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Abstract 

 
Representation error arises from the inability of the forecast model to accurately simulate 

the climatology of the truth.  We present a rigorous framework for understanding this kind of 

error of representation.  This framework shows that the lack of an inverse in the relationship 

between the true climatology (true attractor) and the forecast climatology (forecast attractor) 

leads to the error of representation.  A new gain matrix for the data assimilation problem is 

derived that illustrates the proper approaches one may take to perform Bayesian data assimilation 

when the observations are of states on one attractor but the forecast model resides on another.  

This new data assimilation algorithm is the optimal scheme for the situation where the 

distributions on the true attractor and the forecast attractors are separately Gaussian and there 

exists a linear map between them.  The results of this theory are illustrated in a simple Gaussian 

multivariate model.   

 

 

 

1. Introduction 

 

Representation error in this manuscript will refer to the impact of the unavoidable 

misrepresentation of complex atmospheric flows by the inadequacies of the forecast model on 

the data assimilation.  This misrepresentation of complex fluid flows arises for the most part 

from the inability of the forecast model, using the relatively coarse grids customarily employed 

in numerical weather prediction, to resolve small-scale properties of the boundary conditions as 

well as other small-scale properties of the turbulent flows in the interior of the fluid.  This 

misrepresentation of the flow leads to an incompatibility between the observations of the true 

state, which see these small-scale processes, and the relatively coarser states achievable by the 

forecast model.  The result of this incompatibility is that the forecast model can effectively 

consider the states implied by the observations to be inconsistent with its own attracting 

manifold, and therefore either ignore some or all of the information in the observations or react 

pathologically to them.  

Recognition of this incompatibility between the observations of the true state and the 

states achievable by the forecast model goes back at least to Petersen and Middleton (1963) with 

more thorough and modern treatments in Daley (1983), Mitchell and Daley (1997a,b), Liu and 

Rabier (2002), Janjic and Cohn (2006) and Frehlich (2006).  This body of work has correctly 

identified that because of the incompatibility mentioned above performance gains in the quality 

of the analysis can be made by inflating the observation error variances and accounting for the 
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implied correlations between observations owing to unresolved processes.  In addition to these 

more theoretical works there have recently been attempts at estimating the structure of 

representation error from observational data and numerical model output (e.g. Richman et al. 

2005, Oke and Sakov 2007, Frehlich 2008, Waller et al. 2013).  This work has shown that there 

are a number of ways to see this error of representation in data.  For example, the standard 

observations of temperature and humidity as well as aircraft measurements of turbulence have 

been compared with forecasts and shown to contain a component consistent with errors in 

representation.  

This paper intends to conjoin this past work under a single unifying theme.  The basic 

idea is to extend the Kalman (1960) filter to explicitly account for the fact that the climate 

(attracting manifold) of the Earth’s atmosphere is distinct from that of the forecast model.  To 

understand how we will accomplish this it will prove illustrative to review Kalman’s original 

setup.  In the work of Kalman the flaws in the model were accounted for using a white noise 

source, viz. 

 
1k k k

f f

+ = +x Mx w ,     (1.1) 

where M is a linear model, 
k

fx is the forecast at time k and kw is white noise drawn from 

( ),N 0 Q .  The idea behind (1.1) is that the model M is not entirely adequate at producing the set 

of states that correctly describes all the potential true states (one of which is being observed by 

the observational instruments).  In terms of the problem at hand, we may interpret (1.1) as 

implying that the forecast model’s climatology (attracting manifold) is not sufficient to 

encompass the complete set of potential true states.  The inclusion of the white noise source is 

then there to enhance the spread of states in state space (with Q chosen large enough to more 

than fill this gap between the true and forecast attractors) such that this noisy forecast model does 

encompass the complete set of potential true states.  In other words, the action of this noise is 

such that the forecast model’s attracting manifold, which is distinct from that of the true 

attracting manifold, is in essence “blurred” in phase-space until the states available to (1.1) 

encompasses the states on the true attracting manifold and many others for that matter.     

There are at least two downsides to this choice to render the model stochastic.  The first is 

that while probability forecasts using this noisy model now correctly assign non-zero probability 

to states on the true attracting manifold other forecasts from (1.1) will assign non-zero 



 2

probability to states off the true attracting manifold, which of course implies that implausible 

events are assigned a non-zero probability of occurrence. The second issue with this noisy model 

is that in fluids as complex as the general circulation of the atmosphere it is well-known that 

choosing the character of this noise is difficult and improper choices may lead to issues with the 

physical realism of the fluid evolution from the noisy forecast model (e.g., Hodyss et al. 2014).   

While we believe that stochastic modeling can be useful the tack taken here is to explore 

what happens when one does not add noise to the model but addresses the climatology (attractor) 

differences between the true physical system and that of the forecast model through the use of 

maps between distributions on each attractor.  We will derive the best, linear unbiased estimate 

(minimum error variance) of the state on the forecast model attractor given observations of 

states on the true attractor.  This new data assimilation method will be optimal when the 

distributions on the true attractor and the forecast attractor are Gaussian and the map between 

them is linear.  By deriving the data assimilation method that produces the best state estimates on 

the forecast model attractor we will see the error of representation arise as a natural consequence 

of a specific form of attracting manifold difference.  

Finally, we would like to point out here that one common viewpoint for the connection 

between the data assimilation process and the forecast process is the expectation that the most 

accurate forecast arises from the most accurate estimate of the true state.  This desire for the data 

assimilation algorithm to produce an estimate that is close to the true state is conceptually easy to 

rationalize when the model is perfect.  However, when the model is flawed creating a data 

assimilation algorithm that produces an accurate estimate of the true state is likely to mean that 

this state is in some way incompatible (e.g. unbalanced) with the flawed forecast model.  This 

notion that the true state might not be the best initial condition for the flawed forecast model has 

lead us to choose to develop a data assimilation system that attempts to produce a state estimate 

on the forecast attractor.  The estimation of the true state is then one relegated to post-processing 

of the resulting forecasts.  More discussion of the ramifications of this choice will be made 

throughout the development and in the conclusions.     

In section 2 we derive the general theory for this new form of data assimilation algorithm.  

In section 3 we apply the theory of section 2 to representation error in the form of a smoothing 

operator that describes the differences between the true and forecast attractors.  Section 4 applies 

the theory of section 3 to a multivariate Gaussian model to illustrate the basic ideas in their 
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simplest forms.  Section 5 closes the manuscript with a summary of the results and a discussion 

of the conclusions.   

 

 

2. The Two Attractor Problem 

 

In this section we formulate a general theory for data assimilation in the situation where 

the observations are of states in one subset of state space but the forecast model resides in 

another.  Our basic assumption throughout will be that our goal in such a situation is to develop a 

data assimilation method that will provide the best estimate of the state in the region of state 

space in which the forecast model resides.  As we go we will illustrate the theory of this section 

using a very simple, example problem that we believe illustrates the basic ideas in their simplest 

form.        

 

a) The True Posterior 

We imagine the true state, xt, to be an N-vector and that it is drawn from a climatological 

distribution whose probability density function (pdf) we label ( )tρ x .  By “climatological” we are 

referring to the pdf we would obtain if we ran the true model for a very long time, discretized 

state space, and counted the number of times the state entered each cell of our discretization.  In 

the limit as this true model simulation becomes very long and the volume of each cell of our 

discretization of state space becomes very small we obtain this climatological pdf.  We define 

from this climatological pdf the set �� of states tx  with the property that ( ) 0tρ >x  and will 

subsequently refer to the set �� as the true “attracting manifold” of the physical system under 

consideration.  Therefore, the set �� consists of all the states in which the true state at any point 

in the future may be found.   

We simply use the phrase “attracting manifold” throughout this manuscript as a 

convenient way to refer to the portion of state space in which the true physical system resides.  

We emphasize however that the following theory does not require the existence of a compactly 

supported region in state space with the properties normally associated with attracting manifolds 

as we will apply the theory to example problems which do not technically have this feature.  
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More discussion of this set and its relationship to the “attracting manifold” of the forecast model 

can be found in the next sub-section. 

We obtain a sequence of p-vector observations,
j t o= +y Hx ε  that were taken at various 

times j = 1, 2, …, J.  The object H is a vector-valued function and, for simplicity, will be 

assumed to be a linear matrix operator (p x N) with the instrument errors drawn from

( ),o iNε 0 R� .  We emphasize however that the results presented below will not depend on a 

linear observation operator.  For simplicity we will assume that both the instrument error 

variance, iR , and the number of observations, p, per assimilation time, j, are fixed constants.  

Because we have observations at various times, j, this implies that the state must also be 

integrated through time.  In the interest of simplicity of presentation we do not attach a label to 

tx that denotes its relevant time j.  However, because we will refer to the “filtering” data 

assimilation problem throughout, this should cause no confusion as tx  will always be considered 

to be at the time of the latest set of observations.     

We begin by assimilating the j = 1 set of observations using Bayes’ rule, viz. 

 ( ) ( ) ( )1 1 1t t tCρ ρ ρ=x y y x x ,    (2.1) 

where C1 = ( )11 ρ y .  The density ( )1 tρ y x  describes the conditional distribution of 

observations given a particular value of the state on the true attractor (often referred to as the 

observation likelihood).  The interpretation of the act of employing Bayes’ rule in (2.1) is simply 

as a “windowing” function through the observation likelihood that acts to reduce the view of the 

climatological distribution to a portion of �� in the vicinity of the observation.  This is important 

because, under the assumption that the observation likelihood is Gaussian, which implies that

( )1 tρ y x  > 0 for all values of ( )1,tx y , this means that the act of data assimilation does not 

change the states in �� but simply re-calculates their relative probability of being the true state.  

We will use this fact later in the next sub-section. 

By repeating the indicated operations in (2.1), and using the Fokker-Planck equation to 

propagate the resulting distributions forward in time between each set of observations, we may 

repeat the process in (2.1) up to the present time, j = J, for which we have observations 
Jy  such 

that: 
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 ( ) ( ) ( )1t J J J t t JCρ ρ ρ −=x Y y x x Y ,    (2.2) 

where the symbol 
jY  denotes the set of all observations at all times up to and including the j

th
 set 

and the ( )11J J JC ρ −= y Y  is simply the normalization. The density ( )1t Jρ −x Y  will hereafter be 

referred to as the “prior.”  The density ( )t Jρ x Y  describes the conditional distribution of all 

possible true states given all observations including the present set; this density will hereafter be 

referred to as the “posterior.”   

  As alluded to in the beginning of this section we construct here a simple data 

assimilation example that we believe will illustrate the basic properties of the more complex 

concepts in the remainder of this section in the simplest way.  To this end we assume the true 

states to be characterized by a two-vector whose climatological distribution is illustrated in 

figure 1a.  This distribution is Gaussian with a variance of 3 on each variable and a covariance 

between the two variables of 1.  Note that the set �� in this case is the entire plane as a Gaussian 

vanishes nowhere.  An observation of only one of the variables is made and defines an 

observation likelihood with instrument error variance equal to 1 (Figure 1b).  Calculating 

equation (2.1) from the climatological distribution and observation likelihood for an observation 

of y1 = 1 obtains the posterior in figure 1c.  For simplicity, we further assume that the true model 

that is propagating the states forward in time is simply the identity.  This implies that the 

posterior from (2.1) is simply the prior for the next assimilation step in (2.2) and the result of this 

calculation with y2 = 3 is plotted in figure 1d.  One can see in figures 1c and 1d that the 

assimilation of the observations has reduced the variance greatly for the observed variable but 

less so for the unobserved variable.  In the next sub-section we will return to this example and 

illustrate its relationship to the forecast posterior.      

 

b) The Forecast Posterior 

Because of our fundamental inability to construct an exact model of the evolution of the 

general circulation of the atmosphere, the posterior distribution described by (2.2) can never be 

produced by a data assimilation algorithm.  This is true for several reasons.  First, even if we 

could give the forecast model the true state it would not produce the correct forecast evolution 

because of incorrectly specified parameters and altogether missing physics.  Second, what 

exactly is the appropriate true state to give the forecast model as an initial condition is 
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ambiguous given the fact that this model can only represent states that are “smoothed”, or said 

another way, truncated with respect to the truth (Frehlich, 2011).  More on this notion will be 

presented in sections 3 and 4. 

Because the forecast model cannot represent the true attractor, we begin by defining the 

state on the forecast attractor, xf, as an M-vector and hypothesizing that it too is drawn from a 

“climatological” distribution whose pdf we label ( )fρ x .  We emphasize that the “climatology” 

here is different from that of the true distribution denoted above and results from running the 

forecast model for a very long time, discretizing state space, and counting the number of times 

the forecast state enters each cell of our discretization.  We again define from this forecast 

climatological distribution a new and distinct set of states �� with the property that ( ) 0fρ >x  

and will subsequently refer to the set �� as the “attracting manifold” of the forecast model’s 

representation of the physical system under consideration.   

Next, we hypothesize the existence of a map (function) over �� � ��.  We do this by 

relating the states on the forecast attractor and the states on the true attractor through a vector-

valued function: 

 ( )f t=x F x .      (2.3)  

The function, F, represents a mapping from the true attracting manifold to that of the forecast 

model.   We emphasize that this is a mapping from one state-space (��) to another (��) and not a 

direct relationship between today’s truth and today’s forecast, which because of the noise in the 

observations could not possibly satisfy (2.3).  We will assume that this function, F, has the 

property that for every tx  in �� there is a corresponding element of 
fx  in ��.  However, we will 

not in general assume that the converse is true and therefore we will discuss, F, as lacking an 

inverse, but we will also examine specific situations where this function does have an inverse.  

Please see figure 2.     

From a numerical weather prediction perspective we view the equation (2.3) much like 

that of the algorithms in the ensemble post-processing and bias-correction literature (e.g. Glahn 

and Lowry 1972, Raftery et al. 2005) in which climatological information is used to build 

relationships between forecasts and observations.  Additionally, we view equation (2.3) as 

having both a practical as well as a pedagogical application.  From a practical perspective one 

may wish to deduce the relationship (2.3) from some climatological archive of forecast-truth 
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pairs in order to implement the data assimilation algorithm discussed in this manuscript.  By 

contrast, and from a pedagogic perspective, one may wish to simply assert a particular 

relationship in (2.3) and subsequently use the framework presented below to understand its 

implications.  This last tack will be the one illustrated in this manuscript as we will focus in 

sections 3 and 4 on a linear map in (2.3) that is to be interpreted as a smoothing operator as this 

was used in previous work in the representation error literature (e.g.,  Liu and Rabier 2002, 

Waller et al. 2013).  In a sequel to this manuscript we will illustrate estimation techniques for F 

and the results of its application to different cycling data assimilation experiments.      

The equation (2.3) allows for the definition of several new densities in this problem that 

will prove to be useful tools in the subsequent analysis.  Equation (2.3) implies that the density 

that describes the distribution of states on the forecast attractor given a state on the true attractor, 

which we will refer to as a conversion density, is the Dirac delta function: 

 ( ) ( )( )f t f tρ δ= −x x x F x .     (2.4) 

This is because given a particular true state 
tx there is one and only one forecast state

fx  that it is 

related to and hence there is no uncertainty in the position on the forecast attractor given a 

particular realization of the state on the true attractor.  It is important to realize that (2.3) implies 

that while ( )f tρ x x has zero variance that in general the converse conversion density ( )t fρ x x  

has a non-zero variance because F does not necessarily have an inverse.  Last, the assumption 

that the relationship between the two attractors is of the form (2.3) allows for the subsequent 

simplification in (2.4) that the conversion density is simply the Dirac delta function, but this 

assumption is technically not required by the following theory and is largely used to allow 

greater focus on the relationship between the lack of an inverse in (2.3) and the representation 

error.     

Bayes’ rule tells us that the two conversion densities discussed above can be related to 

each other through their associated climatological distributions as 

  ( ) ( ) ( ) ( )f t t t f fρ ρ ρ ρ=x x x x x x .    (2.5) 

We may understand a little bit about the structure of the converse conversion density ( )t fρ x x

by solving (2.5): 

 ( ) ( ) ( )( ),t f t f f twρ δ= −x x x x x F x ,    (2.6a) 
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where 

  ( ) ( )
( )

,
t

t f

f

w
ρ

ρ
=

x
x x

x
.     (2.6b) 

First, equation (2.6a) shows that when F does not have an inverse, the density ( )t fρ x x  is a 

weighted collection of Dirac delta functions on the surface defined by fixing 
fx and determining 

the collection of states tx for which ( )t f=F x x .  Note that because F only produces states on �� 

we never need evaluate ( ),t fw x x  for values of 
fx for which ( ) 0fρ =x .  Second, as discussed in 

sub-section 2.a, because the observations in the data assimilation cycles from times j = 1, 2, …, J  

do not change the set ��, and the map (2.3) is valid for all �� and  ��, we may apply the map 

(2.3), and its corresponding conversion densities, to all data assimilation cycles, j.      

To illustrate the properties of these conversion densities we relate these densities to the 

two-vector example of sub-section 2.a.  Here, we define a forecast (low-resolution) state to be a 

scalar that arises from a smoothing operator that is an arithmetic mean: [ ]0.5 0.5=F .  We use 

this operator in (2.3) to define the forecast (scalar) states that are obtained from the high-

resolution true (two-vector) states.  Equation (2.4) is plotted in figure 3a for an example high 

resolution state of [ ]1 3
T

t =x , which implies a low-resolution state of 2fx = because 2t =Fx  

in this case.  Note that the delta function in figure 3a is placed at 2fx = and has amplitude 10.  

The amplitude of 10 arises because we have defined integration numerically here as the 

trapezoidal rule.  For the trapezoidal rule the Dirac delta function is inversely proportional to the 

grid resolution that we are using to represent these densities.  Here we have used a grid 

resolution of 0.1, which implies that the Dirac delta has amplitude 10.  As described in the 

previous section, while [ ]( )1 3
T

f txρ =x  is the Dirac delta function the converse conversion 

density ( )t fxρ x  is not.  As an example, the converse conversion density, ( )1t fxρ =x , has 

non-zero probability on a line defined by 1t =Fx  weighted  by the climatological distributions 

through w and is shown in figure 3b.   

These conversion densities are useful because they allow one to convert between the true 

and forecast densities.  For example, the prior density on the attracting manifold of the forecast 

model is: 
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 ( ) ( ) ( )1 1f J f t t J tdρ ρ ρ
∞

− −
−∞

= ∫x Y x x x Y x .    (2.7) 

The equation (2.7) describes the distribution of forecasts 
fx  that obtains from sampling 

( )1t Jρ −x Y for tx and using these samples of tx  in (2.3) to obtain samples of 
fx .  We may apply 

equation (2.7) to our simple example problem to find the prior distribution of forecasts for the 

 j  = 2 cycle (Figure 4b).  Recall that the prior distribution for our simple example problem is the 

previous (j  = 1) posterior, ( )1 1f yρ =x .  Note that the mode of this low-resolution prior is not 

the mode of either variable in the high-resolution prior.  In fact, the mode of the low-resolution 

prior is the arithmetic mean of the mode of each high-resolution variable in the high-resolution 

prior.     

The conversion densities are central to our development because through them we are 

able to build one of the most important components of this work.  These conversion densities 

allow us to show that the forecasts have their own posterior density defined as  

 ( ) ( ) ( )f J f t t J tdρ ρ ρ
∞

−∞

= ∫x Y x x x Y x ,    (2.8a) 

which, upon using (2.2) and (2.4), implies 

 ( ) ( ) ( )1f J J J f f JCρ ρ ρ −=x Y y x x Y ,    (2.8b) 

where ( )J fρ y x  is the conditional density for the observation conditioned on the forecast state 

(which we shall refer to as the forecast observation likelihood) and ( )f Jρ x Y  represents the 

density that describes the conditional distribution of forecast states given the entire observational 

record.  This notion that the states on the forecast attractor have a posterior density that has been 

conditioned upon observations of the state on a different attractor is a unique aspect of this work 

and will allow us to explicitly show how the difference in the two attractors leads to an error of 

representation. 

Equation (2.8b) shows that the data assimilation procedure, starting from the 

climatological distribution and proceeding for J assimilation steps, applies to the forecast model 

in so far as one simply replaces the true states, 
tx , with the forecast states, 

fx , in equations (2.1) 

and (2.2) to define Bayesian data assimilation on the forecast attractor.  It is however important 
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to recognize that while (2.8b) looks superficially similar to (2.2) it is in fact quite different.  This 

is true for two reasons: 1) the data assimilation procedure for the forecast model begins with the 

forecast climatological distribution, which may be significantly different from the true 

climatological distribution, and 2) the forecast observation likelihood is actually very different 

from the true observation likelihood.  This difference between the true observation likelihood 

and the forecast observation likelihood will be described next.  

     

c) The Forecast Observation Likelihood 

Central to understanding the forecast posterior distribution, and the manifestation of 

representation error within it, is the forecast observation likelihood.  The observation likelihood 

in (2.8b) obtains from application of the chain rule of probability through the use of the 

conversion density as 

 ( ) ( ) ( )J f J t t f tdρ ρ ρ
∞

−∞

= ∫y x y x x x x .    (2.9) 

An important difference between ( )J fρ y x  and ( )J tρ y x is that while the mean of ( )J tρ y x is 

the true state ( )tHx and its variance is the instrument error, Ri, this is not true of ( )J fρ y x .   

The mean of ( )J fρ y x  is, after use of (2.9): 

 ( ) ( )f f J J f J cdρ
∞

−∞

= =∫y x y y x y Hx ,    (2.10a) 

 ( ) ( )c f t t f tdρ
∞

−∞

= ∫x x x x x x ,     (2.10b) 

where we will explicitly write this as a state-dependent bias (from the perspective of the forecast 

model attractor and its associated prior) as 

 ( )f f f f= +y x H x b ,     (2.11) 

with this bias defined as  

 
c f f= −b Hx H x      (2.12) 

and 
fH  (p x M) is the observation operator in the space of the forecast model.  At this point we 

will leave the definition and the distinction between H and 
fH  undefined.  We emphasize here 
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however that the situation we will examine is one in which the difference between H and 
fH  is 

because 
fH  operates on a truncated state-vector and is not because 

fH  has been approximated 

or created in error.  Nevertheless, we will see subsequently that this difference between these two 

observation operators will turn out to be a central feature of the analysis and therefore we shall 

return to discuss their differences at several points below.     

Equation (2.10) shows that the observation conditioned on the forecast is biased with 

respect to the truth (because the observation is of an object on the true attracting manifold and 

not on the forecast attracting manifold) and that bias is described by the mean of the conversion 

density.  In addition, the variance about the mean state, ( )f fy x , is 

 
( ) ( )( ) ( )T

f f J f J f J f J

T

i c

dρ
∞

−∞

= − −

= +

∫R x y y y y y x y

R HP H

,   (2.13) 

where 

 ( ) ( )( ) ( )T

c f t c t c t f tdρ
∞

−∞

= − −∫P x x x x x x x x ,   (2.14) 

is the covariance matrix of the conversion density.  The equation (2.14) carries the information 

that relates the forecast model states to the true attracting manifold.  The term T

cHP H is the 

manifestation of the representation error in the observation covariance matrix and shows that 

representation error occurs when the function F does not have an inverse.  To see this note that 

when the function F has an inverse then w = 1 and     

 ( ) ( )( ) ( )( )1

t f f t t fρ δ δ −= − = −x x x F x x F x ,   (2.15)  

which clearly has a variance of zero and hence (2.14) would vanish.  Furthermore, note that if we 

use (2.15) in (2.10) then we obtain ( )1

f f

−=y HF x , which is biased from the perspective of the 

forecast attractor, where that bias is ( )1

f f f

−= −b HF x H x .  We may however remove this bias 

by defining the observation operator in the space of the forecast model as, 
1

f

−=H HF .  This 

definition of the forecast observation operator is novel as it implies that we extend our view of 

what an observation operator does.  The observation operator, 
1

f

−=H HF , implies that the 

forecast observation operator should include a “bias” correction for the particular forecast model 
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that we are using.  In section 4, this definition of the forecast observation operator will be 

generalized to linear equations (2.3) that do not contain an explicit inverse and subsequently 

shown to be the proper way to account for representation error.  In the meantime, however, we 

will maintain the general form for 
fH  that we have been using thus far.  

In order to understand the forecast observation likelihood better we apply our example 

problem to equation (2.9) to find the low-resolution observation likelihood.  This low-resolution 

observation likelihood is plotted in figure 4a as a function of observation and conditioned on the 

low resolution state of 1fx = .  Because the observation is actually of the high-resolution state 

the low-resolution observation likelihood is biased (with respect to the low-resolution states), 

which can be seen by the mode of the distribution not being centered on the low-resolution state 

of 1fx = .  It is actually centered at 1 2fx = , where this bias may be seen as coming from the 

bias in the forecast climatological distribution whose mean is at  1 2fx = − .  The forecast 

observation likelihood has a variance of 2, of which ½ of this variance (recall that the instrument 

error is 1) can be attributed to representation error and equation (2.14).  Finally, the low-

resolution posterior (2.8a,b) for the observation j = 1and 2 cycles are plotted in figure 4b.  The 

posterior for the j = 1 cycle has its mode at 1/2 and the mode of the posterior for the j = 2 cycle is 

at 1.2.  Again, the mode at each cycle is located at the arithmetic mean of the location of the 

modes in the true (high resolution) posteriors.   

 

 

d) Data Assimilation 

Because we are interested in doing data assimilation with these concepts we will now 

derive the minimum error variance estimate of a linear estimator on the forecast models attractor, 

which, in this context, is the Kalman filter (Kalman 1960) for the states on the forecast attractor.  

This formula is derived by minimizing the trace of the expected posterior forecast covariance 

matrix about a linear estimator.  The expected posterior forecast covariance matrix may be 

written as: 

    ( )( ) ( ) ( )1

T

a f a f a f J f J J Jd dρ ρ
∞ ∞

−
−∞ −∞

= − −∫ ∫P x x x x x Y x y Y y ,  (2.16) 
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where the analysis update equation, whose “error” variance is being measured, takes the form of 

a linear estimation equation 

 
a f

 = + − x x G v v .     (2.17)  

where 

 ( ) ( ) ( )1 1f f f J f t t J td dρ ρ
∞ ∞

− −
−∞ −∞

= =∫ ∫x x x Y x F x x Y x ,   (2.18) 

The overbar on 
aP in (2.16) is there to make clear that this is the expression for the expected 

posterior covariance matrix as it has been averaged over all the observations (Please see Hodyss 

and Campbell (2013) for further discussion).  The innovation in (2.17) is
J f f= −v y H x , which 

we emphasize uses the observation operator in the space of the forecast model. The expected 

innovation, v , in (2.17) is there because the observations with respect to the forecasts are 

biased because the observations are taken on the true attracting manifold.  This de-biasing of the 

innovation in (2.17) is critical to get the data assimilation to put the analysis at the center of 

( )f Jρ x Y  and therefore the posterior distribution on the desired forecast attractor.   

It is important to realize that while the quantities derived in (2.10) through (2.13) are 

interesting descriptions of the corresponding densities, they are in fact not the ones that would be 

used in a data assimilation algorithm.  This is because as shown in (2.16) those expressions need 

to be averaged over the forecasts in the derivation of the update equations.  This averaging for 

(2.10) would take the form: 

 ( ) ( )1f f f f J f f fdρ
∞

−
−∞

= = +∫y y x x Y x H x b ,    (2.19) 

where  
t f f= = −b v Hx H x  and  

 ( )1t t t J tdρ
∞

−
−∞

= ∫x x x Y x .       (2.20) 

In addition, the observation error variance that would be used in a data assimilation 

algorithm is obtained from 

 ( ) ( )1f f f f J fdρ
∞

−
−∞

= ∫R R x x Y x ,    (2.21) 
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Note that the result of the integration in (2.21) is an observation error variance that is not state-

dependent.  The derivation of the Kalman gain requires the use of an observation error 

covariance matrix that is the result of a weighted average over all possible observation error 

covariance matrices and therefore cannot depend on the state. 

 Equation (2.21) is interesting because we may use (2.13) in (2.21) to obtain: 

   ( )1

T

f i c f J fdρ
∞

−
−∞

= + ∫R R HP H x Y x ,    (2.22a) 

where 

 ( )1

T T T T T

c f J f t f f f f fb fb f bbdρ
∞

−
−∞

= − − − −∫ HP H x Y x HP H H P H H P P H P ,  (2.22b) 

  ( )( ) ( )1

T

t t t t t t J tdρ
∞

−
−∞

= − −∫P x x x x x Y x ,    (2.22c) 

 ( )( ) ( )1

T

f f f f f f J fdρ
∞

−
−∞

= − −∫P x x x x x Y x ,   (2.22d) 

 ( )( ) ( )1

T

fb f f f J fdρ
∞

−
−∞

= − −∫P x x b b x Y x ,    (2.22e) 

 ( )( ) ( )1

T

bb f J fdρ
∞

−
−∞

= − −∫P b b b b x Y x .    (2.22f) 

Equation (2.22b) shows that representation error is the difference between the true covariance, 

the covariance of the forecasts and the bias, and the covariance matrix of the state-dependent bias 

all mapped to observation space. 

The steps required to perform the minimization of the trace of (2.16) are well known, can 

be found in Hodyss (2011), and will not be repeated here.  The result of this minimization is that 

the gain matrix, G, can be written in two equivalent ways: 

 
1

1

T T

ft t i

−
 = + G P H HP H R ,     (2.23a) 

 
1

2

T T T T

f f fb f f f f fb fb f bb f

−
   = + + + + +   G P H P H P H H P P H P R ,  (2.23b) 

where 

 ( )( )( ) ( )1

T

ft t f t t t J tdρ
∞

−
−∞

= − −∫P F x x x x x Y x ,   (2.24) 
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 T T

ft f f fb= +P H P H P .     (2.25) 

The first gain matrix, 1G , uses information from the true attractor that is subsequently mapped 

back to the forecast attractor through the covariance between the states on the two attractors, ftP .  

This version of the gain is most similar to the traditional Kalman gain whereby the numerator 

relates the (true attractor’s) observation space to the state-space to be updated (forecast attractor) 

using the covariance (2.24).  This version of the gain matrix is of course impossible to implement 

in practice as it requires use of the true prior distribution.       

The second gain matrix, 2G , is novel and only uses the information on the forecast 

model attractor along with the function F to infer the relationship between the true and the 

forecast attractors.  This second gain matrix has two terms in its numerator.  The first term is the 

standard term that maps the observation space to the state space to be updated, but totally from 

within the forecast attractor.  The second term is new and accounts for the possibility that on the 

forecast attractor there is no covariance between the observation space and state space to be 

updated but, because the observation is actually of a state on the true attractor and there may be a 

covariance between the true attractor and the forecast state-space to be updated, there should in 

fact be a correction at that location.  This new term is shown in (2.25) to be precisely the 

difference between the forecast state-space/true observation-space covariance (
T

ftP H ) and the 

forecast state-space/forecast observation-space covariance ( T

f fP H ).  Equation (2.25) shows that 

the numerators of (2.23a) and (2.23b) would be identical if the forecast-bias covariance matrix, 

fbP , would vanish.  In section 4 we show how to choose the forecast observation operator to 

eliminate this forecast-bias covariance matrix.  

Last, it is important to realize that the gain matrices (2.23a,b) when used in (2.17) do not 

in fact provide an estimate of the true state on the true attractor.  The gain matrices (2.23a,b) 

when used in (2.17) find the state estimate that is closest (in the sense of the function F and in 

mean-square) to the forecast that obtains from mapping the truth through equation (2.3).  Hence, 

the gain matrices (2.23a,b) push the state estimate from the true attracting manifold onto the 

forecast attracting manifold and is actually likely to push the state estimate further from the 

observations than it would have been if we had not altered the numerator and denominator of the 

gain matrix to account for this error in representation.  The benefit from using these new gain 
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matrices is therefore not their distance from the true attractor but actually the fact that they 

produce a state estimate near to the forecast attractor, which is likely to produce a better, and 

more balanced, forecast.   

 

 

3. Smoothing Operators 

  

Previous work in the representation error literature has examined the situation where the 

relationship between the states being observed by the observational instruments and that 

produced by the forecast model are related by a smoothing operator (e.g. Mitchell and Daley 

1997a,b, Liu and Rabier 2002, Waller et al. 2013).  Following this work we will assume that the 

forecast model resolution is coarse as compared to the true model resolution, i.e. M N< .  In 

addition, we will assume the function F is linear but we make no assumptions on the shape of the 

prior distributions on either attractor. 

The function F will be assumed to be a linear matrix operator that acts to “smooth” the 

true state to the resolution of the forecast model, viz. 

    
f t=x Sx ,      (3.1) 

where S is an M x N matrix whose singular value decomposition results in 

 
1 2 T =  S U Λ 0 V ,     (3.2) 

with the left singular vectors contained in U (M x M), right singular vectors in V (N x N), Λ (M x 

M ) the diagonal matrix of singular values, and 0 [M  x (N-M)] the zero matrix.  The bracket in 

(3.2) is a truncation operator and along with Λ , which we assume to be either constant (white) 

or steeply sloped (red), we view as a “smoothing” operator.  We attach to this notion of 

“smoothing” the philosophy prevalent in numerical modelling (e.g. Lilly 1962) in which forecast 

model output is assumed to represent grid-cell averages of the true state around each nodal point 

of the model’s grid representation of the spatial domain.  Note that the statement (3.1) states that 

the only difference between the forecast and the truth is through the smoothing of that state, 

which ignores the fact that a truncated model will differ in its cascades of energy and enstrophy 

(i.e., the nonlinear interaction between scales and their subsequent evolution).   
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Because S is M x N and M N< , the matrix S will not generally have an inverse.  This 

has important implications for the structure of ( )t fρ x x  as it implies that there exists a 

hyperplane defined by all of the states,
tx , that satisfy (3.1) for a given forecast state 

fx .  Along 

this plane, ( )t fρ x x  has non-zero probability and this results in a non-zero variance of the 

converse conversion density, which as shown in equation (2.14) leads to the error of 

representation.  An explicit example of ( )t fρ x x  that had non-zero variance was presented in 

figure 3 and in this case one could see in that figure that the hyperplane alluded to above was 

reduced to a line in the two-dimensional plane of tx . 

The smoothing operator in (3.2) will lead to a bias in the observation mean (2.19).  This 

bias leads to the expected innovation being 

   ( )f t= = −v b H H S x .     (3.3) 

The bias results from the difference between the true prior mean and the “smoothed” one 

obtained after use of (3.1).   

Similarly, the use of (3.1) in the gain matrix, G, (2.23a,b) obtains: 

 
1

1

T T

t t i t

−
 = + = G SP H HP H R SG ,    (3.4a) 

 
1

*

2

T T

f f fb f f f f

−
   = + +   G P H P H P H R ,    (3.4b) 

where tP is the covariance matrix of the true prior,  

 T

f t=P SP S ,      (3.5a) 

 ( )Tfb t f= −P SP H H S ,     (3.5b) 

 ( ) ( )Tf i f t f bb= + − − −R R H H S P H H S P .    (3.5c) 

 * T T T T

f f fb fb f bb f i t f f f= + + + = + −R H P P H P R R HP H H P H .   (3.5d) 

In (3.4a) the gain matrix Gt , which is the true gain matrix for the true attractor, is mapped into 

the forecast space through application of the smoothing matrix S.  In (3.4b) the gain matrix is 

calculated using only quantities known from the forecast distributions and the matrix S.  The 

quantity 
*

fR is an abstraction of the observation error covariance matrix to include all the terms 

except the forecast covariance matrix in observation space in the denominator of (3.4b).  We will 
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refer to this quantity as the effective observation error covariance matrix.  The effective 

observation error covariance matrix reduces to the sum of the instrument error and the difference 

between the true and forecast covariance matrices in observation space.  Note that the difference 

between the effective observation covariance matrix, 
*

fR , and the actual observation covariance 

matrix, fR , is entirely a result of the matrices 
fbP  and 

bbP .  Given (3.1) and (3.2) it may be 

shown that the ( ) ( )t ftrace N trace M≥P P and therefore the diagonal of 
*

fR  is equal to or 

greater than the instrument error, iR .  This fact about smoothing matrices of the form (3.2) 

implies that high-resolution models should as a general rule have greater variance than low-

resolution models. 

This matrix 
*

fR  is important because it makes the connection between the Kalman gains 

G1 and G2.  The gain matrix (3.4a) operates on the same innovation as the gain matrix (3.4b).   

This implies that the innovation variance in the denominator, as calculated both ways, must be 

equal, viz. 

 *T T

f f f f t i+ = +H P H R HP H R .    (3.6)  

This relationship may be proven by using (3.5d) in (3.6).  This shows that if we define the error 

of representation as a property of the co-variance matrix of the forecast observation likelihood 

then one cannot actually deduce it straightforwardly from the innovation variance (e.g., 

Hollingsworth and Lönnberg 1986, Desroziers et al. 2006).  The object that can be deduced 

directly from the innovation variance is 
*

fR  and not fR .  More discussion of the differences 

between 
*

fR  and fR  will be presented in section 4. 

 

 

4. Gaussian Statistics 

 

In this section we add to the development of section 3 the assumption of Gaussianity to 

the climatological distributions and linearity in the true and forecast model evolution equations.  

This implies that the prior distributions of both the forecast and true systems must also be 

Gaussian.  It is important to point out that the assumption of Gaussian error statistics in the 
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climatological distributions and linear error evolution implies that the sets �� and  �� are no 

longer bounded in state space as is implied by figure 2 but now extend to include all possible 

states in their domain.   

 

a) Theory 

A simple way to construct a Gaussian problem that is amenable to analysis is through the 

use of a discrete Fourier series representation.  To this end we assert a Gaussian covariance 

model for the true (high-resolution) states of the form 

 
t t= +x x Zη ,      (4.1) 

where tx is an N-vector, Z is the square-root of the true covariance matrix, 

 T

t =P ZZ ,      (4.2) 

and η  is an N-vector of random numbers drawn from N(0,I).  We construct (4.2) using a 

sinusoidal basis in which the columns of E (N x N) contain the sinusoids such that 

   T

t =P EΓE ,      (4.3) 

Γ is a diagonal matrix whose i
th

 element of the diagonal is defined from 
2 2

e ik

i a
α−Γ = , ki is the 

wavenumber associated with the ith basis function of E, and 
2 2

1

e i

N
k

i

a N
α−

=

= ∑ .  The parameter α 

determines the slope of the true spectrum, where large α is associated with a red spectrum and 

small α is associated with a white spectrum.    

We connect the true (high-resolution) states to the forecast (low-resolution) states 

through a smoother that operates as: 

 1 2 T

L
 =  S E D T 0 E ,     (4.4) 

where D (M x M) is a diagonal matrix whose diagonal elements are 
2 2

e ik

i
d β−= , LE  (M  x M) is 

the low-resolution basis whose columns are also the sinusoids, T (M x M) is a diagonal matrix 

with the value M N along the diagonal.  The matrix D represents the climatological “model 

error” on the resolved scales and would be equal to the identity matrix if the forecast model’s 

climate at the resolved scales was identical to the true model’s climate at those same scales.  The 

matrix implied by the bracket in (4.4) performs a truncation of the high-resolution basis to the M-
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dimensional subspace while the matrix T assures that the Fourier coefficients calculated from the 

high-resolution basis are reweighted consistently with respect to the low-resolution basis. 

Equation (4.4) allows for the creation of the low-resolution forecast states from the true 

states in (4.1) using (3.1).  This implies that the forecast error covariance matrix may be written 

as 

 1 2 1 2
T

T T

f t L L
   = =    P SP S E D T 0 Γ D T 0 E .   (4.5) 

Because Γ are the true (high-resolution) eigenvalues, equation (4.5) shows that the forecast 

covariance matrix would be correct up to its M eigenvalues if the climatological model error D 

could be removed.  We show next how to remove this climatological model error by accounting 

for the error of representation. 

Because the true states and the forecast states are Gaussian and their relationship is 

described by a linear operator, we know that the mean of the converse conversion density 

( )t fρ 
 x x  is a linear function of the vector it is conditioned upon.  This presents us with a 

direct method to calculate the prediction of the observation by the forecast state: 

 ( )f f c t p f f
 = = + − y x Hx Hx HG x x ,    (4.6) 

where 

 [ ]† †

p = =G Z SZ S .     (4.7) 

The superscript † in (4.7) denotes the Moore-Penrose pseudo-inverse (Golub and Van Loan 

1996).  The pseudo-inverse is constructed by finding the singular value decomposition, viz. 

     1 2 1 2 T

L
 =  SZ E D T 0 Γ E ,    (4.8) 

and then noting that its pseudo-inverse is therefore 

  [ ]† 1 2 1 2 1
T

T

L

− − − =  SZ EΓ D T 0 E .    (4.9) 

The equation (4.9) is the pseudo-inverse of (4.8) in the sense that [ ]†
=SZ SZ r r  but

[ ]†
≠SZ SZq q  for arbitrary vectors r and q.  Please see Appendix A for a brief derivation of 

equation (4.6).  It is important to note in (4.7) that the matrix Z is cancelled by the pseudo-

inverse operation such that the only information required to determine 
pG  is the smoothing 

matrix (4.4).  In practice, one would build (4.4) by estimating its components using an archive of 

truth-forecast pairs as is done in bias-correction algorithms (Glahn and Lowry 1972).  Moreover, 
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this implies that we may view equation (4.6) as simply a bias-correction algorithm that we build 

into the data assimilation system to account for the fact that the forecast model’s estimate of the 

observation is, in effect, biased.   

Equation (4.6) is remarkable in so far as this construction allows us to calculate the 

important quantities from sections 2 and 3 without the need to explicitly develop the conversion 

densities.  For example, the representation error is therefore: 

 T T

f i− =R R HEΘE H ,     (4.10)  

where Θ  is a diagonal matrix with the value of the diagonal of Θ  satisfying: 

  
0, 1,...,

, 1,...,
i

i

i M

i M N

=
Θ = 

Γ = +
.     (4.11) 

The term on the right-hand side of (4.10) arises from (3.5c).  This term clearly shows that the 

representation error (4.10) is simply the portion of the high resolution spectrum that is missing 

from the forecast states.  Note that for M = N, and therefore no truncation, the elements of Θ

vanish and there is no representation error.  This is again a result of there being, in that case, an 

inverse available when M = N and, as discussed in section 2, this implies that the representation 

error must vanish.  This point is important because it shows that the climatological model error 

on the resolved scales (D) is irrelevant to both the existence of representation error and to the 

structure of the representation error.  By contrast, equation (3.5d) for which we are interested in 

*

f i−R R does depend on the climatological model error on the resolved scales (D) through 

equation (4.5).   

An important quantity in our development of section 2 was the state-dependent bias of 

the forecast models estimate of the observation (2.12), b, which given (4.6), implies: 

 † †

f f t f
   = − + −   b HS H x H x S x .    (4.12) 

The first term in (4.12) is interesting because it corresponds to the mismatch between the forecast 

model’s estimate of the true observation operator †HS  in (4.6) and the observation operator we 

are actually using
fH .  We emphasize here that this mismatch is not one in which we are 

implying that 
fH  is incorrect in the sense that if, for example, we had a point measurement that 

there would be some form of inaccuracy in the interpolation to the observation location.  Indeed, 

even in this case of a point measurement, in which we are assuming we have a perfect 
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interpolation, the mismatch inferred by (4.12) is between the statistically derived observation 

operator †HS , which now corresponds to more than just an interpolation, and the operator, 
fH .   

The equation (4.12) suggests that if we define 
fH such that,  

 
†

f ≡H HS ,      (4.13) 

we may remove this state-dependent bias term, which subsequently renders fb =P 0  and bb =P 0 .  

This implies that in this data assimilation system the observation operator does not simply map 

the truth to the observation, but rather it maps the forecast to the observation and, because the 

forecast is in a different portion of state space than the truth, this requires the matrix operator, 

†HS  rather than just H.   

One of the most important results of choosing (4.13), and subsequently rendering fb =P 0  

and bb =P 0 , is that this results in 
*

f f=R R and therefore the choice (4.13) has removed the 

impact of the climatological model error on the resolved scales, D, in the forecast covariance 

matrix and therefore also in 
*

fR .  This has two important consequences: 1) innovation based 

techniques (e.g. Hollingsworth and Lönnberg 1986, Desroziers et al. 2006) for the estimation of 

*

fR  are therefore self-consistent estimators of the representation error only when the choice 

(4.13) has been implemented and 2) as we show next this provides a direct way to remove the 

deleterious impact of the climatological model error on the state estimate from the data 

assimilation algorithm.   

Subsequently, by employing (4.13) it can be shown that the gain matrix written in terms 

of the forecast quantities (3.4b) is now: 

 
1

† † † *

2

T T T T

f f f

−
 = + G P S H HS P S H R .    (4.14) 

This new gain matrix is the most important result of this manuscript.  The calculation of the 

operator 
pG  has allowed for the creation of a new observation operator †HS  that represents the 

forecast model’s estimate of the observation of states on the true attractor.  Subsequently, this 

has allowed the calculation of the correct numerator in (4.14) that represents the covariance 

between the states on the forecast attractor and the observations of the true attractor.  The 

equation (4.13) results in  
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† † MT T T T T

f f f f

 
= =  

 

Γ 0
H P H HS P S H HE E H

0 0
,   (4.15a) 

 T

t

 
=  

 

0 0
v HE E x

0 I
,     (4.15b) 

where 
MΓ  denotes the first M eigenvalues of Γ  and 0 is the zero matrix.  Equation (4.15a) 

shows that the choice (4.13) results in 
T

f f fH P H  being correct up to the resolution of the forecast 

model in the sense that the climatological model error denoted by D has been removed.  The 

equation (4.15b), which describes the bias in the innovation owing to the unresolved scales of 

motion, is a result of the scales in the true prior mean that are missing in the forecast prior mean. 

 

b) Spatially Extended Example 

We now explore the theory discussed above for the spatially extended problem described 

in this section by employing some simple example problems.  We will not re-define the 

observation operator in order to clearly show the differences between f i−R R  and 
*

f i−R R , 

which will underscore the importance of applying (4.13), as it was already proven above to 

remove this difference.  We will define H to be the operator that observes each point of the low-

resolution (forecast) state.  Hence, in these experiments fH will simply be the identity operator 

for the point measurements we have available.  We emphasize again that employing (4.13) 

would lead to an observation operator for these point measurements that is not the identity 

operator even though these are point measurements, which as we have proven above corrects the 

problems to be illustrated next.      

In order to maintain a connection with previous work (e.g. Mitchell and Daley 1997a,b, 

Liu and Rabier 2002, Waller et al. 2013) we begin by defining the low-resolution (forecast) 

states as obtained from a smoother that operates as a pure spectral truncation such that we set β  

= 0 in (4.4), which obtains D = I and 

 [ ] T

L=S E T 0 E .     (4.17) 

We set � � 1 12⁄  and plot the central column of 
tP  in figure 5a, which represents the one-point 

covariance function for the point x = π.  The length of the state-vector for the high-resolution 

(true) states will be N = 256.  In figure 5a we also plot the central column of 
fP for two different 
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truncation matrices S: one is for M = 16 and the other is for M = 8.  In figure 5b is shown the 

corresponding central column of S, which maps the high resolution (true) states to the low-

resolution (forecast) states.  The smoothing functions in figure 5b show that truncating the true 

spectrum results in smoothing kernels that average the true state globally to produce the local 

low-resolution (forecast) state.  In addition, note that the smoothing kernel weights the true state 

both positively and negatively, which we will see shortly results in long distance negative 

correlations.  Panels 5c and 5d show the one-point covariance function (again for the central 

column) for f i−R R  and 
*

f i−R R  for the M = 16 and M = 8 cases.  In both cases, the 

representation error f i−R R  and the effective representation error 
*

f i−R R  are very nearly 

equal in the center of the domain but differ in the far-field.  We will show by contrast below that 

this equality between these two matrices is due to the pure truncation in this case.  When we 

invoke a Gaussian smoother (i.e. D ≠ I), which as noted above corresponds to a climatological 

model error on the resolved scales, f i−R R  and 
*

f i−R R will become substantially different.  

Also, note that there exists a strong far-field positive-negative wave pattern in f i−R R  and less 

so for 
*

f i−R R .  This is due to the aforementioned positive-negative weightings in the smoothing 

kernels of figure 5b.  An example of a randomly constructed high-resolution (true) state  

(Equ. 4.1) is shown in figure 6.  Using equation (4.17) we may produce the corresponding low-

resolution (forecast) state from the M = 8 forecast state shown in figure 6.  Also, shown in figure 

6 is the estimate of the true state, 
cx , given the low-resolution forecast state from equation (4.6) 

using the M = 8 forecast state shown in that figure.  This “best estimate” from (4.6) makes use of 

the linear regression equation in (4.6) but does not make use of the observation operator, H.  In 

this sense, this “best estimate” is simply a state-dependent bias correction of the forecast.       

The next set of experiments will make use of the matrix D.  Here, we study (4.4) for 

� � 1 6⁄ , which implies a Gaussian smoother on the degrees of freedom that are retained after 

truncation.  The same true covariance model is used in this experiment, tP , for which the one-

point covariance function is repeated in figure 7a.  Again, in figure 7a we also plot the central 

column of 
fP for two different truncation matrices T: one is for M = 256 and the other is for M = 

16.  Note that the M = 256 case corresponds to no truncation at all as the forecast state vector and 

the true state vector are equal (M = N = 256).  The M = 256 case provides an example of a 
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forecast model error that does not arise from a reduction (truncation) of the number of degrees of 

freedom in the forecast model.  The smoothing kernels for these two cases are shown in figure 

7b.  The truncated smoothing kernel (M = 16) shows the positive-negative oscillations in the far-

field that we saw previously.  Contrast this with the non-truncated smoothing kernel (M = 256) 

that is completely local.   

The application of these smoothing kernels produces distinctly different responses in 

f i−R R  and 
*

f i−R R .  For the M = 256 case, the S is full-rank, has an inverse, and results in 

f i− =R R 0  as shown in figure 7c.  However, because the smoothing matrix S still produces a 

difference between 
tP  and 

fP , which implies that 
*

f i−R R  is non-zero as shown in figure 7c.  

Hence, when the forecast model is full-rank, but fails to reproduce the climatology of the true 

attractor, the representation error nonetheless vanishes.  This type of climatological error in the 

model must still be accounted for using 
*

f i−R R and 
pG .  In the case where M = 16, which 

implies both a Gaussian smoothing and a truncation, one can see in figure 7d that both 

representation error and 
*

f i−R R are non-zero and quite different.  This difference between 

f i−R R  and 
*

f i−R R illustrates that one can only estimate the representation error from 

innovation statistics when (4.13) is implemented because this is the only way to render fb =P 0  

and bb =P 0 .      

 

 

5. Summary and Conclusions 

 

A framework has been presented to understand the origin of the representation error as 

well as to properly frame attempts at estimating and accounting for its effects.  We have 

extended the work of Kalman (1960), whose data assimilation algorithm is optimal for Gaussian 

systems for which the flaws in the model were accounted for using a white noise forcing, to the 

case where the observations are of states on a true “attractor” and the model evolution produces 

states on a forecast “attractor” with both states Gaussian distributed and a linear map existing 

between them, but with no applied white noise forcing.  In practical terms, when the distributions 



 26

are not Gaussian and the mapping between the two attractors is not linear, we have derived the 

best linear, unbiased estimation technique.  For this case we have shown that in this data 

assimilation algorithm the observation operator does not simply map the truth to the observation, 

but rather it maps the forecast to the observation and because the forecast is in a different portion 

of state space than the truth this requires a modified observation operator.  We emphasize that 

the operation of this new data assimilation framework only requires the prior distribution on the 

forecast model attractor and the function F, and does not need the prior distribution on the true 

attractor, to correctly assimilate observations of states on the true attractor.  We view this map in 

equation (2.3) much like that of the algorithms in the ensemble post-processing and bias-

correction literature (e.g. Glahn and Lowry 1972, Raftery et al. 2005) in which climatological 

information is used to build relationships between forecasts and observations.  As such, this new 

framework has shown how to properly include the information normally obtained from “bias-

correction” algorithms within the data assimilation system.    

As discussed in the introduction, the notion that the true state might not be the best initial 

condition for the flawed forecast model has lead us to choose to develop a data assimilation 

system that attempts to produce a state estimate on the forecast attractor.  This obviously 

produces a state estimate that may not be as close to the truth as is required in some applications.  

Note however that we may use the state estimation procedure described in Appendix A to map 

our forecast back to the true attractor in order to produce a state estimate on the true attractor.  

This of course is nothing more than the well-known post-processing of a forecast but using the 

infrastructure that we have already developed for the data assimilation algorithm.          

In any event, this new framework shows that the representation error arises from the lack 

of an inverse in the relationship between the true attracting manifold and that of the forecast 

models.  This lack of an inverse in their relationship results when the forecast model is a 

truncated representation of the true states.  In other words, representation error does not occur 

when the forecast model is simply in error in its representation of climatology.  The error that the 

model must make for representation error to exist is one in which the forecast model has been 

truncated to represent fewer degrees of freedom than the number of degrees of freedom 

describing the true states.  In this specific case, the forecast observation likelihood [ ( )J fρ y x ] 

will have a variance greater than that of the error of the instrument and is also likely to have a 

correlation between observations.  In the Gaussian case, it was shown explicitly that this inflation 
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and correlation structure arises as the covariance matrix of the portion of the true spectrum that 

goes missing from the truncated forecast model.  Lastly, it was shown that innovation based 

techniques (e.g. Hollingsworth and Lönnberg 1986, Desroziers et al. 2006) for the estimation of 

representation error covariance matrices are self-consistent estimators of the representation error 

only when the observation operator has been modified to account for the attractor differences.   

Applying this new framework to specific problems in the geosciences will require 

estimation of the map between the true attractor and that of the forecast model (Equ. 2.3).  We 

imagine a proxy for such a model could be developed from the difference between high-

resolution and low-resolution simulations.  After development of the map (2.3) one must develop 

the observation gain (
pG ) for each observation in which one is interested in accounting for 

errors in representation. We suggest performing this step using an observation-by-observation 

approach as this will likely lead to a reduction in the size of the matrices in the calculation (4.7).  

Research into performing this estimation of S is underway and will be reported in a sequel.  
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 Appendix A 

 The Moore-Penrose Inverse and the Minimum Variance Estimate  

 

We begin with (3.1) and decompose it into prior mean and perturbation: 

 
f t=x Sx , 

f t=ε Sε ,            (A.1a,b) 

where  
f f f= −ε x x  and t t t= −ε x x .  Equation (4.1) tells us that 

 
t =ε Zη ,      (A.2) 

where η is a N-vector whose elements are drawn from N(0,1).  Therefore, we attempt to 

minimize the cost function 

 ( ) 1

2

T

f fJ    = − −   η ε SZη ε SZη ,    (A.3) 



 28

to find that the minimum of (A.3) is defined by an infinite number of solutions of the form:   

 [ ]†

2
ˆ

f= +η SZ ε E ξ ,     (A.4) 

where 

 [ ]† 1 2 1 2 1 T

L

− − − =  SZ EΓ D T 0 E ,    (A.5) 

  [ ]1 2=E E E ,     (A.6) 

and ξ is a vector of length (N-M) that is composed of random noise with the property that it is a 

random draw from ( ), N MN −0 Γ  with N M−Γ denoting the last (N-M) elements of the diagonal of 

Γ .  In (A.6) E has been sub-divided such that we define E1 as the first M columns of E and then 

place the remaining columns into E2.  We choose the best solution from the set (A.4) by 

requiring the solution at the minimum of (A.3) to also minimize 1T

t t t

−ε P ε , which may be shown 

to imply that Tη η  is also a minimum.  The addition of this constraint chooses =ξ 0 , which then 

defines the solution as 

 [ ]†
ˆ
t f=ε Z SZ ε .     (A.7) 

Equation (A.7) defines the minimum variance estimate 
tε  under the constraint that 1T

t t t

−ε P ε  is 

also a minimum.  Hence, (A.7) finds the minimum variance estimate of (A.1a,b) for the state 
tε  

given 
fε .  The minimum variance estimate of a linear estimator will be equal to the mean of the 

conversion density when that density is Gaussian.  When that density is not Gaussian it then 

reduces to the best linear, unbiased estimate of the mean of the conversion density.  
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Figure 1.  Data assimilation on the high-resolution (true) attractor.  (a) High-resolution 

climatological distribution, (b) high-resolution observation likelihood, (c) high-resolution 

posterior for j = 1, and (d) high-resolution posterior for j = 2. 
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Figure 2.  The attractors and their map.  The two green squares represent the domain of the true 

states (large square) and the forecast states (small square).  The region for which ( ) 0tρ >x

( )( )0fρ >x  is denoted as the red (blue) shaded region.  An example of the function in equation 

(2.3) is denoted by the arrows, which travel from states in �� denoted by filled circles to states in 

��denoted by open circles.  Note that multiple states in �� may map to the same point in ��.  

We will show that this results in an error of representation. 
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Figure 3.  The conversion densities.  In (a) is the conversion density describing the distribution 

of forecast states given a state on the true attractor ( [ ]1 3
T

t =x ) and in (b) is the conversion 

density describing the distribution of true states given a state on the forecast attractor ( 1fx = ). 
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Figure 4.  Data assimilation on the low-resolution (forecast) attractor.  The low-resolution a) 

observation likelihood and b) climatological and posterior distributions for j = 1 and 2. 
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Figure 5.  Pure spectral truncation.  In (a) are three one-point prior covariance functions: blue is 

the high-resolution (true) covariance model, red is the M = 16 low-resolution (forecast) 

covariance model, green is the M = 8 low-resolution (forecast) covariance model.  In (b) are one 

column of the smoother matrix (4.17) for M = 16 (red) and M = 8 (green).  In (c) and (d) is 

shown the main components of the theory for M = 16 and M = 8, respectively: blue is the 

representation error covariance ( f i−R R ), red is the effective representation error covariance  

(
*

f i−R R ), and green is the bias covariance matrix ( bbP ).   
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Figure 6.  Example high-resolution state, low-resolution state (M = 8), and mean of the 

conversion density, which is labeled above as the “best estimate”.  The low-resolution state is 

defined only at the grid-points denoted by the open circles. 
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Figure 7.  Gaussian Smoothing.  In (a) are three one-point prior covariance functions: blue is the 

high-resolution (true) covariance model, red is the M = 256 low-resolution (forecast) covariance 

model, green is the M = 16 low-resolution (forecast) covariance model.  In (b) are one column of 

the smoother matrix for M = 256 (red) and M = 16 (green).  In (c) and (d) is shown the main 

components of the theory for M = 256 and M = 16, respectively: : blue is the representation error 

covariance ( f i−R R ), red is the effective representation error covariance (
*

f i−R R ), and green is 

the bias covariance matrix ( bbP ).   
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