all shapes.
We also note that the peak efficiencies appear for the 4-
branched bullet-rosette. This is due to the increase of
the projected cross section as we progress from 4 to 5
and 6 branches.

No. Qsca Qext g ω0

branches
2 0.98 0.98 0.75 1.00
3 2.09 2.10 0.83 1.00
4 3.96 3.98 0.86 1.00
5 3.03 3.04 0.85 1.00
6 2.54 2.54 0.85 1.00

Table 6: Scattering efficiencies, asymmetry parameter
and single-scattering albedo bullet-rosettes with 2 to 6
branches atkA= 15 andn = 1.311+ 2.289e− 9i.

9. Conclusion

The single scattering properties of ice particles in
fixed orientation have been calculated using the re-

cently developed open source BEM library of Betcke
et. al. [27]. In order to do this, we first established a sys-
tem of boundary integral equations to be solved for this
particular transmission problem. Currently BEM++
does not directly calculate the optical scattering prop-
erties of interest in atmospheric physics, so section 4
briefly explained how to obtain these properties from
BEM++’s ouput.

Several examples of ice crystal shape were consid-
ered to confirm the validity and accuracy of the ap-
proximation produced by BEM++. Namely, spheres
and hexagonal columns with differing refractive index
and size parameter. For the sphere, the approximations
produced by BEM++ were compared against those ob-
tained using Mie-Lorenz theory. It was shown that
BEM++ requires approximately 10 mesh elements per
wavelength to attain approximately 1% accuracy in the
scattering and extinction cross sections, however the ac-
curacies in the phase function and asymmetry parameter
are better than 1% at this resolution.

We further examined the performance of BEM++ by
applying it to scattering by hexagonal ice columns and
comparing the solution to that obtained with a highly
accurate T-matrix method [3]. We found that, due to
BEM++’s parallelisation, it runs considerably faster
than the T-matrix method, however, its memory con-
sumption is substantial. This large demand for memory
limited the size parameter range to a maximum of∼15
on a quad core 16.4 Gigabyte machine, if an accuracy
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of 1% is required. If a lower accuracy is required, or
a larger machine is available, this size parameter range
can of course be extended. Also, it should be noted that
BEM++ is not exploiting the symmetries of the shape
to reduce memory consumption as is done in [19, 24].
Hence, for non-symmetrical shapes, we can expect a
similar size parameter range of application.

We demonstrated that, although the scattering and ex-
tinction efficiencies differed from those of the T-matrix
by approximately 1%, the phase matrix entries were vir-
tually indistinguishable. This allows us to be confident
that the BIE formulation and meshing resolution we are
using are sufficiently accurate for many applications of
interest.

Finally, we showed examples where BEM++ can
prove extremely useful, that is, in approximating the
scattering by obstacles with more intricate shapes. We
briefly explored the effect on the scattering of altering
the shape of the cavities in hollow ice crystals. Fur-
ther, we demonstrated that BEM++ may be used to in-
vestigate electromagnetic scattering by even more com-
plicated ice crystal shapes, namely bullet-rosettes. It
is worth mentioning that the scattering calculations for
bullet-rosettes were fast and that higher size parameters
can be achieved for such shapes as compared to spheres
and hexagonal columns with aspect ratio 2 (as consid-
ered here) due to their smaller surface area.

We have not discussed scattering by particles in ran-
dom orientation in this paper. This is one of the draw-
backs of BEM compared to T-matrix. The T-matrix
method allows analytic orientation averaging, whereas
the current BEM approach requires the final system
solve x = A−1b to be performed for numerous right-
hand sidesb, corresponding the incident field on the
particle surface for different orientations, and then the
solution averaged. This is seen in other methods such as
the FDTD [3] and DDA, and proves to be slightly more
costly than solving the same problem in fixed orienta-
tion in terms of CPU time. We emphasise that the pro-
cess of calculating eachb and solving the system is sep-
arate to the assembly of the matrixA which only needs
to be performed once. The CPU times for the assem-
bly of A are those presented in Table 2 and constitute
the main computational load of the BEM. Calculatingb
and solving the system takes of the order of a few sec-
onds for each orientation and so will not contribute sig-
nificantly to the performance times if many solves are
required. Also, performing these multiple solves will
not increase the memory requirements, so the same size
parameter range is available.

BEM++ is open source and available for download
from the developers’ website. This open availability

along with the ability of boundary element methods to
be applied to particles with arbitrary shapes are the main
advantages of BEM++ over many other current meth-
ods. The Python scripts and meshes for the examples
shown in this paper, and others, are available from the
corresponding author.
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