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Abstract

Coupled data assimilation offers a long list of potential benefits, including improved use of
near-surface observations, reduction of initialisation shocks in coupled forecasts and generation of
a consistent system state for the initialisation of coupled forecasts across all timescales. Strongly
coupled data assimilation presents a significant challenge and so several operational centres are
developing weakly coupled assimilation systems as a first step. In this paper we provide a
comprehensive description of the different coupled assimilation methodologies in the context of
four dimensional variational assimilation (4D-Var) and use an idealised framework to assess the
expected benefits of moving towards coupled data assimilation.

We implement an incremental 4D-Var system within an idealised single column atmosphere-
ocean model. The system has the capability to run both strongly and weakly coupled assimi-
lations as well as uncoupled atmosphere or ocean only assimilations, thus allowing a systematic
comparison of the different strategies for treating the coupled data assimilation problem. We
present results from a series of identical twin experiments devised to investigate the behaviour
and sensitivities of the different approaches. Overall, our study demonstrates that significant
benefits may be expected from coupled data assimilation. When compared to uncoupled initiali-
sation, coupled assimilation is able to produce more balanced initial analysis fields, thus reducing
initialisation shock and its impact on the subsequent forecast. Single observation experiments
demonstrate how coupled assimilation systems are able to pass information between the atmo-
sphere and ocean and therefore use near-surface data to greater effect. We show that much of
this benefit may also be gained from a weakly coupled assimilation system, but that this can be
sensitive to the parameters used in the assimilation.

Key words: incremental four dimensional variational data assimilation, single column model,
KPP mixed layer model, initialisation, strongly coupled, weakly coupled.

1 Introduction

The successful application of data assimilation techniques to operational numerical weather predic-
tion and ocean forecasting systems, together with increasing availability of near surface observations
from new satellite missions, has led to an increased interest in their potential for use in the initialisa-
tion of coupled atmosphere-ocean models. To produce reliable predictions across seasonal to decadal
time scales we need to simulate the evolution of the atmosphere and ocean coupled together. Cou-
pled models have been used operationally for seasonal and longer range forecasting for a number of
years. Typically, the initial conditions for these forecasts are provided by combining analyses from
independent (uncoupled) ocean and atmosphere assimilation systems (Balmaseda and Anderson,



2009). This approach ignores interactions between the systems and this inconsistency can cause im-
balance such that the initial conditions are far from the natural state of the coupled system. When
the coupled forecast is initialised the model adjusts itself towards its preferred climatology; this
adjustment can produce rapid shocks at the air-sea interface during the early stages of the forecast,
a process referred to as initialisation shock (Balmaseda, 2012). It also means that near-surface data
are not fully utilised.

The development of coupled atmosphere-ocean data assimilation systems presents a number of
scientific and technical challenges (Murphy et al., 2010; Lawless, 2012) and requires a significant
amount of resources to be made possible operationally. Yet such systems offer a long list of potential
benefits including improved use of near-surface observations, reduction of initialisation shocks in cou-
pled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts
across all timescales. In addition, coupled reanalyses offer the potential for greater understanding
and representation of air-sea exchange processes in turn facilitating more accurate prediction of
phenomena such as El Nino and the Madden-Julian Oscillation (MJO) in which air-sea interaction
plays an important role.

Studies have shown that, in certain regions, the initialisation of coupled models can enhance
the skill of decadal predictions for the first 5 or so years of the forecast (Meehl et al. (2014) and
references therein). Although it is widely accepted that coupled data assimilation has a central role in
improving our ability to generate consistent and accurate initial conditions for coupled atmosphere-
ocean forecasting it is still a relatively young area of research. Hence there has so far only been limited
amount of work in this field. An assortment of strategies for using observed data to improve coupled
model initialisation have been explored with varying degrees of success; these include sea surface
temperature (SST) nudging or relaxation (e.g. Keenlyside et al. (2008)), anomaly initialisation/
bias-blind assimilation (e.g. Pierce et al. (2004)), anomaly coupling (Pohlmann et al. (2009)), and
variants of the full uncoupled initialisation approach (Balmaseda and Anderson, 2009). Work has
mainly been focussed on improving ocean initial conditions with a lack of fully consistent treatment
of air-sea feedback mechanisms.

There are groups exploring more comprehensive approaches that aim to produce more dynam-
ically balanced initial ocean-atmosphere states. The Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) are working towards a coupled 4D-Var data assimilation system for their
Coupled model for the Earth Simulator (CFES), a fully coupled global climate model. Sugiura et al.
(2008) describes the development of a first step 4D-Var system for estimating ocean initial condi-
tions together with adjustment parameters of the bulk flux formulae. Their approach is focussed on
representing slow time scales only, filtering out fast atmospheric modes by using 10 day mean states.
Whilst this enables them to better represent several key seasonal to interannual climate events in
the tropical Pacific and Indian Ocean region, including the El Nino, it would not be suitable for
atmospheric reanalyses or for initialising medium range forecasts.

So far, most other work has employed ensemble rather than variational based assimilation meth-
ods. Tardif et al. (2014) use an idealised low dimension atmosphere-ocean climate model with an
Ensemble Kalman Filter (EnKF) to explore strategies for ensemble coupled data assimilation. Their
model represents an idealisation of the midlatitude North Atlantic climate system and is designed
to allow experiments on very long timescales in order to assess the EnKF approach in terms of
effectiveness for initialisation of the meridional overturning circulation (MOC). In twin experiments
using 50 year windows from a 5000 year reference simulation, they found that forcing the idealised
ocean model with atmospheric analyses was inefficient at recovering the MOC due to slow conver-
gence of the solutions. In constrast, coupled assimilation produced accurate MOC analyses, even
when only atmospheric observations were assimilated.

In a larger scale study, Zhang et al. (2007) describe a coupled assimilation system consisting of
an EnKF applied to the National Oceanic and Atmospheric Administration (NOAA) Geophysical



Fluid Dynamics Laboratory (GFDL) global fully coupled climate model for the initialisation of
seasonal and decadal forecasts. The system is evaluated in a series of twin experiments assimilating
atmosphere-only or ocean-only observations but not both together. Although the system shows
good skill in reconstructing seasonal and decadal ocean variability and trends it fails to fully realise
the potential benefit of surface and near surface observational data.

In this paper we explore some of the fundamental questions in the design of coupled variational
data assimilation systems within the context of an idealised one-dimensional (1D) column coupled
atmosphere-ocean model. The system is designed to enable the effective exploration of various
approaches to performing coupled model data assimilation whilst avoiding many of the issues asso-
ciated with more complex models and allows us to perform experiments that would not be feasible
in operational scale systems. We employ an incremental four dimensional variational data assim-
ilation (4D-Var) scheme (Courtier et al., 1994; Lawless et al., 2005; Lawless, 2013) to reflect the
coupled assimilation systems currently being developed at the European Centre for Medium Range
Weather Forecasts (ECMWF) and UK Met Office. The problem of variational data assimilation
is to find the initial state such that the model forecast best fits the available observations over a
given time window, subject to the state remaining close to a given a priori, or background, estimate
and allowing for the errors in each. This best estimate is known as the analysis and should be
consistent with both the observations and the system dynamics. The standard 4D-Var problem is
formulated as the minimisation of a non-linear weighted least squares cost function; in the incremen-
tal approach the non-linear problem is instead approximated by a sequence of linear least squares
problems. Rather than search for the initial state directly, we solve in terms of increments with
respect to an initial background state; this is done iteratively in a series of linearised inner-loop cost
function minimisations and non-linear outer-loop update steps.

Strongly or fully coupled assimilation treats the atmosphere and ocean as a single coherent
system, using the coupled model in both the inner- and outer-loops. This approach is able to pass
information between the atmosphere and ocean, and therefore enables observations of atmospheric
variables to influence the ocean increments and vice versa. This is expected to lead to better
use of near-surface observations, such as scatterometer winds and SST, that depend on both the
atmosphere and ocean state, and to produce a more physically-balanced analysis. Although there are
currently no plans to move towards strongly coupled systems at operational centres, this approach
represents the quintessential coupled assimilation system and implementing it in our idealised system
allows us to better assess the potential of intermediate, or weakly coupled, approaches.

As a first step towards the implementation of operational coupled data assimilation, centres
such as the ECMWEF and UK Met Office are developing prototype weakly coupled assimilation
systems. Weakly coupled incremental 4D-Var makes use of the incremental inner and outer-loop
structure; the coupled model is used to provide the initial atmosphere and ocean background states
and non-linear trajectory for separate (uncoupled) inner-loop atmosphere and ocean minimisations;
the uncoupled analysis increments are then fed back into the coupled model for the next outer-
loop forecast. Unlike strongly coupled assimilation, the weakly coupled approach does not allow for
cross-covariance information between the atmosphere and ocean. This means that the atmosphere
(ocean) observations cannot affect the ocean (atmosphere) analyses unless multiple outer-loops are
performed.

The purpose of this paper is to (i) provide a comprehensive description of the different coupled
4D-Var data assimilation methodologies, and (ii) use our idealised framework to assess the benefits
expected in moving towards coupled data assimilation systems. Although the greatest benefits are
anticipated to be attained with strongly coupled assimilation, we investigate whether the weakly
coupled approaches being pursued by operational centres are likely to provide a determinable im-
provement on the current uncoupled systems. We consider if the potential added benefits of strongly
coupled assimilation ultimately outweigh the challenges their development presents.



We begin, in section 2, with the formulation of the general incremental 4D-Var algorithm and a
description of the different approaches to coupled atmosphere-ocean 4D-Var data assimilation. We
introduce our coupled 1D model system in section 3. In section 4 we give details of a set of identical
twin experiments designed to investigate and compare the behaviour and sensitivities of the different
approaches. Results are presented in section 5. A summary and conclusions are given in section 6.

2 Incremental 4D-Var data assimilation

Variational methods form the basis of most operational numerical weather prediction (NWP) data
assimilation systems (Gauthier et al., 1999, 2007; Rabier et al., 2000; Rawlins et al., 2007; Huang
et al., 2009). Our system has therefore been designed using the incremental 4D-Var approach. In
this formulation the solution to the full non-linear 4D-Var minimisation problem is replaced by a
sequence of minimisations of linear quadratic cost functions such that the control variable in the
minimisation problem is the increment to the current estimate rather than the model state itself.
The method was originally developed to overcome the cost and practical difficulties involved in
solving the complete non-linear problem directly in large scale systems (Courtier et al., 1994). We
choose to employ the incremental 4D-Var formulation for this study as it allows us not only to
emulate the methodologies being developed for operational systems, but also to explore the type
of benefits that could be gained by moving towards strongly coupled assimilation systems, thereby
providing a benchmark for the assessment of weakly coupled assimilation systems. We describe
each of the different coupled 4D-Var assimilation strategies in detail in section 2.1. To aid these
descriptions, we begin with an outline of the steps of the general incremental 4D-Var algorithm.

Let xz(-k) € R™ denote the model state vector, representing the system state at a given time ¢;
and outer-loop iteration k. Then given the discrete non-linear dynamical system model

x® = M(ti,to,x{),  i=0,...,n, (2.1)

a background, or first guess, xéo) = xg € R™, at tg, imperfect observations y; € R™ at times ¢,
1=0,...,N, and defining the increment

5P — D) _ b (2.2)

we solve iteratively as described below (Lawless et al., 2005).
For k= 1,2, ... outer-loops, or until desired convergence is reached:

(k)

(i) Run the non-linear model (2.1) to obtain x;"’ at each time ¢;.

(ii) Compute the innovations
Y =yi — ni(x"), (2:3)

where h; : R™ — R" is a (generally) non-linear observation operator.

(iii) Minimise the least squares cost function

T8 (5x) = (=)~ oxd?) Byt (- %) — o)

+ % zn: (o - m, 5x§’“))T R (aY - Hox) |
=0

= g 4 g® (2.4)

subject to
sxtF) = M(t;, to, x*¥)ox (. (2.5)



(iv) Update x(()kﬂ) = x(()k) + 5X(()k), and return to step (i).

In (2.4) By € R™™ and R; € R"*" are the background and observation error covariance
matrices respectively, the operator H; € R™*™ is the tangent linear of the non-linear observation
operator, h;, and M is the tangent linear (TL) of the non-linear model (NLM) operator M. For
each outer-loop, k, the linearised operators H and M are evaluated at the current estimate of the
non-linear trajectory, x(¥), referred to as the linearisation state.

Step (iii) is referred to as the ‘inner-loop’. The minimisation of the cost function (2.4) is per-
formed iteratively using a gradient descent algorithm. For each iteration of the inner-loop minimi-
sation the tangent linear model (2.5) is integrated to give the evolution of the increment for the
cost function computation (2.4) and the adjoint of the TL model, M’ is integrated to obtain the
cost function gradient. In this study we employ an off the shelf optimisation algorithm based on the
conjugate gradient method (Shanno, 1978; Shanno and Phua, 1980).

2.1 Coupled data assimilation

Our system has been designed to enable several different 4D-Var configurations: an uncoupled
atmosphere-only or ocean-only assimilation, a weakly coupled assimilation and a strongly coupled
assimilation, thus allowing a systematic comparison of the different strategies for treating the coupled
4D-Var data assimilation problem. In this section we give details of each algorithm and highlight
the main differences between them.

2.1.1 Strongly coupled incremental 4D-Var

For the strongly (or fully) coupled assimilation system, the state vector, x, and the incremental
4D-Var control vector, dx, consist of both the atmosphere and ocean prognostic variables. The
coupled model is used in both the outer and inner-loops; the non-linear coupled model is used in the
outer-loops to generate the linearisation trajectory (2.1) and compute the innovation vectors (2.3),
and the inner-loop cost function minimisation is performed using the tangent linear and adjoint of
the coupled non-linear model in step (iii). Information is exchanged between the atmosphere and
ocean components at regular, specified time intervals; the SST from the ocean model is used in
the computation of the atmospheric lower boundary conditions, and the surface heat, moisture and
momentum fluxes from the atmosphere model provide the ocean surface boundary conditions.

The incremental 4D-Var algorithm implicitly evolves the background error covariances across
the assimilation window according to the TL model dynamics (e.g. Thépaut et al. (1993, 1996)).
This acts to modify the prior background error variance estimates and induce non-zero correlations
between model variables. The use of the fully coupled TL and adjoint models in the inner-loops of
the strongly coupled assimilation system means that we expect cross-covariance information to be
generated between the atmosphere and ocean fields. This allows observations of one fluid to produce
analysis increments in the other and is therefore expected to generate more consistent analyses. The
design of this system also has the advantage of allowing for cross-covariances between the atmosphere
and ocean to be explicitly prescribed a priori.

2.1.2 Uncoupled incremental 4D-Var

The uncoupled atmosphere and ocean assimilation systems are completely independent. Here, the
state and incremental 4D-Var control vectors are comprised of the atmosphere or ocean prognostic
variables only and a separate inner-loop cost function is used for each model. For the atmosphere
(ocean) the outer-loop linearisation trajectory (2.1) is taken from a run of the atmosphere-only
(ocean-only) non-linear model, the innovation vectors (step (ii)) are computed using the available



atmosphere (ocean) observations and the inner-loop minimisation (step (iii)) uses the corresponding
uncoupled atmosphere (ocean) tangent linear and adjoint model. There is no exchange of information
between the two systems at any stage; the SST used at the atmosphere bottom boundary and the
momentum, heat and freshwater fluxes at the ocean surface boundary are prescribed. Although this
approach has its advantages, such as ease of implementation and modularity, it does not allow for
cross-covariances between the atmosphere and ocean fields and atmospheric (ocean) observations
cannot influence the ocean (atmosphere) analysis. The lack of feedback means that the atmosphere
and ocean analysis states are unlikely to be in balance and this can have a negative impact if they
are used to initialise a coupled model forecast (Balmaseda and Anderson, 2009).

2.1.3 Weakly coupled incremental 4D-Var

The weakly coupled assimilation system uses a coupled full state vector but uncoupled atmosphere
and ocean incremental 4D-Var control vectors. This approach has the advantage that it limits the
amount of new technical development required when independent atmosphere and ocean assimilation
systems are already in place. The outer-loop linearisation trajectory (2.1) is generated using the
coupled non-linear model but separate inner-loop cost functions (step (iii)) are defined for the
atmosphere and ocean, using the respective uncoupled atmosphere- or ocean-only tangent linear
and adjoint models and assimilating the atmosphere or ocean observations only. Although the
computation of the innovations (step (ii)) uses only the atmosphere or ocean observations, the
observation-model fit is measured against the coupled model state. The ocean SST from the coupled
outer-loop linearisation trajectory is used in the computation of the bottom boundary conditions
for the uncoupled atmospheric TL model and the surface heat, moisture and momentum fluxes from
the coupled outer-loop linearisation trajectory are used in the computation of the surface boundary
conditions for the uncoupled ocean TL model. Once the uncoupled atmosphere and ocean inner-loop
minimisations have been performed, the uncoupled atmosphere and ocean analysis increments are
combined and added to the current guess to provide the initial coupled state for the next outer-loop
iteration.

Analogous to the uncoupled case, the separation of the atmosphere and ocean TL model com-
ponents in the inner-loops of the weakly coupled system means that cross-covariances between the
atmosphere and ocean are ignored; they can only be generated between atmosphere fields or be-
tween ocean fields. However, as we demonstrate in section 5.4, observations of one fluid are able
to influence the analysis of the other if multiple outer-loops are performed due to the linearisation
state being updated.

Here, we have presented the coupled 4D-Var assimilation strategies in their cleanest forms. It
should be noted that in practice there will be variations in their application. For example, it is not
necessary for the uncoupled and weakly coupled systems to use the same assimilation window length
for the atmosphere and ocean, or even the same assimilation scheme. Both the existing uncoupled
analysis systems and the weakly coupled systems currently under development at the ECMWEF and
Met Office use 4D-Var for the atmosphere and 3D-Var FGAT (first guess at appropriate time) for
the ocean.

3 The coupled model

The objective of this study is to gain a greater theoretical understanding of the coupled atmosphere-
ocean data assimilation problem by exploring and comparing the behaviours of the coupling strate-
gies presented in section 2.1. Idealised models offer an effective framework for investigating and



advancing new methods, avoiding unnecessary complexities that can obscure results. Using a simpli-
fied system allows us to perform a range and quantity of experiments that would require a significant
amount of technical development and resources to execute in a full scale system.

In many cases, finding balanced solutions to the coupled atmosphere-ocean assimilation problem
is primarily a vertical problem of the two boundary layers. A 1D column atmosphere-ocean model
framework therefore offers a tractable and relevant approach. Whilst it is preferable to keep the
model as simple as possible from a developmental point of view, it is important to ensure that
processes crucial to realistic air-sea interaction, such as the diurnal SST cycle and evolution of
surface forcing, are adequately represented. Our new system has been built by coupling the ECMWF
single-column atmospheric model to a single-column K-Profile Parameterisation (KPP) ocean mixed
layer model. The use of these models ensures that the simplified system retains the key elements of
coupling processes in a fully coupled ocean-atmosphere model without being overly complex.

In this section we describe the components of our new modelling system. This system combined
with our 4D-Var schemes provides a unique and tractable framework for addressing the coupled
atmosphere-ocean assimilation problem.

3.1 Atmosphere model

The atmospheric component is a stripped-down version of the ECMWF single-column model (SCM)
which originates from an early cycle of the IFS (Integrated Forecasting System) code. The model
solves the primitive equations for temperature, T, specific humidity, ¢, and zonal, u, and meridional,
v, wind components, formulated in non-spherical co-ordinates, (Simmons and Burridge, 1981; Ritchie
et al., 1995) and using a hybrid vertical co-ordinate, n (see section 3.1.2),

681:+7'7§:; = f(v—vy) + F,+ Py, (3.1)
g:_}_f]g:; = f(u—uy)+Fy+ P, (3.2)
8;;—#7723; - iT;+FT+PT, (3:3)
g‘tJJrﬁgZ = F,+P,. (3.4)

Here t is time, f is the Coriolis parameter, u, and v4 are prescribed geostrophic wind components, p
is pressure, I is the gas constant for air, ¢, is the specific heat at constant pressure for air, 7 is the
vertical velocity in 1 co-ordinates and w is the prescribed vertical velocity in pressure co-ordinates.
The F, are forcing terms representing the horizontal advection of the mean variables and the P,
terms represent tendencies due to the parameterisation of sub-grid scale physical processes.

The vertical advection terms in (3.1)—(3.4) are computed using a two time level Eulerian (upwind)
scheme with a semi-implicit treatment of the right hand sides (ECMWF IFS documentation, 2001
2013a).

In the original ECMWEF SCM code (hereafter referred to as the ‘full physics’ version), the P,
incorporate the effects of processes such as radiation, turbulent mixing, moist convection and clouds.
For the simplified system, the code was stripped back to include just advection and turbulent mixing;
the Pj terms in (3.1)-(3.4) then represent physical tendencies due to vertical exchange by turbulent
processes only. This was done in order to simplify the derivation of the adjoint model whilst ensuring
that the evolution of the atmosphere was sufficiently realistic for purposes of this study.

The turbulent mixing is parameterised using a k-diffusion approach (Louis, 1979)

Iolo} 1 0Jy

%= oo (3.5)
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where ¢ is the prognostic variable, p, is the density of air, z is height, and the vertical turbulent
flux Jy (positive downward) is given by

9¢
Jo = paKo (3.6)

where K is the turbulent exchange coefficient.

The exchange coefficients between the surface and lowest model level (~10m above surface) are
expressed as functions of the bulk Richardson number, determined according to the formulation of
Louis et al. (1982). Above the surface layer, the turbulent transports are based on local stability
and the coefficients are defined using a combined Louis-Tiedtke-Geleyn (LTG) - Monin-Obukov
(MO) formulation (Beljaars, 1995; Beljaars and Viterbo, 1998; Viterbo et al., 1999). The physical
tendencies are computed using an implicit time-stepping procedure. Full details of the turbulent
diffusion scheme together with further references can be found in the ECMWEF IFS documentation
(2001-2013Db).

3.1.1 Boundary conditions

The upper and lower boundary conditions are given by

Kd’gf = 0, at p = Drop (3.7)
0
K¢8—f L U] (B(2) = dowp) s 2 0. (3.9)

where pyop is the pressure at the top of the atmosphere, Cy is the transfer coefficient at the lowest
model level, and ¢, represents the value of the variable ¢ at the surface. The SST and saturation
specific humidity are used as surface values for temperature and specific humidity, and a no-slip
condition is used for the u and v wind components. The surface turbulent fluxes are passed to the
ocean model where they are used in the computation of the ocean surface boundary conditions (see
section 3.3).

3.1.2 Vertical discretisation

The atmosphere is divided into 60 unequally spaced layers, extending from the surface up to 0.1
hPa, with the finest vertical resolution (measured in geometric height) in the planetary boundary
layer. The model uses the hybrid vertical co-ordinate of Simmons and Burridge (1981). The co-
ordinate 7 = n(p, ps) is a monotonic function of the pressure, and is also dependent on the surface
pressure, ps. There is no staggering of prognostic model variables; T, ¢, v and v are all represented
at ‘full-level’ pressures py and the model layers are defined by the pressures at the interfaces between
them (termed ‘half levels’).

3.2 Ocean model

The ocean mixed layer model is based on the K-Profile Paramterisation (KPP) vertical mixing
scheme of Large et al. (1994). The code was originally developed by the NCAS Centre for Global
Atmospheric Modelling at the University of Reading (Woolnough et al., 2007) and incorporated
into the ECMWEF SCM code by Takaya et al. (2010) as part of a study into the impact of better
representation of coupled atmosphere-upper ocean processes in the ECMWEF medium-range fore-
casts. In this section we summarise the components of the scheme most relevant to this study; a
comprehensive description of the model is given in Large et al. (1994).



The KPP model describes the evolution of the mean values of temperature, 8, salinity, s, and
zonal and meridional currents u,,v,. The time evolution of each field is expressed as the vertical
divergence of the kinematic turbulent fluxes, w’¢’, giving the following set of equations

77 011/ 97

% _ ag”ja(‘?z”? (3.9)
g = —82’:/, (3.10)
8;” = —azg;:u,o—i-fvo, (3.11)
8(;;" = —ag/;é—fuo. (3.12)

Here, an overbar denotes a time average, primed variables represents turbulent fluctuations from this
average, w is the turbulent vertical velocity and @, is the non-turbulent heat flux (solar irradiance)
which is modelled using an empirical function of short wave radiation, Qsw, and ocean depth, d
(distance from ocean surface boundary).

The ocean surface boundary layer is defined as the region where d is less than or equal to the
ocean boundary layer depth h, the value of which is based on the depth at which the bulk Richardson
number equals the prescribed critical Richardson number. Within this region the kinematic fluxes
w'¢’ are parameterised using K-profiles

WY = Ky (3.13)

where ¢ represents a mean quantity. The Ky are expressed as product of a depth dependent
turbulent velocity scale and a smooth non-dimensional shape function such that they are directly
proportional to h at all depths.

In the ocean interior (d > h) the turbulent vertical fluxes are parameterised as

9%
0z’

w'¢ = —vy(d) (3.14)
where the interior diffusivity vy is the sum of resolved shear instability and unresolved shear insta-
bility due to internal wave breaking; we neglect the effect of double diffusion for reasons described
in Takaya et al. (2010).

3.2.1 Geostrophic currents

For a 1D water column, the ocean currents are essentially governed by Ekman flow (Stewart, 2008).
Without pressure gradient terms, the water moves under the sole influence of the Coriolis force and
the ocean momentum equations reduce to the equation for the harmonic oscillator (Stewart, 2008);
the solution takes the form of an inertial oscillation or inertial current. In reality, we expect the
ocean currents to be approximately geostrophically balanced. To alleviate the unrealistic behaviour
that this produces we use the method of Takaya et al. (2010) and decompose the currents into slow
and fast varying flows. The fast varying flow is assumed to be mainly the Ekman (or ageostrophic)
flow simulated by the KPP model. The slow varying geostrophic component is prescribed and not
modelled.



3.2.2 Boundary conditions

The surface boundary conditions are given by the surface kinematic fluxes of heat, salt and momen-
tum

w'ly = —Q/(pocpo) (3.15)
w'sy = —Fys0/po(0), (3.16)
wuy = —Tz/po, (3.17)
w'vy = —Tz/po, (3.18)

where (); is the net turbulent heat flux, F} is the net turbulent freshwater flux, 7, and 7, are the
zonal and meridional components of the surface wind stress, sg, po, cy0 are the salinity, density and
specific heat at constant pressure at the ocean surface, and p(0) is the density of surface water with
zero salinity (i.e. pure water). The fluxes Q¢ and F; are computed as

Qi = Qw+Qr+Qnu, (3.19)
F = Qg/Ly, (3.20)

where Qrw is net long wave radiation, Qg, Qg are the latent and sensible heat fluxes and L, is
the latent heat of evaporation. The latent and sensible heat and momentum fluxes are the surface
turbulent fluxes from (3.8), computed as part of the atmosphere turbulent diffusion scheme, as
described in section 3.3.

3.2.3 Vertical discretisation

The ocean model uses a stretched vertical grid (Takaya et al., 2010) with 35 levels from the surface
to a depth of 250 m. The resolution is increased in the upper layers in order to simulate the diurnal
SST variability; the top model layer is chosen to be 1m thick and there are 19 levels in the top
25m. The largest depth is fixed so that the ocean model levels do not vary with time. As with the
atmosphere component, there is no staggering of the prognostic model variables, 6, s, u, and v, are
all represented at full model level depths dy.

3.3 Atmosphere-Ocean coupling

The coupling of the two models takes place at the atmosphere-ocean boundary; at each model
time step, the atmosphere model computes and passes the latent and sensible heat fluxes and the
horizontal components of the surface momentum flux to the ocean model. The updated ocean model
sea-surface temperature is passed back to the atmosphere where it is used in the computation of the
atmosphere lower boundary conditions for the next step.

The fluxes are estimated from bulk formulae

e = paCp|Un|tn, (3.21)
7y = paCp|Un|vp, (3.22)
Qu = paCulUs|(Tn —SST) , (3.23)
Qe = paLyCp|Un|(gn — ¢sa(SST)) , (3.24)

where the subscript n represents the lowest atmosphere model level,

Ul = Va2 +22, (3.25)

is the (~10m) windspeed and ¢sq:(SST) is the surface saturation specific humidity. The drag
coefficient, Cp, and the transfer coefficients for heat, C'rr, and moisture, Cg, are computed using
the method of Louis et al. (1982).
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3.4 Non-linear model validation

As part of the assimilation system development, the simplified non-linear model was validated against
the ECMWF full physics version of the SCM code. As expected, we see small differences in the
evolution of both the prognostic variables and surface fluxes but in general we find that using the
simplified physics provides a good approximation to the full physics in the coupled model. Where
there are differences the simplified model still produces an evolution that is physically reasonable,
with a diurnal cycle in the ocean SST and mixed layer depth and appropriate atmosphere-ocean
fluxes. We are therefore confident that the model is sufficient for assessing the different assimilation
strategies.

3.5 Tangent linear and adjoint models

In order to be able to compute the cost function and its gradient for each inner-loop we need to
develop the tangent linear (TL) and adjoint models. A particular issue worth noting is the linearisa-
tion of the atmosphere and ocean vertical turbulent flux parameterisations. The formulation of the
Ky coefficients in both the atmosphere and ocean vertical diffusion schemes is strongly non-linear
and its linearisation has been shown to be unstable (Laroche et al., 2002). The simplest way to avoid
difficulties associated with this linearisation is to neglect the perturbation of the Ky coefficients.
Studies such as Janiskovd et al. (1999); Mahfouf (1999) and Laroche et al. (2002) have shown that
a TL diffusion scheme can still produce reasonable and useful behaviour under this assumption and
this approach has been widely adopted in both atmosphere and ocean assimilation systems (e.g.
Mahfouf (1999); Weaver et al. (2003)). We are therefore satisfied that this simplification is appro-
priate for our system. During the assimilation the K4 are computed for each non-linear outer loop
and then held constant for the inner-loop minimisation.

Although this means we are using an approximate TL model rather than the exact TL, since
the adjoint model is derived from the approximate TL model, the inner-loop cost function gradient
calculation contains the correct information for convergence of the minimisation problem. The
correctness of the tangent linear and adjoint model codes, and the gradient calculation were all
verified using standard tests (e.g. Navon et al. (1992); Lawless (2013)).

4 Experimental design

We compare the performance of the strongly coupled, weakly coupled and uncoupled 4D-Var systems
via a series of identical twin experiments in which the coupled non-linear model is used to forecast
a reference or ‘truth’ trajectory from which synthetic observations are generated. The assimilation
systems are then assessed on how well they approximate the initial reference state and subsequent
forecast.

4.1 Initial conditions and forcing

The atmospheric initial conditions, surface pressures, and SST data used to force the uncoupled
atmosphere system are taken from the ERA Interim Re-analysis'. Fields are available at 6 hourly
intervals and can be extracted on model levels so that they do not need pre-processing. These data
are also used to estimate the geostrophic wind components, ug, vy in (3.1) and (3.2), and large scale
horizontal forcing (F) terms using simple centred finite difference approximations across adjacent
latitude and longitude points.

'ERA Interim Re-analysis data can be downloaded via the ECMWTF data server at www.ecwf.int .
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Initial ocean fields are produced by interpolating Mercator Ocean reanalysis data? onto the KPP
model grid. The surface short and long wave radiation forcing fields are computed by running the full
physics version of the coupled single column model and taking 6 hourly snapshots of the diagnostic
clear-sky radiation flux fields that are computed as part of the radiation scheme (ECMWEF IFS
documentation, 2001-2013b). The geostrophic components of the ocean currents (section 3.2.1) are
estimated by computing a 10 day rolling average of the Mercator ocean currents. The surface heat,
moisture and momentum fluxes required for uncoupled ocean model integrations are taken from the
ERA Interim Re-analysis.

For the experiments presented here, the true initial state is a 24 hour coupled model forecast
valid at 00:00 UTC on 3rd June 2013 for the point (188.75°E, 25°N) which is located in the north
west Pacific ocean. This forecast was initialised using ERA interim and Mercator Ocean reanalysis
data; we run a forecast rather than initialise from these data directly in order to generate an initial
state that is consistent with the coupled model dynamics.

4.2 Background

The initial background state is generated by running a second 24 hour coupled model forecast from
perturbed initial data; this data, denoted X_o4, is generated by adding random Gaussian noise to
the ERA/ Mercator re-analysis data, x_o4, that was used to forecast the true initial state

X_94 = X_94 + 0 0 0X. (4.1)

Here, the dx are normally distributed, random perturbations and the vector of standard deviations
o € R is given by the standard deviation of the unperturbed coupled model forecast states over
the 24 hour forecast window. The initial background guess for the assimilation is then given by the
perturbed coupled model forecast state at T+24, i.e. xg = Xg. The true and initial background
states and the initial background error standard deviation profiles are shown in figures 1 and 2. There
is greater variation in the standard deviations of the atmosphere fields due to the faster timescales.
For the ocean temperature and salinity, the variability, and thus the prescribed background error
standard deviation, is largest in the turbulent mixed layer region (~top 50 m) where timescales are
shortest. Moving deeper into the ocean the timescales become longer and the standard deviations
become very small.

Formulation of the 4D-Var algorithm assumes that both the background and observational errors
are random and unbiased with Gaussian probability distribution functions and known covariance
matrices. In practice, the true error statistics are unknown and so must be approximated in some
manner. The specification of the background error covariances for full scale systems is a challenging
task and a huge area of research so we do not go into details here. A comprehensive discussion
of the structure and function of the background error covariances in the context of variational
data assimilation is given in Bannister (2008a,b). For the purposes of this study, we assume that
the background error covariance matrix Bg is diagonal, that is, the initial background errors are
univariate and spatially uncorrelated; the diagonal elements, O'g, representing the error variances,
are assumed to vary for each model field and vertical level and are taken to be the squared values
of the standard deviations o from (4.1).

The assumption of a diagonal matrix B is a great simplification but is used here as an aid to
understanding the implicit evolution of the error covariances by the 4D-Var algorithm. Although
we assume that the prior atmosphere and ocean fields are uncorrelated, the incremental 4D-Var
algorithm implicitly propagates the background error covariances across the assimilation window
according to the TL model dynamics (see Bannister (2008a) and references therein). This acts

2Mercator Ocean re-analysis data are available via the MyOcean project Web Portal at www.myocean.eu.org .

12



to modify the prior background error variance estimates and induce non-zero correlations between
model variables.

A simple preconditioning of the inner-loop cost function using the square root of the background
error covariance matrix was found to be beneficial in terms of improving the conditioning of the
system and allowing convergence of the inner-loop minimisation within a reasonable number of
iterations. Preconditioning is common in most operational variational assimilation systems and is
often implemented using a control variable transform (Bannister, 2008b).

4.3 Observations

We assume that the model state variables are observed directly to avoid the additional complexity
of a non-linear observation operator. Observations are generated by adding uncorrelated random
Gaussian errors, with given standard deviations (see table 1) to the reference trajectory at constant
time and space intervals. Observations of atmospheric temperature, and v and v wind components
are assimilated at 17 of the 60 atmosphere model levels; these are chosen to approximately correspond
to the standard pressure levels (see table 2). Observations of ocean temperature, salinity, and zonal
and meridional currents are assimilated at 23 of the 35 ocean model levels giving vertical frequency
comparable to a XBT profile (see table 3). Note that since the atmospheric model does not include
the parameterisation of processes such as moist convection, clouds and precipitation we do not
assimilate observations of specific humidity, q. Ocean observational data are typically available
less frequently than atmospheric observational data, particularly for certain operational observing
systems. The atmosphere and ocean observation frequencies used in our assimilation experiments
were chosen to reflect this disparity. Unless otherwise stated, results refer to experiments run with
atmosphere observations at 3, 6, 9 and 12 hours, and ocean observations at 6 and 12 hours.

Although it is generally accepted that observation error covariances exist it is typical to ignore
them and in practice it is assumed that the errors in the observational data are spatially and
temporally uncorrelated so that the observation error covariance matrices R; is diagonal (Daley,
1991). We follow the same approach here but also keep the observation network fixed for the
duration of each experiment so that the number of observations r; = r and R; = R for all 7.
The observation error variances, o2, are assumed to be constant across all vertical levels for each
observation type.

5 Assimilation results

Since our aim is to examine the impact of coupled assimilation on the atmosphere and ocean bound-
ary layers we limit our discussion to this region and focus on the results in the bottom of ~200 hPa
of the atmosphere model (~15 levels), and top 50m (26 levels) of the ocean model. We use a
12 hour assimilation window with 3 outer-loops and a model time-step of 15 minutes. A 12 hour
window length is common for atmospheric data assimilation systems, such as the ECMWEF IFS.
The inner-loop minimisation is terminated when the relative change in gradient is less than 0.001
(Lawless and Nichols, 2006).

Figure 3 shows the absolute (truth - analysis) error profiles at initial time ¢y for each of the
prognostic model variables. The differences between the analyses are most pronounced in the upper
ocean temperature and u, v current fields. The atmospheric temperature and specific humidity
analysis errors are very similar to the initial background errors for all three systems. For specific
humidity this is expected since we do not observe this field. For atmospheric temperature this may
be in part due to the fact that the initial background errors are small in this region. There are
also relatively fewer observations in the lower atmosphere compared to the upper ocean. There are
clearer improvements in the near surface v and v wind fields.
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A notable aspect in the ocean analysis errors is at approximately 20m, which coincides with the
mixed layer depth. The mixed layer depth is characterised by a sharp gradient in the temperature
and salinity profiles. In the background estimate the position of this feature is incorrect. When the
assimilation of observations attempts to correct this positional error, instead of shifting the profiles,
it erroneously changes the structure of the temperature and salinity profiles so that the error in the
analysis is actually increased compared to the background. This is an issue for all three coupling
strategies and is a well documented problem in the atmosphere when assimilating observations of
the analogous boundary layer capping inversion (Fowler et al., 2012).

It is not possible to draw conclusions on the performance of each approach from the analysis
errors alone. In particular, these results do not give any indication of whether the initial atmosphere
and ocean analysis states are in balance. Since one of the key drivers behind the development of
coupled data assimilation systems is generation of a consistent system state for the initialisation of
coupled model forecasts, we use the ty analysis fields from each assimilation to initialise a series of
coupled model forecasts; the results are discussed in sections 5.1 to 5.3.

5.1 Initialisation shock

A major problem with using analysis states from uncoupled assimilation systems to initialise a
coupled model forecast is that the atmosphere and ocean fields may not be balanced and this can
lead to initialisation shock. If the initial conditions are not on the coupled model attractor (in these
twin experiments also the true attractor) the forecast will experience an adjustment process. In some
cases the adjustment towards the model attractor solution occurs asymptotically but in others it
manifests itself as a rapid change in the model fields in the early stages of the forecast (Balmaseda,
2012). The skill of a coupled model forecast depends strongly on the way it is initialised, thus
the reduction or elimination of initialisation shock is particularly important in seasonal forecasting
(Balmaseda and Anderson, 2009).

Figure 4 compares the SST and surface fluxes from each coupled model forecast against the truth
trajectory and also a forecast initialised from the initial background state (i.e. no assimilation). In
all cases, the forecast eventually tracks the true trajectory fairly well but there is variation in
behaviour during the first part of the forecast window. There is evidence of initialisation shock in
the SST field. The initial SST from the uncoupled ocean analysis is furthest from the true initial
SST (~ 0.5K warmer) and when the coupled model is initialised from the combined uncoupled
atmosphere and ocean analysis states the forecast SST increases sharply, even further away from
the true SST, over the first 5 model time-steps before gradually converging back towards the true
trajectory. We also see jumps in the SST forecasts initialised from the strongly and weakly coupled
analyses but these are much smaller suggesting that the coupled analyses are more balanced. In this
example, the error in the weakly coupled SST analysis at the initial time is actually smaller than
the strongly coupled SST analysis and the SST forecast from the weakly coupled analysis initially
tracks the truth more closely. However, later in the forecast window, at the peak of the diurnal
cycle (~ 25hours), the SST forecasts from both the weakly and uncoupled analyses unexpectedly
diverge from the truth, whereas the strongly coupled analysis continues to track it closely. This
could be interpreted as a further indication of greater balance in the strongly coupled analysis;
although the initial error in the SST forecast from the strongly coupled analysis is greater than the
weakly coupled it appears to be in better balance with rest of the model. The error in the initial
temperature at the bottom atmosphere level is very similar for all three forecasts but if we examine
the atmosphere-ocean temperature difference (figure 5) we see that the strongly coupled system
tracks the truth very accurately during the first 12 hours of the forecast. The pattern seen in the
sensible heat flux forecasts in figure 4 would also support this.

The strongly coupled analysis also produces better forecasts of the surface wind speed and u, v
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wind stress components (figure 4). The forecasts initialised from the weakly coupled and uncoupled
analyses capture the general phasing of these fields but their magnitudes are overestimated to a
greater extent than in the strongly coupled case over the first 24-48 hours of the forecast.

The latent heat flux forecasts are the slowest to stabilise; this is likely to be due to the fact that
we are not assimilating observations of specific humidity. However, as the forecasts adjust towards
the model attractor, there is a clear pattern of increasing accuracy as we progress from uncoupled
to weakly to strongly coupled initialisation.

Overall our experiments have shown that, when compared to uncoupled initialisation, initialisa-
tion using the analysis from a coupled assimilation can help to reduce initialisation shock and its
impact on the subsequent forecast. The benefit appears to be greatest with the strongly coupled
system; the weakly coupled assimilation system is also capable of reducing shock, but its behaviour
is less consistent.

5.2 Uncoupled assimilations with ‘true’ SST and surface fluxes

To understand how much the accuracy of the prescribed SST and surface fluxes may affect the
results of the uncoupled assimilation we repeat them using 6 hourly snapshots of the fluxes from
the ‘truth’ trajectory in place of the forcing ERA-interim fields. In some sense this is the best we
may expect the uncoupled assimilation system to be. Figure 6 shows the forecast fluxes for this case
alongside those from the original experiment for the first 24 hours of the forecast. Although we see
an improvement, with reduced shocks in the SST and latent and sensible heat fluxes, the strongly
coupled assimilation still generally performs better than the uncoupled assimilation. Even with more
accurate forcing data, the uncoupled systems suffer from the lack of atmosphere-ocean feedback. The
weakly coupled analysis gives a better SST forecast but the fluxes are either slightly worse than or
close to those forecast from the uncoupled analyses. This was also verified in experiments with
other data; the performance of the weakly coupled assimilation system is usually comparable to
the uncoupled system with the ‘true’ forcing. This indicates that even moving to a weakly coupled
assimilation system is likely to have a benefit. Furthermore, if multiple outer-loops are used, the
update of the SST and surface fluxes can provide useful information not available to the uncoupled
systems, as we demonstrate in section 5.4

5.3 Temporal frequency of observations

To test the sensitivity of the different approaches to the frequency of observations we repeat the
assimilation experiments with the frequency of the atmosphere observations reduced by half to 6
hourly, so that we are observing the atmosphere and ocean with the same frequency. The strongly
coupled system still performs better than the weakly coupled and uncoupled systems. The most
significant effect is that differences between forecasts initialised from the weakly coupled and uncou-
pled analyses are less pronounced over the first 12 hours. This is best illustrated through the SST
and surface flux forecasts (figure 7). If we compare this with figure 4 we see that both the strongly
and weakly coupled ty SST estimates are further from the true value than in the previous case.
The forecast initialised from the strongly coupled analysis adjusts itself smoothly, but the forecast
initialised from the weakly coupled analysis exhibits a much larger shock with amplitude similar to
the uncoupled case. There is also more drift in the SST forecasts in the second half of the forecast
window for this case.

The change in the SST trajectories means that there is now also less of a clear gap between the
latent and sensible heat fluxes for the forecasts initialised from the uncoupled and weakly coupled
analyses. There is no real change to the pattern of behaviour in the wind stresses, but the over
estimation of magnitude is slightly larger due to the increased errors in the near surface wind
forecasts.
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These experiments have shown that the weakly coupled assimilation system appears to be much
more sensitive to the observation frequency than the strongly coupled system. This is because the
weakly coupled assimilation system is, unlike the strongly coupled system, predominantly exposed
to the coupling of the atmosphere and ocean through the innovations which are by definition in
observation space. Therefore, if the number of observations is decreased, either spatially or tem-
porally, this will clearly impact the greatest on the weakly coupled assimilation system. Although
weak coupling can reduce shock, as seen in section 5.1, at its worst it can produce results that are
very similar to the uncoupled assimilation system.

5.4 Single observation experiments

A big hope for coupled data assimilation systems is that they will enable greater use of near-
surface observations, such as satellite SST measurements and scatterometer data, by allowing cross-
covariance information between the atmosphere and ocean. We can investigate this property by
assimilating single observations of near-surface variables. Since the initial background error covari-
ance matrix is diagonal, increments from a single observation at the end of the assimilation window
provide insight into the implicit covariances generated by the 4D-Var system.

To understand the impact of SST observations, we assimilate the temperature from the top
ocean level (1 m depth) at the end of the 12 hour assimilation window. Figure 8 shows the (analysis-
background) increments produced by the strongly and weakly coupled systems at initial time, t5. We
see initial increments in atmospheric temperature, specific humidity, ocean temperature and salinity
with the strongly coupled system, but only ocean temperature and salinity for the weakly coupled
system. These initial increments modify the coupled model trajectory and produce increments to
the background fields for all variables across the rest of the assimilation window; figure 9 shows the
analysis increments in the centre of the assimilation window (£ = 6 hr) as an example. This leads to
qualitatively very similar ocean u, v current and atmosphere u, v wind analysis trajectories for both
the strongly and weakly coupled systems. There are more visible differences between the strongly
and weakly coupled atmospheric temperature and specific humidity analysis trajectories due to the
difference in increments at tg.

We can relate the behaviour observed in this experiment back to the model equations and as-
similation system design. The strongly coupled system uses the coupled tangent linear and adjoint
models in its inner-loops. Since the boundary conditions for the atmospheric temperature and
specific humidity depend on the SST and the boundary conditions for the ocean temperature and
salinity depend on the atmospheric temperature and humidity via the latent and sensible heat fluxes,
an increment or perturbation to the SST should produce increments in the atmosphere temperature
and specific humidity fields. We do not see increments in the initial v and v wind fields because
assumptions made in the development of the tangent linear and adjoint models mean that the SST
does not directly depend on them. The weakly coupled system cannot produce initial increments in
the atmosphere fields because it runs separate inner-loops for the atmosphere and ocean which use
the uncoupled atmosphere only and uncoupled ocean only tangent linear and adjoint models. The
SST used in the boundary conditions for the inner-loop uncoupled atmosphere model and the sur-
face fluxes used in the boundary conditions of the inner-loop uncoupled ocean model are prescribed
from the outer-loop linearisation trajectory.

Scatterometer data provide information on ocean surface wind speed and direction via measure-
ments of backscatter from surface waves. Since our system is only currently designed to handle
direct observations we use (i) horizontal wind components, v and v, at the bottom level of the
atmosphere model (~ 10m height); (ii) zonal and meridional ocean currents at the top level of the
ocean model as a proxy.
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With single © and v wind observations only the v and v wind fields are updated at ¢y for both
the strongly and weakly coupled systems. These initial wind increments do, however, produce incre-
ments to all of the atmosphere and ocean background fields over the remainder of the assimilation
window. In this case, the strongly and weakly coupled analyses are identical; this is due to the
model formulation and the fact that we are ignoring perturbations to the diffusion coefficients in
the tangent and adjoint models as described in section 3.5. The v and v winds only depend on each
other and so are essentially decoupled from the rest of the model in both the coupled model and
atmosphere only model.

With v and v ocean surface current observations, the strongly coupled system produces initial
increments in all fields, although these are very small for atmospheric temperature and specific
humidity. The weakly coupled system only produces initial increments in the ocean fields and these
are larger than in the strongly coupled case (figure 10). Again, the update of the initial state
gives rise to increments in all fields across the assimilation window for both systems. Although
the typ ocean analysis increments are larger in the weakly coupled system the increments across the
assimilation window are generally smaller, particularly for the atmospheric fields, where there is
no change to the initial states (results not shown). While there is no difference in the strongly
and weakly coupled SST and surface fluxes when we assimilate single wind observations and only
very small differences in the single SST observation experiment, for this case the strongly coupled
system produces a much better analysis of the true surface wind stress and wind speed than the
weakly coupled system (figure 11). The strongly coupled system is able to generate cross-covariances
between the atmosphere and ocean fields and thus improve the wind analysis using the ocean current
observations. Improved near-surface wind conditions can have a positive impact on air-sea exchange
and thus both the atmosphere and ocean analyses. This result clearly demonstrates the potential
for greater use of near surface data with strongly coupled assimilation.

These experiments have provided a valuable illustration of the ability of a strongly coupled
assimilation system to induce cross-covariance information between the atmosphere and ocean vari-
ables, such that a single observation of a variable in one fluid at the end of the assimilation window
can produce increments to variables in the other fluid at initial time tg. Although the structure of
the weakly coupled assimilation system does not allow atmosphere-ocean cross-covariances, there
is benefit to be gained from this approach if more than one outer-loop is used, and particularly if
both the atmosphere and ocean are well observed (see section 5.3). An analysis increment from an
observation in one system will change the linearisation state for both the uncoupled TL models used
in the next inner-loop minimisation and thus has the potential to influence the subsequent analysis
across the whole atmosphere-ocean system.

6 Summary

We have developed an idealised coupled atmosphere-ocean model system and used it to study dif-
ferent formulations of the coupled atmosphere-ocean data assimilation problem. By employing the
incremental 4D-Var algorithm we have built the capability to run both strongly and weakly coupled
assimilations as well as uncoupled atmosphere or ocean only assimilations. This has provided a
flexible framework for comparing the behaviours of varying degrees of coupling.

A key motivation for the development of coupled data assimilation systems is the potential for
the reduction or elimination of initialisation shock in coupled model forecasts via the generation
of more balanced initial conditions, and the positive impact this is expected to have in terms of
forecast skill. Initialisation shocks were seen in our simple system and experiments showed that,
when compared to uncoupled initialisation, coupled assimilation is able to reduce initialisation shock
and its impact on the subsequent forecast, although it may not eliminate it completely. Whilst this
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improvement was clearly evident when using analyses from the strongly coupled system, it was not
always so obvious with the weakly coupled system. The ability of the weakly coupled assimilation
system to reduce initialisation shock was found to be sensitive to the input parameters, such as
observation frequency and background error variances (not shown). In the best cases the behaviour
of the SST and surface fluxes in the initial stages of the forecast (used to identify shock) followed
those from the strongly coupled assimilation. In other cases the weakly coupled assimilation did not
show the same improvement as strongly coupled assimilation. However, the weakly coupled system
was usually comparable to uncoupled assimilations in which the atmosphere and ocean models were
forced using the ‘true’ SST and surface fluxes. This illustrates that even moving to a weakly coupled
assimilation system is likely to have a benefit, as the update of the SST and surface fluxes through the
outer-loop step can provide useful information not available to the uncoupled assimilation systems.

Single observation experiments were used to demonstrate how coupled assimilation systems offer
the potential for improved use of near-surface observations via the generation of cross covariance
information. Although the possible cross-covariances that can be generated are partly limited by the
simplified dynamics of our model, the effect of coupled assimilation can clearly be seen. The strongly
coupled assimilation system is able to implicitly induce cross-covariance information between the
atmosphere and ocean at the initial time, such that a single ocean observation can generate analysis
increments in the initial atmospheric fields and vice-versa. While the design of the weakly coupled
incremental 4D-Var assimilation algorithm does not allow this, the use of the coupled model in the
outer-loop update step means that if more than one outer-loop is run, an observation in one system
can affect the other system by changing the linearisation state. Thus information from near-surface
observations can be used to greater effect compared to uncoupled assimilation systems.

Overall, the results from experiments with this idealised system support the belief that signifi-
cant benefits can be expected from coupled data assimilation systems. In the experiments presented
here and others performed using variations of the set-up described, the strongly coupled assimi-
lation system generally outperforms both the weakly coupled and uncoupled systems, in terms of
producing more balanced initial analysis fields, and extracting more information from observations
through the implicit generation of cross-covariances. The results from the weakly coupled assimi-
lation experiments show that benefit can be gained from such a system, but that it is unlikely to
be as large as that from strongly coupled assimilation. Nevertheless, even with a weak coupling
we may expect some reduction in initialisation shock and the generation of some cross-covariance
information. Thus the current efforts of operational centres to develop weakly-coupled assimilation
systems are a step in the right direction.

Further work is required to better understand the sensitivity of the weakly-coupled system to
the input parameters of the assimilation. In particular, this study used a diagonal background error
covariance matrix in order to understand more cleanly the covariances generated by the coupled
assimilation. If the weakly-coupled assimilation included full background error covariance matrices
in the atmosphere and ocean inner-loop cost functions, then better balance would be expected in
the increments of the individual systems. This may in itself help to reduce initialisation shock and
make better use of observations.

Work is now underway to investigate the nature and structure of the atmosphere-ocean cross-
covariances and how they should be represented in both strongly and weakly coupled systems. An
increased understanding of the covariance information arising from atmosphere-ocean coupling will
provide valuable guidance for the design of more balanced covariances for future full scale coupled
data assimilation systems.
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Table 1: observation error standard deviations by field

atmosphere u wind v wind ocean salinity w current v current
temperature (K) (ms™!) (ms™!) temperature (K) (psu) (ms™1) (ms~1)
1.0 1.5 1.5 0.01 0.003 0.01 0.01

Table 2: atmosphere observation locations

model standard pressure model full level
level level (hPa) pressure value (hPa)?
14 10 9.893
17 20 18.815
19 30 28.882
22 50 54.624
23 70 66.623
25 100 95.980
28 150 154.038
30 200 202.230
32 250 257.685
33 300 288.093
36 400 389.233
39 500 501.637
44 700 694.696
49 850 861.497
52 925 935.065
56 1000 995.055
60 n/a 1017.293

3values based on a surface pressure value of 1018.5 hPa; model full level pressure values vary with surface pressure.
These levels have been chosen to approximately correspond to the standard pressure levels (hPa).
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Table 3: ocean observation locations

model level depth (m)

1 1.000

3 3.069

) 0.277

8 8.848
10 11.406
13 15.538
16 20.173
18 23.762
20 28.100
22 33.760
23 37.366
24 41.703
25 46.985
26 93.475
27 61.498
28 71.452
29 83.818
30 99.175
31 118.214
32 141.758
33 170.778
34 206.414
35 250.000
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Figure 1: True (solid black line) and background (dashed blue line) initial states.
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Figure 2: Initial background (solid black line) and observation (dashed blue line) error standard
deviations.
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Figure 3: 12 hour assimilation window with 3 hourly atmosphere & 6 hourly ocean observations:
Analysis errors at initial time solid black line: (truth-background); dashed red line: strongly coupled
(truth-analysis); solid blue line: weakly coupled (truth-analysis); dot-dash green line: uncoupled

(truth-analysis).
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Figure 4: 12 hour assimilation window with 3 hourly atmosphere & 6 hourly ocean observations:
coupled model SST & surface fluxes for coupled model forecast initialised from ty analyses. Solid
black line: truth; solid grey line: forecast initialised from initial background state; dashed red line:
initial condition is strongly coupled analysis; solid blue line: initial condition is weakly coupled
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analysis; dot-dash green line: initial condition is uncoupled analysis.
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Figure 5: 12 hour assimilation window with 3 hourly atmosphere & 6 hourly ocean observations:
atmosphere-ocean temperature difference (7, — SST) for coupled model forecast initialised from
to analyses. Solid black line: truth; dashed red line: initial condition is strongly coupled analysis;

solid blue line: initial condition is weakly coupled analysis; dot-dash green line: initial condition is
uncoupled analysis.
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Figure 6: 12 hour assimilation window with 3 hourly atmosphere & 6 hourly ocean observations:
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black dots: initial condition is analysis from uncoupled assimilations with ‘true’ forcing.
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Figure 7: 12 hour assimilation window with 6 hourly atmosphere & ocean observations: coupled
model SST & surface fluxes for coupled model forecast initialised from ty analyses. Solid black line:
truth; dashed red line: initial condition is strongly coupled analysis; solid blue line: initial condition
is weakly coupled analysis; dot-dash green line: initial condition is uncoupled analysis.
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Figure 8: Analysis increments at t = 0: single SST observation at end of 12 hour assimilation
window. Dashed red line: strongly coupled assimilation; solid blue line: weakly coupled assimilation.
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Figure 9: Analysis increments at ¢ = 6 hr: single SST observation at end of 12 hour assimilation
window. Dashed red line: strongly coupled assimilation; solid blue line: weakly coupled assimilation.

33



atmosphere temp specific humidity u-wind v-wind

increments (K) increments (kg/kg) increments (m/s) increments (m/s)
800 800 800 800
< h N
o \ .
< . S
o 900 900 900 N 900 Seo
2 ' : \
- N
5 - - ' ‘
- - ’ -’
-~ - - ’ s
1000 RN 1000 ~ =< |{ 1000 P 1000 _-7
< \ - _ -
-12 -8 -4 0 -12 -8 -4 0 0 2 4 0 2 4
x107 - x107°
ocean temp salinity u-current v-current
increments (K) increments (psu) increments (m/s) increments (m/s)
~
\
10

E 20 !

s

&30

°

40

50
-15 -10 -5 0
x107°

Figure 10: Analysis increments at ¢ = 0: single ocean surface current observation at end of 12 hour
assimilation window. Dashed red line: strongly coupled assimilation; solid blue line: weakly coupled
assimilation.
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Figure 11: SST and surface fluxes: single ocean surface current observation at end of 12 hour
assimilation window. Solid black line: truth; solid grey line: background; dashed red line: strongly
coupled assimilation; solid blue line: weakly coupled assimilation.
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