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Abstract

A number of methods exist for solving the problem of electagmetic scattering by atmospheric ice crystals.
Amongst these methods, only a few are used to generate “benkh results in the atmospheric science commu-
nity. Most notably, the T-matrix method, Discrete Dipolegkpximation, and the Finite-Eerence Time-Domain
method. The Boundary Element Method (BEM), however, hasived considerably less attention in this community
despite its extensive use and development in other areggptiéd mathematics and engineering. Recently the group
of Betcke et. al.|[4] at University College London has retsha high performance open source boundary element
library called BEM++. In this paper, we employ BEM+ to calculate the scattering properties of hexagonal ice
columns of fixed orientation, as well as more complicatediglas such as hollow columns and bullet-rosettes. The
results for hexagonal columns are compared to those of dyhégicurate and well-established T-matrix methad [3]
for a range of dierent wavelengths and size parameters. It is shown thattudts are in excellent agreement and
that BEM++ is a fast alternative to the T-matrix method and others foregating benchmark results. However, the
large memory requirements of BEM cause it to be limited to size parametetk5 on a standard desktop PC if an
accuracy of roughly 1% is required. The main advantages ®fl BE over many other methods are its flexibility to
be applied to homogeneous dielectric particles of arligraomplex shape, and its open availability. This flexityili

is illustrated by the application of BEM+ to scattering by hollow columns with fiiérent cavity types, as well as
bullet-rosettes with 2 to 6 branches.

Keywords: Electromagnetic scattering, boundary element methodjscir

1. Introduction (from microwave to ultraviolet), leads to a huge vari-
ety of scattering problems to be solved. Over the years,

It has been well established that understanding the Many methods have been developed for tackliipdi
scattering properties of atmospheric ice crystals is im- €Nt problems within the myriad combinations of parti-
portant in modelling the radiation balance of cirrus Cl€ Shape, size and incident radiation frequency. These
clouds [1,[2[17]. Due to the wide coverage of cir- Methods fall into two main camps. _
rus over the Earth~30% at any one time in the mid- ~ The first contains asymptotic or *approximate” meth-
latitudes, and-60-80% in the tropics [1, 17, 26]), these ©dS which utilise the high-frequency behaviour of light
clouds in turn play an important role in the earth- to justify the implementation of geometrical techniques.
atmosphere radiation balance. Examples include Geometric Optics [18], the Kirch-

The ice crystals within cirrus exhibit a large array of 1Off approximation([23, 52./5], and Ray Tracing with
sizes and shapels [14/ 10] 16]. This, combined with the Diffraction on Facets [13]. These methods are applica-

frequency range of radiation incident upon the clouds P'€ to particles of large size parameter.
The second camp contains so-called “exact” meth-

ods which either discretise the underlying Maxwell's
“Corresponding author equations and solve the resultant discrete system, or
Email addresss . groth@pgr.reading.ac.uk (S. P. Groth) propose a separation of variables ansatz and obtain the
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codficients by enforcing the boundary conditions at equations, which is performed utilising the Stratton-Chu
the ice crystal’s surface. Such methods include the T- formulae. Sectiofi]4 recalls the definitions of the am-
matrix method |[12| 22, 15], the invariant imbedding plitude scattering matrix and other important scattering
T-matrix method|[6], the Discrete Dipole Approxima- properties, and also how they are computed from the
tion (DDA) [34], and Finite-Diference Time-Domain  outputs of BEM-+. In sectior(b, the settings of vari-
method (FDTD)|[29]. These methods have a computa- ous error tolerances within BEM- are discussed. Sec-
tional cost that scales with size parameter and hence aretions[@.7 andl8 comprise the results portion of the pa-
typically feasible only at small to moderate size param- per. Sectioll6 compares the solution of scattering by a
eters. We note briefly that exact methods which bridge sphere with BEM-+ to the exact solution, obtained via
these two camps exist. However their development is Mie-Lorenz theory, in order to ascertain the accuracy of
still in its early stages and, at present, they are limited BEM++ and decide upon the appropriate mesh resolu-
to scalar problems (see e.g.|[9} 11]). tion to be used. Sectidn 7 looks at scattering by hexago-

One “exact” method that has received scant attention nal columns, comparing the solution with BEM to
in the atmospheric physics community, apart from some that obtained using a T-matrix method. In section 8
application to simple shapes with exploitable symme- BEM-++ is applied to scattering by hexagonal columns
tries [19/24], is the Boundary Element Method (BEM) with different types of cavity, and bullet-rosettes, prob-
which, in it most standard form (i.e., not hybrid, see lems which are beyond the applicability of current stan-
[9]), is applicable to small to moderate size parame- dard T-matrix methods. The final section contains some
ter particles of arbitrary shape and at any wavelength. discussion and concluding remarks.
Moreover, a high-performance boundary element li-
brary called BEM-+ has recently been developed and
made open-source attp://www.bempp.org by the
group of Betcke et. all [27].

Within the BEM framework, Maxwell's equations are

reformulated as a system of boundary integral equations Consider the scattering of a monochromatic plane

on the particle’s surface via the Stratton-Chu formulae. wave with time-dependencei“ by a homogeneous
This has the advantage of reducing a problem defined on. P y g '

a three-dimensional infinte domain to a problem defined ICS:;:OIZI; ;jé]?rlaeccécg ﬁ]cdaéfrfmi/é_sesvg‘?ig% nggea
on a two-dimensional finite domain. The equations are P R ’ H

. . . h rmittivi n rmeability, r ively, of th
solved to obtain the electric and magnetic surface cur—t € permittivity and permeability, respectively, of the

. : : material composing;. It i m h [ r-
rents which may then be substituted into the Stratton- aterial composing,. It is assut ed_ t at;)l_s su
. ) . rounded by a homogeneous medi@xn:= R°\Q; with
Chu formulae (or their far-field asymptotic form) to ob- . L
. ' unit refractive index.
tain the field anywhere.
This paper analyses the performance of BEM

2. Problem statement

in its application to the scattering problems as- Q Q,
sociated with atmospheric non-spherical ice. In

particular, its performance is compared to that of

a well-established standard T-matrix methcd | [12]  Incident direction AZ

for the problem of scattering by hexagonal ice R
columns. We go on to demonstrate BEMSs utility
for scattering problems involving complex particle
shapes, such as hexagonal columns with cavities and
bullet-rosettes. The single-scattering properties we 9
consider in this paper are not at present direct outputs /

y

» X

. Scattering direction
from BEM++. However, example Python scripts g

which generate these from BEM’'s output can be
downloaded from the corresponding author’s webpage
http://www.personal.reading.ac.uk/~xk023928/. Figure 1: Scattering setup

The paper is organised as follows. In sectidn 2,
we state the electromagnetic scattering problem to be
solved. Sectiof]3 gives a brief outline of the reformu- The transmission problem is to find the fie|ég, H1}
lation of the problem as a system of boundary integral and {E,, H,} in Q; and Q, respectively, satisfying
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Maxwell's equations includes an extrafactor in the denominator. The traces
from the exterior and interior shall be writted, y;, and
VXEj =iwuHi, VxHp=-iwagEr inQ, (1) Y575, respectively. Now the transmission conditions
VXEz =iwupHz, VXHz=-iweE; inQy, (2) (@) can be stated in the concise way:

along with thetransmission conditionen the interface ytE1 = y5E, and ﬂ_m E,= ;1_27’\' E, onT. (6)
1

I :=0Q;:
NnxE;=nxE, and nxH;=nxH;. (3) In order to state the Stratton-Chu formulae, as well as
_ the following formulae, it is useful to define the single-
In addition, the scattered fields, definedsds= E,—FE', layer potential operatoPs, and double-layer potential

HS := H, — H' where{E',H'} is the incident electro-  operato¥p,:
magnetic field, are required to satisfy the Silvetiidr

radiation condition Yy LV(X) :=ikak(X, y)V(y)dr(y)
r

. Uis s 1 .
VERXHE + ek =°(F) as ri=ii—e (4 —&vfrek(x,y)v.v(y)dr(y)

uniformly in all directionsk := x/r. and
In this paper, we are considering scattering by ice

crystals in air for whichu; = o = 1. Also, all ex- Forv(x) =V x jr‘Gk(X’ yVy)dr(y),

amples considered here are for particles in fixed orien-

tation with the incident wave travelling in the positive

x-direction, as shown in Figufé 1.

whereGy is the Green's function of the Helmholtz equa-
tion with wavenumbek:

L)

3. Boundary Integral Equations 4nix -y

We briefly summarise the reformulation of the trans- NOw an integral representation farin €; can be writ-
mission problem as a system of boundary integral equa- t€n succinctly as
tions. The exposition here follows that of [27] which
in turn closely follows [3]; the latter gives an in-depth
review of the the boundary integral formulation for this
problem.

It is sufficient to solve for one of the two fieldsand + +
H due to their relationship in Maxwell's equatiois (1- B0 = ~¥oypB0) ~ FsnEX), x €2 (8)

) . Here we choose the electric fieid for which the  These are the Stratton-Chu representation formulae and
transmission conditions dnmay be written as are often written in a more explicit form without poten-
m tial operators. For these expressions the reader is re-
NxE; =nxE; nx(VxE;) = ,u_n x (VX Ey). (5) ferred to [20] and[[25].
? Boundary integral operators are constructed by ap-
We begin by defining the trace operators necessary for plying the Dirichlet and Neumann traceg, y3, to the
restricting our attention to the boundary of the scatterer. potentials¥s_and¥p.. We might expect to obtain four

E(X) = YoLypE(X) + PsiynE(X), x€Qi. (7)

Similarly, E in Q, possesses the representation

The Dirichlet trace is defined as different boundary integral operators, however due to
the fact thatv x Y. = k‘I"DL andV x Yo = k‘I"S L, We
¥pE(X) 1= n(X) X E(X)Ir, have that
yvherep is the outward normal t6. The Neumann trace YiPsL=yi¥pL,  yi¥oL = y5¥sL.
is defined as
1 Hence two diferent boundary integral operators are suf-
YNER) = 2 n(x) x (VX (ECO)Ir- ficient for electromagnetic scattering. We define them

as
Note that here (for the Neumann trace) we are following
[27]. This difers from the definition in 8] in that it Sk :=yo¥PsL = ynYoL, Ck = yo¥pL = YnPsL.
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Applying the interior and exterior traces to the Stratton-
Chu formulae, we arrive at the boundary integral equa-
tions [8]

1
(—EI +c)y5E+SmE=o (9)
- 1 -
—SinE+(—§| +C)yNE=0 (10)
1 + + + i
51 +Co|¥5E + S./(E = v5E (11)
+ 1 + +Ei
~S.y5E + (§| + C+)7NE =yiE. (12

Writing @) and [Z0) in terms of exterior traces by us-
ing the transmission conditiongiu = ypu, £yju =

_ H2ka.

ﬂ _ "
L and writingp ot

(—%I + c)ygE + }S,yﬁE =0 (13)
P

-S_ygE + 1 (—}I + C)mE =0. (14)

p\ 2
We have arrived at four boundary integral equations for
the two unknownsypE and ynE. There are numer-
ous ways to select two equations or two linear combi-
nations of [IB),[(T4)[(11) and{lL2); seel[20] for a dis-
cussion of five of these. Here we choose the simplest,
the combined-field formulatignwhich is known to be
uniquely solvable|[21]. This consists of taking the two
combinations

@D+ @3) and (12} @A)

After dropping thet on the traces, we have the system
of boundary integral equations to be solved:

S, + %S_ vpE ’)/DE?
C.+C- J\\nE]  \\WE'

Ci+C_
-8, - pS-

). (15)

Once this system is solved f&and its normal deriva-
tive onT, the solution is simply substituted int] (7) or
(8) to obtain the solution anywhere R*. If it is the
far-field solution which is of interest, we must use the
asymptotic (largekr) form of (8). This is discussed in
the following section.

4. Single scattering properties and problem setup

4.1. Amplitude scattering matrix

In the application of interest in this paper, it is the
scattered far-field which is of most importance. This

4

is due to the fact that ice crystals in cirrus tend to be
separated by large enough distances suchkthat- 1,
hence they are in each other’s far-fields. The scattered
far-field is obtained using the asymptotic form of equa-
tion (8), i.e.

s eikr
ES(x) ~ —TF(X), askr — oo, (16)

where
F(X) = Y5 (75E) + W5, (VnE).

Here we are using the far-field versions of the single-
and double-layer potentials, defined as

EI00 =5 [ e-i“*y)/'x(%xv(y))df«y) (17)

ik f e_ik(x'y)/‘xlv(y)dl"(y)
r

F = —
[PsM(X) = In
L3 f ek ) . X
r |

+
A X|

dr'(y). (18)
These far-field potentials are functions in BEM and

so the far-field pattern is easily calculated. Equation
(d18) encapsulates the standard far-field definition in the
boundary integral equation literature. However, it must
be noted that it dfers from the definition in physics
texts (such as [7]), where we find it written

gkr |
E3(x) ~ —WF(X).

In order to account for this flerence, the far-field out-
put of BEM++ must be multiplied byk since

F(x) = ikF(x).

The output of the above far-field calculation [n](16)
in BEM++ is of the scattered field in Cartesian coordi-
nates §, Y, 2) in a given scattering directio#, as shown
in Figure[l. Itis useful to define the directiénin terms
of the angles) and¢. ¢ dictates the scattering plane and
is a rotation about thg-axis, and¢ describes the scat-
tering direction within that scattering plane. Explicity,
the direction vector is written

& = (cos?), cose) sin@), sin(p) cos(?)). (29)

When calculating the scattering matrix entries, we shall
focus on the plane = 0, hence

& = (cosf?), sin(@), 0)

for 0 < ¢ < 2x.



We note that the scattered far-field is transverse,
€ - F = 0, hence it may be written

E® = (Ej§s + EI8T )€Y,
where (in the casg = 0)

AQ|S =&, @s=2 &5X é|s =8,
following the notation ofl[[7]. The BEM+ output far-
field can be converted to this new form simply by the
transformation

E> =

Is = — SIN@)ER + cos@)Ey, Els=E;.  (20)
In a similar way, the incident field is written in terms of

its frame as
E' = (E|i|ié|i + Eiiiéli)eikx’
where, in this case,
=y and &;=2

The Amplitude Scattering Matrixiefines the relation-

ship between the scattered far-field and #nbitrarily

polarised incident field in their respective coordinate
eik(r—x) (

frames, i.e.
Ble |- & E
ES. —ikr =

In order to calculate all entrief;, we consider two sep-
arate incident waves with flerent polarisations: one
polarised in thez-direction and the other polarised in
they-direction. Each wave has unit amplitude and trav-
els in the positivex-direction, as depicted in Figuté 1.
Let us consider these two problems separately.

Aqx
Aoy

A
Ao

| e

4.1.1. z-polarised incident wave
In this case the incident wave has the form

E'=(1-2&;+0-8)d~
and thus it is possible to calculate two of the matrix en-

tries, namelyA;> andA,. They are given as

Arp = —SINE)ES + cosSP)ES, A =ES. (22

4.1.2. §-polarized incident wave
In this case the incident wave has the form

E'= (18 +0-8,)e

and thus it is possible to calculate two of the matrix en-
tries, namelyA;; andA;;. They are given as

A1 = —sSin@)E; + cos@)ES, Ax=E;.  (23)

4.2. Scattering phase function; scattering, extinction
and absorption cross sections; and asymmetry pa-
rameter

Now that the amplitude scattering matrix has been
obtained, one may proceed to calculate the entries of
the so-calledscattering matrixas in, e.g.,[[7]. Its first
entry is given as

1
S11 = 5 (Al + Aol + 1Aorl” + 1AF).  (24)

This entry is often normalised in the following manner

and referred to as th@imensionless phase functiand
denotedP (). HereCg, is the scattering cross section
defined as

21 T Sll .
Cscazjv f Fsmﬂdﬂd@
0 0

that is, the scattering cross section is the integral of the
far-field amplitude over all scattering directiogs The
extinction cross section is defined as

(25)

4;
T Re((S11 - &)p-0) -

Cext = K2

(26)
The absorption cross section is defined as tftedince
of the two:

Cabs = Cext - Csca~ (27)

The quantities that shall be discussed later are the nor-
malised version of these parameters. More precisely
they are the scattering, extinction and absorptitii e
ciencies defined as

Cext

C
%a7 Qext = ? >

Qsca = Qabs = %57

where P is the geometric cross section of the parti-
cle projected onto a plane perpendicular to the incident
wave direction. Another useful quantity for which we
present calculated values is tiagle-scattering albedo

defined as
_ Qsca

- Qext '

Finally, theasymmetry parametés defined as

wo

21 T
g= pcos#dQ = f f p cos# singddde,
A 0 0

1 21 T
f f Sy cosd sinddddg,
0 0

= 2
szsca ( 8)



wherep is thephase function p= P/4x.

These quantities are, at present, not direct outputs of
BEM++. However, as illustrated above, can be gener-
ated from BEM+ far-field calcuations. In what fol-
lows, we shall compare the calcuations of these scatter-
ing properties in BEM+ to those obtained using Mie-
Lorenz theory in the case of scattering by spheres, and
using the T-matrix method of [12] in the case of hexag-
onal columns. We shall go on to calculate these scat-
tering properties with BEM+ alone for more complex
particles for which this current T-matrix code is not ap-
plicable.

5. Solution with BEM++

Currently BEM++ provides a single discrete approx-
imation space for approximatingsu andyyu, namely
the space of lowest-order Raviart-Thomas functions.
This leaves mesh refinement as the only way to increase
the accuracy of the approximation. In the next section,
we illustrate how the accuracy of BEM-, in approx-
imating scattering by a dielectric sphere, varies with
mesh refinement. That is, we vary the number of mesh
elements per wavelength. It is found that the standard
engineering rule of thumb of “10 elements per wave-
length” is suficient to achieve approximately 1% accu-

the performance of BEM+, with the optimal settings
being dependent on the specifications of the comfauter
being used.

6. Scattering by spheres - comparison with Mie-
Lorenz theory

To get a measure of the speed, accuracy and conver-
gence rate of BEM+, we first examine the case of scat-
tering by an ice sphere witka = 5 and refractive index
n = 1.0893+ 0.18216, wherea is the radius of the
sphere. The complex refractive indices used in this pa-
per are taken from the study in [31].

In the following numerical experiments, we consider
meshes of increasing refinement, starting from an ele-
ment size oh = 1/2.5 and doubling the refinement for
each successive numerical experiment until we reach
an element size ofi = 1/40. For each level of re-
finement, we record the memory requirement for the
operatorS_, the total run time, along with the errors
of the asymmetry parameter and the scattering and ex-
tinction dficiencies. The errors given are relative, e.g.
|Qsca( BEM) — Qsca(Mi€)l/Qsca(Mie). Tablell displays
this information. It can be seen from the table that the

racy. Higher resolution meshes generate more accurate

approximations (as we shall we §f6) however at the

cost of increased CPU time and memory requirements.
There are various tolerances to be set in B&Mor

the different algorithms it employs. These tolerance val-

ues were chosen after experiementation and led by ex-

h Mem. | Time | Qsca Qext g
(MB) (s) | err(%) | err.(%) | err.(%)
A/25| 1.73 | 2.15| 1.27el| 1.12el| 1.23e0
A/5 | 10.6 | 9.07 | 5.41e0| 4.38e0 | 2.55e-1
A/10 | 53.6 | 37.0 | 1.87e0| 1.34e0 | 4.93e-2
A/20 | 313 | 199 | 5.33e-1| 2.99e-1| 8.14e-3
A/40 | 1500 | 933 | 2.59e-1| 8.81e-2| 3.50e-3

amples provided on the BEM+- webpage, along with
[4]. It was found that these values areffatient to
cause the accuracy of the solution to be dominated by

the mesh size. We state the tolerances, although they

can be found in the example Python scripts provided
on the corresponding author’'s webpage. The adaptive
cross approximation (ACA) tolerance is set as-15,
and the generalised minimal residual (GMRES) toler-
ance as & — 8. The accuracy of the LU decomposition
is chosen asd- 2. Finally, the accuracy of the single
and double regular integral quadrature was increased by
2.

It should be noted that there are other ACA set-
tings such as the maximum rank and maximum block

Table 1: Scattering by a sphere wika = 5 and

n = 1.0893+ 0.18216. Memory use for operata$_,
run time, and relative error (%) in the approximation of
Qsca Qext andg at each mesh refinement.

memory cost of BEM+ increases by approximately a
factor 5 each time the refinement of the mesh is doubled.

We observe that the BEM is around 1-2% accurate at a

mesh size oh = 1/10 when approximatin@s.; and
Qext, but 0.05% accurate when approximatmagt this
resolution. Hence it appears thagifs the only parame-

ter of interest, such a fine mesh is not necessary. In fact,

size that may be altered to improve the performance of with 2.5 elements per wavelength, we achiexi&s ac-

BEM++. It was found here, however, that for the rela-
tively small scale computations performed in this paper,
altering these settings from their defaults made a neg-

curacy ing.
Figure[2 shows the scattering phase function calcu-
lated using Mie-Lorenz theory and BEM at two dif-

ligible difference. For large scale computations, it is ferent resolutions:1/2.5 and1/10. It is evident that

expected that adjusting these ACA settings witeat

at the1/10 resolution, BEM-+ approximates the phase
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Figure 2: Phase function for a sphere with size parame-
terka = 5 and refractive indern = 1.0893+ 0.18216.
Convergence o, to exact Mie solution as the mesh is
refined.

function extremely well. In fact, the relatiue error of
the approximation of the phase function here is 0.69%.
Figure[3 shows?,; for a sphere with size parameter
ka = 15 and refractive inder = 1.311 + 2.28% - 9i.
There is no discernible fference in the phase function,

—— Mie-Lorenz
+ BEM++

10 60 80 100

Scattering angle

120 140 160 1

Figure 3: Phase function for a sphere with size parame-
terka = 15 and refractive indem = 1.311+ 2.28% — 9i
calculated with Mie-Lorenz theory and BEM at a
resolution of1/10.

in fact, its error in theL? norm is 0.4%. The errors in
Csca and Cey; are again between 1% and 2%. In the
next section, we examine the capabilities of BEM
when applied to a commonly occuring ice crystal shape
in cirrus - the hexagonal column.

7. Scattering by hexagonal ice columns - compari-
son with T-matrix

In this section, we compare the performance of
BEM-++ to that of the T-matrix method of [12] for scat-
tering by hexagonal ice columns. In the previous sec-

7

tion it was established that a mesh resolution 4if0 is
suficient to produce approximately 1% accuracy with
BEM++. The simulations run in this section shall be
at this resolution. Comparisons are made for hexagonal
ice columns with refractive indax= 1.311+2.28%-9i

of three size parameterkg = 5,10,15). The incident
wave direction and orientation of the hexagonal ice col-
umn are both as illustrated in Figtire 1.

The aspect ratio of the hexagonal column is the ratio
L/a wherelL is the height of the column analis the
radius of the smallest circle which enscribes the hexag-
onal face. Throughout we take this ratio to be 2. We
note that we maintain the definition of size parameter as
ka, whereas some authors use the definitibrwhich
would lead to a doubling of all the size parameter fig-
ures given here for the hexagonal ice columns.

Table[2 displays some of the performance details for
the two methods. BEM+, which has been optimised
for computations in parallel, was run on 4 core machine
with a total of 16.4 Gigabytes of RAM, whereas the T-
matrix code was run on a single core of the same ma-
chine. The memory requirements for BEM shown

ka | CPU (s)| CPU (s)| Mem. (MB) | Mem. (MB)
(M (BEM) (M (BEM)

5 319 65.5 3.81 496

10 7470 471 34.3 2420

15| 27600 1720 92.3 7050

Table 2: CPU time and memory load utilised (given
to 3 significant figures) by the T-matrix and BEM

to calculate the scattering properties of hexagonal ice
columns of diferent size parameters.

in the table are those required to store the four opera-
tors S,;,S_,C,,C- that compose the system matrix in
(@5). Simiarly, the memory requirement figures shown
for the T-matrix relate to the memory required to store
the system matrix arising in that method. It is evident
from the table that the memory utilised by the BEM is
currently much greater than that utilised by the T-matrix
code. This memory consumption is the main drawback
of most BEMs (with the exception of some 2D high fre-
guency BEMSs, see [9]) and is the reason why BEM
is limited to relatively small size parameters. However,
we notice that due to its parallelisation and high-level
implementation, BEM+ is extremely fast, with a CPU
time more than 16 times faster than the T-matrix for
ka= 15.

Figure[4 displays phase matrix elementsKar= 10.
It is clear from the figure that both methods are in ex-
cellent agreement. We have omittBg, since it has a
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Figure 4: Phase matrix elements as calculated by the Txraid BEM++ for ka= 10 andn = 1.311+ 2.28% - 9i.

value very close to 1 for all scattering angles.

We display the approximations to the scattering and

ble[3. We observe a fierence of approximately 2% or
less between the two methods at all the size parametersyared for a solid hexagonal column similar to thagh

to those of columns with both stepped cavities [28] and
the more regular pyramidal inclusioris [18]. The three

considered.
ka Qsca Qsca Qext Qext g g
(M | (BEM) | (T) | (BEM) | (T) | (BEM)
51| 374] 3.69 |3.74| 3.72 | 0.87| 0.87
10| 298| 292 | 298| 295 | 0.78| 0.77
15 || 2.54 2.50 2.54 2.52 0.74 0.74

8.1. Hexagonal columns with cavities

Ve ¢ e : We first perform an investigation into the impact of
extinction dficiencies, and asymmetry parameter in Ta- assuming dferent cavity constructions on the scattering
matrix elements. The scattering characteristics are com-

shapes are shown in Figlire 5. We shall consider two re-

Table 3:Qsca, Qext andg calculated using T-matrix and

BEM++ forn= 1311+ 2.28% - 9i.

8. Scattering by complex ice crystal shapes using

BEM ++

In this section we demonstrate the utility of BEM
for scattering by ice crystal shapes which are beyond the
scope of standard T-matrix approaches (although within Figure 5: Hexagonal columns: without cavity, with con-
the scope of the invariant imbedding T-matrix method Vventional cavity, with stepped cavity.
of [6], the code of which, however, is not as yet in the
public domain). Such shapes include bullet-rosettes, ag-fractive indices: 10833+ 2.04e - 1i (4 = 10.87um) and
gregates and hexagonal ice columns with cavities. Here 1.311+ 2.28%-9i (1 = 0.55um) in order to observe the
we shall focus on hexagonal ice columns with cavities effect absorption has upon thefférentiation of these
particles by their scattering properties. The shape of the

and bullet-rosettes with 1 to 6 branches.
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column with a standard cavity is the same as_in [33]. Shape | Qsca | Qext | 9 | wo

That is, the aspect ratio is/a = 1/0.35 ~ 2.857, and Hex. col. | 1.00 | 2.23| 0.96 | 0.45
the depth of the cavity isl = L/4. The stepped cav- Reg.cav.| 0.86 | 1.98 | 0.96 | 0.44
ity contains three steps, each of degit3. The radius Step. cav.| 0.97 | 2.18 | 0.96 | 0.44

of the hexagonal faces as we progress down the steps is
a; = 0.5a,a, = 0.353,a; = 0.2a. The mesh resolution Table 4: ScatteringfBciencies and asymmetry parame-
for these experiments is set &t10, also the incident  ter for the three scatterersle = 10 and
wave direction and orientation of the columns are both N = 1.0833+ 2.04e - 1i.
as illustrated in Figurgl 1.

Figure[® shows the phase matrix elements for the
three shapes &&= 10 and fom = 1.0833+ 2.04e - 1i. Now let us consider the same problem at a weakly
It is clear that at this highly absorbing wavelength, the absorbing wavelength, namely.at 0.55:mfor which
phase matrix is almost idential for all 3 shapes. One n = 1.311+2.28%-9i. FigureT displays the same phase
exception is at the scattering angle of 1561ere we matrix elements as Figufd 6 but at this second wave-
observe the scattering pattern from the hollow columns length. We immediately see that the scattering patterns
differs slightly from that of the solid column. differ from each other more that far= 10.87um. How-

Table[d shows the scatteringfieiencies and the  €Ver, the elements can still be said to be similar until we
asymmetry parameter to 2 decimal places (all figures exceed a scattering angle of T35Perhaps most no-
from here onwards shall we presented likewise) for each tably, we observe thak;, (the departure of which from
shape. These provide a measure of the overiddince 1 is @ measure of non-sphericity) for the stepped cavity
in the scattering of the three shapes. We note that the@ppears markedly fierent. P2, for the stepped cavity
hexagonal column and the column with stepped cavities fluctuates from 0 to 7% away from the constant lines of
have almost idenitical feciencies and asymmetry pa- P22 = 1 for the other two columns.
rameter, whereas thdfeiencies for the regular cavity The dficiencies in Tabl&€l5 suggest a greateffed
column are lower, in particular the extinctioffieiency. ence in the scattering properties of these particles. We
This is likely due to the angled cavity shape in this parti- observe thaQsc, and Qex; increase from the solid col-
cle. This leads to a deflection of a greater portion of the umn to the regular cavity, and then further again to the
incident wave’s energy upwards, away from the scatter- stepped cavity, with this overall increase being almost
ing planegp = 0. 50%. Howeverwg is much more similar for all three



10° 1.00
—  Column E 0)?(7 Xxx»gxx < ) %
102 Regular & 090 ¥
St d 0.04f
i ~ eppe 0‘19(5]0 20 40 60 80 100 120 140 160 180
I N =
10 ¥ - 05 MX 7
o v Y S o0 5
] X
o < 05 |
7 X _ i
M 7‘7’% fj igo 20 40 60 80 100 120 140 160 180
L) o . #
L} i - 5 \
10~ 3%! Ej = 0.5 j"*}
< S 0.0 ! .1,&
* |
S 1 ’ y
o _ G
1(1) Q20 40 6080 100 120 140 160 180 }((:o 20 40 60 80 100 120 140 160 180
o 05 . L woew V"a o
= o.ow { w’/ S 00 Xy
8 v ! ¥ Gt
=05 ..; & —05 i
~1.0 !

-1.0

Figure 7: Scattering matrix elements foe 1.0833+ 2.04e — 1i andka = 10 for the three scatterers in Figlide 5.
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shapes.g shows an increase of about 4% when going
from the regular column to the stepped cavity (which is
consistent with the increase Q).

Shape

QSC&

Qe Xt

g

wo

Hex. col.
Reg. cav.
Step. cav.

2.05
2.62
3.05

2.06
2.64
3.08

0.79
0.80
0.82
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0.99
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Figure 8: lllustration of a single constituent branch of
Table 5: Scatteringf&ciencies and asymmetry parame- the 2 to 6-branched bullet-rosettes.
ter for the three scatterersle = 10 anduy = 1.311+

2.28% - 9.

The results presented here are for a refractive index of
n = 1311+ 228% — 9i at a size parametdA = 15
8.2. Bullet-rosettes with 2 to 6 branches whereA = L + H is the radius of the smallest sphere
Here we consider pristine bullet-rosettes. Each con- Which encloses the bullet-rosette. We shall use a mesh

stituent branch of the bullet-rosettes is as in Figdre 8, resolution of1/20 in this section with the expectation
the dimensions of which are also illustrated in the fig- Of achieving 0.5% or better in the approximation accu-
ure. We takeL/(2R) = 2.5 andL/H = 3.09 in accor- racy for the scattering parameters, as indicated by the
dance with the bullet-rosettes studied|in [30]. The only €Xperiments in sectidd 6.

difference between the bullet-rosettes here and those Figure[® shows the scattering matrix elements for
in [30] is that we introduce a small cube at the centre bullet-rosettes with 3 to 6 branches. We have left out the
where the branches meet so that the scatterer's bound-2 branch bullet as its scattering pattern is similar to the
ary is Lipschitz continuous. This requirement ensures hexagonal column as presented in the previous section.
that all the convergence theory for the BEM holds. For 4 branches onwards, a similar patteriiPia begins
The introduction of the cube makes a negligibl&ett to appear, with the peaks and troughs being located in
ence to the scattering properties since it is chosen to beapproximately the same regions. The other matrix el-
much smaller than the other dimensions of the shape, ements for these fierent bullet-rosettes are also simi-
more precisely, the cube’s side length is« H)/50. lar, except for in the scattering region°8@ ¢ < 130C°
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Figure 9:Py; for n = 1.311+ 2.28% — 9i andkA = 15 for the bullet-rosettes with 3 to 6 branches.

where we see some strongfdrences. P,, has been cently developed open source BEM library of Betcke
omitted since, for all the bullet-rosettes here, it is ap- et. al. [27]. In order to do this, we first established a sys-
proximately 1 for all scattering angles. tem of boundary integral equations to be solved for this
Table[6 shows the scatterinffieiencies, asymmetry  particular transmission problem. Currently BEM

parameter and single-scattering albedo for the bullet- does not directly calculate the optical scattering prop-
rosettes with 2 to 6 branches. We observe that the erties of interest in atmospheric physics, so sediion 4
single-scattering albedo is very close to 1 for all shapes. briefly explained how to obtain these properties from
We also note that the peakieiencies appear for the 4- BEM++'s ouput.

branched bullet-rosette. This is due to the increase of Several examples of ice crystal shape were consid-
the projected cross section as we progress from 4 to 5ered to confirm the validity and accuracy of the ap-

and 6 branches. proximation produced by BEM+. Namely, spheres
and hexagonal columns withftiring refractive index
br:n%hes Qsca | Qext 9 wo and size parameter. For the sphere, the approximations

produced by BEM+ were compared against those ob-

2 0.98 1 0.98 | 0.75] 1.00 tained using Mie-Lorenz theory. It was shown that

3 2.091 210 0.83] 1.00 BEM++ requires approximately 10 mesh elements per
g 3.96 | 3.98 | 0.86| 1.00 wavelength to attain approximately 1% accuracy in the
6

3.03 1 3.04 0.85] 1.00 scattering and extinction cross sections, however the ac-
2.54]2.54)| 0.85] 1.00 curacies in the phase function and asymmetry parameter
are better than 1% at this resolution.

We further examined the performance of BEMby
applying it to scattering by hexagonal ice columns and
comparing the solution to that obtained with a highly
accurate T-matrix method![3]. We found that, due to
BEM++'s parallelisation, it runs considerably faster
9. Conclusion than the T-matrix method, however, its memory con-

sumption is substantial. This large demand for memory

The single scattering properties of ice particles in limited the size parameter range to a maximum-tb
fixed orientation have been calculated using the re- on a quad core 16.4 Gigabyte machine, if an accuracy

11

Table 6: Scatteringf@ciencies, asymmetry parameter
and single-scattering albedo bullet-rosettes with 2 to 6
branches atA = 15 andn = 1.311+ 2.28% - 9i.



of 1% is required. If a lower accuracy is required, or along with the ability of boundary element methods to
a larger machine is available, this size parameter rangebe applied to particles with arbitrary shapes are the main
can of course be extended. Also, it should be noted thatadvantages of BEM+ over many other current meth-
BEM++ is not exploiting the symmetries of the shape ods. The Python scripts and meshes for the examples
to reduce memory consumption as is done_in [19, 24]. shown in this paper, and others, are available from the
Hence, for non-symmetrical shapes, we can expect acorresponding author.

similar size parameter range of application. 0 ALE A review of the lih _ i

e demonsizated hat, although the scattering and ex- 1 2,500 e oLt o seteing povertdsers.
tinction dficiencies difered from those of the T-matrix [2] A.J.Baran. From the single-scattering properties efdrystals

by approximately 1%, the phase matrix entries were vir- to climate prediction: A way forwardAtmos. Res112:45-69,

tually indistinguishable. This allows us to be confident 2012.
[3] A.J. Baran, P. Yang, and S. Havemann. Calculation of the

that the BIE formulation and meshing resolution we are ; : ! i i
. . L. single-scattering properties of randomly oriented hexapwe
using are sfiiciently accurate for many applications of columns: a comparison of the T-matrix and the finit&edience
interest. time-domain methodsAppl. Optics 40(24):4376-4386, 2001.
Fina”y, we Showed examp|es Where BEM can [4] T. Betcke, S. Arridge, J. Phi”ipS, M. Schweiger, and&Wnigaj.

e : : Solution of electromagnetic problems using BEM In Ober-
prove extremely useful, that is, in approximating the wolfach Report 02013 pages 146150, 2013,

scattering by obstacles with more intricate shapes. We 5] . Bj, P. Yang, G. W. Kattawar, Y. Hu, and B. Baum. Scatter-

briefly explored the £ect on the scattering of altering ing and absorption of light by ice particles: Solution by avne
the shape of the cavities in hollow ice crystals. Fur- ghysiiég'fjg?itgggopz%clslhybfid method. Quant. Spectrosc.

. a, . —. y .
ther’, we demonstrated that BEM _may be used to in- [6] L.Bi, P. Yang, G. W. Kattawar, and M. |. Mischenko fiEEient
vestigate electromagnetic scattering by even more com- implementation of the invariantimbedding T-matrix method and
plicated ice crystal shapes, namely bullet-rosettes. It the separation of variables method applied to large noniather
is worth mentioning that the scattering calculations for '{‘;;”;89112”90“3 particles]. Quant. Spectrosc. Ral16:169-

bullet—roset_tes were fast and that higher size parameters ;) ¢ £ gonren and D. R. Himan. Absorption and scattering of
can be achieved for such shapes as compared to spheres " |ight by small particles John Wiley & Sons, Inc, 1983.
and hexagonal columns with aspect ratio 2 (as consid- [8] A.Buffa and R. Hiptmair. Galerkin boundary element methods

ered here) due to their smaller surface area for electromagnetic scattering. In M. Ainsworth, editGom-
) putational Methods in Wave PropagatioBpringer, New York,

We have not discussed scattering by particles in ran- 2003,
dom orientation in this paper. This is one of the draw- [9] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and E. A.
backs of BEM compared to T-matrix. The T-matrix Spence. Numerical-asymptotics boundary integral methods in

method allows analytic orientation averaging, whereas ~ Nigh-frequency acoustic scatteringcta Numer. pages 89-305,

. . 2012.
the current BEM approach requires the final 3_y5tem [10] P.R. Field, J. Heymsfield, A. Bansemer, and C. H. Twohy. De-
solve x = A™lb to be performed for numerous right- termination of the combined ventilation factor and capacian
hand sidesb, corresponding the incident field on the for ice crystal aggregates from airborne observations mo@i-t

. - . cal anvil cloud.J. Atmos. Scj.65(2):376-391, 2008.
particle surface for dierent orientations, and then the 11] S. P. Groth, D. P, Hewett, and S. Langdon. Hybrid numeri-

solution averaged. This is seen in other methods suchas ~ cajasymptotic approximation for high-frequency scattetiyg

the FDTD [3] and DDA, and proves to be slightly more penetrable convex polygondMA J. Appl. Math, 2013. doi:
costly than solving the same problem in fixed orienta- 1 éo-li‘)%'mamaxhgf‘*?é Extension of Lmatri to sc

. . . . . Havemann an . J. baran. extension of t-matrix to e

tion in terms of _CPU time. We e.mpha3|se that j[he pro- of electromagnetic plane waves by non-axisymmetric dietectri
cess of calculating ea¢hand solving the system is sep- particles: application to hexagonal ice cylindetsQuant. Spec-
arate to the assembly of the matdxwhich only needs trosc. Ra, 70:139-158, 2001.

to be performed once. The CPU times for the assem- [13] L. Hesse, A. Macke, S. Havemann, A. J. Baran, Z. Ulanowski
bly of A are those presented in Talle 2 and constitute and P. H. Kaye. Modelling dliraction by facetted particlesl.
y . _p Quant. Spectrosc. Ral13:342-347, 2012.
the main computational load of the BEM. Calculating  [14] Andrew J Heymsfield and Larry M Miloshevich. Relative hu-
and solving the system takes of the order of a few sec- midity and temperature influences on cirrus formation and evo-
onds for each orientation and so will not contribute sig- 'Sg"?ﬁ%ﬁ%ﬁgfﬂi%’”}gﬁ?e Elouds and FIREH-Atmos:
mf'ce}mly to the performgnce times if many solves a.re [15] M. Kahnert. The T-matrix code Tsym for homogeneous dielec
required. Also, performing these multiple solves will tric particles with finite symmetriesJ. Quant. Spectrosc. Ra.
not increase the memory requirements, so the same size  123:62-78, 2013.
parameter range is available [16] R. P. Lawson, B. Pilson, B. Baker, Q. Mo, E. Jensen, L.-Pfis
. ) . ter, and P. Bui. Aircraft measurements of microphysical prop-
BEM++ is open source a_-nd ava!lable for dOWnIQ?-d erties of subvisible cirrus in the tropical tropopause taye
from the developers’ website. This open availability Atmos. Chem. Phys.8:1609-1620, 2008. doi: 10.5194
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