
 
 

 
 
 

Department of Mathematics and Statistics 
 

Preprint MPS-2015-01 
 
 

1 July 2015 
 
 

Generalised solutions for fully nonlinear 
PDE systems and existence theorems 

 
 
 

by 
 
 

Nikos Katzourakis 
 
 

 
 

School of Mathematical 
and Physical Sciences 
 



GENERALISED SOLUTIONS FOR FULLY NONLINEAR PDE

SYSTEMS AND EXISTENCE-UNIQUENESS THEOREMS

NIKOS KATZOURAKIS

Abstract. We introduce a new theory of generalised solutions which applies

to fully nonlinear PDE systems of any order and allows the interpretation of
merely measurable maps as solutions without any further a priori regularity

requirements. This approach bypasses the standard problems arising by the

application of Distributions to PDEs and is not based on either duality or on
integration by parts. Instead, our starting point builds on the probabilistic

representation of limits of difference quotients via Young measures over com-

pactifications of the spaces of derivatives. After developing some basic theory,
as a first application we consider the Dirichlet problem and prove existence &

uniqueness for fully nonlinear degenerate elliptic 2nd order systems, as well as

existence for the ∞-Laplace system of vectorial Calculus of Varations in L∞.
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1. Introduction

It is well known that PDEs, either linear or nonlinear, in general do not possess
classical solutions, in the sense that not all derivatives that appear in the equation
may actually exist. The standard approach to this problem consists of looking
for appropriately defined generalised solutions for which the hope is that at least

Key words and phrases. Generalised solutions, Fully nonlinear systems, ∞-Laplacian, elliptic
2nd order systems, Calculus of Variations, Young measures, Campanato’s near operators, Cordes’
condition, Baire Category method, Convex Integration.
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2 NIKOS KATZOURAKIS

existence can be proved given certain boundary conditions. Subsequent considera-
tions typically include uniqueness, qualitative properties, regularity and numerics.
This approach has been enormously successful but unfortunately only equations
and systems with fairly special structure have been considered so far. A standing
idea in this regard consists of using duality and integration-by-parts in order to
interpret rigorously derivatives by “passing them to test functions”. This method
which dates back to the 1930s ([S1, S2, So]) is basically restricted to divergence
structure equations and systems. A more recent approach discovered in the 1980s
is that of viscosity solutions ([CL]) which builds on the maximum principle as a
device to “pass derivatives to test functions”. Although it applies mostly to single
equations supporting the maximum principle, it has been hugely successful because
it includes the fully nonlinear case.

In this paper we introduce a new theory of generalised solutions which applies to
nonlinear PDE systems of any order. Our approach allows for merely measurable
maps to be rigorously interpreted and studied as solutions of PDE systems, even
fully nonlinear and with discontinuous coefficients. More precisely, let p, n,N,M ∈
N, let also Ω ⊆ Rn be an open set and

(1.1) F : Ω×
(
RN × RNn × RNn

2

s × · · · × RNn
p

s

)
−→ RM

a Carathéodory map. Here RNn denotes the space of N × n matrices and RNnps

the space of symmetric tensors{
X ∈ RNn

p ∣∣ Xαi1...ip = Xασ(i1...ip) , α = 1, ..., N,

ik = 1, ..., n, k = 1, ..., p, σ permutation
}

wherein the gradient matrix

Du(x) =
(
Diuα(x)

)α=1,...,N

i=1,...,n

and the pth order derivative

Dpu(x) =
(
Dp
i1...ip

uα(x)
)α=1,...,N

i1,...,ip∈{1,...,n}

of (smooth) maps u : Ω ⊆ Rn −→ RN are respectively valued. Obviously, Di ≡
∂/∂xi, x = (x1, ..., xn)>, u = (u1, ..., uN )> and RNn1

s = RNn. The present theory
applies to measurable solutions of the system

(1.2) F
(
·, u,Du, ...,Dpu

)
= 0, on Ω,

without any further restrictions on F . Since we will not assume that the solutions
are locally integrable on Ω, the derivatives Du, ..., Dpu may not have any classical
meaning, not even in the sense of distributions.

The starting point of our approach in not based either on duality or on the
maximum principle. Instead, it builds on the probabilistic representation of the
limits of difference quotients by using Young measures, also known as parameterised
measures. The Young measures have been introduced in the 1930s in order to show
existence of “relaxed” solutions to nonconvex variational problems for which the
minimum may not be attained ([Y]) at a function. Today they are indispensable
tools in Calculus of Variations and PDE theory ([E, M, P, FL]) and there is also
a abstract topological theory for them ([CFV, FG, V]). The typical utility of
Young measures to date has been to quantify the failure of strong convergence
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in approximating sequences due to the combination of phenomena of oscillations
and/or concentrations ([DPM, KR]).

In the present framework, a version of Young measures is utilised in order to
define generalised solutions of (1.2) by applying it to the difference quotients of
the candidate solution. The exact definitions are thoroughly motivated later, but
roughly the idea restricted to the first order case p = 1 of (1.1) is as follows: suppose
that u : Ω ⊆ Rn −→ RN is a Lipschitz continuous strong a.e. solution of the PDE
system

(1.3) F (·, u,Du) = 0, on Ω.

Then, u satisfies

F
(
x, u(x), lim

h→0
D1,hu(x)

)
= 0, a.e. x ∈ Ω,

where D1,h is the first difference quotients operator. Since F is continuous with
respect to the gradient variable, this is equivalent to

lim
h→0

F
(
x, u(x), D1,hu(x)

)
= 0, a.e. x ∈ Ω.

The crucial observation is that the above statement makes sense if u is merely
measurable. In order to represent this limit, we “embed” the difference quotients
D1,hu into the space of Young measures over the Alexandroff compactification

RNn := RNn ∪ {∞}
(that is the set Y

(
Ω,RNn

)
of measurable probability-valued maps Ω −→P

(
RNn

)
,

see Section 2 for the precise definitions) and consider instead the Dirac mass δD1,hu

at the difference quotients. By the weak* compactness of Young measures, there
always exist probability-valued maps Du : Ω −→P

(
RNn

)
such that

(1.4) δD1,hu
∗−−⇀ Du in Y

(
Ω,RNn

)
, as h→ 0,

along subsequences (even if u is merely measurable). Then, by a convergence ar-
gument it follows that strong solutions of (1.3) satisfy

(1.5)

∫
RNn

Φ(X)F
(
x, u(x), X

)
d[Du(x)](X) = 0, a.e. x ∈ Ω,

for any compactly supported “test” function Φ ∈ C0
c

(
RNn

)
and any “diffuse deriv-

ative” Du. We stress again that this last statement is independent of the regularity
of u; the only extra piece of information the differentiability provides is that Du
coincides a.e. on Ω with the Dirac mass δDu at the pointwise gradient Du. In the
latter case, we recover strong solutions since we obtain∫

RNn
Φ(X)F

(
x, u(x), X

)
d[δDu(x)](X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
RNn

)
. Up to a minor technical adaptation of the concept (which is

that we may need to consider special difference quotients with respect to appropriate
frames depending on F ) (1.4) and (1.5) essentially constitute the definition of D-
solutions 1 in the special case of the 1st order system (1.3) and will be the central
notion of solution in this paper.

1We use the letter “D-” as a shorthand of either of the modifiers “diffuse” or “dim” or “dis-
integration” because all of these terms are relatively descriptive of the notion. We leave it to the

reader to decide for the interpretation of their preference.
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Our motivation to introduce and study generalised solutions for nonlinear PDE
systems primarily comes from the need to study the recently discovered∞-Laplace
system rigorously, which is the fundamental equation of Vectorial Calculus of Vari-
ations in the space L∞. Calculus of Variations in L∞ has a long history which
started in the 1960s by Aronsson ([A1]-[A5]) who was the first to consider varia-
tional problems for supremal functionals of the form

(1.6) E∞(u,Ω) :=
∥∥H(·, u,Du)

∥∥
L∞(Ω)

.

Aronsson introduced the appropriate notion of minimisers for such functionals and
studied classical solutions of the respective equation which is the L∞-analogue of
the Euler-Lagrange equation. In the simplest case of H(p) = |p| (the Euclidean
norm on Rn), the L∞-equation is called the ∞-Laplacian and reads

(1.7) ∆∞u := Du⊗Du : D2u = 0.

Since then, the field has undergone huge development due to both the intrinsic
mathematical interest and the important for applications: minimisation of the max-
imum provides more realistic models when compared to the classical case of integral
functionals where the average is minimised instead. A basic difficulty in the study
of (1.6) is that (1.7) possesses singular solutions. Aronsson himself exhibited this
in [A6, A7] and the field had to wait until the development of viscosity solutions
for 2nd order equations in the early 1990s in order to study general solutions (see
[C, BEJ, E, E2] and for a pedagogical introduction see [K8]).

Until recently, the study of supremal functionals was restricted exclusively to the
scalar case of N = 1 and to first order problems. The principal reason for this was
the absence of an efficient theory of generalised solutions which would allow the
rigorous study of non-divergence PDE systems or higher order equations, including
those arising in L∞. The foundations of the vector case of (1.6), including the
discovery of the appropriate system version of (1.7), the correct vectorial minimality
notion and the study of classical solutions have been laid in a series of recent papers
of the author ([K1]-[K6]). In the simplest case of

(1.8) E∞(u,Ω) = ‖Du‖L∞(Ω)

applied to Lipschitz maps u : Ω ⊆ Rn −→ RN (where the L∞ norm is interpreted
as the essential supremum of the Euclidean norm |Du| on RNn), the analogue of
the Euler-Lagrange equation is the ∞-Laplace system:

(1.9) ∆∞u :=
(
Du⊗Du+ |Du|2[Du]⊥⊗ I

)
: D2u = 0.

In the above, [Du(x)]⊥ denotes the orthogonal projection on the orthogonal com-
plement of the range of the N×n gradient matrix. In index form (1.9) reads

N∑
β=1

n∑
i,j=1

(
DiuαDjuβ + |Du|2[Du]⊥αβ δij

)
D2
ijuβ = 0, α = 1, ..., N,

[Du]⊥ := Proj(R(Du))⊥ .

An additional difficulty of (1.9) which is not present in the scalar case of (1.7) is that
the nonlinear operator may have discontinuous coefficients even when applied to
smooth maps because the new term involving [Du(x)]⊥ depends on the dimension
of the tangent space of u(Ω) at the point x ([K1, K6]). Almost simultaneously to
[K1], Sheffield and Smart [SS] studied the relevant problem of vectorial Lipschitz
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extensions and derived a different singular version of “∞-Laplacian”, which in the
present setting amounts to changing in (1.8) from the Euclidean to the operator
norm on RNn.

A further motivation to introduce generalised solutions stems from the insuffi-
ciency of the current PDE approaches to handle even elliptic linear systems with
rough coefficients. For example, if A is a continuous symmetric 4th order tensor
on RNn satisfying the strict Legendre-Hadamard condition, then for the divergence
form system

N∑
β=1

n∑
i,j=1

Di

(
Aαiβj(x)Djuβ(x)

)
= 0, α = 1, ..., N,

“everything” is known: existence-uniqueness of weak solutions, regularity, etc (see
e.g. [GM]). On the other hand, for its non-divergence counterpart

(1.10)

N∑
β=1

n∑
i,j=1

Aαiβj(x)D2
ijuβ(x) = 0, α = 1, ..., N,

“nothing” is known, not even what is a meaningful notion of generalised solution,
unless A is C0,α and strictly elliptic in which case a priori estimates guarantee that
solutions of (1.10), if they exist, have to be smooth ([GM]). In particular, to the
best of our knowledge there are no general uniqueness theorems not even for strong
solutions of (1.10), unless A is monotone (i.e. diagonal: Aαiβj = δαβAij), in which
case the system decouples to N independent equations.

In the present paper, after motivating, introducing and developing some basic
theory of D-solutions for general systems (Section 2), we apply it to two important
problems. Accordingly, we first consider the Dirichlet problem for the∞-Laplacian

(1.11)

{
∆∞u = 0, on Ω,

u = g, on ∂Ω,

when Ω ⊆ Rn is an open domain with finite measure, n = N and g ∈W 1,∞(Ω,Rn).
In Section 3 we prove existence of D-solutions u ∈ W 1,∞

g (Ω,Rn) to (1.11) with
extra properties (Theorem 29, Corollary 32). The question of uniqueness for (1.11)
has already been answered negatively in [K2] even when we restrict ourselves to the
class of smooth solutions; in fact, (1.11) has infinitely-many C∞ solutions even for
n = N = 2 on the unit disc and with g the identity (at least not without imposing
extra constraints, see Theorem 30).

The idea of the proof has two main steps. We first apply the analytic coun-
terpart of Gromov’s Convex Integration in the form of the Dacorogna-Marcellini
Baire Category method ([DM]) in order to prove existence of a W 1,∞ solution to
a 1st order differential inclusion associated to (1.11) (Subsection 3.1). Next, we
characterise this map as a D-solution to (1.9) by utilising the machinery of Section
2. In doing so we actually establish a general tool of independent interest which
goes far beyond the ∞-Laplacian and provides a method to construct D-solutions
of “tangential equations” by solving differential inclusions (Theorem 33).

The second main question we consider in this paper concerns the existence and
uniqueness of D-solutions to the Dirichlet problem for the fully nonlinear system

(1.12)

{
F (·, D2u) = f, on Ω,

u = 0, on ∂Ω,
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when Ω b Rn is a C2 convex domain, F : Ω×RNn2

s −→ RN is a Carathéodory map
and f ∈ L2(Ω,RN ). The essential hypothesis guaranteeing well posedness is an
appropriate degenerate ellipticity condition. Roughly, we require that F is “near”
a degenerate linear system of the form (1.10) with A constant which satisfies the
(weak) Legendre-Hadamard condition. The problem (1.12) has first been considered
by Campanato [C1, C2, C3] under a strong uniform ellipticity assumption of Cordes
type which roughly requires F to be “near” the Laplacian. Under this condition,
(1.12) is well posed in (H2 ∩ H1

0 )(Ω,RN ). Very recently, the author ([K9, K11]
and also [K7]) has generalised the results of Campanato by proving well posedness
under a new weaker ellipticity notion. The latter results for strong solutions of
elliptic systems were stepping stones to the general approach we develop herein for
D-solutions of degenerate elliptic systems.

In Section 4 we prove existence of a unique D-solution to (1.12) (Theorem 37).
The proof is rather long and is based on the study of the Dirichlet problem for the
linear system (1.10) in the D-sense and on the hypothesis of degenerate ellipticity
which acts as “perturbation device”. The method for the linear problem involves
approximation and a priori “degenerate elliptic” partial estimates (Theorem 40).
The ellipticity hypothesis allows the passage to the nonlinear problem via a fixed
point argument.

Well posedness of (1.12) is established in an appropriate functional “fibre space”
tailored to the degenerate case ((4.4),(4.5)). The fibre space is an extension of the
classical Sobolev space and consists of partially regular maps which possess weakly
differentiable projections only along certain rank-one directions corresponding to
the “directions of ellipticity” of F . Then we characterise the fixed point in the
fibre space as the unique D-solution of (1.12) which generally is not even W 1,1

loc .
A particular difficulty is the satisfaction of the boundary condition under this low
regularity since there is no standard trace operator. We also note that our ellipticity
assumption on F is relatively strong (Definition 35), but even in the scalar linear
strictly elliptic case, the Dirichlet problem for the single equation

∑n
i,j=1 AijD

2
iju =

f is not well posed (see e.g. [LU]).
We conclude this introduction by noting that the table of contents gives an idea

of the organisation of the material in this paper, as well as where the reader may
find further motivation of the main ideas and proofs. We hope that the system-
atic theory proposed herein will be the starting point for future developments. In
particular, in the companion paper [K12] we consider the relevant problem of exis-
tence of D-solutions to the Dirichlet problem of the vectorial equations of Calculus
of Variations in L∞ for (1.6) but n = 1. Therein we follow the “natural” approach
of approximation by the Euler-Lagrange equations of the associated Lp functionals
as p→∞. A central difficulty when following this route is that in the vector case
existence is a highly nontrivial matter and a priori estimates are required because
p-Harmonic limits are “good” solutions of (1.9) (see the remarks at end of Section
3 regarding a selection criterion of ∞-Harmonic maps). The analogue of [K12] for
n ≥ 2 will be considered in future work.

2. Theory of D-solutions for fully nonlinear systems

2.1. Preliminaries. We begin with some introductory material needed for the rest
of the paper which will be used throughout freely, perhaps without explicit reference
to this subsection.
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Basics. Let n,N ∈ N be fixed, which in this paper will always be the dimensions of
domain and range respectively of our candidate solutions u : Ω ⊆ Rn −→ RN . By
Ω we will always mean an open subset of Rn, even if it is not explicitly mentioned.
Unless indicated otherwise, Greek indices α, β, γ, ... will run in {1, ..., N} and latin
indices i, j, k, ... (perhaps indexed i1, i2, ...) will run in {1, ..., n}, even when the
range is not given explicitly. The norms | · | appearing throughout will always be
the Euclidean, while the Euclidean inner products will be denoted by either “·” on

Rn,RN or by “:” on tensor spaces, e.g. on RNn and RNn2

s we have

|X|2 =
∑
α,i

XαiXαi ≡ X : X, |X|2 =
∑
α,i,j

XαijXαij ≡ X : X,

etc. The standard bases on Rn, RN , RNn will be denoted by {ei}, {eα} and
{eα ⊗ ei}. By introducing the symmetrised tensor product

(2.1) a ∨ b :=
1

2

(
a⊗ b + b⊗ a

)
, a, b ∈ Rn,

we will write
{
eα ⊗ (ei1 ∨ ... ∨ eip)

}
for the standard basis of the RNnps . We will

follow the convention of denoting vector subspaces of Euclidean spaces as well as
the orthogonal projections on them by the same symbol. For example, if Σ ⊆ RN
is a subspace, we denote the projection map ProjΣ : RN −→ RN by just Σ and we

have Σ2 = Σ> = Σ ∈ RN2

s . We will also systematically use the Alexandroff 1-point
compactification of the space RNnps . Its metric will be the standard one which
makes it homeomorphic to the sphere of the same dimension (via the stereographic
projection which identifies {∞} with the north pole). We will denote it by

RNn
p

s := RNn
p

s ∪ {∞}.

We note that all balls and distances taken in RNnps (which we will view as a metric
vector space isometrically contained into RNnps ) will be the Euclidean.

Our measure theoretic and function space notation is either standard as e.g. in
[E2, EG] or self-explanatory. For example, the modifier “measurable” will always
mean “Lebesgue measurable”, the Lebesgue measure on Rn will be denoted by | · |,
the s-Hausdorff measure by Hs, the characteristic function of a set A by χA, the
standard Lp spaces of maps u : Ω ⊆ Rn −→ Σ ⊆ RN by Lp(Ω,Σ) etc. Let us also
record the following simple fact about measurable functions which is taken from
[AM] and will be used later:

Lemma 1 (cf. [AM]). Let f : Rn −→ RN be a measurable mapping. Then, we have
f(·+ z) −→ f(·+ x) locally in measure as z → x ∈ Rn. Namely, for any ε > 0 and
E ⊆ Rn with |E| <∞, we have

lim
z→x

∣∣∣{y ∈ E :
∣∣f(y + z)− f(y + x)

∣∣ > ε
}∣∣∣ = 0.

The proof is an easy consequence of Luzin’s theorem and of the fact that the
translation of the characteristic function of a compact set is continuous in L1.

General frames, derivative expansions, difference quotients. In what fol-
lows we will need to consider non-standard orthonormal frames of RNnps and ex-
press derivatives Dpu with respect to them. Let {E1, ..., EN} be an orthonormal
frame of RN and suppose that for each α = 1, ..., N we have an orthonormal frame
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{E(α)1, ..., E(α)n} of Rn. Given such bases, we will always equip the spaces RNn
and RNnps with the following induced orthonormal bases:

RNn = span[
{
Eαi

}
], Eαi := Eα ⊗ E(α)i,

RNn
p

s = span[
{
Eαi1...ip

}
], Eαi1...ip := Eα ⊗

(
E(α)i1 ∨ ... ∨ E(α)ip

)
.

(2.2)

Given such frames, let DE(α)i and Dp

E(α)ip ...E(α)i1
= DE(α)ip · · ·DE(α)i1 denote the

usual directional derivatives of 1st and pth order along the respective directions.
Then, the gradient Du of a map u : Ω ⊆ Rn −→ RN can be written as

(2.3) Du =
∑
α,i

(
Eαi : Du

)
Eαi =

∑
α,i

(
DE(α)i(Eα · u)

)
Eαi

and the pth order derivative Dpu as

Dpu =
∑

α,i1,...,ip

(
Eαi1...ip : Dpu

)
Eαi1...ip

=
∑

α,i1,...,ip

(
Dp

E(α)i1 ...E(α)ip
(Eα · u)

)
Eαi1...ip .

(2.4)

We will also use the following notation for the pth order Jet of u:

D[p]u :=
(
Du,D2u, ...,Dpu

)
.

Given a ∈ Rn with |a| = 1 and h ∈ R \ {0}, when x, x + ah ∈ Ω the 1st difference
quotient of u along the direction a at x will be denoted by

(2.5) D1,h
a u(x) :=

u(x+ ha)− u(x)

h
.

By iteration, if h1, ..., hp 6= 0 the pth order difference quotient along a1, ..., ap is

(2.6) Dp,hp...h1
ap...a1

u := D1,hp
ap

(
· · ·
(
D1,h1
a1

u
))
.

Young Measures. Let E ⊆ Rn be a measurable set and K ⊆ Rd a compact subset
of some Euclidean space, which we will later take to be RNnps . Consider the L1

space of strongly measurable maps valued in the (separable Banach) space C0(K)
of real continuous functions over K, in the standard Bochner sense:

L1
(
E,C0(K)

)
.

For details about these spaces we refer e.g. to [FL, F, V] (and references therein).
The elements of L1

(
E,C0(K)

)
can be identified with the Carathéodory functions

Φ : E ×K −→ R, (x,X) 7→ Φ(x,X)

for which

‖Φ‖L1(E,C0(K)) :=

∫
E

max
X∈K

∣∣Φ(x,X)
∣∣ dx < ∞

and the identification is given by considering Φ as a map E 3 x 7→ Φ(x, ·) ∈ C0(K).
The notion of Carathéodory functions is meant in the usual sense, that is for every
X ∈ K the function x 7→ Φ(x,X) is measurable and for a.e. x ∈ E the function
X 7→ Φ(x,X) is continuous. The space L1

(
E,C0(K)

)
is separable and the simple

functions of this space (which are norm-dense) have the form

E 3 x 7→
q∑
i=1

χEi(x) Φi ∈ C0(K),
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where E1, ..., Eq are measurable disjoint subsets of E and Φi ∈ C0(K). By using
that the dual space of C0(K) is the space M(K) of real (signed) Radon measures
on K endowed with the total variation norm, it can be shown (see e.g. [FL]) that(

L1
(
E,C0(K)

))∗
= L∞w∗

(
E,M(K)

)
.

The dual Banach space L∞w∗
(
E,M(K)

)
consists of measure-valued maps

E 3 x 7−→ ϑ(x) ∈ M(K)

which are weakly* measurable, that is for any fixed Borel set B ⊆ K, the function
E 3 x 7→ [ϑ(x)](B) ∈ R is measurable. The norm of L∞w∗

(
E,M(K)

)
is

‖ϑ‖L∞
w∗ (E,M(K)) := ess sup

x∈E
‖ϑ(x)‖ (K)

where “‖ · ‖(K)” denotes the total variation. The duality pairing

〈·, ·〉 : L∞w∗
(
E,M(K)

)
× L1

(
E,C0(K)

)
−→ R

is given by

〈ϑ,Φ〉 :=

∫
E

∫
K

Φ(x,X) d[ϑ(x)](X) dx.

Since L1
(
E,C0(K)

)
is separable, the unit ball of L∞w∗

(
E,M(K)

)
is sequentially

weakly* compact. Hence, for any bounded sequence (ϑm)∞1 ⊆ L∞w∗
(
E,M(K)

)
,

there is a limit map ϑ and a subsequence of m’s along which ϑm
∗−−⇀ϑ as m→∞.

Further, by the density of simple functions and linearity, for bounded sequences the
weak* convergence ϑm

∗−−⇀ϑ is equivalent for any fixed Φ ∈ C0(K) to∫
K

Φ(X) d
[
ϑm(·)− ϑ(·)

]
(X)

∗−−⇀ 0, in L∞(E).

Definition 2 (Young Measures). The space of Young (or Parameterised) Measures
is the subset of the unit sphere of L∞w∗

(
E,M(K)

)
which consists of probability-

valued weakly* measurable maps:

Y (E,K) :=
{
ϑ ∈ L∞w∗

(
E,M(K)

)
: ϑ(x) ∈P(K), for a.e. x ∈ E

}
.

Remark 3 (Properties of Y (E,K)). The following well known facts about Young
measures will be extensively used hereafter (for proofs see e.g. [FG]):

i) [weak* compactness] The set of Young measures is convex and by the com-
pactness of K, it follows that it is sequentially weakly* compact in L∞w∗

(
E,M(K)

)
.

ii) [weak* density] The vector space of Lebesgue measurable mappings v : E ⊆
Rn −→ K can be embedded into Y (E,K) via the map v 7→ δv which is given by
δv(x) := δv(x) and the embedding actually has weakly* dense image.

iii) [weak* LSC] We have the following one-sided characterisation of weak*
convergence of Young measures:

ϑm
∗−−⇀ϑ as m→∞, in Y (E,K) ⇐⇒ 〈ϑ,Ψ〉 ≤ lim inf

m→∞
〈ϑm,Ψ〉,

for any function
Ψ : E ×K −→ (−∞,+∞]

which is bounded from below, measurable in x ∈ E for all X ∈ K and LSC (lower
semicontinuous) in X ∈ K for a.e. x ∈ E.

The next result is a minor variant of a classical result which we give together
with its short proof because it plays a fundamental role in our setting.
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Lemma 4. Suppose E ⊆ Rn is measurable and vm, v∞ : E −→ K are measurable
maps, m ∈ N. Then, there exist subsequences (mk)∞1 , (ml)

∞
1 :

(1) vm −→ v∞ a.e. on E =⇒ δvmk
∗
−−⇀ δv∞ in Y (E,K),

(2) δvm
∗
−−⇀ δv∞ in Y (E,K) =⇒ vml −→ v∞ a.e. on E.

Proof of Lemma 4. (1) If vm −→ v∞ a.e. on E, by Remark 3 there is (vmk)∞1
such that δvmk

∗−−⇀ϑ∞ in Y (E,K). If Φ ∈ L1
(
E,C0(K)

)
, we have∫

E

Φ
(
x, vmk(x)

)
dx −→

∫
E

∫
K

Φ(x,X) d[ϑ∞(x)](X) dx

and also, the L1 bound |Φ(·, vmk)| ≤ maxX∈K |Φ(·, X)| gives Φ(·, vmk) −→ Φ(·, v∞)
in L1(E). Hence, by uniqueness of limits ϑ∞ = δv∞ a.e. on E.

(2) If δvm
∗
−−⇀ δv∞ in Y (E,K), we choose Φ(x,X) := |X − v∞(x)| where | · |

denotes the norm of Rd restricted to the compact set K. Then, for any ε > 0

0 =

∫
E

Φ(·, v∞) = lim
m→∞

∫
E

Φ(·, vm) ≥ ε lim sup
m→∞

∣∣∣{|vm − v∞| > ε
}∣∣∣.

Hence, vm −→ v∞ in measure on E. �

Lemma 4 shows that weak* convergence is actually relatively strong since, if the
Young measures are given by functions then it is equivalent to a.e. convergence.

2.2. Motivation of the notions. We seek to find a meaningful notion of gener-
alised solution for fully nonlinear PDE systems which relaxes the notion of strong
solution and does not require any more a priori regularity for the solution apart
from measurability. We derive the notion in the instructive case of 2nd order sys-
tems. Suppose F is as in (1.1) with p = 2 and suppose u : Ω ⊆ Rn −→ RN is a

W 2,1
loc (Ω,RN ) strong a.e. solution of the system

(2.7) F (·, u,Du,D2u) = 0, on Ω.

By the standard equivalence between weak and strong L1 derivatives, the difference
quotients converge along subsequence a.e. on Ω to the weak derivatives. Hence, we
have

F
(
·, u, lim

m→∞
D1,hmu, lim

m′,m′′→∞
D2,hm′hm′′u

)
= 0,

a.e. on Ω. Here D1,h, D2,kh stand for the usual difference quotient operators whose

components with respect to standard basis D1,h
ei , D2,kh

eiej are given by (2.5), (2.6).
Since F is a Carathéodory map, the limits commute with the nonlinearity:

(2.8) lim
m,m′,m′′→∞

F
(
·, u,D1,hmu,D2,hm′hm′′u

)
= 0,

a.e. on Ω. The crucial observation is that (2.8) is independent of the weak differ-
entiability of u and makes sense if u is merely measurable. How can we represent
these limits and turn them into a handy definition? Going back to (2.7), we observe
that u is a strong solution of (2.7) if and only if it satisfies∫

RNn×RNn2
s

Φ(X,X)F (·, u,X,X) d
[
δ(Du,D2u)

]
(X,X) = 0, a.e. on Ω,



GENERALISED SOLUTIONS FOR FULLY NONLINEAR SYSTEMS AND EXISTENCE 11

for any compactly supported “test” function Φ ∈ C0
c

(
RNn×RNn2

s

)
. This gives the

idea that we can embed the difference quotient maps(
D1,hmu,D2,hm′hm′′u

)
: Ω −→ RNn × RNn

2

s

into the spaces of Young measures and consider instead

δD1,hmu : Ω −→P
(
RNn

)
, δD2,h

m′hm′′ u : Ω −→P
(
RNn

2

s

)
over the Alexandroff compactifications. The reason we need to attach the point at
∞ and compactify the space is to get “tightness” and have weak* compactness. This
compensates the possible loss of mass since the difference quotients of measurable
maps may not converge in any classical sense. However, there do exist sequential
weak* limits in the Young measures. It will be also more fruitful to take these
limits separately (regardless of the order), because the resulting object will be a
(fibre) product Young measure:

(2.9) δ(
D1,hmu,D2,h

m′hm′′ u
) ∗−−⇀ Du×D2u in Y

(
Ω,RNn× RNn

2

s

)
,

subsequentially as m,m′,m′′ →∞. Then, for any Φ, (2.8) is equivalent to∫
RNn×RNn2

s

Φ(X,X)F
(
·, u,X,X

)
d
[
δ(
D1,hmu,D2,h

m′hm′′ u
)](X,X) −→ 0,

subsequentially as m,m′,m′′ →∞, a.e. on Ω. By using Lemma 18 that follows, we
obtain∫

RNn×RNn2
s

Φ(X,X)F
(
·, u,X,X

)
d
[
Du×D2u

]
(X,X) = 0, a.e. on Ω,

for any Φ ∈ C0
c

(
RNn× RNn2

s

)
. We note that this statement is independent of the

regularity of the solution of (2.7). If u is weakly once differentiable on Ω, by using
Lemma 4 we have Du = δDu a.e. on Ω and the above simplifies to∫

RNn2
s

Φ(X)F
(
·, u,Du,X

)
d[D2u](X) = 0, a.e. on Ω,

for any Φ ∈ C0
c

(
RNn2

s

)
. In this case any “diffuse hessian” D2u arises as

δD1,hDu
∗−−⇀ D2u in Y

(
Ω,RNn

2

s

)
, as h→ 0,

along subsequences. If further D2u exists weakly on Ω, by applying Lemma 4 again
we have D2u = δD2u a.e. on Ω thus recovering strong solutions.

2.3. Main definitions and analytic properties. We begin by introducing dif-
ference quotients taken with respect to frames as in (2.2), (2.3), (2.4). The only
difficulty is the complexity in the notation so for pedagogical reasons we give the
1st order case separately from the general pth order case.

Definition 5 (Difference quotients). Suppose {E1, ..., EN} is an orthonormal frame
of RN and for each α = 1, ..., N we have an orthonormal frame {E(α)1, ..., E(α)n}
of Rn while the spaces RNnps are equipped with the frames of (2.2), p ∈ N.

Let u : Ω ⊆ Rn −→ RN be any measurable map which we understand to be
extended by zero on Rn \ Ω. Given any infinitesimal sequences

(hm)m∈N ⊆ R \ {0}, hm → 0 as m→∞,

(hm)m∈Np ⊆
(
R \ {0}

)p
, hm = (hm1 , ..., hmp), hmq → 0 as mq →∞,
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we define the 1st and pth order difference quotients of u (with respect to the
fixed reference frames) arising from (hm)m∈N and (hm)m∈Np as

D1,hmu : Ω ⊆ Rn −→ RNn, m ∈ N,

Dp,hmu : Ω ⊆ Rn −→ RNn
p

s , m = (m1, ...,mp) ∈ Np,

given respectively by

D1,hmu :=
∑
α,i

[
D1,hm
E(α)i(E

α · u)
]
Eαi,

Dp,hmu :=
∑

α,i1,...,ip

[
D
p,hmp ...hm1

E(α)ip ...E(α)i1
(Eα · u)

]
Eαi1...ip .

In the above, the notation in the brackets is as in (2.5), (2.6). Further, given an
infinitesimal sequence with a trigonal matrix of indices

(hm)m∈Np2 ⊆
(
R \ {0}

)p2

, m =


m1

1 0 0 ... 0
m1

2 m2
2 0 ... 0

...
. . .

...
m1
p m2

p ... mp
p

, hmqp → 0 as mq
p →∞,

we will denote its nonzero row elements by

mq := (m1
q, ...,m

q
q) ∈ Nq, q = 1, ..., p,

and we define the pth order Jet D[p],hmu of difference quotients of u (with
respect to the fixed reference frames) arising from (hm)m∈Np2 as

D[p],hmu :=
(
D1,hm1u, ... ,Dp,hmpu

)
: Ω ⊆ Rn −→ RNn × ...× RNn

p

s .

Definition 6 (Multi-indexed convergence). Let m be either a vector of indices in

Np or a lower trigonal matrix of indices in Np2

as above. The expression

m −→∞

is defined to mean successive convergence with respect to each index separately
taken in the following obvious order:

lim
m→∞

:= lim
mp→∞

... lim
m2→∞

lim
m1→∞

, m ∈ Np,

lim
m→∞

:= lim
mpp→∞

... lim
m2

2→∞
lim

m1
2→∞

lim
m1

1→∞
, m ∈ Np

2

.

Definition 7 (Diffuse derivatives and Jets). Suppose we have fixed some reference
frames as in Definition 5.

For any measurable map u : Ω ⊆ Rn −→ RN , we define diffuse gradients Du,
diffuse pth order derivatives Dpu and diffuse pth order Jets D[p]u of u as the
subsequential limits of the difference quotients in the spaces of Young measures over
the respective 1-point compactifications which arise along infinitesimal sequences:

δD1,hmu
∗−−⇀Du, in Y

(
Ω,RNn

)
, as m→∞,

δDp,hmu
∗−−⇀Dpu, in Y

(
Ω,RNn

p

s

)
, as m→∞, m ∈ Rp,

δD[p],hmu
∗−−⇀D[p]u, in Y

(
Ω,RNn × ...× RNn

p

s

)
, as m→∞, m ∈ Rp

2

.
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Remark 8. As a consequence of the separate convergence, the pth order Jet is
always a (fibre) product Young measure:

D[p]u = Du× · · · × Dpu.

The weak* compactness of the spaces of Young measures readily implies the
existence of plenty of diffuse derivatives for measurable mappings.

Lemma 9 (Existence of diffuse derivatives). Every measurable mapping u : Ω ⊆
Rn −→ RN possesses diffuse derivatives of all orders, actually at least one for every
choice of infinitesimal sequence.

Remark 10 (Nonexistence of distributional derivatives). Since we do not require
our maps to be in L1

loc(Ω,RN ), they may not possess distributional derivatives.

In general diffuse derivatives may not be unique for nonsmooth maps. However,
they are compatible with weak derivatives and a fortiori with classical derivatives:

Lemma 11 (Compatibility of weak and diffuse derivatives). If u ∈ W 1,1
loc (Ω,RN ),

then the diffuse gradient Du is unique and

δDu = Du, a.e. on Ω.

More generally, if q ∈ {1, ..., p− 1} and u ∈W q,1
loc (Ω,RN ), then D[q]u is unique and

D[p]u = δ(Du,...,Dqu) ×Dq+1 × ...×Dpu, a.e. on Ω.

Proof of Lemma 11. It suffice to establish only the 1st order case. For any fixed
e ∈ Rn we have D1,h

e u −→ Deu in L1
loc(Ω,RN ) as h→ 0. We choose e := E(α)i and

h := hm to get

D1,hm
E(α)i(E

α · u) −→ DE(α)i(Eα · u), in L1
loc(Ω) as m→∞.

Thus, by (2.3), (2.4) and Definition 5 we have D1,hmu −→ Du a.e. on Ω as m→∞
along a subsequence. Application of Lemma 4 completes the proof. �

Next we show that the diffuse gradient Du is a Dirac mass if and only if the map
u is “differentiable in measure”, a notion introduced and studied by Ambrosio and
Malý in [AM]:

Definition 12 (Differentiability in measure, cf. [AM]). Let u : Ω ⊆ Rn −→ RN
be measurable. We say that u is differentiable in measure on Ω with derivative the
measurable map LDu : Ω ⊆ Rn −→ RNn if for any ε > 0 and E ⊆ Ω with |E| <∞,

lim
y→0

∣∣∣∣{x ∈ E :

∣∣∣∣u(x+ y)− u(x)− LDu(x) y

|y|

∣∣∣∣ > ε

}∣∣∣∣ = 0.

The differentiability in measure arose in the study of the regularity of the flow
map of ODEs driven by Sobolev vector fields (Le Bris and Lions, [BL]). In [AM] this
notion is compared to the classical notion of approximate differentiability ([EG]).

It follows that “W 1,1
loc ⇒ BVloc ⇒ Approximately diff. ⇒ Diff. in measure” with all

reverse implications failing in general.

Lemma 13 (Gradient in measure vs diffuse gradient). Let u : Ω ⊆ Rn −→ RN be
measurable and suppose we have fixed some reference frames as in Definition 5.

(a) If u is differentiable is measure with derivative LDu, then the diffuse gradient
Du ∈ Y (Ω,RNn) is unique and

Du = δLDu, a.e. on Ω.
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(b) If there exists a measurable map U : Ω ⊆ Rn −→ RNn such that for any
diffuse gradient Du ∈ Y (Ω,RNn) we have

Du = δU , a.e. on Ω,

then it follows that u is differentiable in measure and U = LDu a.e. on Ω.

Proof of Lemma 13. (a) By choosing y := hE(α)i in Definition 12 applied to the

projection Eα · u we get that D1,h
E(α)i(E

α · u) −→ Eαi : (LDu) as h → 0 locally in
measure on Ω. Thus, for any hm → 0, there is hmk → 0 such that the convergence
is a.e. on Ω, whence Du = δLDu by Lemma 4.

(b) We begin by observing a triviality: for any map f : Rn → RN we have
f(y) → l as y → 0 if and only if for any ym → 0, there is ymk → 0 such that
f(ymk)→ l as k →∞. We continue by noting that by Lemma 4 and our assumption
we have that for any hm → 0 there is hmk → 0 such that D1,hmku −→ U a.e. on
Ω, as k → ∞. Hence, we obtain that D1,hu −→ U as h → 0 (full limit), a.e. on
Ω. Since a.e. convergence implies convergence locally in measure, we deduce that
U = LDu a.e. on Ω, as desired. �

The next notion of solution will be central in this work. For pedagogical reasons,
we give it first for W 1,1

loc solutions of 2nd order systems and then in the general case.

Definition 14 (Weakly differentiable D-solutions of 2nd order systems). Let Ω ⊆
Rn be open,

F : Ω×
(
RN × RNn × RNn

2

s

)
−→ RM

a Carathéodory map and u : Ω ⊆ Rn −→ RN a map in W 1,1
loc (Ω,RN ). Suppose we

have fixed some reference frames as in Definition 5 and consider the PDE system

(2.10) F
(
·, u,Du,D2u

)
= 0, on Ω.

We say that u is a D-solution of (2.10) when for any diffuse hessian of u arising
from any infinitesimal sequence (Definition 7)

δD1,hmDu
∗−−⇀ D2u in Y

(
Ω,RNn

2

s

)
,

as m→∞, we have∫
RNn2
s

Φ(X)F
(
·, u,Du,X

)
d[D2u](X) = 0, a.e. on Ω,

for any Φ ∈ C0
c

(
RNn2

s

)
.

Now we consider the general pth order case. For brevity, we will write

X ≡ (X1, ...,Xp) ∈ RNn × · · · × RNn
p

s .

Definition 15 (D-solutions for pth order systems). Let Ω ⊆ Rn be open,

F : Ω×
(
RN × RNn × · · · × RNn

p

s

)
−→ RM

a Carathéodory map and u : Ω ⊆ Rn −→ RN a measurable map. Suppose also we
have fixed some reference frames as in Definition 5 and consider the PDE system

(2.11) F
(
x, u(x), D[p]u(x)

)
= 0, x ∈ Ω.



GENERALISED SOLUTIONS FOR FULLY NONLINEAR SYSTEMS AND EXISTENCE 15

Then, we say that u is a D-solution of (2.11) when for any diffuse pth order Jet
of u arising from any infinitesimal sequence (Definition 7)

δD[p],hmu
∗−−⇀D[p]u in Y

(
Ω, RNn × · · · × RNn

p

s

)
,

as m→∞, we have∫
RNn×···×RNnps

Φ(X)F
(
x, u(x),X

)
d
[
D[p]u(x)

]
(X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
RNn × · · · × RNnps

)
.

Note that Definition 14 can be deduced from Definition 15 by using Lemmas
11 and 4 and that the convergence is separate. These imply when p = 2 that
D2,h(m′,m)u −→ D1,hmDu a.e. on Ω as m′ →∞.

The following result asserts the fairly obvious fact that D-solutions and strong
solutions are compatible.

Proposition 16 (Compatibility of strong and D-solutions). Let F a Carathéodory

map as in (1.1) and u : Ω ⊆ Rn −→ RN be a map in W p,1
loc (Ω,RN ) (or merely

p-times differentiable in measure, Definition 12). Consider the PDE system

F
(
x, u(x), D[p]u(x)

)
= 0, x ∈ Ω.

Then, u is a D-solution on Ω if and only if u is a strong a.e. solution on Ω.

Proof of Proposition 16. It is an immediate consequence of Lemma 11 (or Lemma
13) and the motivation of the notions (Subsection 2.2). �

Remark 17 (Absence of concentration measures). The next estimate shows that
“... = 0 a.e. on Ω” in Definition 15 is equivalent to “... = 0 in L∞(Ω)”. Namely,
for any fixed Φ the left hand side is always a measurable function and no measures
can arise mutually singular to the Lebesgue measure. Indeed, for a.e. x ∈ Ω∣∣∣∣∣

∫
RNn×···×RNnps

Φ(X)F
(
x, u(x),X

)
d
[
D[p]u(x)

]
(X)

∣∣∣∣∣
≤
(

sup
RNn×...×RNnps

|Φ|
)

max
supp(Φ)

∣∣F (x, u(x), ·
)∣∣.

Our next result is a simple yet powerful convergence result which we state and
prove in the generality of Young measures. It will play an important role later in
the construction of D-solutions.

Lemma 18 (Convergence lemma). Suppose that u∞, (uµ)∞1 are measurable maps
Ω ⊆ Rn −→ RN satisfying uµ −→ u∞ a.e. on Ω, as µ→∞. Moreover, let W be a
finite dimensional metric vector space, isometrically and densely contained into a
compactification K of W. Suppose also that we have Carathéodory maps

F∞, Fµ : Ω×
(
RN ×W

)
−→ RM , µ ∈ N,

such that for a.e. x ∈ Ω,

Fµ(x, ·, ·) −→ F∞(x, ·, ·) in C0(RN×W), as µ→∞
and we also have Young measures ϑ∞, (ϑµ)∞1 ∈ Y

(
Ω,K

)
such that

ϑµ
∗−−⇀ϑ∞ in Y

(
Ω,K

)
, as µ→∞.
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Then, if for a given Φ ∈ C0
c (W) we have∫

K
Φ(X)Fµ

(
x, uµ(x),X

)
d[ϑµ(x)](X) = 0, a.e. x ∈ Ω,

for all µ ∈ N, it follows that∫
K

Φ(X)F∞
(
x, u∞(x),X

)
d[ϑ∞(x)](X) = 0, a.e. x ∈ Ω.

Proof of Lemma 18. It suffices to show that for any given fixed Φ ∈ C0
c (W), we

have that

φµ := sup
X∈W

∣∣∣Φ(X)
[
Fµ(·, uµ,X) − F∞(·, u∞,X)

]∣∣∣ −→ 0,

a.e. on Ω. Indeed, if this is the case, select as Φ the function of the assumption
of the lemma and set ΩR := Ω ∩ BR(0) for some fixed R > 0. Since |ΩR| < ∞,
by Egoroff’s theorem, we can find for each j ∈ N a measurable set Ej ⊆ ΩR with
Ej+1 ⊆ Ej and |Ej | ≤ 1/j such that

‖φµ‖L∞(ΩR\Ej) −→ 0, as µ→∞.
Then, by using the weak*-strong continuity of the pairing

L∞w∗
(

ΩR \ Ej ,M(K)
)
× L1

(
ΩR \ Ej , C0(K)

)
−→ R

and that L∞(ΩR \Ej) ⊆ L1(ΩR \Ej), the convergence ϑµ
∗−−⇀ϑ∞ in Y

(
ΩR \Ej ,K

)
as µ→∞ and our assumptions imply∫

K
Φ(X)F∞

(
x, u∞(x),X

)
d[ϑ∞(x)](X) = 0,

for a.e. x ∈ ΩR \Ej . Then, we conclude by letting j →∞ and then taking R→∞.
In order to establish that φµ → 0 a.e. on Ω, we recall that uµ −→ u∞ a.e. on Ω
and we fix an x ∈ Ω such that uµ(x) −→ u∞(x). Then, we can find compact sets
C ′ b RN and C ′′ b W such that uµ(x), u∞(x) ∈ C ′ and supp(Φ) ⊆ C ′′. By the
convergence assumption on the maps Fµ, we have∥∥Fµ(x, ·)− F∞(x, ·)

∥∥
C0(C′×C′′) −→ 0, as µ→∞.

If ω∞x ∈ C0[0,∞) denotes the modulus of continuity of C ′ 3 η 7→ F∞(x, η,X) ∈ RM
which can be chosen uniform with respect to X ∈ C ′′, we have

|φµ(x)| ≤ sup
X∈C′′

|Φ|

{
sup

X∈C′′

∣∣∣F∞(x, uµ(x),X) − F∞(x, u∞(x),X)
∣∣∣

+ sup
X∈C′′

∣∣∣Fµ(x, uµ(x),X) − F∞(x, uµ(x),X)
∣∣∣}

≤ sup
X∈W

|Φ|
{
ω∞x
(
|uµ(x)− u∞(x)|

)
+
∥∥Fµ(x, ·)− F∞(x, ·)

∥∥
C0(C′×C′′)

}
= o(1),

as µ → ∞, because ω∞x (0+) = 0. Since this holds for a set of points x ∈ Ω of full
measure, the conclusion follows and the lemma ensues. �

The following result is a consequence of the convergence Lemma 18 and estab-
lishes that D-solutions are well behaved under weak* convergence.
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Proposition 19 (Convergence of D-solutions). Let (uµ)∞1 be a sequence of maps
where each uµ : Ω ⊆ Rn −→ RN is measurable and uµ −→ u∞ a.e. on Ω. Let also
(Fµ)∞1 be a sequence of Carathéodory map (with the same dimensions as in (1.1))
and assume that each uµ is a D-solution of the system

Fµ
(
x, uµ(x), D[p]uµ(x)

)
= 0, x ∈ Ω,

and that for a.e. x ∈ Ω, Fµ(x, ·, ·) −→ F∞(x, ·, ·) uniformly on compact subsets as
µ→∞. If further every jet D[p]u∞ can be weakly* approximated by a subsequence
of the respective Jets D[p]uµν , then u∞ is a D-solution of

F∞
(
x, u∞(x), D[p]u∞(x)

)
= 0, x ∈ Ω.

Remark 20 (On stability). The reader should note that Proposition 19 is not a
stability result, in the sense that we do not have compactness of diffuse jets as
part of the conclusion. In fact, such a result is not possible without extra assump-
tions which would entail some sort of a priori estimates: for instance, consider
the sequence uµ(x) := µ−1 sin(µx), x ∈ R. Then, uµ

∗−−⇀u∞ in W 1,∞(R) where
u∞ ≡ 0. However, Duµ = δDuµ

∗−−⇀ϑ in Y (R,R) as µ → ∞, where for a.e. x ∈ R
supp(ϑ(x)) = [−1, 1] while ϑ(x) 6= Du∞(x) = δ{0}.

The next result gives equivalent formulations of the definition of D-solutions. To
this end we first need to introduce some further terminology.

Definition 21 (Reductions & cut offs). Let u : Ω ⊆ Rn −→ RN be a measurable
map and F a Carathéodory map as in (1.1). Given ϑ ∈ Y

(
Ω,RNn × ... × RNnps

)
,

we define the reduced Young measure ϑ∗ as the next (fibre) restriction of ϑ:

ϑ∗(x) := ϑ(x)x
(
RNn × ...× RNn

p

s

)
, a.e. x ∈ Ω.

Further, given a measurable map U : Ω ⊆ Rn −→ RNn × ...×RNnps and R > 0, we
define the cut off of U associated to F as:

[U ]R :=

{
U, on

{
|U | ≤ R

}
,

0F , on
{
|U | > R

}
.

Here for each R > 0, 0F is a measurable selection of the set-valued mapping

Ω 3 x 7−→
{
F
(
x, u(x), ·

)
= 0
}
∩ BR(0) ⊆

(
RNn × ...× RNn

p

s

)
\ {∅},

that is, for each R > 0, 0F is a measurable map Ω −→ RNn × ...×RNnps satisfying

F
(
x, u(x),0F (x)

)
= 0, a.e. x ∈ Ω, |0F (x)| ≤ R.

The existence of measurable selections as above is a consequence of Aumann’s
theorem (for non-empty valued measurable maps as we have assumed above, see
e.g. [FL]). If F

(
x, u(x), ·

)
is linear, we may choose 0F ≡ 0 with no R-dependence.

Proposition 22 (Equivalent definitions for D-solutions). Let F be a Carathéodory
map as in (1.1) and u : Ω ⊆ Rn −→ RN a measurable map. Then, the following
are equivalent:

(1) The map u is a D-solution of the PDE system

F
(
x, u(x), D[p]u(x)

)
= 0, x ∈ Ω.
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(2) All reduced pth order Jets of u satisfy the differential inclusion:

For a.e. x ∈ Ω, supp
(
D[p]u∗(x)

)
⊆
{
F
(
x, u(x), ·

)
= 0
}
.

(3) For any pth order Jet of u, we have∫
RNn×...×RNnps

∣∣F (x, u(x),X
)∣∣ d[D[p]u(x)

]
(X) = 0, a.e. x ∈ Ω.

(4) For any pth order Jet of difference quotients of u and any R > 0, we have

F
(
x, u(x),

[
D[p],hmu(x)

]R) −→ 0, as m→∞,

for a.e. x ∈ Ω along subsequences.
(5) For any pth order Jet of difference quotients of u and any R > 0, we have

dist
([
D[p],hmu(x)

]R
, BR(0) ∩

{
F
(
x, u(x), ·

)
= 0
})
−→ 0,

for a.e. x ∈ Ω, as m→∞ along subsequences.

If further F does not depend on x, u(x), then (1)-(5) above are equivalent to:
(6) For any pth order Jet of u, we have∫

RNn×...×RNnps

Ψ(X)F (X) d
[
D[p]u

]
(X) = 0, a.e. on Ω,

for any Ψ ∈ A, where

A :=

{
Ψ ∈ C0

(
RNn × ...× RNn

p

s

) ∣∣∣∣∣ lim sup
|X|→∞

∣∣Ψ(X)
∣∣(1 +

∣∣F (X)
∣∣) = 0

}
.

The presence of the reduced measures and of the truncations can be informally
interpreted as follows: the mass which remains away from infinity (and does not
escape) actually has to lie in the zero level set of the coefficients.

The proof of Proposition 22 does not rely on the particular structure of diffuse
Jets and is an immediate consequence of the next general result.

Lemma 23. All the equivalences of Proposition 22 remains true if more generally
one replaces D[p],hmu by any measurable sequence

Um : Ω ⊆ Rn −→ RNn × ...× RNn
p

s , m ∈ N,

and the respective Jet D[p]u by any Young measure ϑ ∈ Y
(
Ω, RNn × · · · × RNnps

)
such that δUm

∗−−⇀ϑ as m→∞.

Proof of Lemma 23 & Proposition 22. We begin by showing (1)⇔(2), then we
will establish that (5)⇒(4)⇒(3)⇒(2)⇒(5) and finally that (1)⇔(6).

(1)⇒(2): Suppose that δUm
∗−−⇀ϑ as m→∞ and we have∫

RNn×...×RNnps

Φ(X)F
(
x, u(x),X

)
d[ϑ(x)](X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
RNn× ...×RNnps

)
, while the conclusion fails. To this end, we fix a

point x ∈ Ω as above and suppose supp
(
ϑ∗(x)

)
6⊆
{
F
(
x, u(x), ·

)
= 0
}

. Then, there
is some point

X0 ∈
(
RNn × ...× RNn

p

s

)
\
{
F
(
x, u(x), ·

)
= 0
}
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such that, for all R > 0 we have [ϑ∗(x)]
(
BR(X0)

)
> 0. Since F

(
x, u(x), ·

)
is con-

tinuous and F
(
x, u(x),X0

)
6= 0, there exist c0, R0 > 0 and an index µ ∈ {1, ...,M}

such that ∣∣Fµ(x, u(x), ·
)∣∣ ≥ c0 > 0, on BR0(X0).

We now choose Φ such that

χBR0/2(X0) ≤ Φ ≤ χBR0
(X0).

As a result, for this choice of Φ we have

0 =

∣∣∣∣∣
∫
RNn×...×RNnps

Φ(X)Fµ
(
x, u(x),X

)
d[ϑ∗(x)](X)

∣∣∣∣∣
=

∫
BR0

(X0)

Φ(X)
∣∣Fµ(x, u(x),X

)∣∣ d[ϑ∗(x)](X)

≥ c0 [ϑ∗(x)]
(
BR0/2(X0)

)
.

The above contradiction establishes that the desired inclusion holds a.e. on Ω.
(2)⇒(1): Suppose that supp

(
ϑ∗(x)

)
⊆
{
F
(
x, u(x), ·

)
= 0
}

for a.e. x ∈ Ω. Then,

for any Φ ∈ C0
c

(
RNn × ... × RNnps

)
and any such x we have that Φ(·)F

(
x, u(x), ·

)
vanishes [ϑ(x)]-a.e. on RNn × ...× RNnps . Thus, for any such x we have∫

RNn×...×RNnps

Φ(X)F
(
x, u(x),X

)
d[ϑ(x)](X) = 0.

(5)⇒(4): Fix R > 0. If suffices to show that for a.e. x ∈ Ω, there is a strictly
increasing modulus of continuity ωR,x ∈ C0[0,∞) with ωR,x(0) = 0 such that∣∣∣F (x, u(x),X

)∣∣∣ ≤ ωR,x

(
dist

(
X,BR(0) ∩

{
F
(
x, u(x), ·

)
= 0
}))

,

when X ∈ BR(0). Indeed, in that case we conclude by choosing X := [Um(x)]R. By
continuity, indeed for a.e. x ∈ Ω there is a strictly increasing modulus of continuity
ωR,x such that ∣∣∣F (x, u(x),X

)
− F

(
x, u(x),Y

)∣∣∣ ≤ ωR,x
(∣∣X−Y

∣∣),
when X,Y ∈ BR(0). By choosing Y such that F

(
x, u(x),Y

)
= 0, we have∣∣∣F (x, u(x),X

)∣∣∣ ≤ inf
F (x,u(x),Y)=0,|Y|≤R

ωR,x
(∣∣X−Y

∣∣)
= ωR,x

(
inf

F (x,u(x),Y)=0,|Y|≤R

∣∣X−Y
∣∣) ,

as desired.
(4)⇒(3): We fix R > 0 and any Φ ∈ C0

c

(
RNn × ...× RNnps

)
such that

χBR/2(0) ≤ Φ ≤ χBR(0).

For any k ∈ N, we set

Ωk :=

{
x ∈ Ω ∩ Bk(0) : sup

RNn×...×RNnps

Φ(·)
∣∣F (x, u(x), ·

)∣∣ ≤ k} .
Then, Ωk ⊆ Ωk+1 and |Ω \ Ωk| −→ 0 as k →∞. We also define

Ψk(x,X) := Φ(X)
∣∣F (x, u(x),X

)∣∣χΩk(x), k ∈ N.
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Since δUm
∗−−⇀ϑ as m→∞ and Ψk is an admissible Carathéodory function, we have∫

Ω

Ψk
(
x, Um(x)

)
dx −→

∫
Ω

∫
RNn×...×RNnps

Ψk
(
x,X

)
d[ϑ(x)](X) dx,

as m→∞. By assumption, we have that F
(
·, u, [Um]R

)
−→ 0 a.e. on Ω as m→∞.

By the properties of Φ and of the truncations, we have the identity

Φ
(
[Um]R

)
F
(
·, u, [Um]R

)
= Φ (Um)F

(
·, u, Um

)
valid a.e. on Ω. Together these last facts give that Ψk(·, Um) −→ 0 a.e. on Ω. More-
over, by using the bound |Φk| ≤ k and that |Ωk| <∞, the Dominated convergence
theorem allows to infer that Ψk(·, Um) −→ 0 in L1(Ω) as m → ∞. Hence, by the
above convergence and the definition of Φ, for a.e. x ∈ Ωk we have that

0 =

∫
RNn×...×RNnps

Ψk
(
x,X

)
d[ϑ(x)](X)

=

∫
RNn×...×RNnps

Φ(X)
∣∣F (x, u(x),X

)∣∣ d[ϑ(x)](X)

≥
∫
BR/2(0)

∣∣F (x, u(x),X
)∣∣ d[ϑ(x)](X).

The conclusion follows by letting k →∞ and then R→∞.
(3)⇒(2): We argue as in the case “(1)⇒(2)”. Suppose that∫

RNn×...×RNnps

∣∣F (x, u(x),X
)∣∣ d[ϑ(x)](X) = 0, a.e. x ∈ Ω,

while the conclusion fails. Fix x ∈ Ω for which the above holds and assume that
supp

(
ϑ∗(x)

)
6⊆
{∣∣F (x, u(x), ·

)∣∣ = 0
}

. Then, there exists

X0 ∈
(
RNn × ...× RNn

p

s

)
\
{∣∣F (x, u(x), ·

)∣∣ = 0
}

such that, for all R > 0 we have that [ϑ(x)]
(
BR(X0)

)
> 0. Since

∣∣F (x, u(x), ·
)∣∣ is

continuous and
∣∣F (x, u(x),X0

)∣∣ > 0, there exist c0, R0 > 0 such that∣∣F (x, u(x), ·
)∣∣ ≥ c0 > 0, on BR0

(X0).

Then, we have

0 =

∫
RNn×...×RNnps

∣∣F (x, u(x),X
)∣∣ d[ϑ(x)](X) ≥ c0 [ϑ(x)]

(
BR0(X0)

)
.

The above contradiction establishes the desired inclusion.
(2)⇒(5): We fix R > 0 and define the function

Ψ : Ω×
(
RNn × · · · × RNn

p

s

)
−→ [0,∞)

given by

Ψ(x,X) := χBR(0)
(X) dist

(
X, BR(0) ∩

{∣∣F (x, u(x), ·
)∣∣ = 0

})
.

Then, Ψ is measurable in x for all X (this is a consequence of Aumann’s theorem,
see e.g. [FL]), upper semicontinuous in X for a.e. x and also bounded. Hence, since
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δUm
∗−−⇀ϑ as m → ∞, by Remark 3iii) and the definition of the reduced measure,

we have that

lim sup
m→∞

∫
Ω

Ψ
(
x, Um(x)

)
dx ≤

∫
Ω

∫
RNn×···×RNnps

Ψ
(
x,X

)
d[ϑ(x)](X) dx

=

∫
Ω

∫
BR(0)

dist
(
X, BR(0) ∩

{∣∣F (x, u(x), ·
)∣∣ = 0

})
d[ϑ∗(x)](X) dx.

By assumption we have that for a.e. x ∈ Ω, the support of the measure ϑ∗(x)xBR(0)
is contained in the closed set

BR(0) ∩
{∣∣F (x, u(x), ·

)∣∣ = 0
}

and the latter is a subset of the zero level set of the function Ψ(x, ·). Hence, the last
integral above vanishes and we obtain that Ψ(·, Um) −→ 0 in L1(Ω) as m → ∞.
Further, in view of Definition 21, we have the identity

Ψ
(
x, Um(x)

)
= dist

(
[Um(x)]R, BR(0) ∩

{∣∣F (x, u(x), ·
)∣∣ = 0

})
,

which is valid for a.e. x ∈ Ω and by using it we obtain that∫
Ω

dist
(

[Um(x)]R, BR(0) ∩
{∣∣F (x, u(x), ·

)∣∣ = 0
})

dx −→ 0,

as m→∞. The conclusion follows by passing to a subsequence.
(1)⇔(6): Obviously, (6) readily implies (1). Conversely, fix Ψ ∈ A and ε > 0.

Then, for any Φ ∈ C0
c

(
RNn × ...× RNnps

)
, we have

(2.12)

∣∣∣∣∣
∫
RNn×...×RNnps

Ψ(X)F (X) d[ϑ(x)](X)

∣∣∣∣∣ ≤ sup
RNn×...×RNnps

{∣∣Ψ−Φ
∣∣(1+|F |

)}
,

because ϑ(x) is a probability for a.e. x ∈ Ω. By assumption we have that Ψ(1 +
|F |) ∈ C0

0

(
RNn × ... × RNnps

)
and hence we can find a compactly supported φ

uniformly ε-close to Ψ(1 + |F |). By choosing Φ := φ
1+|F | , the right hand side of

(2.12) becomes less than ε. Hence, (6) ensues and so does the proposition. �

Remark 24 (Nonlinear nature of diffuse derivatives). In the context of classical
PDE approaches (classical, strong, weak, distributional solutions), it is standard
that the generalised derivative is a linear operation. However, without extra hy-
potheses this is generally false for diffuse derivatives. Our approach is genuinely
nonlinear and not a variant of classical developments. As a consequence, we obtain
that the sum of two D-solutions to a certain linear equation is a D-solution itself if
at least one of the solutions is regular enough. Hence, the notions themselves are
nonlinear even when we apply them to linear PDE.

In order to proceed further we need some notation.

Definition 25. Let W be a finite dimensional metric vector space isometrically and
densely contained into a compactification K of W. Let also Ta : W → W denote
the translation operation given by Tab := b− a. Given a probability ϑ ∈P(K), we
define ϑ ◦ Ta ∈P(K) by

ϑ ◦ Ta := (ϑ ◦ Ta)xW + ϑx(K \W),

that is, for any Borel set B ⊆ K, we set
(
ϑ ◦Ta

)
(B) = ϑ

(
(B ∩W)− a

)
+ϑ
(
B \W

)
.
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Definition 25 requires translation of the part contained in the vector space while
the points “at infinity” are left intact. In the case of the 1-point compactification
K = W ∪ {∞}, it says ϑ(B) = ϑ

(
(B \ {∞}) − a

)
+ ϑ

(
{∞}

)
. Note that we may

equivalently define ϑ ◦ Ta ∈P(K) via duality:

〈ϑ ◦ Ta,Φ〉 =

∫
W

Φ(a+X) dϑ(X) +

∫
K\W

Φ(X) dϑ(X), Φ ∈ C0(K).

Proposition 26 (Diffuse derivatives & D-solutions vs linearity). Let u, v : Ω ⊆
Rn −→ RN be measurable maps.

a) If v is differentiable in measure on Ω with derivative LDv, (Def. 12), then

D(u+ v) = Du ◦ TLDv, a.e. on Ω,

where the diffuse Jets on both sides arise from the same infinitesimal sequence.
b) Consider the measurable maps

Aq : Ω ⊆ Rn −→ RNn
q

s ⊗ RM , f, g : Ω ⊆ Rn −→ RM ,
where q = 1, ..., p and the linear pth order systems of PDE

A(x) ::D[p]u(x) = f(x), x ∈ Ω

A(x) ::D[p]v(x) = g(x), x ∈ Ω,

where A = (A1, ...,Ap). If u, v are D-solutions, then u+ v is a D-solution of

A(x) ::D[p](u+ v)(x) = (f + g)(x) x ∈ Ω,

when v is p-times differentiable in measure on Ω.

The notation “::” above is a convenient abbreviation of the multiple contraction∑
α1,i1

A1
µ;α1,i1Di1uα1

+ ... +
∑

αp,i
p
1 ...i

p
p

Ap
µ;αp,i11,...,i

p
p
Dp
ip1 ...i

p
p
uαp .

The proof is based on the next general lemma about Young measures.

Lemma 27. Let E ⊆ Rn be a measurable set and W a finite dimensional metric
vector space isometrically and densely contained into a compactification K of W. If
Um, V m : E ⊆ Rn −→W are sequences of measurable maps such that

δUm
∗−−⇀ ϑ in Y (E,K), V m −→ V a.e. on E,

as m→∞, then we have that δUm+Vm
∗−−⇀ ϑ ◦ TV in Y (E,K), as m→∞.

Proof of Lemma 27. Fix φ ∈ L1(E), Φ ∈ C0(K) and ε > 0. Since Φ is uniformly
continuous on the compact space K, there is a bounded increasing modulus of
continuity ω ∈ C0[0,∞) with ω(0) = 0 such that |Φ(X)− Φ(Y )| ≤ ω(|X − Y |) for
all X,Y ∈ K and ‖ω‖C0(0,∞) <∞. Also, since V m −→ V a.e. on E, we have that
V m −→ V µ-a.e. on E where µ is the finite measure µ(A) := ‖φ‖L1(A∩E), A ⊆ Rn.
It follows that V m −→ V in µ-measure as well. Hence, we have∣∣∣∣∫

E

φ
[
Φ(Um + V m)− Φ(Um + V )

]∣∣∣∣ ≤ ∫
E

|φ|ω
(
|V m − V |

)
≤ ‖ω‖C0(0,∞) µ

(
{|V m − V | > ε}

)
+ ω(ε)µ(E).

By letting m → ∞ and then ε → 0, the density of the linear span of products
of the form φ(x)Φ(X) in L1

(
E,C0(K)

)
and the definition of ϑ ◦ TV allow us to

conclude. �
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Proof of Proposition 26. If suffices to establish b) and only for p = 1. By as-
sumption, we have that A1(x) :LDv(x) = g(x) and also that for any Φ ∈ C0

c (RNn),∫
RNn

Φ(X)
[
A1(x) : X − f(x)

]
d[Du(x)](X) = 0,

both being valid for a.e. on x ∈ Ω. Here Du is any diffuse gradient. We fix any
point x as above and replace Φ by Φ

(
·+LDv(x)

)
. Then, we obtain∫

RNn
Φ
(
X + LDv(x)

)[
A1(x) :

(
X + LDv(x)

)
− f(x)− g(x)

]
d[Du(x)](X) = 0.

By the definition of Du ◦ TLDv, we obtain∫
RNn

Φ(Y )
[
A1(x) : Y − (f + g)(x)

]
d
[
Du(x) ◦ TLDv(x)

]
(Y ) = 0.

By utilising part a), the conclusion ensues. �

Example 28 (Nonlinearity of diffuse derivatives). Let K ⊆ R be a compact nowhere
dense set of positive measure (e.g. K = [0, 1]\(∪∞1 (rj−3−j , rj+3−j)) where (rj)

∞
1

is an enumeration of Q ∩ [0, 1]). Then, for u := χK we have that |D1,hu(x)| → ∞
as h→ 0 for x ∈ K and u′ = 0 on R\K. Hence, by Lemma 4 along any hm → 0 we
have Du(x) = δ{∞} for a.e. x ∈ K. However, for v := −u, we have D(u+v) = δ{0}
a.e. on R, while Du = Dv = δ{∞} a.e. on K.

Comparison with distributional solutions. Let us conclude this section with
an informal discussion of the relation between distributional and D-solutions. Let
us first compare distributional to diffuse derivatives. For any u ∈ L1

loc(Rn), the
distributional gradient Du can be weakly* approximated by difference quotients:

〈φ,Du〉 = lim
m→∞

∫
Rn
φD1,hmu = lim

m→∞

∫
Rn
φ

(∫
Rn
X d

[
δD1,hmu

]
(X)

)
,

φ ∈ C∞c (Rn). If “bar∗” denotes the barycentre of the restriction on Rn, we have

(2.13) bar∗ (δD1,hmu)
∗−−⇀ Du, as m→∞,

in the distributions D ′
(
Rn,Rn

)
. Along perhaps a further subsequence, we have

(2.14) δD1,hmu
∗−−⇀ Du, in Y

(
Rn,Rn

)
, as m→∞.

By juxtaposing (2.13) with (2.14), our interpretation is that the barycentre of the
(reduced) diffuse derivative is unique and equal to the distributional derivative:

bar∗(Du) = Du.

Regarding the notions to solution, obviously D-solutions are a more general the-
ory than distributional solutions (and a fortiori than weak solutions) in the sense
that they apply to more general PDEs and under weaker regularity requirements.
However, the two theories are not immediately comparable on their common do-
main of L1

loc solutions of linear systems with smooth coefficients. On the one hand,
Proposition 26 and Example 28 point out a property which is not generally true for
diffuse derivatives but is always true for distributional derivatives. On the other
hand, there exist D-solutions which are not distributional: for instance, u = χ(0,∞)

is a D-solution of u′ = 0 on R, while in the distributional sense it solves u′ = δ{0}
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(see also Remark 17). However, D-solutions completely avoid the impossibility to
multiply distributions. For example, if A ∈ L∞(Rn,Rn),

A ·D1,hmu −−
〈 /∗−−−−⇀ A ·Du, in D ′

(
Rn,Rn

)
, [not well defined!]

∗
−−−−⇀A · Du, in Y

(
Rn,Rn

)
, [well defined!]

Hence, for the equation A ·Du = 0, solutions u ∈ L1
loc(Rn) make perfect sense in

our context by interpreting the equation as

A(x) ·
∫
RN

Φ(X)X d[Du(x)](X) = 0, a.e. x ∈ Rn,

for all Φ ∈ C0
c (Rn), while in the sense of distributions it is not well defined:

“ A(x) ·Du(x) = A · bar (Du∗(x)) = A(x) ·
∫
Rn
X d[Du(x)](X) ” = ?

We conclude this discussion by underlining the simplicity and handiness of our
theory, as opposed to the more cumbersome algebraic theories of multiplication of
distributions and the inconsistencies they present (e.g. [Co]).

3. D-solutions of the ∞-Laplacian and tangent systems

In this section we establish our first main result concerning the existence of D-
solutions. We treat the Dirichlet problem for the ∞-Laplace system (1.9) which
is the fundamental equation of vectorial Calculus of Variations in the space L∞

and arises from the functional (1.8). A central ingredient in the proof of Theo-
rem 29 below is a result of independent interest, Theorem 33 that follows, which
provides a method of constructing nonsmooth D-solutions to nonlinear systems by
“differentiating an equation”.

Theorem 29 (Existence of ∞-Harmonic maps). Let Ω ⊆ Rn be an open set with
|Ω| <∞ and n ≥ 1. Then, for any g ∈W 1,∞(Ω,Rn), the Dirichlet problem

(3.1)

{(
Du⊗Du+ |Du|2[Du]⊥⊗ I

)
: D2u = 0, on Ω,

u = g, on ∂Ω,

has a D-solution u : Ω ⊆ Rn −→ Rn in W 1,∞
g (Ω,Rn). In particular, u satisfies

Definition 14 (with respect to the standard frames): for any diffuse hessian, we
have ∫

Rnn2
s

Φ(X)
(
Du⊗Du+ |Du|2[Du]⊥⊗ I

)
: X d[D2u](X) = 0,

a.e. on Ω, for any Φ ∈ C0
c

(
Rnn2

s

)
, where

δD1,hmDu
∗−−⇀ D2u in Y

(
Ω,RNn

2

s

)
, as m→∞.

Unfortunately, as we proved in [K2], in general it is impossible to obtain unique-
ness, not even within the class of smooth solutions.

Theorem 30 (Nonuniqueness of smooth∞-Harmonic maps, [K2]). Let n = N ≥ 2
and consider the Dirichlet problem (3.1) where as Ω we take the punctured unit ball
centred at the origin and as boundary condition we take g(x) = x. Then, (3.1) ad-
mits infinitely-many solutions in C∞(Ω,Rn)∩C0(Ω,Rn) which are diffeomorphisms

from Ω to itself of the form u(x) = eh(|x|2)x for certain h ∈ C∞(0,∞).



GENERALISED SOLUTIONS FOR FULLY NONLINEAR SYSTEMS AND EXISTENCE 25

Remark 31. Theorem 30 makes clear that uniqueness in the vectorial case is not
an issue of defining a “proper” notion of generalised solution, since even classical
solutions in general may not be unique. Instead, extra conditions need to be de-
termined that will select a “good” solution. On the other hand, uniqueness is a
well known property of the scalar problem (a celebrated theorem of Jensen, see
e.g. [C] and also [K8]). Such phenomena are not exclusive to the ∞-Laplacian:
for instance, the Dirichlet problem for the minimal surface system may have either
non-existence or non-uniqueness in codimension greater than one (see [OL]), while
for the minimal surface equation it is well posed.

In addition to Theorem 29, the next corollary will also be established in the
course of its proof.

Corollary 32 (Multiplicity & geometric properties of D-solutions). In the setting
of Theorem 29, if n ≥ 2 then (3.1) actually has an infinite set of solutions. More-
over, for any M >

∥∥(Dg>Dg)1/2
∥∥
L∞(Ω)

there is a D-solution u = u(M) satisfying

(3.2) |Du|2 = nM2,
∣∣ det(Du)

∣∣ = Mn, a.e. on Ω.

Hence, the D-solutions we construct have the geometric property of solving the
vectorial Eikonal equation and having full rank.

3.1. The idea of the proof. Suppose that u ∈ C2(Ω,Rn) solves (1.9) and recall
that [Du]⊥ = Proj(R(Du))⊥ . By contracting derivatives, we rewrite the system as

(3.3) DuD
(1

2
|Du|2

)
+ |Du|2[Du]⊥∆u = 0.

By observing that the first summand of (3.3) is valued in the range R(Du) ⊆ RN
and the second summand is valued in (R(Du))⊥, the ∞-Laplacian (3.3) decouples
to the pair of independent systems

(3.4) DuD
(1

2
|Du|2

)
= 0, |Du|2[Du]⊥∆u = 0.

Then, we obtain that smooth solutions of the 1st order differential inclusion

Du(x) ∈ Kc, for x ∈ Ω,

where c > 0 is a parameter and

Kc :=
{
X ∈ Rnn : |X| = c, |det(X)| > 0

}
,

actually are ∞-Harmonic mappings: indeed, if Du(Ω) ⊆ Kc, then |Du|2 ≡ c2 and
det(Du) 6= 0 on Ω. Hence, in view of (3.4) we have that the 1st system is satisfied
because |Du| is constant (u is Eikonal) and the 2nd system is satisfied because u
is a submersion (the codimension is zero), which forces [Du]⊥ = 0 on Ω. Hence, if
we somehow could prove existence of a solution to the inclusion with the desired
boundary data, it would yield a solution (3.1).

However, the preceding arguments make sense only for classical or strong so-
lutions. The starting point of the proof of Theorem 29 is to use the Dacorogna-
Marcellini Baire Category method [DM] in order to construct Lipschitz solutions
of the inclusion with the given boundary data. Then, by using the machinery of
D-solutions we make the previous ideas rigorous for merely Lipschitz maps, which
is the natural regularity class. Note also that our methodology is not variational
and does not use the functional (1.8).
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The next result is a tool which goes far beyond the scope of the ∞-Laplacian
and allows to construct D-solution of systems by solving differential inclusions.

Theorem 33 (Differentiating equations in the D-sense). Let F be a Carathéodory
map as in (1.1) which in addition is C1 with respect to all its arguments and consider
the p-th order system

F
(
x, u(x), D[p]u(x)

)
= 0, x ∈ Ω.

If u : Ω ⊆ Rn −→ RN is a strong a.e. solution to the system in W p,∞
loc (Ω,RN ), then

u is a D-solution (Definition 15) to the “tangent” system

Fx
(
·, u,D[p]u

)
+ Fη

(
·, u,D[p]u

)
Du + FX

(
·, u,D[p]u

)
::D[p+1]u = 0,

on Ω (with respect to the usual frames).

For the notation “::” see Proposition 26. Theorem 33 is actually true for solutions
which are merely W p,1

loc (Ω,RN ) or just p-times differentiable in measure (Definition
12), but then we have to assume certain growth bounds on the derivatives of F .

We invite the reader to note the simplicity with which we pass to limits in the
proof below within the framework of D-solutions.

Proof of Theorem 33. It suffices to prove only the case of p = 1 and with no
explicit u dependence, the general case following analogously. Hence we suppose
that u ∈W 1,∞

loc (Ω,RN ) solves

F
(
x,Du(x)

)
= 0, a.e. x ∈ Ω,

and we aim to show that

Fx
(
x,Du(x)

)
+ FX

(
x,Du(x)

)
: D2u(x) = 0, x ∈ Ω,

in the D-sense (Definition 14). For a.e. point x ∈ Ω such that F
(
x,Du(x)

)
= 0 and

h 6= 0 small enough, Taylor’s theorem implies for each i the identity

Fxi
(
x,Du(x)

)
+ FX

(
x,Du(x)

)
: D1,h

ei Du(x)

= −D1,h
ei Du(x) :

∫ 1

0

{
FX

(
x+ λhei, Du(x) + λ

[
Du(x+ hei)−Du(x)

])
− FX

(
x,Du(x)

)}
dλ

−
∫ 1

0

{
Fxi

(
x+ λhei, Du(x) + λ

[
Du(x+ hei)−Du(x)

])
− Fxi

(
x,Du(x)

)}
dλ.

(3.5)

We fix any infinitesimal sequence (hm)∞m=1 ⊆ R \ {0} such that hm → 0 as m→∞
and observe that by the weak* compactness of Young measures, along perhaps a
subsequence hmk → 0 we have

δ
D

1,hmkDu
∗−−⇀D2u in Y

(
Ω,RNn

2

s

)
, as k →∞.

We now invoke Lemma 1 to infer that since Du(·+ hei) −→ Du locally in measure
as h → 0, there is a perhaps further subsequence denoted again by (hmk)∞k=1 such
that for a.e. x ∈ Ω we have Du(x+ hmke

i) −→ Du(x) as k →∞. Next, we set

G∞i (x,X) := Fxi
(
x,Du(x)

)
+
∑
β,j

FXβj
(
x,Du(x)

)
Xβji
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and for each m ∈ N
Gmi (x,X) := Fxi

(
x,Du(x)

)
+
∑
β,j

FXβj
(
x,Du(x)

)
Xβji

+
∑
β,j

Xβji

∫ 1

0

{
FXβj

(
x+ λhme

i, Du(x) + λ
[
Du(x+ hme

i)−Du(x)
])

− FXβj
(
x,Du(x)

)}
dλ

+

∫ 1

0

{
Fxi

(
x+ λhme

i, Du(x) + λ
[
Du(x+ hme

i)−Du(x)
])

− Fxi
(
x,Du(x)

)}
dλ.

In view of C1 regularity of F and that Du(·+ hmke
i) −→ Du a.e. on Ω as k →∞

(together with the Dominated convergence theorem and that Du ∈ L∞loc(Ω,RNn)),
for a.e. x ∈ Ω we obtain

Gmk(x, ·) −→ G∞(x, ·) in C0
(
RNn

2

s ,RM
)
, as k →∞.

Moreover, in view of the definition of Gm, the identity (3.5) gives

Gm
(
x,D1,hmDu(x)

)
= 0 a.e. on Ω, m ∈ N.

Hence, for any Φ ∈ C0
c

(
RNn2

s

)
we have∫

RNn2
s

Φ(X)Gmk(x,X) d
[
δ
D

1,hmkDu(x)

]
(X) = 0 a.e. x ∈ Ω,

for k ∈ N. The convergence Lemma 18 now implies∫
RNn2
s

Φ(X)G∞(x,X) d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
RNn2

s

)
and any diffuse hessian D2u arising from any infinitesimal

sequence. Hence, u is a D-solution of G∞
(
x,D2u(x)

)
= 0 on Ω and by the definition

of G∞ the proposition ensues. �

3.2. Proof of the main result. Now we prove our first main existence result
which is an easy consequence of Theorem 33 and of the existence results of [DM] for
differential inclusions via the Baire Category method. The case n = 1 is completely
trivial (see [K1]), so we will henceforth assume n ≥ 2.

Proof of Theorem 29 (and Corollary 32). Assume we are given Ω ⊆ Rn with
finite measure and g ∈W 1,∞(Ω,Rn). We begin with the next:

Claim 34. If M >
∥∥(Dg>Dg)1/2

∥∥
L∞(Ω)

, there exists u ∈W 1,∞
g (Ω,Rn) such that

|Du|2 = nM2, a.e. on Ω,

|det(Du)| = Mn, a.e. on Ω.

Proof of Claim 34. Given a map u : Ω ⊆ Rn −→ Rn in W 1,∞
g (Ω,Rn), let λi(Du)

denote the ith singular value, that is the ith eigenvalue of (Du>Du)1/2:

σ
(
(Du>Du)1/2

)
=
{
λ1(Du), . . . , λn(Du)

}
, λi ≤ λi+1.
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Fix an M > 0 as in statement and consider the Dirichlet problem:

(3.6)

{
λi(Dv) = 1, a.e. in Ω, i = 1, ..., n,

v = g/M, on ∂Ω.

Then, we have the estimate∥∥λn(Dg)
∥∥
L∞(Ω)

=
∥∥∥max
|e|=1

(Dg>Dg)1/2 : e⊗ e
∥∥∥
L∞(Ω)

≤
∥∥(Dg>Dg)1/2

∥∥
L∞(Ω)

.
(3.7)

In view of the results of [DM], the estimate (3.7) implies that the required compat-
ibility condition is satisfied in regard to the problem (3.6). Hence there is a strong

solution v to (3.6) such that v − (g/M) ∈ W 1,∞
0 (Ω,Rn) for the given M and the

boundary data g. Finally, since λi(Dv) = 1 a.e. on Ω, by setting u := Mv we have

|Du|2 = M2|Dv|2 = M2
∑
i

λi(Dv)2 = nM2, a.e. on Ω,

|det(Du)| = Mn|det(Dv)| = Mn
∏
i

λi(Dv) = Mn, a.e. on Ω,

and in addition, u− g ∈W 1,∞
0 (Ω,Rn). The proof of the claim is complete. �

Now we may complete the proof the theorem. For the given boundary condition
g, we fix anM > 0 as in the claim and consider one of its solutions u ∈W 1,∞

g (Ω,RN )

which satisfies |Du|2 − nM2 = 0, a.e. on Ω. We set

F (X) := |X|2 − nM2, X ∈ RNn,
and apply Theorem 33 to infer that u ∈W 1,∞

g (Ω,RN ) is a D-solution to the tangent

system FX(Du) : D2u = 0, that is for all i we have∑
β,j

Djuβ(x)D2
ijuβ(x) = 0, x ∈ Ω, in the D-sense.

This means that for any diffuse hessian D2u arising from any infinitesimal sequence

δD1,hmDu
∗−−⇀D2u in Y

(
Ω,Rnn

2

s

)
,

along any subsequence as m→∞, we have∫
Rnn2
s

∑
β,j

Djuβ(x) Φ(X) Xβij d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
Rnn2

s

)
. We multiply the above Diuα(x) and sum to obtain∫

Rnn2
s

∑
β,j,i

Φ(X)Diuα(x)Djuβ(x) Xβij d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω.

Finally, by Claim 34 we have det(Du) 6= 0 a.e. on Ω and as a result Du(x) has rank
equal to n in Rnn, which implies that the orthogonal projection [Du(x)]⊥ on the
complement of the range of Du(x) vanishes for a.e. x ∈ Ω. Thus∫

Rn×n2
s

∑
β,i

Φ(X)
∣∣Du(x)

∣∣2[Du(x)
]⊥
αβ

Xβii d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
Rnn2

s

)
and any diffuse hessian D2u. The last two equalities imply

that u is a D-solution of the ∞-Laplacian and the theorem follows. �
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We close this section we a discussion regarding the nonuniqueness problems
related to the ∞-Laplace system.

A possible selection principle for ∆∞. In view of Theorem 30 proved in
[K2], among the many smooth solutions that (3.1) has, the boundary condition
g(x) = x is itself a solution. Moreover, it is the only solution which is a limit of
p-Harmonic maps as p→∞: for each p > 2, the unique solution of the p-Laplacian
∆pu = Div

(
|Du|p−2Du

)
= 0 with data g on ∂Ω is g itself. On the other hand,

in the scalar case all ∞-Harmonic functions arise as uniform limits of p-Harmonic
functions (this is a consequence of Jensen’s uniqueness theorem for the∞-Laplacian
and of the uniqueness for the p-Laplacian, see e.g. [C, K8] and references therein).
Moreover, plenty of other examples seem to exhibit the same behaviour. Hence,
we are led to the following conjecture regarding a selection (“entropy”) principle of
“good” solutions to the ∞-Laplace system:

Conjecture (Uniqueness for the Dirichlet problem for ∆∞). For any do-
main Ω b Rn with Lipschitz boundary and any g ∈ W 1,∞(Ω,RN ), the Dirichlet
problem (3.1) has a unique D-solution u∞ ∈W 1,∞

g (Ω,RN ) in the class of uniform
subsequential limits of p-Harmonic mappings up as p→∞.

Investigation of the validity of this conjecture is left for future work.

4. D-solutions of fully nonlinear degenerate elliptic systems

Fix n,N ≥ 1, let Ω ⊆ Rn be an open set and

F : Ω× RNn
2

s −→ RN

a Carathéodory map. In this section we establish our second main result, namely
the existence of a unique D-solution u : Ω ⊆ Rn −→ RN to the Dirichlet problem

(4.1)

{
F (·, D2u) = f, in Ω,

u = 0, on ∂Ω,

when f ∈ L2(Ω,RN ) and F satisfies a degenerate ellipticity assumption which
in general does not guarantee that solutions are even once weakly differentiable.
This extends previous results of the author in the class of strong solution for (4.1)
([K9, K11]) under a stronger ellipticity notion than that we consider herein.

4.1. The idea of the proof. The solvability of (4.1) in the class of D-solutions is
based on the study of the linearised system with constant coefficients

(4.2)

{
A : D2u = f, in Ω,

u = 0, on ∂Ω,

when A is a (perhaps degenerate) convex symmetric quadratic form and on a
perturbation device provided by our ellipticity assumption for F . The latter allows
to prove existence for (4.1) by proving existence for (4.2) and then using a fixed
point argument in the guises of a classical theorem of Campanato ([C3]). In order to
solve (4.2) in the D-sense (and not just weakly) we impose a structural condition on
A which allows to construct D-solutions as maps having twice weakly differentiable
projections along certain rank-one lines of RNn. These are the “directions of strict
ellipticity” of the system A : D2u = f . We formalise this idea by introducing a
“fibre” extension of the classical Sobolev spaces which consist of maps possessing
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only certain partial regularity along rank-one lines. Our fibre space counterparts
which are adapted to the degenerate nature of the problem support feeble yet
sufficient versions of weak compactness, trace operators and Poincaré inequalities
for D-solutions. The proof is completed by characterising the “fibre” object we
have obtained via fixed point as the unique D-solution of the Dirichlet problem
(4.1) inside the fibre space.

4.2. Fibre spaces, degenerate ellipticity and the main result. Before stating
our existence result we need some preparation. We will use the notation

A ∈ RNn×Nns

to denote symmetric linear maps A : RNn −→ RNn, i.e. 4th order tensors satisfying
Aαiβj = Aβjαi for all indices α, β = 1, ..., N and i, j = 1, ..., n. The notation

N
(
A : RNn → RNn

)
, N

(
A : RNn

2

s → RN
)

will be used to denote the nullspaces of A as linear map with domain and range
those indicated in the brackets, i.e. when A acts respectively as

AQ :=
∑
α,β,i,j

(
AαiβjQβj

)
eα ⊗ ei, A : X :=

∑
α,β,i,j

(
AαiβjXβij

)
eα.

We will also use similar notation for the respective ranges with “R” instead of “N”.
If A is rank-one positive, i.e. if the respective quadratic form is rank-one convex

A : η ⊗ a⊗ η ⊗ a =
∑
α,β,i,j

Aαiβjηα ai ηβ aj ≥ 0, η ∈ RN , a ∈ Rn,

we define

Π := R
(
A : RNn → RNn

)
⊆ RNn,

Σ := span[
{
η
∣∣∣ η ⊗ a ∈ Π

}
] ⊆ RN ,

Ξ := span[
{
η ⊗ (a ∨ b)

∣∣∣ η ⊗ a, η ⊗ b ∈ Π
}

] ⊆ RNn
2

s ,

ν := min
|η|=|a|=1, η⊗a∈Π

{
A : η ⊗ a⊗ η ⊗ a

}
> 0.

(4.3)

We will call ν the ellipticity constant of A, bearing in mind that strictly speaking
A may not be elliptic and the respective infimum over RNn may vanish. We also
recall that we will use the same letters Π,Ξ,Σ to denote the subspaces as well as
the orthogonal projections on them. Further, note that we may say “positive A”
meaning “non-negative A”, but “strictly positive” will always be used to clarify
strictness.

The fibre Sobolev spaces. Given A ∈ RNn×Nns rank-one positive, let Σ,Π,Ξ be
given by (4.3) and suppose that Π is spanned by rank-one directions. A sufficient
condition regarding when this happens is when A is in a sense “decomposable”,
something we will require later in Definition 36 that follows. For simplicity, we
treat only the L2 2nd order case needed in this paper. Let us begin by identifying
the space W 2,2(Ω,RN ) with its isometric image W̃ 2,2(Ω,RN ) into a product of L2

spaces:

W̃ 2,2(Ω,RN ) ⊂
→
L2
(

Ω,RN × RNn × RNn
2

s

)
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via the map u 7→ (u,Du,D2u). We define the fibre Sobolev space W 2,2(Ω,Σ) as
the Hilbert space

(4.4) W 2,2(Ω,Σ) := Proj
L2
(

Ω,Σ×Π×Ξ
) W̃ 2,2(Ω,RN )

‖·‖L2(Ω)

with the natural induced norm (written for W 2,2 maps)

‖u‖W 2,2(Ω,Σ) :=
∥∥Σu

∥∥
L2(Ω)

+
∥∥ΠDu

∥∥
L2(Ω)

+
∥∥ΞD2u

∥∥
L2(Ω)

.

By utilising the Mazur theorem, W 2,2(Ω,Σ) can be characterised in the following
useful fashion

W 2,2(Ω,Σ) =


(
u,G(u), G2(u)

)
∈ L2

(
Ω,Σ×Π× Ξ

) ∣∣∣ ∃ (um)∞1 ⊆

W 2,2(Ω,RN ) : we have weakly in L2 as m→∞
that

(
Σum,ΠDum,ΞD2um

)
−−⇀

(
u,G(u), G2(u)

)
 .

We will call G(u) ∈ L2(Ω,Π) the fibre gradient of u and G2(u) ∈ L2(Ω,Ξ) the
fibre hessian of u.

It can be easily seen (by using integration by parts and that Σ,Π,Ξ are spanned
by directions of the form η, η⊗ a and η⊗ (a∨ b) respectively) that the measurable
maps G(u), G2(u) depend only on u ∈ L2(Ω,Σ) and not on the approximating
sequence.

Further, by using the standard properties of equivalence between strong and
weak L2 directional derivatives, we have that G(u), G2(u) can be characterised as
“fibre” derivatives of u: for any directions η ∈ Σ, η⊗ a ∈ Π and η⊗ (a∨ b) ∈ Ξ, we
have

G(u) : (η ⊗ a) = Da(η · u),

G2(u) :
(
η ⊗ (a ∨ b)

)
= D2

ab(η · u) = Db

(
G(u) : (η ⊗ a)

)
,

a.e. on Ω, where Da, D2
ab are the usual directional derivatives.

In general, the fibre spaces are strictly larger than their “non-degenerate” coun-
terparts, since it is very easy to find singular examples which are not even W 1,1

loc :
take for instance A = η ⊗ a ⊗ η ⊗ a, |a| = 1. Then, for any f ∈ W 2,2(R), any
g ∈ C0(Rn) and ζ ∈ C∞c (Rn), the map

u(x) := ζ(x)
[
f(a · x) + g

(
[I − a⊗ a]x

)]
η

is an element of W 2,2(Ω,Σ) arising from this A, but Db(η · u) may not exist in L2

for any b⊥ a.
Similarly to the 2nd order case, we may also define

W 1,2
0 (Ω,Σ) := ProjL2(Ω,Σ×Π) W̃

1,2
0 (Ω,RN )

‖·‖L2(Ω)

,(4.5)

equipped with the obvious respective norm ‖·‖W 1,2(Ω). Further functional properties
of the fibre spaces (traces, Poincaré inequality) needed for the proof of the main
result Theorem 37 will be discussed after its statement. The fibre space(

W 2,2 ∩W 1,2
0

)
(Ω,Σ)

is the appropriate setup within which we will obtain compactness and uniqueness
of D-solutions for the Dirichlet problems (4.1), (4.2), by utilising the necessary
hypotheses introduced in the next paragraph.



32 NIKOS KATZOURAKIS

Degenerate ellipticity and decomposability. Now we introduce our ellipticity
hypothesis for (4.1) and a condition for tensors A ∈ RNn×Nns that will guarantee
that their ranges Π are spanned by rank-one directions.

Definition 35 (Degenerate ellipticity). We say that the Carathéodory map F :

Ω× RNn2

s −→ RN (or the system F (·, D2u) = f) is degenerate elliptic when there
exists A ∈ RNn×Nns rank-one positive, constants B,C ≥ 0 with B + C < 1 and a
positive measurable function A satisfying A, 1/A ∈ L∞(Ω) such that∣∣∣A : Z − A(x)

(
F (x,X + Z)− F (x,X)

)∣∣∣ ≤ Bν |Ξ Z| + C |A : Z|,

for a.e. x ∈ Ω and all X,Z ∈ RNn2

s . We moreover require F to be valued in the

subspace Σ ⊆ RN , i.e. F (x,X) ∈ Σ, for a.e. x ∈ Ω and all X ∈ RNn2

s .

Definition 35 is an extension to the degenerate elliptic realm of the strict elliptic-
ity assumption introduced in [K11]. In the elliptic case we have Σ = RN , Π = RNn

and Ξ = RNn2

s . We refer to [K9] for further material on the elliptic case. The spe-
cial monotonic case of Aαiβj = δαβδij and A(x) = const. reduces to the classical
notion introduced by Campanato ([C1, C2, C3]). It is easy to exhibit non-trivial
examples of Carathéodory maps satisfying Definition 35, see Remark 38IV) that
follows. It is quite restrictive, but even the scalar linear strictly elliptic case of (3.1)
is not well posed (see e.g. [LU]) without extra assumptions.

Below is the structural hypothesis we will impose on tensor A:

Definition 36 (Decomposability). We will say that A ∈ RNn×Nns is decomposable
when it can be written as

Aαiβj = B1
αβA

1
ij + · · · + BNαβA

N
ij

and:
i) The matrices {B1, ..., BN} ⊆ RN2

s are non-negative and their ranges Σ1, ...,ΣN

are mutually orthogonal in RN .

ii) The matrices {A1, ..., AN} ⊆ Rn2

s are non-negative and if λγi0 denotes the

smallest positive eigenvalue of Aγ , the eigenspaces N
(
Aγ −λγi0I

)
have a non-trivial

intersection in Rn.

We will discuss certain implications of these hypotheses and some examples after
the main result which we give right next.

D-solutions for fully nonlinear degenerate elliptic systems. Now we state
the principal result of this section followed by some relevant comments.

Theorem 37 (Existence and Uniqueness). Let Ω ⊆ Rn be a strictly convex bounded

domain with C2 boundary and F : Ω × RNn2

s −→ RN be a Carathéodory map
which satisfies Definition 35 with respect to a decomposable tensor A (Definition
36). Let also the vector spaces Ξ,Π,Σ associated to A be as in (4.3) and assume
|F (·, 0)| ∈ L2(Ω).

Then, for any f ∈ L2(Ω,Σ), the Dirichlet problem{
F (·, D2u) = f, in Ω,

u = 0, on ∂Ω,

has a unique D-solution u : Ω ⊆ Rn −→ RN (Definition 15) in the fibre space

(W 1,2
0 ∩ W 2,2)(Ω,Σ) (given by (4.4), (4.5)) with respect to certain orthonormal
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frames as in (2.2) depending only on F . In particular, u is well defined and vanishes

Hn−1-a.e. on ∂Ω and for any Φ ∈ C0
c

(
RNn2

s

)
, we have∫

RNn2
s

Φ(X)
(
F (x,X)− f(x)

)
d[D2u(x)](X) = 0, a.e. x ∈ Ω,

where D2u is any diffuse hessian of u arising from any infinitesimal subsequences:

δD2,hmu

∗
−−⇀ D2u in Y

(
Ω,RNn

2

s

)
, as m→∞.

Remark 38. I) [Compatibility] f has to be valued in the subspace Σ because
this is a compatibility condition arising from the degeneracy of the problem. For
example, the 2 × 2 system ∆u1 = f1, 0 = f2 has no solution whatsoever in any
weak sense unless f2 ≡ 0.
II) [Partial regularity] The solution we obtain in Theorem 37 possess differen-
tiable projections along certain rank-one lines, but in general this can not be im-
proved further. For, choose any f ∈ C0(D) not weakly differentiable with respect
to x1 for any x2 over the unit disc of R2. Then, the problem

D2
22u = f on D, u = 0 on ∂D,

has the unique explicit D-solution (which is not in W 1,1
loc (Ω))

u(x1, x2) = −v(x1, x2) +

∫ x2

−∞

∫ t2

−∞
f(x1, s2) ds2 dt2,

where for (x1, x2) ∈ D,

v(x1, x2) =
x2

2
√

1− x2
1

[
w
(
x1,
√

1− x2
1

)
− w

(
x1,−

√
1− x2

1

)]
+

1

2

[
w
(
x1,
√

1− x2
1

)
+ w

(
x1,−

√
1− x2

1

)]
,

w(x1, x2) =

∫ x2

−∞

∫ t2

−∞
f(x1, s2) ds2 dt2.

III) [Decomposability] Definition 36 trivialises when either N = 1 or n = 1 since

any non-negative matrix A ∈ Rn2

s or B ∈ RN2

s satisfies it. When max{N,n} ≥ 2,
it is non-trivial, but in view of its constructive nature it is trivial to exhibit A’s
satisfying it. Also, any decomposable A must be non-negative: if Q ∈ RNn,

A : Q⊗Q =
∑
γ,α,β

∑
i,j

Bγαβ A
γ
ij QαiQβj

=
∑

γ,α,β,κ

∑
i,j,k

(
(Bγ)1/2

κα Qαi (Aγ)
1/2
ik

)(
(Bγ)

1/2
κβ Qβj (Aγ)

1/2
jk

)
≥ 0.

IV) [Examples of nonlinearities] Fix A ∈ RNn×Nns and an f ∈ C0,1
(
RNn2

s ,RN )
with constant Lip(f). Then, for any positive A with A, 1/A ∈ L∞(Ω), the map

F (x,X) :=
(
A(x)

)−1
[
(1 + γ)A : X + Σf(ΞX)

]
satisfies Definition 35 when ν|γ|+Lip(f) < ν. Linear examples satisfying Definition
35 are given by any A : Ω ⊆ Rn −→ RNn×Nns measurable such that∣∣(A − A(x)A(x)

)
: Z
∣∣ ≤ Bν |Ξ Z|, Z ∈ RNn

2

s ,
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for some 0 < B < 1 and A positive such that A, 1/A ∈ L∞(Ω).
V) [Partial monotonicity] If F satisfies Definition 35 and Ξ (see (4.3)) satisfies

Ξ ⊇ N
(
A : RNn

2

s → RN
)⊥
,

then the following “monotonicity” property holds true:

(4.6)

{
For a.e. x ∈ Ω, F (x, ·) is constant along the subspace Ξ⊥:

F (x,X) = F (x,Ξ X), X ∈ RNn2

s .

The above property of Ξ will turn out to be true when A satisfies Definition 36.

To see (4.6), note that since Ξ⊥ ⊆ N
(
A : RNn2

s → RN
)
, for any Z ∈ Ξ⊥ we have

A : Z = 0 and also Ξ Z = 0. Hence, Definition 35 gives∣∣∣− A(x)
(
F (x,X + Z)− F (x,X)

)∣∣∣ ≤ 0, Z ∈ Ξ⊥, X ∈ RNn
2

s .

Obviously, we also have A : X = A : (Ξ X). Observe that (4.6) is much weaker than
the decoupling condition Fα(X) = Fα(Xα) required for vector-valued viscosity
solutions.

Next we gather some properties of the fibre spaces essentially proved in [K10]
but without the formalism of the fibre spaces.

Remark 39 (Basic properties of the fibre Sobolev space counterparts, cf. [K10]).

(I) [Poincaré inequality] For any Ω b Rn, unit vectors a, η and u ∈W 1,2
0 (Ω,RN ),

we have
‖η · u‖L2(Ω) ≤ diam(Ω)

∥∥Da(η · u)
∥∥
L2(Ω)

.

(II) [Norm equivalence] The seminorm ‖G2( · )‖L2(Ω) on the fibre space (W 1,2
0 ∩

W 2,2)(Ω,Σ) (see (4.4), (4.5)) is equivalent to its natural norm

‖ · ‖W 2,2(Ω) = ‖ · ‖L2(Ω) + ‖G( · )‖L2(Ω) + ‖G2( · )‖L2(Ω).

(III) [Trace operator] If Ω b Rn is strictly convex and a ∈ Rn \ {0}, then there
is a closed set E ⊆ ∂Ω with Hn−1(E) = 0 such that for any Γ b ∂Ω \ E, we have

‖v‖L2(Γ,Hn−1) ≤ C
(
‖v‖L2(Ω) +

∥∥Dav
∥∥
L2(Ω)

)
,

for some universal C = C(Γ) > 0 and all v ∈ C1(Ω). Hence, there is a well-defined
trace operator T : W 1,2(Ω,RN )→ L2

loc(∂Ω \ E,Hn−1;RN ).

Before giving the proof of the main result, we need an important estimate. This
is done in the next subsection.

4.3. A priori degenerate hessian estimates. Herein we establish an a priori
estimate for strong solutions in (W 2,2 ∩W 1,2

0 )(Ω,RN ) of a regularisation of

A : D2u = f, on Ω,

when A is decomposable. This is a generalisation of the elliptic estimate of [K11]
(which extended the classical Miranda-Talenti identity) to the degenerate case.

Theorem 40 (Degenerate hessian estimate). Let n,N ≥ 1 with Ω ⊆ Rn a convex
bounded C2 domain. Suppose further that A ∈ RNn×Nns satisfies Definition 36. If

Ξ, ν are as in (4.3), then for any u ∈ (W 2,2∩W 1,2
0 )(Ω,RN ) and any ε ≥ 0 we have

the estimate ∥∥ΞD2u
∥∥
L2(Ω)

≤ 1

ν

∥∥A(ε) : D2u
∥∥
L2(Ω)
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and also the property

(4.7) Ξ ⊇ N
(
A : RNn

2

s → RN
)⊥
.

The tensor A(ε) is the following (strictly) rank-one positive regularisation of A:

A
(ε)
αiβj :=

N∑
γ=0

B
(ε)γ
αβ A

(ε)γ
ij ,

B(ε)γ :=

{
Bγ , γ = 1, ..., N,

εI − ε
(
B1 + · · ·+BN

)
, γ = 0,

A(ε)γ :=

{
Aγ + εI, γ = 1, ..., N,

εI, γ = 0,

and Bγ , Aγ are the matrices appearing in Definition 36.

Note that in the vectorial caseN ≥ 2 of Theorem 40, the “correct” approximation
in not the vanishing viscosity one, although it reduces to such when N = 1.

Proof of Theorem 40. The first step is to prove a weak version of the scalar case
of the theorem.

Claim 41. Let Ω b Rn be C2 and convex and let also A ≥ 0 in Rn2

s . Then, there

exists a subspace H ⊆ Rn2

s such that

H ⊇ N
(
A : Rn

2

s → R
)⊥

and for any u ∈ (W 2,2 ∩W 1,2
0 )(Ω) and any ε ≥ 0 we have the estimate∥∥HD2u
∥∥
L2(Ω)

≤ 1

ν(A)

∥∥A : D2u + ε∆u
∥∥
L2(Ω)

where

ν(A) := min
|a|=1, a∈T

{A : a⊗ a}, T := R
(
A : Rn → Rn

)
.

Proof of Claim 41. By the Spectral theorem, we can find a diagonal matrix Λ
with entries 0 ≤ λ1 ≤ ... ≤ λn and O ∈ O(n) such that A = OΛ1/2 (OΛ1/2)> and

Λ =


0 0

0

λi0 0
. . .

0 λn

 .
Evidently,

{
λ1, ..., λn

}
=
{

0, ..., 0, λi0 , ..., λn
}

are the eigenvalues of A and λi0 is
the smallest positive eigenvalue. We also fix ε ≥ 0 and set

(4.8) Θ :=
(
Λ + εI

)1/2
, Γ := OΘ.

Then, since A equals OΛO> and Θ is symmetric, we have

(4.9) A + εI = OΛO> + O(εI)O> = OΘ (OΘ)> = ΓΓ>

and also

ν(A) = λi0
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(ν(A) is defined in the statement). We now define the subspaces of Rn2

s

H0 :=

{
X ∈ Rn

2

s : X =

[
0 0

0 (Xij)
j=i0,...,n
i=i0,...,n

]}
,

H :=
{
X ∈ Rn

2

s : O>XO ∈ H0
}
.

(4.10)

We begin by establishing the following algebraic inequality:

(4.11)
∣∣ΘXΘ

∣∣ ≥ ν(A)
∣∣H0X

∣∣, X ∈ Rn
2

s .

Indeed, since Θij = 0 when i 6= j and Θii =
√
λi + ε, in view of (4.10) we have∣∣ΘXΘ

∣∣2 =

n∑
i,j,k,l,p,q=1

(
ΘikXklΘlj

) (
ΘipXpqΘqj

)
=

=

n∑
i,j=1

(
ΘiiXijΘjj

)2 ≥ n∑
i,j=i0

(
λi + ε

)
(Xij)

2
(
λj + ε

)
≥

≥ (λi0)2
n∑

i,j=i0

(Xij)
2 = ν(A)2

∣∣H0X
∣∣2.

Hence, (4.11) has been established. In order to conclude, the goal is to reduce to the
classical Miranda-Talenti inequality (see [M, T, K11]) which says that for U b Rn
convex C2 domain and any v ∈ (W 2,2 ∩W 1,2

0 )(U), we have

(4.12)
∥∥D2v

∥∥
L2(U)

≤
∥∥∆v

∥∥
L2(U)

.

It suffices to assume that ε > 0 since the case ε = 0 follows by letting ε→ 0. Given
a fixed u ∈ C2(Ω) ∩ C1

0 (Ω), we set

U := Γ−1Ω, v(x) := u(Γx), x ∈ U.

Then, we have D2
ijv(x) =

∑n
p,q=1D

2
pqu(Γx) Γpi Γqj and hence, by (4.8) and (4.9)

we obtain

D2v(x) = Γ>D2u(Γx) Γ = Θ
(
O>D2u(Γx)O

)
Θ,

∆v(x) = D2u(Γx) : ΓΓ> = D2u(Γx) : (A + εI).
(4.13)

We now claim that since Ω is a C2 bounded convex domain, U is a C2 bounded
convex domain as well. Indeed, by (4.8) we have Γ−1 = Θ−1O> and since O> is an
isometry, it suffices to show that Θ−1V is convex, where V := O>Ω. To see this,
note that we can find a convex F ∈ C2(Rn) such that {F < 0} = V . We set

G(x) := F (Θx), G ∈ C2(Rn).

Then, we have

D2
ijG(x) =

n∑
p,q=1

D2
pqF (Θx) Θpi Θqj

and hence the convexity of F implies D2G(x) ≥ 0. It follows that the sublevel set
{G < 0} is convex and as a consequence U is convex too:

U = Θ−1V =
{

Θ−1x ∈ Rn : F (x) < 0
}

=
{
y ∈ Rn : G(y) < 0

}
.
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We may now apply the estimate (4.12) to v over U ⊆ Rn and by (4.12), (4.13) to
obtain ∫

U

∣∣D2u(Γx) : (A + εI)
∣∣2dx ≥ ∫

U

∣∣∣Θ(O>D2u(Γx)O
)

Θ
∣∣∣2dx

(4.11)

≥ ν(A)2

∫
U

∣∣∣H0
(
O>D2u(Γx)O

)∣∣∣2dx.
By the change of variables y := Γx and by using that O is orthogonal, we obtain

(4.14)
∥∥D2u : (A + εI)

∥∥
L2(Ω)

≥ ν(A)
∥∥∥O (H0

(
O>D2uO

) )
O>
∥∥∥
L2(Ω)

.

Now we claim that the orthogonal projection on the subspace H ⊆ Rn2

s is given by

(4.15) HX = O
(
H0
(
O>X O

) )
O>.

Once (4.15) has been established, the desired estimate follows from (4.14), (4.15)
and a standard density argument in the Sobolev norm. Indeed, if K denotes the

linear operator defined by the right hand side of (4.15), for any X ∈ Rn2

s we have

K
(
KX

)
= O

(
H0
(
O>O

(
H0
(
O>X O

) )
O>O

))
O> =

= O
(
H0H0

(
O>X O

))
O> = O

(
H0
(
O>X O

))
O> = KX.

Hence, K2 = K. Moreover, K is symmetric as a map Rn2

s −→ Rn2

s : by using that
H0 is symmetric, we have

(KX) : Y =
(
O
(
H0
(
O>X O

) )
O>
)

: Y = H0
(
O>X O

)
:
(
O>Y O

)
=

=
(
O>X O

)
: H0

(
O>Y O

)
= X :

(
O
(
H0
(
O>Y O

) )
O>
)

=

= X : (K Y ),

for any X,Y ∈ Rn2

s . Hence, (4.15) follows. It remains to exhibit the claimed
property of H. To this end, fix X ⊥H. Then, we have that the projection of X on
H vanishes and as a result of (4.15) we obtain H0(O>X O) = 0. By recalling that
A = OΛO>, we have A : X = Λ : (O>X O) and since Λ belongs to H0, we conclude

that A : X = 0. Hence, we have just proved that H⊥ ⊆ N(A : Rn2

s → R), which is
the desired property of the subspace H. The claim has been established. �

The next step is to characterise the subspace H ⊆ Rn2

s of Claim 41 in terms of
the range of A.

Claim 42. In the setting of Claim 41, we have the identity

H = span[
{
a ∨ b

∣∣∣ a, b ∈ R(A : Rn → Rn
)}

] = T ∨ T.

Proof of Claim 42. We begin by observing that in view of (4.10), we have
H = OH0O> where O ∈ O(n). Since

H0 = span[
{
ei ∨ ej

∣∣ i, j = i0, ..., n
}

]
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we obtain that H has a basis consisting of matrices of the form Oei ∨ Oej , i, j =
i0, ..., n. We recall now that A = OΛO> where Λ is a diagonal matrix with entries
the eigenvalues {0, ..., 0, λi0 , ..., λn} of A. We define the vectors

ai := Oei =
(
O1i, ..., Oni

)>
, i = 1, ..., n.

Then, {a1, ..., an} is an orthonormal frame of Rn corresponding to the columns of
the matrix A and is a set of eigenvectors of A. Since {ai0 , ..., an} correspond to
the nonzero eigenvalues {λi0 , ..., λn}, the nullspace N

(
A : Rn → Rn

)
is spanned by

{a1, ..., ai0−1} and hence

R
(
A : Rn → Rn

)
= span[

{
ai0 , ..., an

}
].

Since H has a basis of the form {ai ∨ aj : i, j = i0, ..., n}, the claim follows. �

Now we begin working towards the vector case N ≥ 2. Let us first verify that

A(ε) is strictly rank-one positive. Indeed, if 0 < ε < 1, η ∈ RN , a ∈ Rn, we have

A(ε) : η ⊗ a⊗ η ⊗ a =

N∑
γ=0

(
B(ε)γ : η ⊗ η

)(
A(ε)γ : a⊗ a

)

≥ min
δ=0,...,N

(
A(ε)δ : a⊗ a

)[ N∑
γ=0

B(ε)γ : η ⊗ η

]

≥ ε |a|2
[
N∑
γ=1

Bγ + ε

(
I −

N∑
δ=1

Bδ

)]
: η ⊗ η

≥ ε2 |η|2|a|2,
as claimed. The next step is to characterise the range Π of decomposable tensors
A ∈ RNn×Nns in terms of the matrices Bγ , Aγ composing A.

Claim 43. Let Π ⊆ RNn be the range of A : RNn −→ RNn (see (4.3)). Then,

Π =
N
⊕
γ=1

(
Σγ ⊗ T γ

)
,

Σγ = R
(
Bγ : RN → RN

)
⊆ RN ,

T γ = R (Aγ : Rn → Rn) ⊆ Rn.
(4.16)

Proof of Claim 43. We first observe that by Definition 36, Σγ ⊥Σδ if γ 6= δ and
this implies that Σγ ⊗ T γ ⊥Σδ ⊗ T δ if γ 6= δ. Let now Q ∈ RNn. Then, A : Q is
given in index form by ∑

β,j

Aαiβj Qβj =
∑
γ,β,j

Bγαβ Qβj A
γ
ji

which by (4.16) shows that Π ⊆ ⊕γ
(
Σγ ⊗ T γ

)
. Conversely, let R ∈ ⊕γ

(
Σγ ⊗ T γ

)
.

Then, R can be written as

R =
∑
γ,κ

(
Bγηκγ

)
⊗
(
Aγaκγ

)
for some ηκγ ∈ Σγ , aκγ ∈ T γ . We note that(

Bδ ⊗Aδ
)(∑

κ

ηκγ ⊗ aκγ
)

= 0, if γ 6= δ,
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because ηκγ ⊥Σδ if γ 6= δ. We now define Q :=
∑
γ,κ η

κγ ⊗ aκγ and we claim that
A : Q = R. Indeed, we have∑
β,j

Aαiβj Qβj =
∑
δ,β,j

(
Bδαβ A

δ
ij

)(∑
κ,γ

ηκγβ aκγj

)
=
∑
δ,β,j

(
Bδαβ A

δ
ij

)(∑
κ

ηκδβ aκδj

)
=

=
∑
κ,δ,β,j

(
Bδαβ η

κδ
β

)(
Aδij a

κδ
j

)
= Rαi.

This establishes that Π ⊇ ⊕γ
(
Σγ ⊗ T γ

)
, therefore completing the proof. �

The next step is to find an upper bound of the ellipticity constant ν of A in
terms of the matrices Bγ , Aγ .

Claim 44. Let ν be given (4.3) and Σγ , T γ by (4.16). Then, we have the estimate

ν ≤
(

min
γ

min
η∈Σγ , |η|=1

{
Bγ : η ⊗ η

})(
min
δ

min
a∈T δ, |a|=1

{
Aδ : a⊗ a

})
.

Proof of Claim 44. We begin by noting that on top of the decomposability
we may further assume that all the matrices Aγ have the same smallest posi-
tive eigenvalue λγi0 equal to 1 for all γ = 1, ..., N which is realised at a common
eigenvector ā ∈ Rn. Indeed, existence of ā follows from Definition 36 since the
eigenspaces N

(
Aγ−λγi0I

)
intersect for all γ at least along a common line in Rn. Fur-

ther, by replacing {B1, ..., BN}, {A1, ..., AN} by the rescaled families {B̃1, ..., B̃N},
{Ã1, ..., ÃN} where B̃γ := λγi0B

γ , Ãγ := (1/λγi0)Aγ , we have that the new families
have the same properties as the original and in addition all the new Aγ matrices
have the same minimum positive eigenvalue normalised to 1. Hence, we may assume
that A is decomposable and moreover

(4.17) ∃ ā ∈ ∂Bn1
N
∩
γ=1

T γ : λγi0 = min
a∈Tγ , |a|=1

{
Aγ : a⊗ a

}
= Aγ : ā⊗ ā = 1,

for all γ = 1, ..., N . By using (4.17), Claim 43 and that ∪γ
(
Σγ⊗T γ

)
⊆ ⊕γ

(
Σγ⊗T γ

)
,

we calculate

ν = min
|η|=|a|=1, η⊗a∈Π

∑
δ

(
Bδ : η ⊗ η

)(
Aδ : a⊗ a

)
≤ min
|η|=|a|=1, η⊗a∈∪γ(Σγ⊗Tγ)

∑
δ

(
Bδ : η ⊗ η

)(
Aδ : a⊗ a

)
≤ min

γ

(
min

|η|=|a|=1, η⊗a∈Σγ⊗Tγ

∑
δ

(
Bδ : η ⊗ η

)(
Aδ : a⊗ a

))

≤ min
γ

(
min

|η|=1, η∈Σγ

∑
δ

(
Bδ : η ⊗ η

)(
Aδ : ā⊗ ā

))
= min

γ
min

|η|=1, η∈Σγ

∑
δ

(
Bδ : η ⊗ η

)
.

Since Bδ : η ⊗ η = 0 if η ∈ Σγ for γ 6= δ, by using (4.17) again we conclude that

ν ≤ min
γ

min
η∈Σγ , |η|=1

{
Bγ : η ⊗ η

}
=

(
min
γ

min
η∈Σγ , |η|=1

{
Bγ : η ⊗ η

})(
min
δ

min
a∈T δ, |a|=1

{
Aδ : a⊗ a

})
,
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as desired. �

Now we complete the proof of the theorem by using the previous claims. We
define

(4.18) Ξ := ⊕
γ

(
Σγ ⊗ T γ ∨ T γ

)
⊆ RNn

2

s ,

and for brevity we set

Ξγ := T γ ∨ T γ ⊆ Rn
2

s ,

where Σγ , T γ are as in (4.16). Fix a map u ∈ C2(Ω,RN ) ∩ C1
0 (Ω,RN ). Then,

for any indices γ, α = 1, ..., N , by the Claims 41, 42 applied to the scalar function
(Σγu)α ∈ C2(Ω) ∩ C1

0 (Ω), we have the estimate∫
Ω

∣∣∣ΞγD2(Σγu)α

∣∣∣2 ≤ ∫
Ω

∣∣∣A(ε)γ : D2(Σγu)α

∣∣∣2,
where we have used that A(ε)γ = Aγ + εI (by the definition of A(ε)) and we have
employed the normalisation of (4.17) which forces λγi0 = ν(Aγ) = 1. By summing
in α, γ, the above estimate and (4.18) give∫

Ω

∣∣ΞD2u
∣∣2 =

∫
Ω

∑
γ

∣∣∣Σγ ⊗ Ξγ : D2u
∣∣∣2 ≤ ∫

Ω

∑
γ

∣∣∣Σγ(D2u : A(ε)γ
)∣∣∣2.(4.19)

We also set

C(ε)γ := Σγ
(
D2u : A(ε)γ

)
, γ = 1, ..., N.

Then, (4.19) says

(4.20)

∫
Ω

∣∣ΞD2u
∣∣2 ≤ ∫

Ω

N∑
γ=1

∣∣C(ε)γ
∣∣2.

By the definition of A(ε), we have that B(ε)γ ⊥B(ε)δ for γ 6= δ in {0, 1, ..., N}. By
using this fact, we calculate∣∣A(ε) : D2u

∣∣2 =

(
N∑
γ=0

B(ε)γ
(
D2u : A(ε)γ

))
·

(
N∑
δ=0

B(ε)δ
(
D2u : A(ε)δ

))

=

N∑
γ=0

(
B(ε)γ

(
D2u : A(ε)γ

))
·
(
B(ε)γ

(
D2u : A(ε)γ

))

=
∣∣∣B(ε)0

(
D2u : A(ε)0

)∣∣∣2 +

N∑
γ=1

∣∣∣B(ε)γ
(
D2u : A(ε)γ

)∣∣∣2
and hence ∣∣A(ε) : D2u

∣∣2 ≥ N∑
γ=1

∣∣∣Bγ (D2u : A(ε)γ
)∣∣∣2 =

N∑
γ=1

∣∣Bγ C(ε)γ
∣∣2 =

≥
N∑
γ=1

max
|η|=1

(
Bγ :

(
C(ε)γ ⊗ η

))2

≥

≥
N∑
γ=1

(
Bγ :

(
sgn(C(ε)γ)⊗ sgn(C(ε)γ)

))2∣∣C(ε)γ
∣∣2.

(4.21)
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Hence, (4.21) gives

∣∣A(ε) : D2u
∣∣2 ≥ ( min

δ=1,...,N

{
Bδ :

(
sgn
(
C(ε)δ

)
⊗ sgn

(
C(ε)δ

))})2 N∑
γ=1

∣∣C(ε)γ
∣∣2

and as a result we obtain∣∣A(ε) : D2u
∣∣2 ≥ ( min

δ=1,...,N
min

|η|=1, η∈Σδ

{
Bδ : η ⊗ η

})2 N∑
γ=1

∣∣C(ε)γ
∣∣2.(4.22)

By using the Claim 44 (and also the normalisation condition (4.17)), (4.22) gives

(4.23)

∫
Ω

∣∣A(ε) : D2u
∣∣2 ≥ ν2

∫
Ω

N∑
δ=1

∣∣C(ε)δ
∣∣2.

Hence, by (4.23) and (4.20) we obtain the desired estimate for smooth u, the general
case following by a standard density argument in the Sobolev norm. We complete

the proof by showing that the subspace Ξ ⊆ RNn2

s satisfies (4.7). Indeed, let
X⊥Ξ. Then, by (4.18) we have that X is normal to Σγ ⊗Hγ for any γ = 1, ..., N ,
where we have used the obvious notation Hγ := T γ ∨ T γ . Hence the projection
of X on Σγ ⊗ Hγ vanishes: (Σγ ⊗ Hγ)X = 0. By Claim 41 we have that Aγ :

X = Aγ : (HγX) for any X ∈ Rn2

. Hence, we get that Bγ(X : Aγ) = 0 for all
γ = 1, ..., N and by summing in γ we obtain A : X = 0. Thus, we have shown that

Ξ⊥ ⊆ N
(
A : RNn2

s → RN
)
, as desired. The theorem has been established. �

4.4. Proof of the main result. Now we may finally establish our second main
result by utilising the a priori estimate of subsection 4.3.

Proof of Theorem 37. The fist step is to prove existence of a map in the fibre
space (W 2,2 ∩W 1,2

0 )(Ω,Σ) solving in a certain sense the linear problem.

Claim 45. In the setting of Theorem 37 and under the same assumptions, for any
f ∈ L2(Ω,Σ), there exists a unique u ∈ (W 2,2 ∩W 1,2

0 )(Ω,Σ) such that

A : G2(u) = f, a.e. on Ω,

where G2(u) is the fibre hessian of u.

Proof of Claim 45. The proof is based on the approximation by strictly elliptic

systems and relies on the stable estimate of Theorem 40. Let A(ε) be the approxi-
mation of A of Theorem 40 and consider for a fixed f ∈ L2(Ω,Σ) the system

A(ε) : D2uε = f, a.e. on Ω.

By standard lower semicontinuity and regularity results (see e.g. [D, GM]), the

problem has for any ε > 0 a unique strong a.e. solution uε ∈ (W 2,2∩W 1,2
0 )(Ω,RN ).

By Theorem 40 and Remark 39, we have the uniform estimate∥∥Σuε
∥∥
L2(Ω)

+
∥∥ΠDuε

∥∥
L2(Ω)

+
∥∥ΞD2uε

∥∥
L2(Ω)

≤ C

ν

∥∥f∥∥
L2(Ω)

for some universal C > 0. By the definition of (W 2,2 ∩ W 1,2
0 )(Ω,Σ) ((4.4),(4.5)),

there exists u such that
(
Σuε,ΠDuε,ΞD2uε

)
−−⇀

(
u,G(u), G2(u)

)
, along a se-

quence εk → 0 in L2. Now we pass to the weak limit in the equations. By the form
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of the approximation A(ε) and Definition 36, we have

N∑
γ=1

B(ε)γ
(
D2uε : A(ε)γ

)
= f − B(ε)0

(
D2uε : A(ε)0

)
,

a.e. on Ω. By using that B(ε)γ = Bγ for γ = 1, ..., N and that B(ε)0⊥B1+· · ·+BN ,
we may project the system above on the range of B1 + · · ·+BN which we denote
by Σ. Then, since Σf = f and A(ε)γ = Aγ + εI, we obtain

N∑
γ=1

Bγ
(
ε∆uε + D2uε : Aγ

)
= f,

a.e. on Ω. Moreover, by (4.7) (and in view of Remark 38), we deduce

A :
(
ΞD2uε

)
− f = − ε

N∑
γ=1

Bγ∆(Σuε),

a.e. on Ω. Then, for any φ ∈ C∞c (Ω,RN ), integration by parts gives∫
Ω

(
A :

(
ΞD2uε

)
− f

)
· φ = − ε

∫
Ω

N∑
γ=1

Bγ(Σuε) ·∆φ.

By letting εk → 0, we obtain A : G2(u) = f , a.e. on Ω. We finally show uniqueness.

Let v, w ∈ (W 2,2 ∩ W 1,2
0 )(Ω,Σ) be two solutions of the system. Then, there are

sequences (vm)∞1 , (w
m)∞1 ⊆ (W 2,2 ∩W 1,2

0 )(Ω,RN ) such that vm − wm −→ v − w
with respect to ‖ · ‖W 2,2(Ω) as m→∞. By assumption we have A : G2(v −w) = 0
a.e. on Ω, and hence

A : D2(vm − wm) = : fm, a.e. on Ω,

and fm → 0 in L2(Ω,RN ) as m→∞. Hence, by Theorem 40 and Remark 39, we
have

‖fm‖L2(Ω) ≥ ν
∥∥Ξ : D2(vm − wm)

∥∥
L2(Ω)

≥ C
∥∥Σ(vm − wm)

∥∥
L2(Ω)

and by letting m→∞ we see that v ≡ w, hence uniqueness ensues. �

An essential ingredient in order to pass from the linear to the non-linear problem
is the next result of Campanato taken from [C3] (see also [K7]) which we recall for
the convenience of the reader.

Lemma 46 (Campanato’s bijectivity of near operators). Let X 6= ∅ be a set and
(X, ‖ · ‖) a Banach space. Let also F ,A : X −→ X be two mappings and suppose
there is a K ∈ (0, 1) such that∥∥∥F (u)−F (v) −

(
A (u)−A (v)

)∥∥∥ ≤ K
∥∥A (u)−A (v)

∥∥
for all u, v ∈ X. Then, if A is bijective, F is bijective as well.

Now we employ Lemma 46 in order to show existence of a map in the fibre space
(W 2,2 ∩W 1,2

0 )(Ω,Σ) solving in a certain sense the nonlinear problem.

Claim 47. In the setting of Theorem 37 and under the same assumptions, for any
f ∈ L2(Ω,Σ) there exists a unique u ∈ (W 2,2 ∩W 1,2

0 )(Ω,Σ) such that

F
(
·, G2(u)

)
= f, a.e. on Ω,
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where G2(u) is the fibre hessian of u.

Proof of Claim 47. For any fixed u ∈ (W 2,2∩W 1,2
0 )(Ω,Σ), we have that A : G2(u)

is in L2(Ω,Σ) because G2(u) ∈ L2(Ω,Ξ) and also A : X lies is in Σ ⊆ RN for any

X ∈ Ξ ⊆ RNn2

s . Moreover, by Definition 35 we have

∣∣F (·, G2(u)
)∣∣ ≤ ( (C + 1)|A| + B ν

ess infx∈Ω[A(x)]

)
|G2(u)| +

∣∣F (·, 0)∣∣,
a.e. on Ω. Hence, F

(
·, G2(u)

)
is in L2(Ω,Σ) as well. The previous considerations

imply that the maps

A : (W 2,2 ∩W 1,2
0 )(Ω,Σ) −→ L2(Ω,Σ), A (u) := A : G2(u),

F : (W 2,2 ∩W 1,2
0 )(Ω,Σ) −→ L2(Ω,Σ), F (u) := F

(
·, G2(u)

)
,

are well defined. By Claim 45, A is bijective. We complete the claim by showing
that F is near A in the sense of Lemma 46 and then the bijectivity of F will
conclude the proof. For any u, v ∈ (W 2,2 ∩ W 1,2

0 )(Ω,Σ), by Definition 35 and
Theorem 40 we have∥∥∥A(·)

(
F
(
·, G2(u)

)
− F

(
·, G2(v)

))
− A :

(
G2(u)−G2(v)

)∥∥∥
L2(Ω)

≤ B ν
∥∥G2(u)−H(v)

∥∥
L2(Ω)

+ C
∥∥A :

(
G2(u)−G2(v)

)∥∥
L2(Ω)

≤ (B + C)
∥∥A :

(
G2(u)−G2(v)

)∥∥
L2(Ω)

.

Hence, F̂ (u) := A(·)F
(
·, G2(u)

)
is bijective and since A, 1/A ∈ L∞(Ω), the same

is true for F . The claim ensues. �

The next claim completes the proof of Theorem 37.

Claim 48. In the setting of Claim 47 and under the same assumptions, there
exists an orthonormal frame {E1, ..., EN} ⊆ RN and for each α = 1, ..., N there
is an orthonormal frame {E(α)1, ..., E(α)n} ⊆ Rn (both depending only on F ) such

that, the map u ∈ (W 2,2 ∩W 1,2
0 )(Ω,Σ) corresponding to f ∈ L2(Ω,Σ) is the unique

D-solution of the system

F
(
x,D2u(x)

)
= f(x), x ∈ Ω,

in the fibre space (W 2,2 ∩W 1,2
0 )(Ω,Σ).

Remark 49 (Functional representation of diffuse hessians). In a certain sense,
Claim 48 says that because of our (strong) assumption on F , all the diffuse hessians
of the D-solution u when restricted on the subspace of non-degeneracies have a
certain “functional” representation inside the coefficients, given by G2(u). That is,

by decomposing RNn2

s = Ξ⊕Ξ⊥, the restriction of any D2u ∈ Y
(
Ω,RNn2

s

)
on Ξ is

given by the fibre hessian:

D2u(x)xΞ = δG2u(x), a.e. x ∈ Ω.

Although such a simple representation might not possible in general (compare e.g.
with Theorems 29, 33), it is expected that weaker versions of such results should
be true (see also Proposition 13).
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Proof of Claim 48. Step 1 (The frames). By (4.3) and (4.16) we have that there
is an orthonormal frame {Eα|α} of RN and for each α there is a frame {E(α)i|i} of
Rn such that each of the mutually orthogonal subspaces Σγ ⊆ RN is spanned by a
subset of vectors Eα and for the same index γ, T γ is spanned by {E(α)i0 , ..., E(α)n}
which is a set of eigenvectors of Aγ . By (4.3) and (4.18) there are also induced

orthonormal frames of RNn and RNn2

s consisting of matrices as in (2.2). These

frames are such that a subset of the Eαij ’s spans the subspace Ξ ⊆ RNn2

s and the
rest are orthogonal to Ξ.
Step 2 (Sufficiency). Let now u ∈ (W 2,2 ∩W 1,2

0 )(Ω,Σ) be the map of Claim 47
which satisfies F (·, G2(u)) = f a.e. on Ω. Let also us fix any infinitesimal sequence
(hm)m∈N2 with respect to the frames of Step 1 (see Definition 5) and let D2u be
any diffuse hessian of u arising from this sequence

δD2,hmu
∗−−⇀ D2u in Y

(
Ω,RNn

2

s

)
, as m→∞

perhaps along subsequences. By the characterisation of the fibre hessian G2(u) ∈
L2(Ω,Ξ) in terms of directional derivatives of projections (Subsection 4.2), we have

(4.24) G2(u) =
∑

α,i,j :Eαij∈Ξ

(
G2(u) : Eαij

)
Eαij , a.e. on Ω,

because the projection of G2(u) along Eαij is non-zero only for those Eαij spanning
Ξ. Since F is a Carathéodory map and F

(
x,G2(u)(x)

)
= f(x) for a.e. x ∈ Ω, by

(4.24) and in view of (2.4) we get

F

x, ∑
α,i,j :Eαij∈Ξ

[
D

2,h
m2

1
h
m2

2

E(α)iE(α)j

(
Eα · u

)]
(x)Eαij

 −→ f(x),

for a.e. x ∈ Ω as m→∞. By Remark 38V), the above is equivalent to

F
(
x,D2,hmu(x)

)
= F

x,∑
α,i,j

[
D

2,h
m2

1
h
m2

2

E(α)iE(α)j

(
Eα · u

)]
(x)Eαij

 −→ f(x),

for a.e. x ∈ Ω, as m→∞. We set

fm(x) := F
(
x,D2,hmu(x)

)
− f(x)

and note that we have fm −→ 0, a.e. on Ω as m → ∞. By the above, for any

Φ ∈ C0
c

(
RNn2

s

)
we have∫

RNn2
s

Φ(X)
[
F (x,X)−

(
f(x) + fm(x)

)]
d
[
δD2,smu(x)

]
(X) = 0, a.e. x ∈ Ω.

Since fm → 0 a.e. on Ω as m→∞, we apply the Convergence Lemma 18 to obtain∫
RNn2
s

Φ(X)
[
F (x,X)− f(x)

]
d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω,

for any Φ ∈ C0
c

(
RNn2

s

)
. Hence, the map u of Claim 47 is a D-solution of (4.1).

Step 3 (Necessity). We now finish the proof by showing that any D-solution w
of (4.1) with respect to the frames of Step 1 which lies in the fibre space (W 2,2 ∩
W 1,2

0 )(Ω,Σ) actually coincides with the map u of Claim 47. By Theorem 22, we
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have that the D-solution w can be characterised by the property that for any R > 0,
the cut off associated to F (see Definition 21) satisfies

F
(
x,
[
D2,hmw(x)

]R) −→ f(x), a.e. x ∈ Ω,

as m→∞. By using Remark 38V), we have for any R > 0 that

F
(
x,
[
ΞD2,hmw(x)

]R) −→ f(x), a.e. x ∈ Ω,

as m→∞. Since w is in (W 2,2 ∩W 1,2
0 )(Ω,Σ), by using the properties of the fibre

space we get that ΞD2,hmw −→ G2(w) in L2 and hence a.e. on Ω along perhaps
further subsequences. By passing to the limit as m→∞ and then as R →∞, we
obtain that F (·, G2(w)) = f , a.e. on Ω. Hence, w ≡ u and the claim ensues. �

By recalling Remark 39 regarding the boundary trace values of maps in the fibre
space, we conclude that the proof of Theorem 37 is now complete. �
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