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Abstract

Approximate Bayesian computation (ABC) performs statistical inference for oth-

erwise intractable probability models by accepting parameter proposals when corre-

sponding simulated datasets are sufficiently close to the observations. Producing the

large quantity of simulations needed requires considerable computing time. However,

it is often clear before a simulation ends that it is unpromising: it is likely to produce a

poor match or require excessive time. This paper proposes lazy ABC, an ABC impor-

tance sampling algorithm which saves time by sometimes abandoning such simulations.

This makes ABC more scalable to applications where simulation is expensive. By us-

ing a random stopping rule and appropriate reweighting step, the target distribution

is unchanged from that of standard ABC. Theory and practical methods to tune lazy

ABC are presented and demonstrated on the computationally demanding spatial ex-

tremes application of Erhardt and Smith (2012), producing efficiency gains, in terms

of effective sample size per unit CPU time, of roughly 3 times for a 20 location dataset,

and 8 times for 35 locations.
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1 Introduction

Approximate Bayesian computation (ABC) algorithms are a popular method of inference for

a wide class of otherwise intractable probability models in applications such as population

genetics, ecology, and systems biology (Beaumont, 2010; Marin et al., 2012). They select

parameter vectors θ for which datasets y simulated from the model of interest are sufficiently

close to the observations. A bottleneck is the computational cost of producing the large

quantity of model simulations needed, which becomes increasingly severe for more detailed

models. However, it is often clear during a simulation that it is unpromising. For example

it is likely to produce a poor match or to require excessive computation time. This paper

presents lazy ABC, an importance sampling method which abandons some such simulations,

a step referred to as early stopping, exploiting information from incomplete simulations to

save time. The result is an ABC algorithm which is more scalable to applications where

simulation is computationally demanding.

In more detail, standard ABC is based on a random likelihood estimator L̂ABC, which

is 1 for a close match of simulated and observed data, and zero otherwise. The algo-

rithm can be shown to target a distribution corresponding to the approximate likelihood

LABC(θ) = E[L̂ABC|θ]. Lazy ABC is based on an alternative estimator L̂lazy. This equals

zero with probability 1−α – if early stopping is performed – and otherwise equals the L̂ABC

estimator multiplied by a weight. Letting the weight equal 1/α makes L̂lazy an unbiased es-

timator of LABC(θ). Results on random likelihood estimates show that importance sampling

(and Markov chain Monte Carlo) algorithms based on L̂lazy(θ) therefore target the same

distribution as standard ABC. No further approximation has been introduced.

The lazy ABC estimator trades off an increase in variance for a reduction in computation

time. It is shown that for this to be most advantageous α should be (1) larger when there

is a high probability of the simulated dataset Y being a close match to the observations

(2) smaller when the expected time to complete the simulation is large. To achieve this

α is based on X, a random variable encapsulating some preliminary information about Y .
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The final likelihood estimator is based on X and Y . However when early stopping occurs a

realised value of zero is obtained without drawing a value of Y . In programming terminology

this is an example of lazy evaluation, which is the basis for the method’s name.

The paper presents theoretical results on the optimal tuning of α in lazy ABC, making

precise the two properties just outlined. This choice is asymptotically optimal in terms of

maximising efficiency, which is defined as effective sample size (ESS) per unit CPU time.

Based on this, a framework for tuning in practice is also presented. The main requirements

are the estimation of the probability of close matches and of expected remaining computation

times. Both of these are conditional on θ and x (realised values of X). As x is typically high

dimensional this estimation is not feasible, so instead it is recommended to base the choice

of α on some low dimensional decision statistics φ(θ, x). A computationally demanding

example is presented based on the spatial extremes application of Erhardt and Smith (2012)

where lazy ABC increases the efficiency by roughly 3 times for modestly sized data and 8

times for a larger example.

The focus of this paper is on importance sampling, which is widely used by ABC practi-

tioners and particularly amenable to parallelisation. However the lazy ABC approach is also

applicable to other algorithms, such as Markov chain Monte Carlo (MCMC) and sequential

Monte Carlo (SMC), as discussed in the final section. Another extension is to situations

where the exact likelihood, or a non-negative unbiased estimator, is available but expensive

to compute. The paper discusses how a less expensive non-negative unbiased estimator can

be produced. Essentially the same theoretical results apply as for lazy ABC, but it is argued

that practical application is more challenging.

Several recent papers have proposed speeding up ABC by fitting a model to (θ, y) pairs,

simulated either in a preliminary stage or in earlier ABC iterations (Buzbas and Rosenberg,

2013; Meeds and Welling, 2014; Moores et al., 2014; Wilkinson, 2014). This model is then

sometimes or always used in place of the original model of interest in the inference algorithm.

A potential application of lazy ABC is to make use of such approximate models (their
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predictions given θ forming X in the notation above) to gain speed benefits without incurring

additional approximation errors. More generally, there has been much interest over the past

decade in Bayesian inference algorithms with random weights (e.g. Beaumont, 2003; Andrieu

and Roberts, 2009; Fearnhead et al., 2010; Tran et al., 2014). A novelty of lazy ABC is that

it introduces a random factor to the weights to reduce computation time, rather than to deal

with intractability.

Rejection control in sequential Bayesian algorithms (Liu et al., 1998) uses a similar idea

to lazy ABC. Here after the first t stages of the sequential analysis, a proposal (typically

a sequence of latent states at times 1, 2, . . . , t) with weight w is allowed to continue with

probability α = min(1, w/c) for some constant c. On continuation the weight is updated to

w/α and otherwise a new proposal is generated. Novelties of the current work are finding

an optimal form for α and allowing it depend on information other than w.

The remainder of the paper is structured as follows. Section 2 contains background mate-

rial. To help later developments this presents ABC within the framework of random weight

importance sampling. Section 3 gives the lazy ABC algorithm and proves it targets the cor-

rect distribution. Section 4 presents theory and practical methods for tuning the algorithm.

A related result is also given on the optimal importance distribution for standard ABC im-

portance sampling. Section 5 contains the application to spatial extremes and Section 6 is

a discussion. Appendices contain proofs and material on lazy ABC with multiple stopping

decisions.

2 Importance sampling

Consider analysing data yobs under a probability model with density π(y|θ) and param-

eters θ. The likelihood is defined as L(θ) = π(yobs|θ). Bayesian inference introduces a

prior distribution with density π(θ) and aims to find the posterior distribution π(θ|yobs) =

π(θ)L(θ)/π(yobs), where π(yobs) =
∫
π(θ)L(θ)dθ, or at least to estimate the posterior expec-
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tation E[h(θ)|yobs] of a generic function h(θ). Importance sampling is a simple method to do

this. Parameter values θ1:N are simulated independently from an importance density g(θ)

and given weights wi = L(θi)π(θi)/g(θi) (n.b. θ1:N represents the sequence (θi)1≤i≤N . Similar

notation is used later.) It is assumed throughout that g(θ) > 0 whenever π(θ) > 0. Each of

the (θi, wi) pairs can be computed in parallel, allowing for efficient implementation.

A Monte Carlo estimate of E[h(θ)|yobs] is µh =
∑N

i=1 h(θi)wi∑N
i=1 wi

. Two properties of importance

sampling estimates are

µh → E[h(θ)|yobs] almost surely as N →∞, (1)

E[N−1

N∑
i=1

wi] = π(yobs). (2)

See Geweke (1989) for proof that (1) holds under weak conditions. To prove (2) note that each

wi is an unbiased estimator of π(yobs). Estimating this is of interest for model comparison.

2.1 Notation

The remainder of the paper is largely concerned with the distribution of random variables

produced in an iteration of various importance sampling algorithms. Henceforth, expecta-

tions and probabilities that involve quantities produced by importance sampling should be

read as being with respect to this distribution. In particular this means that below the

marginal density of θ is taken to be g(θ). The preceding material in this section is the only

time that a marginal density of π(θ) is used instead.

2.2 Random weights

Algorithm 1a describes random weight importance sampling (RW-IS), an importance sam-

pling algorithm in which likelihood evaluations are replaced with random estimates of the

likelihood. Under the condition that these estimates are non-negative and unbiased, the

algorithm produces valid output, in the sense that (1) and (2) continue to hold. This can
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be seen by noting that Algorithm 1a is equivalent to a deterministic weight importance

sampling algorithm with augmented parameters (θ, `), prior density π(θ)π(`|θ), importance

density g(θ)π(`|θ) and likelihood `. Here ` is the realisation of the likelihood estimator and

π(`|θ) is the conditional density of this estimator. This algorithm gives the correct marginal

posterior for θ. See Tran et al. (2014) for a more detailed proof and Fearnhead et al. (2010)

for further background, including the observation that non-negativity is not necessary. Non-

negative unbiased likelihood estimators can also be used to produce valid MCMC algorithms

(Beaumont, 2003; Andrieu and Roberts, 2009).

2.3 Approximate Bayesian computation

Many interesting models are sufficiently complicated that it is not feasible to calculate exact

likelihoods or useful (i.e. reasonably low variance) unbiased estimators. ABC algorithms

instead base inference on simulation from the model. Algorithm 1b uses this idea in a RW-

IS framework to give ABC importance sampling (ABC-IS). The RW-IS likelihood estimator

L̂ has been replaced with a Bernoulli estimator L̂ABC which equals 1 if d(S(Y ), S(yobs)) ≤ ε

i.e. if the distance between summary statistics of the simulated and observed datasets is less

than or equal to a threshold ε. This is typically a biased estimate of the likelihood and

ABC-IS targets the posterior for an approximate likelihood LABC(θ) = E[L̂ABC|θ].

A special case of ABC-IS is when g(θ) = π(θ). The weights in this case equal zero or

one, and it is often referred to as ABC rejection sampling. A generalisation of ABC-IS,

considered in Section 6, is to use as a likelihood estimate K(d(S(Y ), S(yobs))/ε), where K is

a density function known as the ABC kernel. Algorithm 1b uses a uniform kernel.

As ε → 0, the target distribution of ABC-IS converges to π(θ|S(yobs)). However, ε > 0

is typically required to achieve a reasonable number of non-zero weights, so a trade-off

must be made. The observed summary statistics S(yobs) should ideally preserve most of

the information on θ available from yobs. However analysis of ABC algorithms shows that

the quality of the approximation deteriorates with the dimension of S(y). Therefore the
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Input (general):

• Prior density π(θ) and importance density g(θ).

• Number of iterations to perform N .

Input (RW-IS):

• Likelihood estimator L̂.

Input (ABC):

• Observed data yobs.

• Summary statistics S(·), distance function d(·, ·) and threshold ε ≥ 0.

Algorithm:
Repeat the following steps N times.

1 Simulate θ∗ from g(θ).

2 Simulate `∗ from L̂|θ.
In ABC this is done as follows:

2a Simulate y∗ from Y |θ∗

2b Set `∗ = 1[d(S(y∗), S(yobs)) ≤ ε].

3 Set w∗ = `∗π(θ)/g(θ).

Output:
A set of N pairs of (θ∗, w∗) values.

Algorithm 1: a) Random weight importance sampling (RW-IS) b) ABC importance sampling
(ABC-IS); this is the special case where step 2 is implemented by 2a and 2b.

7



choice of S(·) involves a trade-off between low dimension and informativeness. For further

background details on all aspects of ABC see the review articles of Beaumont (2010) and

Marin et al. (2012).

3 Lazy ABC

This section defines lazy ABC and shows it produces valid results.

Definition 1. Lazy ABC is Algorithm 1a, using a likelihood estimator of the form (3) under

conditions C1-C3.

L̂lazy =


L̂ABC/α(θ,X) with probability α(θ,X)

0 otherwise

(3)

C1 α(θ, x) is a function with codomain [0, 1].

C2 α(θ, x) > 0 whenever Pr(L̂ABC > 0|θ, x) > 0.

C3 The random variable X is such that both X|θ and Y |θ, x can be simulated from.

The following theorem shows that the estimator L̂lazy can be used in a RW-IS algorithm,

or a pseudo-marginal MCMC algorithm, and give valid results.

Theorem 1. Conditional on θ, L̂lazy is a non-negative unbiased estimator of LABC(θ).

Proof. Non-negativity is immediate. For unbiasedness first observe that E(L̂lazy|θ, x) equals

zero when α(θ, x) = 0 and E(L̂ABC|θ, x) otherwise. By C2 if α(θ, x) = 0 then Pr(L̂ABC >

0|θ, x) = 0 and so E(L̂ABC|θ, x) = 0. Hence E(L̂lazy|θ,X) = E(L̂ABC|θ,X). Taking expecta-

tions over X gives the required result.

The key feature of the estimator L̂lazy is that it can be evaluated by the following steps

given parameter proposal θ∗.
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1. Simulate x∗ from X|θ∗ and let a∗ = α(θ∗, x∗).

2. With probability a∗ continue to step 3. Otherwise output `∗ = 0.

3. Simulate y∗ from Y |θ∗, x∗. Calculate `∗ABC, the corresponding value of L̂ABC|Y = y∗.

Output `∗ = `∗ABC/a
∗.

The desired behaviour is that simulating from X|θ is computationally cheap but can

be used in steps 1 and 2 to reject many unpromising importance sampling iterations. The

expensive part of the likelihood calculation, simulating from L̂ABC|θ, x, is only carried out

when necessary, exploiting lazy evaluation.

A special case of lazy ABC is to take α(θ, x) = 1[Pr(L̂ABC > 0|θ, x) > 0], making step 2

deterministic. This is useful when X is a partial observation of S(Y ) allowing a lower bound

to be placed on d(S(Y ), S(yobs)).

Several more general examples follow which form the main focus of the paper. Each

assumes that Y is a deterministic function of a latent vector X1:p for some p, such that it is

possible to simulate from X1|θ and Xi|θ, x1:i−1 for all 1 < i ≤ p. Further examples are given

in Appendix A which use the same framework to consider multiple stopping decisions.

Example 1: Partial simulation Let X = X1:t for some t < p.

Example 2: Partial calculation of S Assume that computing S(Y ) involves calculating

variables X ′1:q which are deterministic transformations of Y , and that this is the most

expensive part of simulating L̂ABC. Let X = (X1:p, X
′
1:t) for some t < q. (This is applied

in Section 5.2.)

Example 3: Random stopping times As for either previous example but with t replaced

by a random stopping time variable T . This allows a stopping decision once a particular

event has occurred.

Simulation from X|θ is referred to as the initial simulation stage and from S(Y )|θ, x as
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the continuation simulation stage. It is often useful later to have α(θ, x) = α(φ(θ, x)) where

φ(θ, x) is referred to as the decision statistics.

Notation is now introduced for expected CPU times: T̄1(θ) is for steps 1 and 2 above

conditional on θ, T̄2(θ, φ) is for step 3 conditional on (θ, φ) and T̄ (θ) is for simulation from

L̂ABC conditional on θ. The first two are roughly the times of the initial simulation and

continuation stages, but are defined to cover all steps involved in simulating from L̂lazy.

It is assumed that

T̄ (θ) ≤ T̄1(θ) + E[T̄2(θ, φ)|θ]. (4)

Roughly speaking this states that drawing from L̂lazy conditional on no early stopping takes

at least as long as drawing from L̂ABC. The difference is due to computational overheads of

considering stopping. It is also convenient to define T̄1 = E[T̄1(θ)] and T̄2(φ) = E[T̄2(θ, φ)|φ].

3.1 Lazy importance sampling

The above approach can be generalised to non-ABC situations to give lazy importance sam-

pling (LIS). This is Algorithm 1a using a likelihood estimator of the form:

L̂lazy =


L̂/α(θ,X) with probability α(θ,X)

0 otherwise

In addition to conditions C1 and C2 above assume:

C4 The distribution (X, L̂)|θ is such that L̂|θ is a non-negative unbiased estimator of L(θ),

and both X|θ and L̂|θ, x can be simulated from.

This framework can be used when L̂ is an expensive unbiased estimator. It also allows cases

where either or both of X and L̂ are non-random. For example, X may be a deterministic

approximation of the likelihood and L̂|θ may be a point mass at L(θ).
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All theorems and proofs of this paper also hold for lazy importance sampling, replacing

LABC(θ) and L̂ABC with L(θ) and L̂, and making other small modifications noted in the text.

In particular Theorem 1 shows that given conditions C1, C2 and C4, L̂lazy|θ is a non-negative

unbiased estimator of L(θ). However the practical application of lazy importance sampling

is challenging as discussed in Section 6.

4 Tuning

There is considerable freedom to tune lazy ABC through the choice of X (when to consider

stopping) and α (the function assigning continuation probabilities). Section 4.1 proves a

result on the most efficient choice of α. This theory is used in Section 4.2 to motivate

practical tuning methods.

Note that the case where α(φ) is based on φ ∈ A for discrete A does not require the

theoretical results below. Here α(φ) values can be selected by numerical optimisation of an

estimate of the algorithm’s efficiency based on pilot simulations. The methods that follow

detail construction of such an estimate.

4.1 Theory

A commonly used tool for the analysis of importance sampling algorithms is the effective

sample size (ESS). Liu (1996) argued that typically the variance of the importance sampling

estimator is roughly equal to that of Neff independent samples where

Neff = NE(W )2/E(W )2,

and the random variable W is the weight generated in an iteration of importance sampling.

The argument of Liu generalises immediately to RW-IS algorithms through the interpretation

of them as importance sampling algorithms on an augmented parameter space given in

Section 2.2.
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Define efficiency as Neff/T where T is the CPU time of the algorithm (i.e. ignoring any

execution time savings due to parallelisation.) Assume that T follows a central limit theorem

in N . Then the delta method gives that for large N efficiency asymptotically equals

E(W )2/E(W 2)

E(T )/N
.

Theorem 2. Fix some decision statistics φ(θ, x). Amongst continuation probability func-

tions of the form α(θ, x) = α(φ(θ, x)), asymptotic efficiency is maximised by the following

expression for some λ > 0,

α(φ) = min

1, λ

E[L̂ABC
π(θ)2

g(θ)2
|φ]

T̄2(φ)

1/2
 . (5)

Proof. See Appendix B.1.

Remark 1. Suppose π(θ)/g(θ) = u(φ) i.e. this fraction is completely determined by φ. For

example this is the case in ABC rejection sampling where g(θ) ≡ π(θ). Then (5) becomes

α(φ) = min

{
1, λu(φ)

[
γ(φ)

T̄2(φ)

]1/2
}
, (6)

where γ(φ) = E[L̂ABC|φ] = Pr (d(S(Y ), S(yobs)) ≤ ε|φ).

Remark 2. Theorem 2 and Remark 1 hold for LIS with L̂ABC replaced by L̂2.

A simple closed form expression for λ does not appear possible. In the practical tun-

ing methods below λ is found numerically, and the behaviour of this numerical estimate

investigated by simulation study (see Figure 1B).

By viewing ABC-IS as a special case of lazy ABC, Theorem 2 can be applied to find the

optimal choice of g(θ) for ABC-IS.

Corollary 1. The asymptotic efficiency of ABC-IS is maximised by g(θ) ∝ π(θ)

[
γ(θ)

T̄ (θ)

]1/2

,

where γ(θ) = E(L̂ABC|θ).
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Proof. See Appendix B.2.

Remark 3. A corresponding result to Corollary 1 holds for RW-IS with γ(θ) = E(L̂2|θ).

Remark 4. The special case of Corollary 1 with T̄ (θ) constant matches the result of Appendix

A in Fearnhead and Prangle (2012).

Note that it is not clear what the optimal choice of g(θ) is for lazy ABC. The examples

later use typical choices from the ABC literature, but a better choice may improve lazy ABC

performance further.

4.2 Methods

Theorem 2 motivates choosing α by estimating (6). This section details a method to imple-

ment this approach. Its effectiveness is discussed in Section 6.

Tuning begins with a pilot run of N ′ iterations of ABC-IS. This is used to estimate γ(φ)

and T̄2(φ) for various choices of X and φ, considering only φ is such that Remark 1 can be

applied. Under each of these choices, λ is found by numerically maximising an estimate of

efficiency. The optimal choice of X and φ is then made. Note that estimation of γ(φ) and

T̄2(φ) is challenging if φ is high dimensional e.g. for φ = (θ, x). Therefore a low dimensional

φ is recommended. To ensure Remark 1 applies π(θ)/g(θ) can form one component of φ if

necessary. Following tuning, N iterations of lazy ABC are performed (unless the estimated

efficiency gains are judged inadequate). Detailed comments on several aspects of this method

follow.

4.2.1 Estimation of T̄2(φ)

It may often suffice to treat T̄2(φ) as constant and estimate it as the mean CPU time of the

continuation stage in the pilot run. This is the case if knowledge of the simulation process

shows the number of computational operations required is unaffected by φ, or if the pilot run
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shows T̄2(φ) varies little relative to γ(φ). Alternatively, statistical methods such as regression

can be used for estimation, which is straightforward when φ is low dimensional.

4.2.2 Estimation of γ(φ)

Estimation of γ(φ) is more difficult. Two approaches are suggested: the “standard” ap-

proach, producing γ̂(1), attempts accurate estimation but involves strong assumptions; the

“conservative” approach, producing γ̂(2), sacrifices accuracy to improve robustness. They

are based on two equivalent expressions for γ(φ): Pr(d(S(Y ), S(yobs)) ≤ ε|φ) and E[L̂ABC|φ].

Examples of successful implementations of both approaches are given in Section 5.

The standard approach is to directly model the relationship between φ(θ,X) and d(S(Y ), S(yobs))

and use this to estimate Pr(d(S(Y ), S(yobs)) ≤ ε|φ). However a difficulty is that for most φ

values this involves extrapolating into the tails of the distribution of d(S(Y ), S(yobs))|φ. See

Figure 1A for example. This creates a danger of underestimating the optimal α values and

potentially producing very large importance sampling weights.

The conservative approach is to select ε1 following the pilot run such that a sufficiently

large number of its simulations y1:N ′ satisfy d(S(yi), S(yobs)) ≤ ε1. Let zi be indicator

variables denoting meeting this condition and model the relationship between zi and the

simulated φi values. One method, used in the application later, is non-parametric logistic

regression following Wood (2011). This approach is effectively tuning the method based on

an ε value larger than that of interest. This is an inefficient way to sample from the target of

interest. However, if tuning can be done well for the larger ε value then this method is safe

from producing any dangerously large importance weights, as discussed further in Section

4.2.5. Nonetheless, for φ regions where there are no zi = 1 values the conservative estimate is

still based on extrapolation and unlikely to be accurate. Consequences of this are discussed

in Section 6.
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4.2.3 Estimating efficiency

The tuning method outlined above requires the use of N ′ pilot run iterations to estimate

the efficiency of lazy ABC under various choices of tuning details (in particular X, φ and

α). It is sufficient to estimate [E(W 2) E(T )]−1, as this equals efficiency up to a constant

of proportionality. This can be used to estimate efficiency relative to ABC-IS, which is a

particularly interpretable form of the results as it shows the efficiency improvement of using

lazy ABC.

Assume that for a particular choice of tuning details the following are available for 1 ≤

i ≤ N ′: t
(1)
i - initial simulation stage time; t

(2)
i - continuation simulation stage time; αi

- continuation probability; γ̂i - estimate of E(L̂ABC|φi); ui - ratio π(θ)/g(θ). An estimate

up to proportionality of efficiency is then [Ŵ 2T̂ ]−1 where Ŵ 2 = N ′−1
∑N ′

i=1 u
2
i γ̂i/αi and

T̂ =
∑N ′

i=1 t
(1)
i +

∑N ′

i=1 αit
(2)
i . An estimate of efficiency of ABC-IS is formed by taking α ≡ 1.

Note that this typically overestimates T due to the overheads of considering stopping (see

(4)). A more precise estimate would be possible using further pilot simulations of standard

ABC.

4.2.4 Combining pilot and main run output

To make efficient use of the pilot run, it can be used in the final output as well as for

tuning. This is done by appending the pilot sequence of (θ, w) pairs to that from the main

algorithm. Loosely speaking, since each individual sequence targets the same distribution,

so does the combined sequence. More technically, it is straightforward to see that ABC

versions of relations (1) and (2) are roughly true for the combined sequence when N and N ′

are large, and are exactly true as N → ∞ regardless of N ′. Also note that on appending

the sequences, gains in efficiency are possible by multiplying the weights of one sequence

by a constant, but this is not implemented here as little improvement was observed in the

application later.
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4.2.5 Choice of ε

In ABC-IS, an appropriate value ε is often unknown a priori and is instead chosen based

on the simulated d(S(Y ), s(yobs)) values. For lazy ABC in this situation one can use the

pilot run to select a preliminary conservative choice of ε1 as in Section 4.2.2 and perform

lazy ABC with ε = ε1. Alternative values of ε can then be investigated by updating the

realised L̂ABC values in the weight calculations. For ε < ε1 this simply reduces the number of

non-zero weights. However ε � ε1 is not recommended as this may introduce large weights

and destabilise the importance sampling approximation.

5 Example: spatial extremes

This section uses lazy ABC in a computationally demanding application of ABC to spatial

extremes introduced by Erhardt and Smith (2012).

5.1 Background

The observation yt,d represents the maximum measurement (e.g. of rainfall) during year t at

location xd ∈ R2. There are D locations and T years. The data are treated as T independent

replications of a spatial distribution. Several models based on extreme value theory have

been proposed, and Erhardt and Smith concentrate on the Schlather process (Schlather,

2002). This is based on independent identically distributed mean zero stationary Gaussian

processes Yi(x) where i = 1, 2, . . . and x ∈ R2. The correlation between locations x and x′ is

given by the correlation function ρ(h) where h = ||x− x′||2. Let si be draws from a Poisson

process on (0,∞) with intensity µ−1s−2, where µ = E[max(0, Y (x))]. Then the Schlather

process is

Z(x) = max
i
si max(0, Yi(x)).
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Erhardt and Smith focus on the Whittle-Matérn correlation function with zero nugget

ρ(h; c, ν) =
21−v

Γ(ν)

(
h

c

)ν
Kν

(
h

c

)
,

where Γ is the gamma function and Kν is the modified Bessel function of the third kind with

order ν. This has two parameters: range c > 0 and smoothness ν > 0.

A density function for the Schlather process is not available for D > 2, making inference

difficult. Schlather (2002) provides a near-exact algorithm to simulate from the process based

on only a finite number of copies of Yi, motivating the use of ABC by Erhardt and Smith.

They applied ABC rejection and importance sampling with a uniform prior on [0, 10]2 and

investigated several choices of summary statistics. The analysis here focuses on the choice

they find most successful, based on tripletwise extremal coefficient estimators. Given a triple

of 3 locations, i, j, k, this estimator is

θ̂ijk =
T∑T

t=1 1/max(yt,i, yt,j, yt,k)
.

There are O(D3) such summaries, so Erhardt and Smith calculate a vector m of mean

values within 100 clusters of triples, and use these as summary statistics. Their clustering

process finds triples of similar shapes, ignoring differences of location and rotation. The

ABC distance function between two vectors m1 and m2 of cluster means is

d(m1,m2) =
100∑
i=1

|m1i −m2i|. (7)

Although applying dimension reduction techniques to such high dimensional summaries has

been shown to often improve ABC results (Fearnhead and Prangle, 2012), this is not inves-

tigated here as the aim is to investigate the efficiency improvements of lazy ABC.

Implementing the analysis below used the R packages “SpatialExtremes” (Ribatet et al.,

2013) to simulate from the Schlather process and “ABCExtremes” to implement some details
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of the approach of Erhardt and Smith.

5.2 Methods

Exploratory investigation of ABC code with D = 20 and T = 100 showed that the majority

of time was spent simulating the data (7.1ms/iteration) and calculating extremal coefficient

estimates (17.9ms/iteration), with the remaining steps being brief (3.1ms/iteration). The

time costs of the first two of these scaled with D as roughly proportional to D and D3

respectively, so the latter is expected to dominate for large D. Furthermore, interrupting

and then resuming operations during the calculation of extremal coefficients is much simpler

to implement than during simulation of data. Therefore the initial simulation stage of the

lazy ABC analysis was chosen to be simulating the data at all locations, and extremal

coefficient estimates at a subset of locations L. The continuation simulation stage was to

calculate the remaining extremal coefficient estimates.

The decision statistic d̂ was constructed as follows. Let m1i be the ith cluster mean

for the observed data. Let m̂2i be the ith cluster mean for the simulated data using only

extremal coefficient estimates available at the initial simulation stage, and B be the set of

clusters for which any such estimates are available. Then define d̂ =
∑

i∈B |m1i− m̂2i|. This

is an estimate of the ABC distance d (7). It could be improved by estimating typical m̂2i

values for i 6∈ B but including such constant terms has no effect on the analysis below.

It was assumed that T̄2(d̂) is constant as, given D, L and T , the continuation stage

always involves the same number of calculations. The value was estimated by the mean

CPU time for this stage in the pilot run. Analyses were performed using both the standard

and conservative γ estimators. To calculate γ̂1(d̂) from pilot run output, the relationship

between d̂ and d was modelled statistically. Exploratory analysis showed that there was a

roughly linear relationship, but for some choices of L this was heteroskedastic (see Figure

1A). Furthermore, for small d̂ the distribution of d|d̂ was skewed. So Pr(d ≤ ε|d̂) was

estimated based on a linear regression of d on d̂ with a Box-Cox transformation, using only
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simulations with nearby values of d̂. This was done for several d̂ values and interpolated

estimates elsewhere formed γ̂1(d̂). For the importance sampling case, log u was also included

in each regression so that a number of functions mapping u to estimates of Pr(d ≤ ε|d̂, u)

for various d̂ values were produced which were used for interpolation. Calculation of γ̂2

was as described in Section 4.2.2, taking ε1 to give 100 acceptances in the pilot run. Given

estimates of T̄2 and γ, tuning was performed as described in Section 4.2, with optimisation

over possible choices of L by backwards selection.

Three simulation studies were performed. The first replicated the rejection sampling

analysis of Erhardt and Smith on several simulated datasets. These used D = 20, T = 100

and true parameter values shown in Table 1. Each dataset used a different set of observation

locations with integer coordinates sampled from [0, 10]2. The first analysis was a replication

of the standard ABC analysis, using ε values corresponding to 200 acceptances. Then lazy

ABC was performed on the same datasets under each method of estimating γ. To compare

the methods fairly, lazy ABC used the same ε value as standard ABC and reused its random

seeds so that the sequence of (θ,X, Y ) realisations is also the same.

The second simulation study investigated rejection sampling for a single larger simulated

dataset with D = 35, c = 0.5 and ν = 1. Locations were chosen as before. As in a real appli-

cation ε was not assumed to be known in advance and the approach of Section 4.2.5 was used

to select this post-hoc. A complication for this dataset was that the simulation of Gaussian

processes was difficult when both parameters were large: the default “direct method”, based

on Choleski decomposition, sometimes produced numerical errors. Simulation was possible

via the turning bands method (TBM) but much slower (roughly 150 times the CPU time). A

two stage simulation method was implemented. First the direct method was attempted and

if this failed TBM was used. To save time lazy ABC was implemented with multiple stop-

ping decisions, the first taking place after attempting the direct method. This has a binary

decision statistic indicating success or failure. The second stopping decision is as described

earlier. Tuning was performed as described in Appendix A.1.2, using γ̂1 fitted as described
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above by either the standard or conservative tuning method. The standard method used ε1

to give 30 acceptances in the pilot run. As before all analyses reused the same random seeds.

Finally an importance sampling analysis was performed on the larger dataset. A sample of

104 log parameter values was taken from simulations of the preceding standard ABC analysis

with distances below the 0.3 quantile. A Gaussian mixture distribution was constructed

with locations given by this sample and variances equal to twice the empirical variance of

the sample. After truncation to the prior support, this was used to give g(θ), where θ now

represents the log parameters. This choice follows the suggestions of Beaumont et al. (2009),

noting that using the log scale produced a better fit to the sample and that the subsample was

used to avoid slow density calculations. The preceding D = 35 analysis was then repeated.

As discussed in Section 4.2, u = π(θ)/g(θ) was included as a decision statistic. Estimation

of γ and T̄2 was performed as before with u included in the γ estimate as described earlier.

All ABC analyses performed 106 total iterations. For lazy ABC 104 of these comprised

the pilot run.

5.3 Results

Figure 1 illustrates some details of tuning for one case of the D = 20 study. The results

are shown in Table 1. For all datasets lazy ABC is roughly 4 times more efficient under the

standard tuning method and 3 times under the conservative method. Efficiency gains for

conservative tuning are slightly less than estimated. This is because the estimate is made

for a choice of ε1 larger than the final ε. The mean weights were also investigated, as these

are useful in model selection as an estimate of π(yobs). All lazy ABC estimates differed from

the standard ABC estimate by no more than 4%.

Table 2 shows results for the D = 35 dataset. In the initial rejection sampling analysis

lazy ABC improved efficiency by roughly 8 times. For importance sampling the improvement

factor is 2, showing that lazy ABC still improves efficiency, although this is harder when g

concentrates on plausible choices of θ. For example, standard ABC now spends negligible
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Figure 1: Details of a simulation study applying lazy ABC to spatial extremes corresponding
to the first row of Table 1. Panels A-C concentrate on the standard tuning approach. Panel
A Pilot run values of d̂ and d. The dashed line shows the value of ε. Panel B Estimated
efficiency for different values of λ. The dashed line shows the realised efficiency. Panel
C Estimated efficiency for the best choices of L of various lengths output by backwards
selection. The dashed line shows the realised efficiency. Panel D Values of d̂ and α from
non-pilot simulations under standard (solid line) and conservative (dashed line) tuning. The
marks on the horizontal axis indicate the simulations which resulted in positive weights. (For
this panel conservative tuning was performed using L as selected by standard tuning.)
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Standard Lazy Relative efficiency
Range Smooth Time (103s) Time (103s) Sample size ESS Estimated Actual

0.5 1 32.0 8.0 (11.6) 196 (199) 196.0 (198.7) 4.08 (3.28) 4.00 (2.79)
1 1 31.3 7.3 (9.8) 200 (200) 199.9 (200.0) 4.34 (4.31) 4.35 (3.25)
1 3 31.3 8.2 (11.2) 194 (198) 182.5 (196.5) 3.77 (3.43) 3.51 (2.79)
3 1 31.2 7.7 (11.1) 194 (200) 189.9 (200.0) 4.18 (3.56) 3.89 (2.86)
3 3 31.2 7.4 (11.0) 192 (199) 175.8 (199.0) 4.43 (3.65) 3.79 (2.87)
5 3 31.3 8.3 (11.1) 200 (200) 200.0 (200.0) 3.73 (3.49) 3.85 (2.87)

Table 1: Simulation study replicating Erhardt and Smith (2012). For each dataset a choice
of ε was made under standard ABC so that the accepted sample size (and therefore ESS)
was 200, and the same value was used for lazy ABC. Lazy ABC figures are shown for both
the standard γ̂ estimate and, in brackets, the conservative estimate. The lazy ABC output
includes the pilot run as described in Section 4.2.4, and also includes the tuning time (roughly
120 seconds for the standard approach and 210 for the conservative). Iterations were run in
parallel and computation times are summed over all cores used. For all datasets efficiency
(ESS/time) to 1 significant figure was 0.006 for standard ABC and 0.02 or 0.03 under either
approach to lazy ABC.

time on TBM simulations. As before lazy ABC estimates of π(yobs) differed from those of

standard ABC by no more than 4%. In both cases a post-hoc selection of ε has been used

successfully.

Table 2 shows that under rejection sampling the standard tuning ESS is considerably

smaller than the sample size. This is due to two simulations which are given importance

weights of 10. These have γ̂ values of roughly 10−4 which appears to be an underestimate.

Conservative tuning avoids large importance weights to give an ESS of roughly 200 and

improves the relative efficiency for the same final choice of ε. For importance sampling

conservative tuning also performs better. The reason here is not obvious but may be a

better final selection of L.

6 Discussion

This paper has introduced lazy ABC, a method to speed up inference by ABC importance

sampling without introducing further approximations. The approach is to abandon some

unpromising simulations before they are complete. By using a probabilistic stopping rule
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Standard Lazy Relative
ε Time (103s) Sample size ESS Time (103s) Sample size ESS efficiency

RS standard 2.61 241.4 210 210 22.8 200 139.6 7.0
RS conservative 2.61 241.4 207 207 25.5 200 197.7 9.0
IS standard 2.33 136.4 209 168 61.9 200 165 2.2
IS conservative 2.33 136.4 209 168 51.0 200 162 2.6

Table 2: Simulation study on a spatial extremes dataset with D = 35. Results are shown
for rejection and importance sampling with standard and conservative tuning. The rejection
sampling output was used to create the importance density. The final choice of ε is shown.
For IS the two ε values are equal but there is a small difference for RS. The lazy ABC output
includes the pilot run and the tuning time.

and weighting the accepted simulations accordingly, the algorithm targets exactly the same

distribution as standard ABC, in the sense that Monte Carlo estimates of functions h(θ) and

of the model evidence converge to unchanged values.

Results have been provided on the optimal tuning of the lazy ABC stopping rule and used

to motivate a practical tuning method. This has been demonstrated for a computationally

challenging application where it has produced improvements in efficiency (ESS/CPU time)

over standard ABC of up to 8 times. One case of this application involved multiple stop-

ping decisions. This illustrated two potential uses of lazy ABC: firstly to consider stopping

every simulation based on whether it appears promising, secondly to consider stopping after

particular events which are suspected a priori to indicate unpromising results.

The tuning method is based on estimating the optimal choice of α(φ), (6). The most

difficult part was estimating γ(φ) = Pr (d(S(Y ), S(yobs)) ≤ ε|φ) from pilot run data. Two

approaches to this were described, a standard approach of direct estimation and a conser-

vative approach of estimation using a larger ε value than is of interest for ABC. The latter

approach improves robustness and make estimation simpler at the cost of some inefficiency.

Both approaches performed well in the simulation studies but some improvements are desir-

able. Firstly, estimation of γ(φ) involves extrapolation which may produce inaccurate results.

Secondly, several choices by the user are required, especially for the standard approach. A

more automated approach would be useful for lazy versions of ABC SMC algorithms, where

a new choice of α would be needed for each ε value, or alternatively for lazy ABC algo-
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rithms which adapt α as more simulations become available. It would be of interest to find

suboptimal but robust choices of α addressing these issues.

Lazy ABC with multiple stopping decisions is an extension to the framework of the

main paper and is described in Appendix A. A tuning method is given when the decision

statistics for all stopping decisions are discrete, and also some cases where one decision

statistic is continuous. For more complex cases tuning results are not available. For now it

is recommended to discretise most decision statistics to avoid this difficulty.

Also, Section 3.1 showed that a generalisation to the non-ABC setting, lazy importance

sampling, is possible, and the theoretical results of the paper carry over to this. However

exploratory analysis suggests tuning this in practice is more challenging than lazy ABC. This

is because it is necessary to estimate γ(φ) = E(L̂2|φ) (see Remark 2), and this expectation

can be strongly influenced by the upper tail of L̂|φ which is hard to estimate from pilot run

output. For lazy ABC, L̂ABC|φ is Bernoulli avoiding this difficulty. A related point is that

lazy ABC can be generalised to allow a non-uniform ABC kernel. This gives L̂ABC with a

known upper bound so that estimation of γ(φ) seems feasible.

This paper has concentrated on importance sampling, which is widely used by ABC

practitioners, but the lazy ABC approach can be extended to ABC versions of MCMC

and SMC, which are more efficient algorithms. The tuning results are applicable to SMC

algorithms, but further practical methods are needed, as mentioned above. Further theory

on optimal tuning is necessary for MCMC, although good performance may be possible

with ad-hoc tuning. Examining the connections between lazy ABC and rejection control

(Liu et al., 1998) may also be fruitful, especially to design algorithms in which partial X

simulations are resampled and continued many times.

Acknowledgements: Thanks to Chris Sherlock and Richard Everitt for helpful conversa-

tions, and Robert Erhardt for advice on the ABCExtremes package.
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A Multiple stopping decisions

The lazy ABC framework of Section 3 allows multiple stopping decisions, as follows. As in

that section assume Y is a deterministic transformation of a latent vector X1:p.

Example A1: Multiple stopping decisions Let X = X1:p and α(θ, x) =
∏s

i=1 α
(i)(θ, x1:ti).

Thus, for each 1 ≤ i ≤ s, once simulation of X1:ti has been performed then L̂lazy is set

to zero with a certain probability, in which case no further simulation is necessary. It is

often be useful to let α(i)(θ, x1:ti) = α(i)(φi(θ, x1:ti)). That is, each stopping decision has

associated decision statistics φi.

Example A2: Multiple random stopping times As for Example A1 but with each ti replaced

with a random stopping time variable Ti. This permits stopping to be considered when

various random events occur, without imposing a fixed order of occurrence.

The following alternative characterisation of these examples is useful below.

Lemma 1. For any 1 ≤ i ≤ s, Examples A1 and A2 can be represented as a lazy importance

sampling algorithm with continuation probability α(i)(φi) and

L̂ =


L̂ABC/βi(θ,X) with probability βi(θ,X)

0 otherwise,

where βi(θ, x) =
∏

j 6=i α
(j)(φj).

Proof. The likelihood estimator stated can easily be verified to have the same distribution

as L̂lazy.

It is also helpful to define T̄2i(θ, φ1:s) as the expected time remaining from the calculation

of φi until the likelihood estimate is computed conditional on θ and φ1:s, and T̄2i(φi) =

E[T̄2i(θ, φ1:s)|φi].
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A.1 Tuning

The efficiency estimate of Section 4.2.3 can be used in a multiple stopping decision setting

given a choice of α. It is necessary to update the estimator T̂ given there which is usually a

straightforward task. Sections A.1.1 and A.1.2 describe situations of practical interest where

the optimal form of α can be derived. However in general the problem is challenging, as

illustrated by Section A.1.3.

A.1.1 Discrete decision statistics

Suppose α(θ, x) =
∏s

i=1 α
(i)(φi) where φi(θ, x) takes values in {1, 2, . . . , di} for di finite.

Tuning requires selecting a finite number of α(i)(φi) values to optimise the efficiency estimate,

which is possible by standard numerical optimisation methods. However note that producing

an efficiency estimate as in Section 4.2.3 becomes difficult for large s.

A.1.2 One continuous decision statistic

Suppose α(θ, x) =
∏s

i=1 α
(i)(φi) where φ1(θ, x) is continuous and φi(θ, x) is as in Section

A.1.1 for i > 1. Also suppose there exists u1(φ1) = π(θ)/g(θ), so that this fraction is fully

determined by φ1. Applying Lemma 1, Theorem 2 and Remarks 1 and 2 gives that efficiency

is optimised by

α(1)(φ1) = min

{
1, λu1(φ1)

[
γ1(φ1)

T̄21(φ1)

]1/2
}
, (8)

where γi(φ1) = E [ζ(βi(θ,X))1 {d(S(Y ), S(yobs)) ≤ ε} |φi], ζ(0) = 0 and ζ(x) = x−1 for

x > 0.

In general γ1(φ1) and T̄21(φ1) depend on α(i)(φi) for i > 2 and so must be estimated

several times during the tuning process which is costly. A special case where this can be

avoided is when φ2:p is fully determined by φ1 (and so typically the decision associated with

α1 is guaranteed to occur last). For example this is the situation in the second simulation

study of Section 5.2.
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A.1.3 Multiple continuous decision statistics

Consider the setting of A.1.2 with the modification that every φi(θ, x) is continuous and

there exists a corresponding function ui(φi) = π(θ)/g(θ). The same approach as above gives

equations of the form

α(i)(φi) = min

{
1, λiui(φi)

[
γi(φi)

T̄2i(φi)

]1/2
}
,

for i = 1, . . . , s. The definition of γi involves α(j) for all j 6= i, and T̄2i will also involve many

of these terms. Thus deriving the optimal α(i) functions involves solving a complicated

system of non-linear implicit equations.

B Tuning proofs

All results are proved for the general case of LIS as described in Section 3.1. For lazy ABC

replace L̂ with L̂ABC.

B.1 Proof of Theorem 2

In LIS the importance sampling weight W equals L̂π(θ)
α(φ)g(θ)

with probability α(φ) and zero

otherwise. Hence:

E(W 2) =

∫
E[L̂2|θ, φ, y]π(θ)2

α(φ)g(θ)2
π(φ, y|θ)g(θ)dθdφdy =

∫
ξ(φ)

α(φ)
g(φ)dφ, (9)

where ξ(φ) = E

[
L̂2
(
π(θ)
g(θ)

)2
∣∣∣∣φ] (which equals E

[
L̂ABC

(
π(θ)
g(θ)

)2
∣∣∣∣φ] in the ABC case) and

g(φ) =
∫
π(φ|θ)g(θ)dθ.

The expected time of a single iteration of the LIS algorithm is

E(T )/N = T̄1 +

∫
α(φ)T̄2(θ, φ)π(φ|θ)g(θ)dθdφ = T̄1 +

∫
α(φ)T̄2(φ)g(φ)dφ. (10)
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Note that E(W ) is a constant, so choosing α(φ) to maximise the expression for asymptotic

efficiency in Section 4.1 is equivalent to minimising E(W 2) E(T )/N . Call this problem P .

Consider also the problems P (υ), minimising E(W 2) under the constraint E(T )/N = υ and

P (υ, µ), minimising E(W 2) + µ[E(T )/N − υ], or equivalently

∫ [
ξ(φ)

α(φ)
+ µα(φ)T̄2(φ)

]
g(φ)dφ. (11)

Note that P (υ, µ) is a Lagrange multiplier form of P (υ). Consider only µ > 0. Also, let Υ

be the set of E(T )/N values attainable by some choice of α.

First we consider minimising (11) subject to 0 ≤ α(φ) ≤ 1. This can be done by pointwise

optimisation of the integrand. With α unconstrained the solution is

α∗(φ) = λ

[
ξ(φ)

T̄2(φ)

]1/2

, (12)

where λ = µ−1/2. Also note that α∗(φ) may sometimes be infinite. The derivative of the

integrand with respect to α is negative for α < α∗. Hence if α∗(φ) > 1, the constrained

solution is α(φ) = 1, giving the global solution (5) from the theorem statement.

Substituting (5) into (9) and (10) shows that the resulting values of E(W 2) and E(T )/N

are continuous in λ. Furthermore all E(T )/N values in Υ are attainable by (5) under some

choice of λ. Hence given υ ∈ Υ there is some µ∗ for which the solution to P (υ, µ∗) has

E(T )/N = υ. This must also be a solution to P (υ) since otherwise a superior choice of α for

P (υ) is also superior for P (υ, µ∗). Now choose υ∗ so that the solution to P (υ∗) minimises

E(W 2) E(T )/N . This must be a solution to P since otherwise a superior choice of α for P

is superior to the solution already found for some P (ν).

B.2 Proof of Corollary 1

RW-IS can be seen as a special case of LIS where φ = θ, T̄1(θ) = 0 and T̄2(φ) = T̄ (θ).

Repeating the working above to optimise the choice of α(θ)g(θ) gives the unconstrained

28



solution:

α(θ)g(θ) = λπ(θ)

[
γ(θ)

T̄ (θ)

]1/2

. (13)

(Recall the LIS definition of γ(θ) from Remark 3 and note that the lazy ABC definition in

Corollary 1 can be derived from this.) Various choices of α, such as α ≡ 1, give a solution

which also meets the constraint on α. These all give algorithms which are equivalent to

RW-IS with g(θ) ∝ π(θ)

[
γ(θ)

T̄ (θ)

]1/2

as claimed.
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