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EXISTENCE OF DIM SOLUTIONS TO THE EQUATIONS OF

VECTORIAL CALCULUS OF VARIATIONS IN L∞

NIKOS KATZOURAKIS

Abstract. In the very recent paper [K] we introduced a new duality-free the-
ory of generalised solutions which applies to fully nonlinear PDE systems of

any order. As one of our first applications, we proved existence of vectorial

solutions to the Dirichlet problem for the ∞-Laplace PDE system which is
the analogue of the Euler-Lagrange equation for the functional E∞(u,Ω) =

‖Du‖L∞(Ω). Herein we prove existence of a solution u : Ω ⊆ R −→ RN to

the Dirichlet problem for the system arising from the functional E∞(u,Ω) =

‖H(·, u, u′)‖L∞(Ω). This is nontrivial even in the present 1D case, since the

equations are non-divergence, highly nonlinear, degenerate, do not have classi-
cal solutions and standard approaches do not work. We further give an explicit

example arising in variational Data Assimilation to which our result apply.
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1. Introduction

Calculus of Variations in L∞ has a long history and was pioneered by Aronsson
in the 1960s [A1]-[A5]. In the simpler case of one space dimension, the basic object
of study is the functional

(1.1) E∞(u,Ω) :=
∥∥H(·, u, u′)

∥∥
L∞(Ω)

, u : Ω ⊆ R −→ RN ,

where N ≥ 1 and H ∈ C2(Ω × RN × RN ) is a Hamiltonian function whose ar-
guments will be denoted by (x, η, P ). Aronssson was the first to note the locality
problems associated to this functional and by introducing the appropriate minimal-
ity notion in L∞, proved the equivalence between the so-called Absolute Minimisers
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2 NIKOS KATZOURAKIS

and classical solutions of the “Euler-Lagrange” equation which is associated to the
functional. The higher dimensional analogue H(·, u,Du) when u : Ω ⊆ Rn → R is
a scalar function has also attracted considerable attention by the community, see
e.g. [BEJ], [C] and for an elementary introduction [K8]. In particular, the Crandall-
Ishii-Lions theory of Viscosity Solutions proved to be an indispensable tool in order
to study the equations in L∞ which are non-divergence, highly nonlinear and de-
generate. Even in the simplest case where the Hamiltonian is the Euclidean norm,
i.e. H(P ) = |P |2, in general the solutions are non-smooth and the corresponding
PDE which is called ∞-Laplacian reads

(1.2) ∆∞ := Du⊗Du : D2u =

N∑
i,j=1

DiuDjuD
2
iju = 0.

However, until the early 2010s, the theory was essentially restricted to the scalar
case N = 1. The main reason for this limitation was the absense of an effective
theory of generalised solutions for non-divergence PDE system which would allow
to study the counterparts of (1.2) emerging in the vectorial case. In a series of
recent papers [K1]-[K7], the author has initiated the study of the vector-valued
case, which except for its intrinsic mathematical interest it is also of paramount
importance for applications. The results in the aforementioned papers include the
study of the analytic properties of classical solutions to the fundamental equations
and their connection to the supremal functional. In the case of

(1.3) E∞(u,Ω) =
∥∥|Du|2∥∥

L∞(Ω)

applied to Lipschitz mappings u : Ω ⊆ Rn −→ RN (where |Du| denotes the Eu-
clidean norm on RN×n), the respective ∞-Laplace system is

(1.4) ∆∞u :=
(
Du⊗Du + |Du|2[Du]⊥⊗ I

)
: D2u = 0.

In (1.4), [Du(x)]⊥ denotes the orthogonal projection on the nullspace of the linear
map Du(x)> : RN −→ Rn and in index form (1.4) reads

N∑
β=1

n∑
i,j=1

(
DiuαDjuβ + |Du|2[Du]⊥αβ δij

)
D2
ijuβ = 0, α = 1, ..., N.

A further difficulty of (1.4) which is not present in the scalar case of (1.2) is that
the coefficients may be discontinuous along interfaces even for C∞ solutions be-
cause the term involving [Du]⊥ measures the dimension of the tangent space of
u(Ω) ⊆ RN (see [K1, K2]). This is a general vectorial phenomenon studied in
some detail in [K3]. The appropriate minimality notion allowing to connect (1.4)
to the functional (1.3) has been established in [K4]. In the 1D vectorial case of the
supremal functional (1.1), the respective equations read(

HP ⊗HP +H[HP ]⊥HPP

)
u′′ + HP

(
Hη · u′ + Hx

)
+ H[HP ]⊥

(
HPηu

′ +HPx −Hη

)
= 0

(1.5)

and apply to maps u : Ω ⊆ R −→ RN . In (1.5), the notation of subscripts denotes
derivatives with respect to the respective variables and for the sake of brevity we
have suppressed the arguments

(
x, u(x), u′(x)

)
of HPP , HPη, HPx, HP , Hη, Hx, H.

Moreover, [HP (x, η, P )]⊥ in this case reduces to the orthogonal projection on the
hyperplane which is normal to the vector HP (x, η, P ) ∈ RN . The system (1.5) is
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a 2nd order ODE system which is quasilinear, non-divergence non-monotone and
with discontinuous coefficients. Even in the scalar case of N = 1, it is known since
the work of Aronsson that (1.5) in general does not have solutions any more regular
than just C1(Ω,RN ) and their “weak” interpretation is an issue.

Motivated in part by the necessity to study the nonlinear systems arising in
L∞, in the very recent paper [K] the author proposed a new theory of generalised
solutions which applies to fully nonlinear PDE systems. In addition, this theory
allows to interpret merely measurable mappings u : Ω ⊆ Rn −→ RN as solutions of
PDE systems which may even be defined by discontinuous nonlinearities and can
be of any order:

F
(
·, u,Du,D2u...,Dpu

)
= 0, F Carathéodory map.

In the above Du,D2u...,Dpu denote the derivatives of u of 1st, 2nd,... ,pth order
respectively. Our approach is duality-free and bypasses the standard insuffiency
of the theory of Distributions (and of weak solutions) to apply to even linear
non-divergence equations with rough coefficients. The standing idea of the use of
integration-by-parts in order to “pass derivatives to test functions” is replaced by a
probabilistic description of the limiting behaviour of the difference quotients. This
builds on the use of Young (Parameterised) measures over the compactification of
the “state space”, namely the space wherein the derivatives are valued. Background
material on Young measures can be found e.g. in [P, FL, E, FG, M, V, CFV], but
for the convenience of the reader we recall herein all the rudimentary properties we
utilise in the paper.

The essential idea behind our new notion of solution is thoroughly explained
later, but, at least for the case needed in this paper, it can be briefly motivated as
follows. Assume that u : Ω ⊆ R −→ RN is a strong a.e. solution of the system

(1.6) F (·, u, u′, u′′) = 0, on Ω.

We need a notion of solution which makes sense even if u is at most once differen-
tiable. If u is twice differentiable, we have

F
(
x, u(x), u′(x), lim

h→0
D1,hu′(x)

)
= 0,

for a.e. x ∈ Ω, where D1,h stands for the difference quotient operator. By continuity,
the limit commutes with the nonlinearity. Hence, we have

lim
h→0

F
(
·, u, u′, D1,hu′

)
= 0,

a.e. on Ω. Note now that the above statement makes sense even if u is once differ-
entiable, although as it stands does not look promising. In order to represent this
limit in a convenient fashion, we embed the difference quotients D1,hu′ : Ω −→ RN
into the probability-valued maps (see the next section for the precise definitions)

from Ω to the Alexandroff compactification RN and consider instead

δD1,hu′ : Ω −→P
(
RN
)
.

By the weak* compactness of this space, regardless regularity of u there always

exists a sequential limit D2u of δD1,hu′ such that δD1,hu′
∗
−−⇀D2u as h→ 0. Then,

it can be shown that for any “test function” Φ ∈ C0
c

(
RN
)
, we have∫

RN
Φ(X)F

(
x, u(x), u′(x), X

)
d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω.
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We emphasise that D2u always exists independently of the twice differentiability of
u. If u′′ happens to exist, then we have the extra information that D2u = δu′′ a.e.
on Ω and we reduce to strong solutions. This above property essentially consists
the notion of Dim Solutions (in the special case of once differentiable solutions
of 2nd order ODE systems) and will be taken as principal in this work.

As a first application of this new approach, in the paper [K] among other things
we proved existence of Dim solutions to the Dirichlet problem for (1.4) when n = N .
Herein we consider the relevant but different question of existence of Dim solutions
to the Dirichlet problem for the ODE system (1.5). This is a non-trivial task even
in the 1D case. In fact, it is not possible to be done in the generality of (1.1),
(1.5) without structural conditions on H. The most important of these is that the
Hamiltonian has to be radial in P . This means that there exist mappings

h : Ω× RN × [0,∞) −→ R,

V : Ω× RN −→ RN ,
such that H can be written as

(1.7) H(x, η, P ) = h

(
x, η,

1

2
|P − V (x, η)|2

)
.

Unfortunately this condition is necessary, since as we proved in [K3] it is (roughly)
both necessary and sufficient for the ODE system to be degenerate elliptic. Under
the assumption (1.7), the system (1.5) becomes

(1.8)

 (hp)
2
∣∣u′ − V ∣∣2(u′′ − Vηu′ − Vx) = −hp

(
hx + hη · u′

)
(u′ − V )

+ hp|u′ − V |2[u′ − V ]⊥
(
hη − hp(u

′ − V )>Vη

)
,

where for brevity we have omitted the arguments(
·, u, 1

2

∣∣u′ − V (·, u)
∣∣2) , (·, u)

of hp, hη, hx, h and V, Vη, Vx respectively.
The table of contents gives an idea how this paper is organised. After developing

some basic theory of Dim solutions in the special case of 2nd order ODE sytems
required for the equations we are treating in this paper, we formally derive the
equations (1.5) and (1.8) governing 1D vectorial problems in L∞. A more detailed
account of the Dim solutions’ approach can be found in [K]. However, we chose to
reproduce a large part of the relevant material of [K] herein as well because in the
present case the machinery can be simplified largely.

Our central result Theorem 4.1 establishes existence of Dim solutions for (1.8)
given any boundary conditions. Moreover, we obtain extra information regarding
partial regularity : for, the Dim solution we obtain is actually C2 on an open subset
of the domain, whose complement is nowhere dense in R but may not be a Lebesgue
nullset. This is a new type of partial regularity which seems to arise in L∞. In
addition, the solution is a limit of minimisers of the respective Lm functionals

Em(u,Ω) =

∫
Ω

h

(
·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)m

as m → ∞. However, this does not prove that the Dim solution is any sort of
minimiser to the supremal functional althoug it is a good candidate for this to
be true. Moreover, this solution is a candidate for other useful properties, like
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uniqueness. This approach for existence is the “natural” one for L∞ problems.
This is in contrast to the method followed in [K]: therein we used an alternative
approach for existence of solution to (1.4) based on the Dacorogna-Marcellini Baire
category method [DM]. The Baire category method is an analytic counterpart to
Gromov’s geometric Convex Integration method. The idea in [K] was to construct
Lipschitz continuous strong solutions to a 1st order differential inclusion of the form

Du(x) ∈ K ⊆ Rn×n, a.e. x ∈ Ω,

and subsequently use the machinery of Dim solutions to characterised it as a solu-
tion of (1.4).

We conclude this introduction by noting that the assumed form (1.7) of the
Hamiltionian actually includes many interesting models. In particular, joint work
with J. Bröcker [BK] suggests that one can replace standard models of variational
Data Assimilation used in Meteorology (see [B, BS]) by the respective L∞ counter-
parts (see Subsection 3.2). In principle this is very promising since minimisation in
L∞ excludes at the outset large spikes of the deviation and as a consequence it is
expected to give better predictions.

2. Dim Solutions for fully nonlinear ODE systems

2.1. Preliminaries and basics on Young measures. Our notation is either
standard (as e.g. in [E2, EG]) or self-explanatory. For example, the Lebesgue
measure on R will be denoted by | · |, the charasteristic function of the set A by
χA, the standard Sobolev and Lp spaces of maps u : Ω ⊆ R −→ RN by Lp(Ω,RN ),
Wm,p(Ω,RN ), whilst if N = 1 we will write Lp(Ω,R) = Lp(Ω) etc. Moreover,
we will follow the standard practice that while deriving estimates, constants may
change from line to line but will be denoted by the same letter C.

In this paper, N ∈ N will always be the dimension of the range of our candidate
solutions u : Ω ⊆ R −→ RN . Unless indicated otherwise, Greek indices α, β, γ, ...
will run in {1, ..., N} and the summation convention will be employed in products
of repeated indices. The standard basis on RN will be denoted by {eα} and hence
for the map u with components uα we will write u(x) = uα(x)eα. The norm symbol
| · | will always indicate the Euclidean one and the respective inner product will be
denoted by “·”.

Given a vector ξ ∈ RN \ {0}, we consider the following orthogonal projections of
RN (on span[ξ] and its normal hyperplane):

(2.1) [ξ]> :=
ξ ⊗ ξ
|ξ|2

, [ξ]⊥ := I − ξ ⊗ ξ
|ξ|2

.

If ξ = 0, we interpret the sign of zero as zero and hence then [0]> = 0, [0]⊥ = I.
Let now E ⊆ R be a (Lebesgue) measurable set and consider the Alexandroff

1-point compactification of the space RN :

RN := RN ∪ {∞}.

Its topology will be the standard one which makes it homeomorphic to the sphere
of the same dimension (via the stereographic projection which identifies {∞} with
the north pole).
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Definition 2.1 (Young Measures). The space of Young (or Parameterised) Mea-

sures from E to RN is denoted by

Y
(
E,RN

)
and is the set of probability-valued maps

R ⊇ E 3 x 7−→ ϑx ∈P
(
RN
)

which are measurable with respect the x in the following sense: for any fixed open

set U ⊆ RN , then real function E 3 x 7→ ϑx(U) ∈ [0, 1] is (Lebesgue) measurable.
This property is called weak* measurability.

The Young measures can be identified with a subset of the Banach space

L∞w∗
(
E,M

(
RN
))
.

This space consists of weakly* measurable maps valued in the real (signed) Radon

measures over RN :

R ⊇ E 3 x 7−→ ϑx ∈ M
(
RN
)
.

The norm on the space L∞w∗
(
E,M

(
RN
))

is

‖ϑ‖
L∞
w∗ (E,M

(
RN
)

)
:= ess sup

x∈E
‖ϑx‖

(
RN
)

where “‖ · ‖
(
RN
)
” is the total variation norm on M

(
RN
)
. For more details about

this and relevant spaces we refer e.g. to [FL] (and references therein). Hence, the
Young Measures are the subset of the unit sphere which consists of probability-
valued weakly* measurable maps:

Y (E,RN ) =
{
ϑ ∈ L∞w∗

(
E,M

(
RN
))

: ϑx ∈P
(
RN
)
, for a.e. x ∈ E

}
.

It can be shown (see e.g. [FL]) that L∞w∗
(
E,M

(
RN
))

is the dual space of the Banach

space L1
(
E,C0

(
RN
))

:(
L1
(
E,C0

(
RN
)))∗

= L∞w∗
(
E,M

(
RN
))
.

This L1 space consists of strongly measurable maps valued in the (separable) space

C0
(
RN
)

of real continuous functions over RN , in the standard Bochner sense. Its
elements can be identified with a subset of the Carathéodory integrands

Φ : E × RN −→ R, (x,X) 7→ Φ(x,X),

that is functions for which x 7→ Φ(x,X) is measurable for evey X ∈ RN and
X 7→ Φ(x,X) is continuous for a.e. x ∈ E. The identification is given by considering

Φ as a map E 3 x 7−→ Φ(x, ·) ∈ C0
(
RN
)
. The norm on this space is

‖Φ‖
L1(E,C0(RN ))

:=

∫
E

∥∥Φ(x, ·)
∥∥
C0(RN )

dx.

The space L1
(
E,C0

(
RN
))

is separable and the duality pairing

〈·, ·〉 : L∞w∗
(
E,M

(
RN
))
× L1

(
E,C0

(
RN
))
−→ R
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is given by

〈ϑ,Φ〉 :=

∫
E

∫
RN

Φ(x,X) dϑx(X) dx.

Since L1
(
E,C0

(
RN
))

is separable, the unit ball of L∞w∗
(
E,M

(
RN
))

is sequentially

weakly* compact. Hence, for any bounded sequence (ϑm)∞1 ⊆ L∞w∗
(
E,M

(
RN
))

,

there is a limit map ϑ and a subsequence of m’s along which ϑm
∗
−−⇀ϑ as m→∞.

Moreover, we have

ϑm
∗
−−⇀ϑ ⇐⇒ 〈ϑm − ϑ,Φ〉 −→ 0, for all Φ ∈ L1

(
E,C0

(
RN
))
.

Further, by the density of the products of the form φ(x)Φ(X), where φ ∈ L1(E) and

Φ ∈ C0
(
RN
)
, for bounded sequences the weak* convergence ϑm

∗
−−⇀ϑ is equivalent

for any fixed Φ ∈ C0
(
RN
)

to∫
RN

Φ(X) d
[
ϑm − ϑ

]
(X)

∗
−−⇀ 0, in L∞(E).

Remark 2.2 (Properties of Y (E,RN )). The set of Young measures is convex

and by the compactness of RN , it can be proved that it is sequentially weakly*

compact in L∞w∗
(
E,M

(
RN
))

(see e.g. [FG, CFV]). This property is essential in our

setting. Moreover, the set of Lebesgue measurable functions v : E ⊆ Rn −→ RN

has weakly* dense image in Y
(
E,RN

)
under the imbedding v 7→ δv which is given

by δv(x) := δv(x).

The following lemma is a small variant of a standard result about Young measures
but it plays an important role in our setting.

Lemma 2.3. Suppose vm, v∞ : Ω ⊆ R −→ RN are measurable maps, m ∈ N, where
Ω is open and |Ω| <∞. Then, there exists subsequences (mk)∞1 , (ml)

∞
1 such that:

vm −→ v∞, a.e. on Ω =⇒ δvmk
∗
−−⇀ δv∞ , in Y

(
Ω,RN

)
,

δvm
∗
−−⇀ δv∞ in Y

(
Ω,RN

)
=⇒ vml −→ v∞, a.e. on Ω.

In the following subsection we motivate the notion of solution we will use in this
work in the special case of locally Lipschitz continuous solutions of 2nd order fully
nonlinear ODE systems.

2.2. Motivation of the notion of solution. Suppose Ω ⊆ R is an open set and

F : Ω× RN × RN × RN −→ RN

is a Carathéodory mapping. Assume that u : Ω ⊆ R −→ RN is a W 2,∞
loc (Ω,RN )

strong a.e. solution of the system

(2.2) F (·, u, u′, u′′) = 0, on Ω.

We are looking for a notion of generalised solution which makes sense even if u ∈
W 1,∞

loc (Ω,RN ) and hence when the solution is only once differentiable a.e. on Ω.
Since u is assumed twice differentiable a.e. on Ω, we have

F
(
x, u(x), u′(x), lim

h→0
D1,hu′(x)

)
= 0,
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for a.e. x ∈ Ω, where D1,h stands for the standard difference quotient operator.
But since F is a Carathéodory map, the limit commutes with the coefficients:

(2.3) lim
h→0

F
(
·, u, u′, D1,hu′

)
= 0,

a.e. on Ω. Note now that this statement makes sense if u is once differentiable and
the limit when taken outside may exist even when it may not exist when it is put
back inside. However, the above as it stands does not look useful since we need
a way to represent this limit. Going back to (2.2), we observe that u is a strong
solution of (2.2) if and only it satisfies∫

RN
Φ(X)F (·, u, u′, X) d[δu′′ ](X) = 0, a.e. on Ω,

for any compactly supported “test” function Φ ∈ C0
c

(
RN
)
. This gives the idea that

we can embed the difference quotient map D1,hu′ : Ω −→ RN into the spaces of
Young measures and consider instead the Dirac measure evaluated at the difference
quotients of u′:

δD1,hu′ : Ω −→P
(
RN
)
.

We use the Alexandroff compactification RN instead of RN and attach the point at
∞ in order to avoid the loss of mass of the measures and retain weak* compactness

for the space Y
(
Ω,RN

)
. Thus, by weak* compactness, regardless regularity of u

there always exists a sequential limit D2u of δD1,hu′ in the Young measures such
that, along a subsequence we have

(2.4) δD1,hu′
∗
−−⇀ D2u, in Y

(
Ω,RN

)
,

as h→ 0. Then, by imbedding the ODE system into the space of Young measures,
(2.3) is equivalent to∫

RN
Φ(X)F

(
·, u, u′, X

)
d
[
δD1,hu′

]
(X) −→ 0, a.e. on Ω,

along a sequence as h → 0, for any Φ ∈ C0
c

(
RN
)
. Hence, by passing to the

limit, a simple argument involving Egoroff’s theorem allows to deduce that for any
Φ ∈ C0

c

(
RN
)

we have∫
RN

Φ(X)F
(
·, u, u′, X

)
d[D2u](X) = 0, a.e. on Ω.

We stress now that this statement is independent of the twice differentiability of
the solution of (2.2). In the event that u′ is differentiable a.e. on Ω and u′′ is
measurable, we have D2u = δu′′ a.e. on Ω and by applying Lemma 4.4 we go back
to strong solutions of (2.2).

2.3. Main definitions and analytic properties. Now we give the main defini-
tions and some rudimentary properties of our notion of solution only in the special
case which is needed in this paper for the equations in L∞. For the general case
we refer to [K].

Definition 2.4 (Dim 2nd Derivatives). Let Ω be an open set in R and suppose

u : Ω ⊆ Rn −→ RN is in W 1,∞
loc (Ω,RN ). We define the Dim 2nd Derivatives of
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u as the subsequential limits D2u of the 1st difference quotients of the derivative

u′ in the space of Young measures Y
(
Ω,RN

)
:

δD1,hiu′
∗
−−⇀D2u, , in Y

(
Ω,RN

)
, as i→∞.

Here (hi)
∞
1 ⊆ R \ {0} is any infinitesimal sequence and

D1,hiu′ : Ω ⊆ R −→ RN , i ∈ N,

is the 1st difference quotient of the derivative u′, localised inside an hi-inner neigh-
bourhood of Ω:

D1,hiu′(x) := χΩi(x)

(
u′(x+ hi)− u′(x)

hi

)
,

Ωi :=
{
x ∈ Ω : dist(x, ∂Ω) > hi

}
.

By analogy, one can define the Dim derivatives of any order in the obvious way
but we will not need them in this work.

Remark 2.5 (Adaptive difference quotients). In the present case the main concept
of Dim derivative is largely simplified over the general case of [K]. Namely, for the
current 1D problem we can obtain existence without being required to use special
adaptive difference quotients, as it happens e.g. for the ∞-Laplace PDE system.
The term adaptivity is borrowed from numerical analysis and in this 1D context it
means that the step sizes of the difference quotients depend on the basepoint:

D1,hi(x)u′(x) =
u′
(
x+ hi(x)

)
− u′(x)

hi(x)
, (hi)

∞
1 ⊆ L∞(R), hi > 0 a.e. on Ω.

This can be avoided for the fundamental ODE system of L∞ we are considering
herein, but in general it may not be possible. For the general case, the reader may
see [K].

The weak* compactness of the set of Young measures implies the following result:

Lemma 2.6 (Existence of Dim Derivatives). Every locally Lipschitz mapping u :
Ω ⊆ R −→ RN possesses at least one Dim 2nd derivative. Moreover, u has at least
one D2u for every choice of infinitesimal sequence (hi)

∞
1 .

We note that in general Dim derivatives may not be unique for non-differentiable
maps. The next lemma claims the rather obvious fact that Dim derivatives are
compatible with classical derivatives and is an immediate consequence of Lemma
4.4.

Lemma 2.7 (Compatibility of classical/strong with Dim derivatives). Let u : Ω ⊆
R −→ RN be a map in W 1,∞

loc (Ω,RN ). If u is twice differentiable a.e. on Ω and u′′

is measurable, then the Dim 2nd derivative D2u is unique and

δu′′ = D2u, a.e. on Ω.

The next notion of solution will be central in this work.

Definition 2.8 (Dim Solutions of 2nd order ODE systems). Let Ω ⊆ R be an open
set and

F : Ω×
(
RN × RN × RN

)
−→ RN
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a Carathéodory map. Consider the ODE system

(2.5) F
(
·, u, u′, u′′

)
= 0, on Ω.

We say that the W 1,∞
loc (Ω,RN ) map u : Ω ⊆ R −→ RN is a Dim Solution of (2.5)

when there exist a Dim 2nd derivative D2u with respect to an infinitesimal sequence
(hi)

∞
1 :

δD1,hiu′
∗
−−⇀ D2u, in Y

(
Ω,RN

)
, as i→∞,

such that ∫
RNn

2

s

Φ(X)F
(
·, u, u′, X

)
d[D2u](X) = 0, a.e. on Ω,

for any Φ ∈ C0
c

(
RN
)
.

Remark 2.9 (Absence of concentrations). Fix a Φ ∈ C0
c

(
RN
)

and let u : Ω ⊆
R −→ RN be a locally Lipschitz map and F a Carathéodory map as above. Then,
we have the estimate∣∣∣∣∫

RN
Φ
(
X
)
F
(
·, u, u′, X

)
d[D2u](X)

∣∣∣∣ ≤ ∫
RN

∣∣∣Φ(X)F (·, u, u′, X)∣∣∣ d[D2u](X)

≤ ‖Φ‖C0(RN ) max
X∈supp(Φ)

∣∣F (·, u, u′, X)∣∣.
Hence, “... = 0 a.e. on Ω” in the definition above is equivalent to “... = 0 in
L∞(Ω)”. Thus, the left hand side is always a measurable map and no lower-
dimensional measures supported on nullsets can arise.

The following proposition is an easy consequence of Lemma 2.7 and asserts that
Dim and strong solutions are compatible when the Dim solution is twice differen-
tiable. For further details we refer to [K].

Proposition 2.10 (Compatibility of Dim Solutions with Strong/classical Solu-
tions). Let Ω ⊆ R be open and F a Carathéodory map. Consider the ODE system

F
(
·, u, u′, u′′

)
= 0, on Ω.

Suppose also that u : Ω ⊆ R −→ RN is a W 1,∞
loc (Ω,RN ) map. Then, if u is Dim

solution of the system which is twice differentiable a.e. on Ω and u′′ is measurable,
then u is a strong solution. Conversely, if u is a strong solution of the system on
Ω in the sense that u′′ exists a.e. and is measurable, then, u is a Dim solution.

In [K] the reader may find alternative equivalent formulations of the definitions
of Dim solutions. In particular, it can be shown that the locally Lipschitz map
u : Ω ⊆ R −→ RN is a Dim solution of

F
(
·, u, u′, u′′

)
= 0, on Ω,

if and only if for a.e. x ∈ Ω, the restriction on RN of the Dim 2nd derivative
D2
∗u(x) := D2u(x)xRN (i.e. off {∞}) satisfies the differential inclusion

supp
(
D2
∗u(x)

)
⊆
{
F
(
x, u(x), u′(x), ·

)
= 0
}
,

where “’supp” denotes the support. We will not this equivalent formulation in this
paper.

We conclude this elementary introduction to Dim solutions by noting that,
clearly, our analytic approach is much more malleable and effective than the cum-
bersome algebraic theories of the type of “multiplication of distributions” (see e.g.
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[Co]). The latter approaches present some serious inconsistencies when applied to
differential equations.

3. Derivation of the fundamental equations in L∞

In this section we formally derive the fundamental equations associated to vari-
ational problems for the supremal functional

E∞(u,Ω) := ess sup
x∈Ω

H(x, u(x), u′(x)),

when H ∈ C2(Ω × RN × RN ) is a nonnegative Hamiltonian,Ω ⊆ R is open and
N ≥ 1. The next derivation has been performed in [K3] in the general higher-
dimensional case, but we include it here because it provides further insights since
the method of proof makes the foregoing formal calculations rigorous. For the sake
of completeness of the exposition, we give all the steps of the derivation.

We begin by noting that since the functional is not Gateaux differentiable, we
can not obtain the equations by taking variations as in the integral case. Instad,
we obtain the equations in the limit of the Euler-Lagrange equations related to the
Lm integral functional

(3.1) Em(u,Ω) :=

∫
Ω

(
H(x, u(x), u′(x))

)m
dx,

as m → ∞. Here we suppose that m ≥ 2 and u is a map u : Ω ⊆ R −→ RN . The
Euler-Lagrange equation of (3.1) is the ODE system

(3.2)
(
Hm−1( , u, u′)HP ( , u, u′)

)′
= Hm−1( , u, u′)Hη( , u, u′).

Evidently, the subscripts denote derivatives with respect to the respective argument.
By distrbuting derivatives and normalising, the equation (3.2) gives

(3.3)
(
H( , u, u′)

)′
HP ( , u, u′) +

H( , u, u′)

m− 1

((
HP ( , u, u′)

)′ −Hη( , u, u′)
)

= 0,

on Ω ⊆ R. Then, by employing (2.1) applied to ξ = HP ( , u, u′) we expand the
term in the bracket of (3.3) and obtain(
H( , u, u′)

)′
HP ( , u, u′) +

H( , u, u′)

m− 1
[HP ( , u, u′)]>

((
HP ( , u, u′)

)′ −Hη( , u, u′)
)

= − H( , u, u′)

m− 1
[HP ( , u, u′)]⊥

((
HP ( , u, u′)

)′ −Hη( , u, u′)
)
.(3.4)

By mutual orthogonality of the projections, the left and right hand side of (3.4)
are normal to each other. Hence, they both have to vanish and (3.4) splits to two
independent ODE systems. Therefore, by supressing for brevity the arguments
( , u, u′), we get the pair of systems(

H
)′
HP +

H

m− 1
[HP ]>

((
HP

)′ −Hη

)
= 0,(3.5)

H[HP ]⊥
((
HP

)′ −Hη

)
= 0.(3.6)
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By expansion of derivatives, we further get

HP

(
H>P u

′′ + H>η u
′ + Hx

)
+
H[HP ]>

m− 1

(
HPPu

′′ + HPηu
′ + HPx − Hη

)
= 0,

(3.7)

H[HP ]⊥
(
HPPu

′′ + HPηu
′ + HPx − Hη

)
= 0.(3.8)

As m → ∞, we obtain the complete ODE system for a general Hamiltonian when
we have dependence on all the arguments (x, u(x), u′(x)):

HP

(
H>P u

′′ + H>η u
′ + Hx

)
= 0,(3.9)

H[HP ]⊥
(
HPPu

′′ + HPηu
′ + HPx − Hη

)
= 0.(3.10)

By mutual perpendicularity of the differential operators in (3.9), (3.10), we have
that this pair of systems is equivalent to the single system(

HP ⊗HP +H[HP ]⊥HPP

)
u′′ + HP

(
Hη · u′ + Hx

)
+ H[HP ]⊥

(
HPηu

′ +HPx −Hη

)
= 0.

3.1. The degenerate elliptic case of the system. Unfortunately, it is not in
general possible to obtain existence of solution of the equations (3.9), (3.10) without
imposing structural conditions on the hamiltionian H. The problem is that the sys-
tems (3.9), (3.10) fail to be elliptic in the sense needed for existence. In particular,
the coefficient of (3.10) may be discontinuous at points where HP (·, u, u′) = 0. In
this subection we derive the appropriate degenerate elliptic version. It was shown
in [K3], actually in a more general setting, that we need to assume that H depends
on u′ in a radial fashion. This forces the matrices [HP ]⊥ an HPP to commute,
making the coeffients of the system continuous and allowing them to “match” to a
single ODE system. Hence, we will henceforth assume that H has the form

(3.11) H(x, η, P ) := h
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2)

where

h : Ω× RN × [0,∞) −→ [1,∞), (x, η, p) 7→ h(x, η, p),

V : Ω× RN −→ RN , (x, η) 7→ V (x, η),
(3.12)

are C2 maps up to the boundary, while the p-partial derivative hp(x, η, p) of h is
strictly positive. There is no loss of generality to assume as we have done that
h ≥ 1, since if h is bounded below, we can always add a positive constant to h
and the equations remain the same because additive constants commute with the
supremal functional (and this constant also regularises the Lm functional). By
assuming (3.11), the respective functionals become

E∞(u,Ω) =

∥∥∥∥h(·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)∥∥∥∥

L∞(Ω)

,(3.13)

Em(u,Ω) =

∫
Ω

h
(
·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)m.(3.14)

A model case of this class of functionals is the one arising in variational Data
Assimilation and is given in the next subsection. We now derive the equations
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correspoding to both the Lm functional and the L∞ functional for the specific form
of H as in (3.11). We first differentiate (3.11) and for the sake of brevity we suppress
the arguments

HPα = hp(P − V )α,

Hηα = hηα − hp(P − V )γVγηα ,

Hx = hx − hp(P − V )γVγx,

HPαPβ = hpp(P − V )α(P − V )β + hpδαβ

and

HPαx = −hpVαx +
[
hpx − hpp(P − V )γVγx

]
(P − V )α,

HPαηβ = −hpVαηβ + (P − V )α
[
hpηβ − hpp(P − V )γVγηβ

]
.

Then, by using the identity[
hp(P − V )

]>
= [P − V ]>,(3.15)

which is a consequence of the assumption we have made that hp > 0 and by grouping
terms, the equation (3.7) after a calculation gives

{
h[u′ − V ]>

m− 1

(
hpI + hpp(u

′ − V )⊗ (u′ − V )
)

+ (hp)
2(u′ − V )⊗ (u′ − V )

}(
u′′ − Vηu′ − Vx

)
= − h[u′ − V ]>

m− 1

[
hp(u

′ − V )>Vη − hη +
(
hpη · u′ + hpx

)
(u′ − V )

]
− hp

(
hx + hη · u′

)
(u′ − V ).

(3.16)

Similarly, by the identity (3.15) and since h/(m− 1) > 0, (3.8) gives

[u′ − V ]⊥

{(
hpI + hpp(u

′ − V )⊗ (u′ − V )
)(
u′′ − Vηu′ − Vx

)
− hη + hp(u

′ − V )>Vη +
(
hpη · u′ + hpx

)
(u′ − V )

}
= 0.

(3.17)

Since the projection [u′ − V ]⊥ annihilates u′ − V , (3.17) simplifies to

hp[u
′ − V ]⊥

(
u′′ − Vηu′ − Vx

)
= [u′ − V ]⊥

(
hη − hp(u

′ − V )>Vη

)
.(3.18)

We now observe that in view of the identities (2.1), the two systems (3.16) and (3.18)
can be matched and the discontinuous but mutually singular coefficients [u′ − V ]>

and [u′ − V ]⊥ add to the identity. For, by multiplying (3.18) by hp|u′ − V |2 and
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adding it to (3.16), we obtain
(3.19)

[
h
(
hp + hpp|u′ − V |2

)
[u′ − V ]>

m− 1
+ (hp)

2|u′ − V |2I

](
u′′ − Vηu′ − Vx

)
= − h[u′ − V ]>

m− 1

[
− hη + hp(u

′ − V )>Vη +
(
hpη · u+ hpx

)
(u′ − V )

]
− hp

(
hx + hη · u′

)
(u′ − V )

+ hp|u′ − V |2[u′ − V ]⊥
(
hη − hp(u

′ − V )>Vη

)
.

The ODE system (3.19) is the Euler-Lagrange equation of the functional (3.14) in
expanded form. The left hand side is the only one containing 2nd derivatives.

Remark 3.1 (Notation). We recall that for the sake of brevity we have suppressed
in the above ODE system the dependence on the arguments(

·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)

of the mappings h, hp, hη, hx and hpp, hpη, hpx. The same is true for the arguments
(·, u) of the mappings V, Vη, Vx. We also note that the coefficients which are of
order O

(
1

m−1

)
remain discontinuous, but this causes no problems since the terms

invloving these will be annihilated as m→∞.

By lettingm→∞ in (3.19) and by our assumption that hp > 0, we (formally) get
the fundamental ODE system in L∞ which corresponds to the supremal functional
(3.13):

(3.20)

 (hp)
2|u′ − V |2

(
u′′ − Vηu′ − Vx

)
= −hp

(
hx + hη · u′

)
(u′ − V )

+ hp|u′ − V |2[u′ − V ]⊥
(
hη − hp(u

′ − V )>Vη

)
.

We now rewrite the above systems (3.19), (3.20) in a more compact form. We define
the mapping (recall Remark 3.1)

F∞(·, u, u′) := − hp
(
hx + hη · u′

)
(u′ − V )

+ (hp)
2|u′ − V |2[u′ − V ]⊥

(
hη − hp(u

′ − V )>Vη

)
,

(3.21)

and the mappings

f∞(·, u, u′) := − h[u′ − V ]>
[
− hη + hp(u

′ − V )>Vη

+
(
hpη · u+ hpx

)
(u′ − V )

]
,

A∞(·, u, u′) := h
(
hp + hpp|u′ − V |2

)
[u′ − V ]>.

(3.22)

Then, the Euler-Lagrange system (3.19) of the Lm functional (3.13) can be written
as {

A∞(·, u, u′)
m− 1

+ h2
p

(
·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)∣∣u′ − V (·, u)

∣∣2I}[u′′ − (V (·, u)
)′]

=
f∞(·, u, u′)
m− 1

+ F∞(·, u, u′)

(3.23)
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and the L∞ system (3.20) arising from the supremal functional (3.14) can be written
as

h2
p

(
·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)∣∣u′ − V (·, u)

∣∣2[u′′ − (V (·, u)
)′]

= F∞(·, u, u′)(3.24)

where F∞, f∞, A∞ are given by (3.21), (3.22).

3.2. A model of Data Assimilation in Meteorology. (This subsection is a
result of the discussions with J. Bröcker, who we would like to thank.) Suppose
Ω ⊆ R is a bounded interval and let us choose the Hamiltonian

H∗(x, η, P ) := 1 +
1

2

∣∣k(x)−K(η)
∣∣2 +

1

2

∣∣P − V (x, η)
∣∣2,

where N,M ∈ N and

k : Ω ⊆ R −→ RM ,

K : RN −→ RM ,

V : Ω× RN −→ RN

are all C1 mappings. In the notation of the previous subsection, H∗ corresponds
to the choice of

h∗(x, η, p) := 1 +
1

2

∣∣k(x)−K(η)
∣∣2 + p.

In standard variational Data Assimilation models (see [B, BS]), one seeks find
minimisers u : Ω ⊆ R −→ RN of the functional

E(u,Ω) =

∫
Ω

H∗(·, u, u′).

The motivation to study this particular problem comes from the applications to the
Earth Sciences and especially Meterolory. In mathematical terms, the question is
the following: let V be a time-dependent vector field describing the law of motion
(e.g. Newtonian forces or finite-dimensional Galerkin approximation of the Euler
equations). Let also k be a map of some partial “measurements” in continuous
time along the trajectory. The map K is a submersion which corresponds to some
component of the projection we are able to measure, for example some projection.
Then, we wish to find the actual solution u : Ω ⊆ R −→ RN , which should satisfy
the law of motion and should also be compatible with the measurements:{

u′(t) = V
(
t, u(t)

)
, t ∈ Ω,

K(u(t)) = k(t), t ∈ Ω.

However, this problem is in general overdetermined (due to errors in the measure-
ments etc) since we impose a pointwise manifold constraint to the solution of the
ODE system. Hence, minimisation of E allows to find approximate solutions to
this overdetermined problem, by minimising the deviation in L2. But if instead of
E we choose to use the respective supremal functional

E∞(u,Ω) =
∥∥H∗(·, u, u′)∥∥

L∞(Ω)
,

then it is expected that minimisation in L∞ will give better results: in this case,
large “spikes” of the deviation from the actual solution (namely, the value of H∗)
with small area are from the outset excluded (see [BK]). For the choice of H =
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H∗, the fundamental equations in the space L∞ arising from the model of Data
Assimilation in Meteorology reads∣∣u′ − V (·, u)

∣∣2{u′′ − (V (·, u)
)′

−
[
u′ − V (·, u)

]⊥((
K(u)− k

)>
Kη(u) −

(
u′ − V (·, u)

)>
Vη(·, u)

)}
=
[
Kη(u) :

(
K(u)− k

)
⊗ u′ +

(
K(u)− k

)
· kx
](
u′ − V (·, u)

)
.

Our main existence result applies in particular to this ODE system. although
the L∞ equations are more complicated than the respective L2 Euler-Lagrange
equations, evidence [BK] suggest hat they provide better models.

4. Existence of Dim solutions to the equations in L∞

In this section we prove existence of Dim solutions to the Dirichlet problem for
the fundamental equation (3.20) arising from variational problems of the functional

E∞(u,Ω) =
∥∥∥h(·, u, 1

2

∣∣u′ − V (·, u)
∣∣2)∥∥∥

L∞(Ω)
,

where Ω ⊆ R and N ≥ 1. The following is the principal result of this work.

Theorem 4.1 (Existence of Dim solutions to the Dirichlet Problem). Let Ω ⊆ R
be a bounded interval and let

h : Ω× RN × [0,∞) −→ [1,∞),

V : Ω× RN −→ RN ,

be given maps, N ≥ 1. We suppose that

(4.1)



h is C2 up to the boundary,

C(|η|) ≥ hp(x, η, p) ≥ c0,

2hpp(x, η, p)p + hp(x, η, p) ≥ c0,∣∣hx(x, η, p)
∣∣, ∣∣hη(x, η, p)

∣∣ ≤ C(|η|)(1 + p),∣∣hpp(x, η, p)∣∣, ∣∣hpη(x, η, p)
∣∣, ∣∣hpx(x, η, p)

∣∣ ≤ C(|η|)(1 + pM ),

(4.2)

{
V is C1 up to the boundary,∣∣V (x, η)

∣∣ ≤ (1/c0)(1 + |η|α),

for some constants c0, α ∈ (0, 1), some M ∈ N, some positive continuous increasing
function C ∈ C0([0,∞)) and all (x, η, p) ∈ Ω× RN × [0,∞).

Then, for any affine map b the ODE system (3.20) has a Lipschitz continuous
Dim solution u∞ : Ω ⊆ R −→ RN with u = b at the endpoints ∂Ω. In addition, the
following stronger properties holds:

(1) For any infinitesimal sequence 0 < |hi| → 0, there is a subsequence (hij )
∞
j=1

and a Dim 2nd derivative arising from that subsequence

δ
D

1,hij u∞′

∗
−−⇀ D2u∞, in Y

(
Ω,RN

)
, as j →∞,
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such that, for any Φ ∈ C0
c (RN ), the map u∞ satisfies∫

RN
Φ(X)

{
h2
p

(
·,u, 1

2

∣∣u′ − V (·, u)
∣∣2)∣∣u′ − V (·, u)

∣∣2�
�
[
X −

(
V (·, u)

)′] − F∞(·, u, u′)
}
d[D2u](X) = 0,

a.e. on Ω. Here F∞ is given by (3.21).

(2) The Dim solution u∞ is a sequential uniform limit on Ω of C2 minimisers in

W 1,2m
b (Ω,RN ) of the integral functionals (3.14) and a fortiori of smooth solutions

to (3.19).

(3) There is an open subset Ω∞ ⊆ Ω such that the Dim solution u∞ is in
C2(Ω∞,RN ). Moreover, Ω∞ is given by

Ω∞ :=
{
u∞′ 6= V (·, u∞)

}
∪ int

{
u∞′ = V (·, u∞)

}
.

Remark 4.2. i) Note that the conclusion (1) above is stronger than the general
Definition 2.8 of Dim solutions since actually the desired integral formula is satisfied
for all infinitesimal sequences. Since this is appears to be an exception rather than
the rule for general systems, we have not considered it useful to re-define Dim
solutions in this stronger sense.

ii) The conclusion of (2) says that the Dim solution u∞ is a uniform limit of Lm

minimisers as m→∞, however this does not prove that the Dim solution is an L∞

minimal map of the supremal functional in the sense of the variational characterisa-
tion of [K4]. Investigation of this question is left for future work. Notwithstanding,
the solution we construct in this way is a “good” solution of the system, as op-
posed to the solutions we construct for the ∞-Laplace system in [K] via “analytic
convex integration”, namely the Dacorogna-Marcellini Baire category method (see
the remarks in [K] about uniqueness to the Dirichlet problem).

iii) The conclusion of (3) is a partial regularity result which says that all possible
Dim 2nd derivatives coincide on Ω∞ and in addition

D2u∞ = δu∞′′ a.e. on Ω∞.

However, this differs from classical partial regularity results in that the complement
of Ω∞ is Ω is a closed nowhere dense set (a topological boundary) but not neces-
sarily of zero Lebesgue measure. Moreover, it leaves open the possibility of lower
dimensional concentration measures supported on Ω \ Ω∞.

The proof of Theorem 4.1 is split to several lemmas. The first one below shows
that the minimisation problem of Em in W 1,2m

b (Ω,RN ) has a solution um, and also
the minimisers um converge weakly to a candidate u∞.

Lemma 4.3 (Existence of minimisers and convergence). Let h, V,Ω, b satisfy the
assumptions of Theorem 4.1. Then, for any affine map b the functional (3.14) has

a local minimisers in the space W 1,2m
b (Ω,RN ). Moreover, we have the following

estimate

(4.3) ‖u‖W 1,2m(Ω) ≤ C
(
Em(u,Ω)

1
2m + max

∂Ω
|b| + 1

)
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where C > 0 depends only on the assumptions and the length of Ω. In addition,
there is a subsequence (mk)∞1 and u∞ ∈W 1,∞

b (Ω,RN ) such that{
um−−→ u∞, in C0(Ω,RN ),

um′ −−⇀ u∞′, in Lp(Ω,RN ), for any p > 2,

along mk →∞, and also

(4.4) ‖u∞‖W 1,∞(Ω) ≤ C,

where the constant C depends only on the assumptions, b and Ω.

Proof of Lemma 4.3. Step 1. We begin by recording some elementary inequalities
we will use in the sequel. For any t ≥ 0, 0 < α < 1 and ε > 0, Young’s inequality
gives

(4.5) tα ≤ εt +
(α
ε

) α
1−α

(1− α).

Moreover, for any P, V ∈ RN and 0 < δ < 1, we also have

(4.6) (1− δ)|P |2 ≤ |P − V |2 +
1

δ
|V |2.

Finally, for any u ∈W 1,2m(Ω,RN ), we have the following Poincaré inequality which
is uniform in m ∈ N:

(4.7) ‖u‖L2m(Ω) ≤ 2(|Ω|+ 1)
(
‖u′‖L2m(Ω) + max

∂Ω
|u|
)
.

Indeed, in order to see (4.7), suppose u is smooth and since
∣∣u(x)− u(y)

∣∣ ≤ ∫
Ω
|u′|,

for y ∈ ∂Ω we have

|u(x)|2m ≤
(∫

Ω

|u′| + max
∂Ω
|u|
)2m

≤ 22m−1

[(∫
Ω

|u′|
)2m

+ max
∂Ω
|u|2m

]

≤ (2(|Ω|+ 1))2m−1

[∫
Ω

|u′|2m + max
∂Ω
|u|2m

]
,

which leads to (4.7).
Step 2. We now show that the functional Em is weakly lower semicontinuous in
W 1,2m(Ω,RN ). Indeed, by setting

(4.8) F (x, η, P ) := hm
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2),

we have for the hessian with respect to P that (we suppress arguments again)

FPP = mhm−2
{
hhpI +

(
hhpp + (m− 1)(hp)

2
)
(P − V )⊗ (P − V )

}
.

By our assumptions on h and since the projection [P − V ]> satisfies [P − V ]>≤ I,
we obtain the matrix inequality

FPP ≥ mhm−2
{
hhpI + hhpp(P − V )⊗ (P − V )

}
≥ mhm−1

(
hpI + (c0 − hp)[P − V ]>

)
≥ mc0I.
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Since F is convex in P and nonegative, the conclusion follows by standard lower
semicontinuity results (see e.g. [D, GM]).
Step 3. Now we use Steps 1, 2 and derive the energy estimate, which will guarantee
the coercivity of Em. By our assumptions on h and the mean value theorem, there
is a p̂ ∈ [0, p] such that

h(x, η, p) = hp(x, η, p̂)p + h(x, η, 0) ≥ c0p + 1.

Hence, by using (4.6) the above gives

h
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2) ≥ c0

2

∣∣P − V (x, η)
∣∣2(4.9)

≥ c0
2

(1− δ)|P |2 − c0
2δ
|V (x, η)|2.

Then, by our assumption on V and (4.5), (4.6), for σ > 0 small we have

h
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2) ≥ c0

2
(1− δ)|P |2 − 1

2c0δ
(1 + |η|α)2

≥ c0
2

(1− δ)|P |2 − σ

c0δ
|η|2 − C(δ, σ, α),

where C(δ, σ, α) denotes a constant depending only on these numbers. We now
select

δ :=
1

2
, σ := 2c0ε, ε > 0,

to find

h
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2) ≥ c0

4
|P |2 − ε|η|2 − C(ε, α).

Hence, for any m ∈ N by the Hölder inequality and the above estimate, we have
the bound

1

3m−1

(c0
4

)m
|P |2m ≤ hm

(
x, η,

1

2

∣∣P − V (x, η)
∣∣2) + εm|η|2m + C(ε, α)2m.

Consequently, for any u ∈ W 1,2m
b (Ω,RN ), by integrating over Ω and by utilising

(4.7) and (3.14), we have

3
( c0

12

)m ∫
Ω

|u′|2m ≤ Em(u,Ω) + εm
∫

Ω

|u|2m + C(ε, α)2m|Ω|

≤ Em(u,Ω) + C(ε, α)2m|Ω|

+ εm
(
2(|Ω|+ 1)

)2m{
max
∂Ω
|b|2m +

∫
Ω

|u′|2m
}
.

Hence, we obtain the estimate{( c0
12

)m
−
(
4(|Ω|+ 1)2ε

)m}∫
Ω

|u′|2m ≤ Em(u,Ω) + C2m
(

max
∂Ω
|b|2m + 1

)
where the constant C above depends on ε, α,Ω. By choosing

ε :=
c0

3 25(|Ω|+ 1)2
,

we get {
c0
12

(
1− 1

2m

) 1
m

}m ∫
Ω

|u′|2m ≤ Em(u,Ω) + C2m
(

max
∂Ω
|b|2m + 1

)
and since limm→∞

(
1− 2−m

)1/m
= 1, the desired estimate (4.3) ensues.
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Step 4. We finally show existence of minimisers and convergence. We have the a
priori energy bounds

inf
{
Em(v,Ω)

1
2m : v ∈W 1,2m

b (Ω,RN )
}
≤ Em(b,Ω)

1
2m

≤
(∫

Ω

hm
(
·, b, 1

2

∣∣b′ − V (·, b)
∣∣2)) 1

2m

≤ |Ω| 1
2m

∥∥∥h(·, b, 1

2

∣∣b′ − V (·, b)
∣∣2)∥∥∥ 1

2

L∞(Ω)

and

Em(v,Ω) ≥ 0, v ∈W 1,2m
b (Ω,RN ).

Hence, by standard results (see e.g. [D, GM]), there exists a global minimiser um

of the functional Em in W 1,2m
b (Ω,RN ). Moreover, by (4.3) and (4.11) we have the

bound

(4.10) ‖um‖W 1,2m(Ω) ≤ C

(∥∥∥h(·, b, 1

2

∣∣b′ − V (·, b)
∣∣2)∥∥∥ 1

2

L∞(Ω)
+ max

∂Ω
|b| + 1

)
.

Let C(Ω, b) denote the right hand side of (4.10). Then, for any r ∈ (2,m), we have

‖um‖W 1,2r(Ω) ≤ |Ω|
1
2r−

1
2m ‖um‖W 1,2m(Ω)

≤ |Ω| 1
2r−

1
2mC(Ω, b).

(4.11)

Hence, for any r > 2 fixed, the sequence (um)∞1 is bounded in W 1,2r
b (Ω,RN ). Hence,

there exists a u∞ ∈ ∩∞r=1W
1,2r
b (Ω,RN ) such that um−−⇀ u∞ in W 1,2r

b (Ω,RN ) along
a subsequence mk → ∞. By letting m → ∞ in (4.11) along the subsequence, the
weak lower semicontinuity of the L2r norm implies

‖u∞‖W 1,2r(Ω) ≤ |Ω|
1
2rC(Ω, b).

By letting now r →∞, we derive the desired bound for u∞. The lemma ensues. �

Next, we show that the minimisers just obtained actually are weak solutions of
the respective Euler-Lagrange equations.

Lemma 4.4 (Weak solutions of the Lm equations). Let h, V,Ω, b satisfy the as-
sumptions of Theorem 4.1 and let (um)∞1 be the sequence of minimisers constructed

in Lemma 4.3. Then, each um is a weak solution in W 1,2m
b (Ω,RN ) of the Euler-

Lagrange equation of (3.14):
(4.12)

[
hm−1

(
·, u, 1

2

∣∣u′ − V ∣∣2)hp(·, u, 1

2

∣∣u′ − V (·, u)
∣∣2) (u′ − V )

]′
= hm−1

(
·, u, 1

2

∣∣u′ − V ∣∣2)hp(·, u, 1

2

∣∣u′ − V ∣∣2)�
�

[
hη

(
·, u, 1

2

∣∣u′ − V ∣∣2) − hp

(
·, u, 1

2

∣∣u′ − V ∣∣2)(u′ − V (·, u)
)>
Vη(·, u)

]
By omitting for brevity the arguments

(
·, u, 1

2

∣∣u′ − V ∣∣2) of h, hp, hη and (·, u) of
V, Vη, the ODE system (4.12) can be compactly written as(

hm−1hp (u′ − V )
)′

= hm−1hp

(
hη − hp(u

′ − V )>Vη

)
.
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Proof of Lemma 4.4. Let F be given by (4.8). Then, by suppressing once again
the arguments of h, hp, hη, we have that

FP (x, η, P ) = mhm−1hp
(
P − V (x, η)

)
,

Fη(x, η, P ) = mhm−1hp

(
hη − hp

(
P − V (x, η)

)>
Vη(x, η)

)
and the system (4.12) can be written compactly as

(4.13)
(
FP (·, u, u′)

)′
= Fη(·, u, u′).

By our assumption on h, we have

h(x, η, p) ≤ h(x, η, 0) + max
0≤p̄≤p

hp(x, η, p̄) p ≤ C(|η|)(1 + p).

Hence,

hm−1
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2) ≤ C(|η|)

(
1 +

∣∣P − V (x, η)
∣∣2)m−1

≤ C(|η|)
(

1 +
∣∣P − V (x, η)

∣∣2m−2
)
.

Further, by our assumptions on h and V , we have the bounds∣∣FP (x, η, P )
∣∣ ≤ C(|η|)

(
1 + |P |2m−2

)∣∣P − V (x, η)
∣∣

≤ C(|η|)
(
1 + |P |2m−2

)(
|P |+ C(|η|)

)
≤ C(|η|)

(
1 + |P |2m−1

)
,

(4.14)

and ∣∣Fη(x, η, P )
∣∣ ≤ C(|η|)

(
1 + |P |2m−2

)[
C(|η|)

(
1 +

∣∣P − V (x, η)
∣∣2)

+ C(|η|)
∣∣P − V (x, η)

∣∣]
≤ C(|η|)

(
1 + |P |2m−2

)
C(|η|)

(
|P |2 + 1

)
≤ C(|η|)

(
1 + |P |2m

)
.

(4.15)

By standard results (see e.g. [D]), these bounds imply that the functional is Gateaux

differentiable on W 1,2m
b (Ω,RN ) and the lemma follows. �

Now we show that the weak solutions um of the respective Euler-Lagrange equa-
tions actually are smooth solutions. This will imply that the formal calculations of
the previous section in the derivation of (3.19) make rigorous sense.

Lemma 4.5 (C2 regularity). Let um be the sequence of minimisers of the Lemma
4.5, m ≥ 2. Then, each um is a classical solution in C2(Ω,RN ) of the Euler-
Lagrange equation (4.12), and hence of the expanded form (3.19) of the same equa-
tion.

Proof of Lemma 4.5. Fix m ≥ 2 and let us drop the superscripts and denote um

by just u. The first step is to prove higher local integrability and then bound the
difference quotients of u′ in L2. Let us fix q ∈ N and ζ ∈ C∞c (Ω) with 0 ≤ ζ ≤ 1.
We set:

(4.16) φ(x) := ζ(x)

∫ x

inf Ω

ζ
∣∣u′ − V (·, u)

∣∣q(u′ − V (·, u)
)
, x ∈ Ω.
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Then, φ ∈W 1,1
c (Ω,RN ) and

φ′(x) = ζ2(x)
∣∣∣u′(x)− V

(
x, u(x)

)∣∣∣q (u′(x)− V
(
x, u(x)

)
+ ζ ′(x)

∫ x

inf Ω

ζ
∣∣u′ − V (·, u)

∣∣q(u′ − V (·, u)
)
,

for a.e. x ∈ Ω. Suppose now that q ≤ 2m−1. Then, since u′ ∈ L2m(Ω,RN ), we have
that φ ∈ W 1,2m

c (Ω,RN ). By inserting the test function φ in the weak formulation
of the system (4.13) (i.e. (4.12)) and by suppressing again the arguments for the
sake of brevity, we have∫

Ω

{
hm−1hp(u

′ − V ) ·

[
ζ2|u′ − V |q(u′ − V ) + ζ ′

∫
inf Ω

ζ|u′ − V |q(u′ − V )

]}

+

∫
Ω

{
hm−1hp

(
hη − hp(u′ − V )>Vη

)
·
[
ζ

∫
inf Ω

ζ|u′ − V |q(u′ − V )

]}
= 0.

By our assumptions on h, V , we have that hp ≥ c0 and 2h ≥ c0|u′ − V |2. By using
the bounds (4.14), (4.15) (when F is given by (4.8)) that ζ ≤ 1 and the elementary
inequalities ∫ x

inf Ω

|f | ≤
∫

Ω

|f |, x ∈ Ω, f ∈ L1(Ω),

t2m−1 ≤ t2m + 1, t ≥ 0,

we have∫
Ω

ζ2|u′ − V |2m+q ≤ C

(∫
Ω

ζ|u′ − V |q+1

){∫
Ω

|ζ ′|
(
hm−1hp |u′ − V |

)
+

+

∫
Ω

ζ
(
hm−1hp

∣∣∣hη − hp(u′ − V )>Vη

∣∣∣)}
which gives∫

Ω

ζ2|u′ − V |2m+q ≤ C
(
‖u‖L∞(Ω)

)(∫
Ω

ζ|u′ − V |q+1

)
�

�
∫

Ω

{
|ζ ′|
(

1 + |u′ − V |2m−1
)

+ ζ
(

1 + |u′ − V |2m
)}
.

Hence, we have obtained

(4.17)

∫
Ω

ζ2|u′ − V |2m+q ≤ C
(
‖u‖L∞(Ω)

)(∫
Ω

ζ|u′ − V |q+1

)∫
Ω

1 + |u′ − V |2m.

In view of the estimate (4.17), by taking q + 1 = 2m we have that u′ − V ∈
L4m−1

loc (Ω,RN ). Hence, we can go back and choose q + 1 = 4m − 1 and then
the test function satisfies φ ∈ W 1,4m−1

c (Ω,RN ) which makes it admissible and
we can repeat the process. Hence, by applying the estimate again we infer that
u′ − V ∈ L6m−2

loc (Ω,RN ). By continuing, the induction principle says that the
estimate holds for all integers of the form

q = (2m− 1)k, k ∈ N
and we obtain that u′ − V ∈ ∩∞r=1L

r
loc(Ω,RN ). Thus, we conclude that u′ is in

Lrloc(Ω,RN ) for all r ≥ 1.
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The next step is to prove that D1,tu′ is bounded in L2
loc. The idea is classical,

but we provide the arguments for the sake of completeness. To this end, we test in
the weak formulation of (4.13) against difference quotients of the form

φ := −D1,−t (ζ2D1,tu
)
, ζ ∈ C∞c (Ω), D1,tu(x) =

u(x+ t)− u(x)

t
, t 6= 0.

Let F be given by (4.8). Then, for ε > 0 and t small, we have

I :=

∣∣∣∣∫
Ω

D1,t
(
FP (·, u, u′)

)
·
(
ζ2D1,tu′ + 2ζζ ′D1,tu

)∣∣∣∣
≤
∫

Ω

∣∣Fη(·, u, u′)
∣∣(ζ|D1,tu| + ζ2|D1,tD1,tu|

)
≤ K

(∫
Ω

ζ
∣∣Fη(·, u, u′)

∣∣2 +

∫
Ω

ζ|u′|2
)

+ ε

∫
Ω

ζ2|D1,tu′|2.

(4.18)

for some constant K > 0 independent of t. By using the inequality FPP ≥ c0I and
the identity

D1,t
(
FP (·, u, u′)

)
(x)

=

∫ 1

0

{
FPP

(
·, λu(x+ t) + (1− λ)u(x), λu′(x+ t) + (1− λ)u′(x)

)
D1,tu′(x)

+ FPη

(
·, λu(x+ t) + (1− λ)u(x), λu′(x+ t) + (1− λ)u′(x)

)
D1,tu(x)

+ FPx1,t

(
·, λu(x+ t) + (1− λ)u(x), λu′(x+ t) + (1− λ)u′(x)

)}
dλ

(where FPx1,t denotes difference quotient with respect to the x variable), we have
the bound

I ≥ 1

K

∫
Ω

ζ2|D1,tu′|2 − C
(
‖u‖L∞(Ω)

) ∫
Ω

ζ
∣∣P (|u′|)

∣∣(4.19)

where K > 0 is a constant independent of t, whilst P is a polynomial expression
and it is a consequence of our growth assumptions on the Hamiltonian and its
derivatives. Since u ∈ C0(Ω,RN ) and u′ ∈ Lploc(Ω,RN ) for all p ≥ 1, by (4.18) and

(4.19) we obtain that u ∈ W 2,2
loc (Ω,RN ). Thus, the calculations in the derivation

of the expanded form of the system make sense a.e. on Ω. Since FPP is a strictly
positive matrix, by a standard bootstrap argument in the system we obtain that
u ∈ C2(Ω,RN ) and the lemma follows. �

Now we may prove the main result.

Proof of Theorem 4.1. In view of Lemmas 4.3, 4.4, 4.5, let (um)∞2 denote the
subsequence of minimisers in C0(Ω,RN ) ∩ C2(Ω,RN ) of the functionals Em over

the spaces W 1,2m
b (Ω,RN ) (given by (3.14)). Then, along this subsequence we have

(4.20)

{
um−−→ u∞, in C0(Ω,RN ),

um′ −−⇀ u∞′, in Lp(Ω,RN ), for all p > 2,

as m → ∞, and the limit satisfies u∞ ∈ W 1,∞
b (Ω,RN ). Moveover, each um is a

classical solution of the system (3.19), or equivalently of (3.23) with f∞, F∞, A∞

given by (3.21), (3.22). The goal is to show that the limit map u∞ is a Dim solution
of the system (3.20) (or equivalently (3.24)) and also u∞ = b on ∂Ω. We begin
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by observing that the boundary condition is satisfied as a result of the uniform

convergence on Ω. Moreover, by multiplying (3.23) with um′′ −
(
V (·, um)

)′
, we

obtain {
A∞(·, um, um′)

m− 1
+ h2

p

(
·, u, 1

2

∣∣um′ − V (·, um)
∣∣2)∣∣um′ − V (·, um)

∣∣2I} :

:
[
um′′ −

(
V (·, um)

)′]⊗ [um′′ − (V (·, um)
)′]

=

(
f∞(·, um, um′)

m− 1
+ F∞(·, um, um′)

)
·
[
um′′ −

(
V (·, um)

)′]
≤
∣∣∣∣f∞(·, um, um′)

m− 1
+ F∞(·, um, um′)

∣∣∣∣ ∣∣∣um′′ − (V (·, um)
)′∣∣∣.

(4.21)

By assumption we have that hp ≥ c0. In addition, by (3.22) the matrix map A∞ is
non-negative. Hence (4.21) gives the estimate

c20
∣∣um′ − V (·, um)

∣∣2∣∣∣um′′ − (V (·, um)
)′∣∣∣ ≤ ∣∣∣∣f∞(·, um, um′)

m− 1
+ F∞(·, um, um′)

∣∣∣∣ .
Hence, we have the estimate
(4.22)∣∣∣∣∣um′ − V (·, um)

∣∣2(um′ − V (·, um)
)′∣∣∣ ≤ 1

c20

∣∣∣∣f∞(·, um, um′)
m− 1

+ F∞(·, um, um′)
∣∣∣∣ .

By using the elementary inequality∣∣∣(|f |3)′∣∣∣ ≤ 3
∣∣|f |2f ∣∣ , f ∈ C1(Ω,RN ),

(4.22) gives the stimate

(4.23)
∣∣∣ (∣∣um′ − V (·, um)

∣∣3)′ ∣∣∣ ≤ 3

c20

∣∣∣∣f∞(·, um, um′)
m− 1

+ F∞(·, um, um′)
∣∣∣∣ .

By (4.23), (4.20) and the form of the right hand side given by (3.21), (3.22), we
have that the sequence

(4.24) vm :=
∣∣um′ − V (·, um)

∣∣
is bounded in W 1,p(Ω), for any p > 2. Hence, by the compactness of the imbedding
W 1,p(Ω) b C0(Ω), there is a continuous non-negative function v∞ such that

vm −→ v∞, in C0(Ω),

along perhaps a further subsequence as m→∞. We claim that we have

(4.25)
∣∣u∞′ − V (·, u∞)

∣∣ ≤ v∞, a.e. on Ω.

Indeed, by the weak lower semi-continuity of the Lp norm, for every x ∈ Ω and
r > 0 fixed we have that

1

2r

∫ x+r

x−r

∣∣u∞′ − V (·, u∞)
∣∣p ≤ lim inf

m→∞

1

2r

∫ x+r

x−r

∣∣um′ − V (·, um)
∣∣p

= lim
m→∞

1

2r

∫ x+r

x−r
(vm)p

=
1

2r

∫ x+r

x−r
(v∞)p.

(4.26)
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By passing to the limit as r → 0 in (4.26), the Lebesgue differentiation theorem
implies the inequality (4.25) is valid a.e. on Ω. We now set

Ω∞ :=
{
x ∈ Ω : v∞(x) > 0

}
.

By the continuity of v∞, Ω∞ is open in Ω, the set Ω \ Ω∞ is closed in Ω and

Ω \ Ω∞ =
{
x ∈ Ω : v∞(x) = 0

}
.

By (4.25), we have

(4.27)
∣∣u∞′ − V (·, u∞)

∣∣ = 0, a.e. on Ω \ Ω∞.

On the other hand, since vm −→ v∞ in C0(Ω), for any Ω′ b Ω∞, there is a σ0 > 0
and an m(Ω′) ∈ N such that for all m ≥ m(Ω′), we have

(4.28) vm ≥ σ0 on Ω′.

By (4.28), (4.26) and (4.24), we have
(4.29)∣∣∣um′′ − (V (·, um)

)′∣∣∣ ≤ 3

(c0σ0)2

∣∣∣∣f∞(·, um, um′)
m− 1

+ F∞(·, um, um′)
∣∣∣∣ , on Ω′.

By (4.29) and (4.20) we have that um′′ is bounded in Lploc(Ω∞,RN ). Hence, we
have that 

um−−→ u∞, in C0(Ω∞,RN ),

um′ −−⇀ u∞′, in Lploc(Ω∞,RN ), for all p > 2,

um′′ −−⇀ u∞′′, in Lploc(Ω∞,RN ), for all p > 2.

Thus, by passing to the limit in the ODE system (3.19) as m → ∞ along a sub-
sequence, we have that the restriction of u∞ over the open set Ω∞ is a strong a.e.
solution of (3.20) on Ω∞. By bootstapping in the equation, we have that actually
u∞ ∈ C2(Ω∞,RN ). On the other hand, we have that∣∣u∞′ − V (·, u∞)

∣∣ = 0, a.e. on Ω \ Ω∞.

Hence, if the set Ω \ Ω∞ has non-trivial topological interior, by differentiating the
relation u∞′ = V (·, u∞) we have that u∞′′ exists a.e. on the interior of the open
(but possibly empty) set Ω \ Ω∞ and by bootstrapping again we see that u∞ is
C2 on int(Ω \ Ω∞). Putting the above together, we have that u∞′′ exists and is
continuous on the open set Ω∞ defined in the statement of the theorem which is
the union of Ω∞ and of the interior of Ω \ Ω∞:

u∞ ∈ C2(Ω∞,RN ), Ω∞ = Ω∞ ∪ int (Ω \ Ω∞).

We now conclude by showing that u∞ is a Dim solution of (3.24) on Ω. Let
D1,hiu∞′ be the first difference quotients of u∞′ along a sequence hi → 0 as i→∞
and let D2u∞ be a Dim 2nd derivative of u∞ arising from the subsequential weak*
convergence of the difference quotients, that is

δ
D

1,hij u∞′

∗
−−⇀ D2u∞, in Y

(
Ω,RN

)
,

as j → ∞, in the space of Young measures from Ω ⊆ R into the 1-point compact-
ification of RN . By the regularity of u∞ on Ω∞ and Lemma 2.7, we have that
the restriction of every Dim 2nd derivative on Ω∞ is the Dirac mass at the second
derivatives:

(4.30) D2u∞(x) = δu∞′′(x), for a.e. x ∈ Ω∞.
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Then, by Proposition 2.10 we have that u∞ is Dim solution on Ω∞, since it is a
strong solution on this subdomain. Consequently, for any test function Φ ∈ C0

c (RN )
we have ∫

RN
Φ(X)

{
h2
p

(
·, u∞, 1

2

∣∣u∞′ − V (·, u∞)
∣∣2)∣∣u∞′ − V (·, u∞)

∣∣2�
�
[
X −

(
V (·, u∞)

)′] − F∞
(
·, u∞, u∞′

)}
d[D2u∞](X) = 0,

(4.31)

a.e. on Ω∞ ⊆ Ω. On the other hand, since
∣∣u∞′ − V (·, u∞)

∣∣ = 0, a.e. on Ω \ Ω∞,

we have for any Φ ∈ C0
c (RN ) that∫

RN
Φ(X)

{
h2
p

(
·, u∞, 1

2

∣∣u∞′ − V (·, u∞)
∣∣2)∣∣u∞′ − V (·, u∞)

∣∣2�
�
[
X −

(
V (·, u∞)

)′]}
d[D2u∞](X) = 0,

(4.32)

a.e. on Ω\Ω∞. Also, by the equality (3.21) we see that the right hand side vanishes
as well on this set:

(4.33) F∞
(
·, u∞, u∞′

)
= 0, a.e. on Ω \ Ω∞.

By putting (4.31), (4.32), (4.33) together, we conclude that u∞ is indeed a Dim
solution of the Dirichlet problem for the fundamental equations in L∞, which is
also a uniform sequential limit of minimisers of the respective Lm functionals as
m→∞. The theorem ensues. �
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