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Abstract

This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on
establishing when equivalence of norms is in fact equality of norms in the key results of the theory.
(In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key
results hold with equality of norms.) In the final section we apply the Hilbert space results to the
Sobolev spaces H*(€2) and H*(Q), for s € R and an open Q C R™. We exhibit examples in one and
two dimensions of sets {2 for which these scales of Sobolev spaces are not interpolation scales. In the
cases when they are interpolation scales (in particular, if Q is Lipschitz) we exhibit examples that
show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and,
in fact, the ratio of these two norms can be arbitrarily large.

1 Introduction

This paper provides in the first two sections a self-contained overview of the key results of the real method
of interpolation for Banach and Hilbert spaces. This is a classical subject of study (see, e.g., [4,5,23,24]
and the recent review paper [3] for the Hilbert space case), and it might be thought that there is little more
to be said on the subject. The novelty of our presentation—this the perspective of numerical analysts who,
as users of interpolation theory, are ultimately concerned with the computation of interpolation norms and
the computation of error estimates expressed in terms of interpolation norms—is that we pay particular
attention to the question: “When is equivalence of norms in fact equality of norms in the interpolation of
Banach and Hilbert spaces?”

At the heart of the paper is the study, in Section 3, of the interpolation of Hilbert spaces Hy and H;
embedded in a larger linear space V, in the case when the interpolating space is also Hilbert (this the
so-called problem of quadratic interpolation, see, e.g., [2,3,10,15,17]). The one line summary of this section
is that all the key results of interpolation theory hold with “equality of norms” in place of “equivalence of
norms” in this Hilbert space case, and this with minimal assumptions, in particular we assume nowhere
that our Hilbert spaces are separable (as, e.g., in [2,3,15,17]).

Real interpolation between Hilbert spaces Hy and H; produces interpolation spaces Hyp, 0 < 6 < 1,
intermediate between Ho and H;. In the last section of the paper we apply the Hilbert space interpolation
results of §3 to the Sobolev spaces H*(Q2) := {Ulq : U € H*(R™)} and H*(Q) (defined as the closure of
C§e(9) in H*(R™)), for s € R. Questions we address are:

(i) For what ranges of s are H*(€2) and H*(£2) interpolation scales, meaning that the interpolation space
Hy, when interpolating between s = sy and s = s7, is the expected intermediate Sobolev space with
s=50(1—0)+ s516?

(ii) When the interpolation space is the expected intermediate Sobolev space, do the interpolation space
norm and intrinsic Sobolev norm coincide (the interpolation scale is exact), or, if not, how different
can they be?

A main result of the paper is to exhibit one- and two-dimensional counterexamples that show that H*®(2)
and H* () are not in general interpolation scales. It is well-known that these Sobolev spaces are interpola-
tion scales for all s € R when 2 is Lipschitz. In that case we demonstrate, via a number of counterexamples

*Department of Mathematics and Statistics, University of Reading, Whiteknights PO Box 220, Reading RG6 6AX, UK.
Email: s.n.chandler-wilde@reading.ac.uk, a.moiola@reading.ac.uk.

TMathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
Email: hewett@maths.ox.ac.uk



that, in general (we suspect, in fact, whenever Q & R"), H*(Q2) and H 5(Q) are not exact interpolation
scales. Indeed, we exhibit simple examples where the ratio of interpolation norm to intrinsic Sobolev
norm may be arbitrarily large. Along the way we give explicit formulas for some of the interpolation
norms arising that may be of interest in their own right. We remark that our investigations, which are
inspired by applications arising in boundary integral equation methods (see [9]), in particular are inspired
by McLean [18], and by its appendix on interpolation of Banach and Sobolev spaces. However a result of
§4 is that one result claimed by McLean ([18, Theorem B.8]) is false.

Much of the Hilbert space Section 3 builds strongly on previous work. In particular, our result that,
with the right normalisations, the norms in the K- and J-methods of interpolation coincide in the Hilbert
space case is a (corrected version of) an earlier result of Ameur [2] (the normalisations proposed and the
definition of the J-method norm seem inaccurate in [2]). What is new in our Theorem 3.3 is the method
of proof—all of our proofs in this section are based on the spectral theorem that every bounded normal
operator is unitarily equivalent to a multiplication operator on L2?(X, M, u), for some measure space
(X, M, ), this coupled with an elementary explicit treatment of interpolation on weighted L? spaces—
which deals seamlessly with the general Hilbert space case without an assumption of separability or that
Hy N Hy is dense in Hy and Hy. Again, our result in Theorem 3.5 that there is only one (geometric)
interpolation space of exponent 6, when interpolating Hilbert spaces, is a version of McCarthy’s [17]
uniqueness theorem. What is new is that we treat the general Hilbert space case by a method of proof
based on the aforementioned spectral theorem. Our focus in this section is real interpolation, but we
note in Remark 3.6 that, as a consequence of this uniqueness result (as noted in [17]), complex and real
interpolation coincide in this Hilbert space case.

While our focus is primarily on interpolation of Hilbert spaces, large parts of the theory of interpolation
spaces are appropriately described in the more general Banach space context, not least when trying to
clarify those results independent of the extra structure a Hilbert space brings. The first §2 describes real
interpolation in this general Banach space context. Mainly this section sets the scene. What is new is that
our perspective leads us to pay close attention to the precise choice of normalisation in the definitions of
the K- and J-methods of real interpolation (while at the same time making definitions suited to the later
Hilbert space case).

We intend primarily that, throughout, vector space, Banach space, Hilbert space, should be read as
complex vector space, Banach space, Hilbert space. But all the definitions and results proved apply equally
in the real case with fairly obvious and minor changes and extensions to the arguments.

We finish this introduction by a few words on the history of interpolation (and see [4,5,23,24]). There
are two standard procedures for constructing interpolation spaces (see, e.g., [5]) in the Banach space
setting. The first is the complex method due to Lions and Calderdn, this two closely-related procedures
for constructing interpolation spaces [5, Section 4.1], inspired by the classical proof of the Riesz—Thorin
interpolation theorem. (These two procedures applied to a compatible pair X = (X, X;) (defined in
§2) produce the identical Banach space (with the identical norm) if either one of Xy or X; is reflexive,
in particular if either is a Hilbert space [5, Theorem 4.3.1].) We will mention the complex method only
briefly, in Remark 3.6. Our focus is on the so-called real interpolation method. This term is used to denote
a large class of methods for constructing interpolation spaces from a compatible pair, all these methods
constructing the same interpolation spaces [24] (to within isomorphism, see Theorem 2.3 below). In this
paper we focus on the two standard such methods, the K-method and the J-method, which are comple-
mentary, dual constructions due to Peetre and Lions (see e.g. [19]), inspired by the classical Marcinkiewicz
interpolation theorem [5, Section 1.3].

2 Real interpolation of Banach spaces

Suppose that Xy and X; are Banach spaces that are linear subspaces of some larger vector space V. In this
case we say that X = (X, X1) is a compatible pair and A = A(X) := XoNX; and ¥ = 5(X) := Xo+ X,
are also linear subspaces of V: we equip these subspaces with the norms

I¢lla = max {[|¢]l x,, |gllx, }

and
[¢lls := inf {|[¢ollx, + |¢1lx, : do € Xo, ¢1 € Xu, do + ¢1 = ¢},

with which A and ¥ are Banach spaces [5, Lemma 2.3.1]. We note that, for j = 0,1, A C X, C X,
and these inclusions are continuous as [[¢||s < [4]x;, ¢ € X, and ||d|x; < [|¢[|a, ¢ € A. Thus every
compatible pair is a pair of Banach spaces that are subspaces of, and continuously embedded in, a larger
Banach space. In our later application to Sobolev spaces we will be interested in the important special



case where X7 C Xy. In this case A = X; and ¥ = X, with equivalence of norms, indeed equality of
norms if ||¢||x, > ||¢|lx,, for ¢ € X;.

If X and Y are Banach spaces and B : X — Y is a bounded linear map, we will denote the norm of B
by || B||x.y, abbreviated as || B||x when X =Y. Given compatible pairs X = (X, X;) and Y = (Yp, Y1)
one calls the linear map A : X(X) — X(Y) a couple map, and writes A : X — Y, if A;, the restriction of
A to Xj, is a bounded linear map from X; to Y;. Automatically A : ¥(X) — (Y is bounded and Ax,
the restriction of A to A(X), is also a bounded linear map from A(X) to A(Y). On the other hand, given
bounded linear operators A; : X; — Y}, for j = 0,1, one says that Ag and A, are compatible if Agp = A1,
for ¢ € A(X). If Ay and A; are compatible then there exists a unique couple map A : X(X) — %(Y)
which has Ag and A; as its restrictions to Xy and X, respectively.

Given a compatible pair X = (X, X;) we will call a Banach space X an intermediate space between X
and X7 [5]if A C X C ¥ with continuous inclusions. We will call an intermediate space X an interpolation
space relative to X if, whenever A : X — X, it holds that A(X) C X and A : X — X is a bounded linear
operator. Generalising this notion, given compatible pairs X and Y, and Banach spaces X and Y, we will
call (X,Y) a pair of interpolation spaces relative to (X,Y) if X and Y are intermediate with respect to X
and Y, respectively, and if, whenever A : X — Y, it holds that A(X) C Y and A: X — Y is a bounded
linear operator [5]. If (X,Y) is a pair of interpolation spaces relative to (X,Y) then [5, Theorem 2.4.2]
there exists C' > 0 such that, whenever A : X — Y, it holds that

HAHX,Y < CmaX{HAHXD,Yov||A||X1,Y1}' (1)

If the bound (1) holds for every A : X — Y with C = 1, then (X,Y) are said to be ezact interpolation

spaces: for example the pairs (A(X), A(Y)) and (3(X), X(Y)) are exact interpolation spaces with respect

to (X,Y), for all compatible pairs X and Y [5, Section 2.3]. If, for all A: X =Y,
Alxy < A%, 1415, v (2)

then the interpolation space pair (X,Y") is said to be ezact of exponent 6.

2.1 The K-method for real interpolation
To explain the K-method, for every compatible pair X = (X, X;) define the K-functional by

K(t,) = K(t,6.X) = inf { (|ool%, +2o11%,)"" : 60 € Xo, o1 € X1, o+ 01 =6}, (3)

for t > 0 and ¢ € 3(X); our definition is precisely that of [15, p. 98], [6,18]. (More usual, less suited to the
Hilbert space case, but leading to the same interpolation spaces and equivalent norms, is to replace the
2-norm (||¢ol%, + tQqulH%(l)l/Q by the l-norm ||¢o||x, + t||¢1]/x, in this definition, e.g. [5].) Elementary
properties of this K-functional are noted in [18, p. 319]. An additional elementary calculation is that, for

¢ €A,

tloll xo [0l x,

L@
(I611%, + 2l81%,)"*

. 1/2
K(t,6) < Ki(t,6) = inf (lal?¢l%, + 21 - al*l]%,)""* =

this infimum achieved by the choice a = t*||¢[|%, /([|8]%, + t*llol%,)-
Next we define a weighted L? norm by

/]

> e\

g,q:=</ tef(t)|qt> , for0<f<land1<gqg< oo,
0

with the modification when ¢ = oo, that

1Fll6.00 := ess sup [t~ £ (t)]. ()
t>0

Now define, for every compatible pair X = (X, X1), and for 0 < § <1 and 1 < ¢ < o0,
Ko q(X) :={¢ € 2(X) : |K(¢)]loq < o0}, (6)
this a normed space (indeed a Banach space [5, Theorem 3.4.2]) with the norm

(K (- 0)ll0,q- (7)

||¢HK9,Q(Y) = Nog



Here the constant Ny, > 0 is an arbitrary normalisation factor. We can, of course, make the (usual)
choice Ny, = 1, but our preferred choice of Ny , will be, where g(s) := s/v1+ s2,

RTINS 2 ga(1-0)-1(1 4 §2)=4/2ds) " 1< g < oo,
Nog = llglls} = { RO A P ®)

the supremum in (5) when f = g achieved for ¢t = /(1 — 6)/6. We note that, with this choice, Ny, =
Ni_g, (substitute s = ¢~* in (8)). Further, min(1,s)/v2 < g(s) < min(1,s), so that Np, < Nog <
\/§Né7q7 where
i 1 _ [ [a01=0)]"%, 1<q< oo,
N@,q = || mlIl(l, ~)||0,q - { ]_7 q = oo.
We note also that [18, Exercise B.5], with the choice (8),
Noo = ((2/7)sin(x0)) ", 9)

The normalisation Ny  is used in [18, (B.4)] (and see [5, Theorem 3.4.1(e)]); (9) is used in [18, (B.9)], [6,
p. 143], and dates back at least to [15, p. 99].

Ky q4(X), for 0 <8 <1and1<gq< oo, is the family of spaces constructed by the K-method. We will

often use the alternative notation (Xo, X1)g,q for Ko 4(X).
Our preference for the normalisation (8) is explained by part (iii) of the following lemma.

Lemma 2.1. Suppose that X = (Xo, X1) is a compatible pair and define the norm on Ky ,(X) with the
normalisation (8).

(i) If o € A(X) then ¢ € Koo(X) and ||¢llre, ,cx) < 1915%," 191%, < [6llacx)-

(ii) If ¢ € Kgo(X) then ¢ € B(X) and ||¢llsx) < 19l x, ,(x)-

(iii) If Xo = X1 (with equality of norms) then Xo = X1 = %(X) = A(X) = Ky,4(X), with equality of
norms.

Proof. If ¢ € A(X) is non-zero then, for 0 < 0 < 1,1 < ¢ < o0,

q

=0 dt 1-6 0
— = 1el1%, ™" 911%,

1/2
lol%, + 21115, )

using the bound (4), the value of Ny 4 (8), and the change of variable

Il o) < NE LG Oy = Nl 1, [ [(

(S8 ta ] ta
_ (a+1—q)/2 1—(1+0a)/2 _ (a+1—q)/2 1—(1+a)/2 AT—4
/0 vy m /0 Qe d=a™ 700 Nglav/aq (10)

for a,b >0 and —1 < a < ¢ — 1. Similarly,

s =? 126 | 416
= =l2lx,” loll, -

VvV1+s

el oo () < NowoolIEL(, D) 10,00 = Nooo 05, 101%, sup
S

Clearly also ||¢||§(_09 ||gi)\|§)(1 < ||¢llacx) so that (i) holds.

For ¢ € Xo, 1 € X1, [lgol%, + 2llenllk, = /(1 +12))(¢ollx, + ll¢1]x,)? from which it follows
that

K(t,¢) = g®)ll¢llsx), for ¢ € B(X), t >0,

where g(t) = t/v/1 + t2, which implies (ii).
To see (iii), we recall that we have observed already that, if X; C Xo, with ||¢]|x, < [|#]|x,, then
X1 = A(X) and Xy = X(X), with equality of norms. Thus (iii) follows from (i) and (ii). O

The following theorem collects key properties of the spaces Ky ,(X), in the first place that they are
indeed interpolation spaces. Of these properties: (i) is proved, for example, as [18, Theorem B.2]; (ii)
in [5, Theorem 3.4.1]; (iii) follows immediately from the definitions and Lemma 2.1; (iv) and (v) are part
of [5, Theorem 3.4.2]; (vi) is obvious from the definitions. Finally (vii) is the reiteration or stability theorem,
that K-method interpolation of K-interpolation spaces gives the expected K-interpolation spaces, proved,
for example, in [18, Theorem B.6].



Theorem 2.2. Suppose that X = (X, X1) and Y = (Yy, Y1) are compatible pairs. Then:

(i) For 0 < 6 < 1,1 < q < oo, (Ko,q(X),Kpq(Y)) is a pair of interpolation spaces with respect to
(X,Y) that is exact of exponent 6.

(11) For 0 < 0 < 1,1 < q < 00, (Xo,X1)g,q = (X1,X0)1-0,4, with equality of norms if Ng; = N1_g4
(which holds for the choice (8)).

(iii) For 0 < 61 < 03 <1 and 1l < q < oo, if X1 C Xy, then X1 C Ky, o(X) C Kp, o(X) C Xo, and
the inclusion mappings are continuous. Furthermore, if ||¢||x, < ||¢llx,, for ¢ € X1, then, with the
choice of normalisation (8), ¢k, . x) < 1¢lx,, ,x) for ¢ € Ko, (X)),

lollxo < llellk, ) foré€ Ko o(X), and |dllg, ) <lolx,, forée Xi.

(iv) For 0 <0 <1,1<q<o0, A(X) is dense in Ky 4(X).
(v) For 0 <0 <1,1<q< oo, where X; denotes the closure of A(X) in X,
(X0 X1)0.q = (X5, X1)0,g = (X0, X7)0,q = (X5, X1)o,q,
with equality of norms.

(vi) For0< 60 <1,1<q<oo0,ifZj is a closed subspace of X;, for j =0,1, and Z = (Zy, Z1), then
KO,q(Z) - K9,q(y)7 with H(ZSHKQ,(Z(Y) < H¢||K9,q(7)7 for ¢ € KG,Q(7)'

(vii) Suppose that 1 < q < oo, 0,01 € [0,1], and, for j = 0,1, Z; := (Xo,X1)g, 4, if 0 < 0; < 1,
while Z; = Xp,, if 0; € {0,1}. Then (Zo, Z1)n,q = (X0, X1)e,q, with equivalence of norms, for
0=(1-n)0p+nb and 0 <n < 1.

2.2 The J-method

We turn now to study of the J-method, which we will see is complementary and dual to the K-method.
Given a compatible pair X = (Xg, X1), define the J-functional by

J(t,¢) = J(t, 6, X) = (6| %, + 2|¢l|%,) ">, fort>0and ¢ € A(X),

our precise definition here that of [18]. (More usual, less suited to the Hilbert space case but leading to
the same interpolation spaces and equivalent norms, is to define J (¢, ¢) := max(||¢||x,, tll¢llx,), e-g. [5].)
The space Jp ,(X) is now defined as follows. The elements of Jp ,(X) are those ¢ € X(X) that can be
represented in the form

o= [ 10T (1)

for some function f : (0,00) — A(X) that is strongly A(X)-measurable (see, e.g., [18, p. 321]) when
(0, 00) is equipped with Lebesgue measure, and such that

b dt > dt
/a ||f(t)||A(y)?<oo if0<a<b<oo, and /0 ||f(t)\|2(y)7<oo. (12)
Jo.4(X) is a normed space with the norm defined by
160l == N 0 o (13)
where L1
o=l (14)

gr(t) :== J(t, f(t)), and the infimum is taken over all measurable f : (0,00) — A(X) such that (11) and
(12) hold. Our definition is standard (precisely as in [18]), except for the normalisation factor N, _ql It is

a standard result, e.g. [18, Theorem B.3], that the spaces Ky ,(X) and Jy ,(X) coincide.

Theorem 2.3. For 0 <6 <1,1<q< o0, Jyu(X) = Ky 4(X), with equivalence of norms.



A major motivation for introducing the J-method is the following duality result. Here, for a Banach
space X, X* denotes the dual of X.

Theorem 2.4. If X = (X0, X1) is a compatible pair and A(X) is dense in Xo and X1, then A(X) is
dense in X(X) and X := (X§, X7) is a compatible pair, and moreover
AX) =%(X") and B(X) =AX"), (15)
with equality of norms. Further, for 0 < 6 <1, 1 < ¢ < oo, with ¢* defined by (14),
(X0, X1)g,4 = (X5, X1)o.4%5
with equivalence of norms: precisely, if we use the normalisation (8), for ¢ € (Xo,X1)o,q,

191k 300+ < M2llg, e xry and N0l . o) < 915, )

Proof. We embed X7 in A(X)*, for j = 0,1, in the obvious way, mapping ¢ € X7 to its restriction to
A(X), this mapping injective since A(X) is dense in X;. That (15) holds is shown as Theorem 2.7.1 in [5].
The remainder of the theorem is shown in the proof of [18, Theorem B.5]. O

The above theorem has the following corollary that is one motivation for our choice of normalisation
n (13) (cf., the corresponding result for K-norms in Lemma 2.1 (iii)).

Corollary 2.5. If X = (X, X) then Jy o(X) = X with equality of norms.

Proof. 1t is clear, from Lemma 2.1 and Theorem 2.3, that Jp ,(X) = X. It remains to show equality of
the norms which we will deduce from Theorem 2.4 for 1 < ¢ < oco.

We first observe (cf. part (vi) of Theorem 2.2) that, for 0 < 0 < 1, 1 < g < o0, it follows immediately
from the definitions that if Z; is a closed subspace of Y;, for j = 0,1, and Z = (Z0,21), Y = (Yo, V1),
then H¢||J9‘q(?) < ||¢HJ8J1(7), for ¢ € Jy 4(Z). We will apply this result in the case that, for some Banach
space X and j = 0,1, Z; = X, and Y; = X**, the second dual of X, recalling that X is canonically and
isometrically embedded as a closed subspace of X** (the whole of X** if X is reflexive).

Now suppose that 0 < # < 1 and 1 < ¢ < oo. Then, for every Banach space X, where X = (X, X) and
X = (X*, X*), it holds by Lemma 2.1 that X* = Ky 4 (Y*) with equality of norms. Applying Theorem
2.4 it holds for ¢ € X that

Iolx = llellxe = l¢lk, .- <Nl @ <18,
and, where (-, ) is the duality pairing on X x X*,

)l g, el [(6.9)] _

1011, )= sup o — <
7o,0(X) Dl gy -~ ozvexs 1¥lg, oz orvexs [1¥llx-

0A£PEX ™

Thus, for ¢ € X, |9, J(X) = lollx for 0 <0 <1and 1< q<oo.
To see that this holds also for ¢ = 1 we note that, for 1 < ¢ <00, 0< 8 <1, and ¢ € X,

. B ¢ q¢ 1/q
1615060 = 1 (1) where o) =N ([ (L) <)

go(t) :=t°/v/1+ 2, and the infimum is taken over all f that satisfy (11) with [°(|[f(t)|lx /) dt < cc.
Note that go(t) has a global maximum on [0,00) at to = /0/(1 — 6), with gg(to) = N, L <27%2 < 1,

6,00

and is decreasing on [tg, 00). Given € > 0 set f(t) = e_ltx(to’toﬂ) ¢, for t > 0, where x(,) denotes the
characteristic function of (a,b) C R. Then (11) holds and

¢l x /tﬁe dt 9o (to)
< = <
el s, . x) < Jo1(f) Now | 9000 = galto+ 0

o]l x

As this holds for arbitrary € > 0, [|¢] ;, | %) < l¢llx-
On the other hand, if e > 0 and f satisfies (11) with [~ (|| f(¢)]|x /t) dt < oo and Jy1(f) < el .+
€, then, choosing n € (0,1) such that fo o\ (- 1)(||f( Mx/(tge(t)))dt < e, it follows (since go(t) < 1)

that [|¢ — ¢ x < ¢, where ¢, := [°(f,(t)/t)dt and f,, == f X(;.-1)- Thus
Jollx = e < Iallx = T ol o) < T Toal) = Foa(F) < Toalh) + < ol o + 2.

As € > 0 here is arbitrary, it follows that [|¢] ;, | =) = l¢llx-

(=)



3 Interpolation of Hilbert spaces

We focus in this section on so-called quadratic interpolation, meaning the special case of interpolation
where the compatible pairs are pairs of Hilbert spaces and the interpolation spaces are also Hilbert spaces.
For the remainder of the paper we assume the normalisations (8) and (13) for the K- and J-methods, and
focus entirely on the case ¢ = 2, in which case the normalisation factors are given explicitly by (9). With

the norms we have chosen, the K-method and J-method interpolation spaces Ky 2(X) and Jg2(X) are
Hilbert spaces (in fact, as we will see, the same Hilbert space if X is a Hilbert space compatible pair).

3.1 The K- and J-methods in the Hilbert space case

We begin with a result on real interpolation that at first sight appears to be a special case, but we will
see later is generic.

Theorem 3.1. Let (X, M, 1) be a measure space and let Y denote the set of measurable functions X — C.
Suppose that, for j = 0,1, w; € Y, with w; > 0 almost everywhere, and let H; :== L*(X,M,w;pn) C Y, a
Hilbert space with norm

1/2
16l = </ij|¢2du) L JordcH,.

For 0 < 0 < 1, where wy := wy~wf, let HY := L*(X, M, wep), a Hilbert space with norm

1/2
follne = ( [ wnloau) . goroe
x
Then, for 0 < 0 < 1, where H = (Hy, Hy),
HY = Kpo(H) = Jo2(H),

with equality of norms.

Proof. We have to show that, for ¢ € 3(H), ||¢||ge = ||¢|‘K9,2(ﬁ) = ||¢>||J9'2(ﬁ), for 0 <0 < 1. Now

2 _ 2 > —1-260 : 2 2 2
00y = Mo [ it (ool + 2 nly,) a
and
lgollZs, + t2Nlo1llE, = [ (woldol? + wit?(¢1]?) dp.
X

Further (by applying [18, B.4, p. 333| pointwise inside the integral),

i wowy 2
inf / (woldol* + wit?|¢1|?) dp :/ Wt g2,
X X

potp1=¢ wo + 2wy

this infimum achieved by ¢1 = wod/(wo + t>w1). Hence, and by Tonelli’s theorem and (10),

o 1 ’U)o’wth
6 s = N [ ([0 ) o an = Lol

wo + 2wy

Also,

6y = Nidin [ (O, + E1@1E,) o
and
1fOF, + 1O F, =/X(wo+w1t2)|f(t)l2du7

so that, by Tonelli’s theorem,

1613, ) = No2 ir;f/X (/O t120(w0+w1t2)|f(t)2dt> dp. (16)



Now we show below that this infimum is achieved for the choice

20 W N2 t29
Ft) = te _ welleal" 9. a7)
(wO + w1t2) f §20— 1/(100 + w1s )dS wo + w1t

to get the second equality we use that, from (10),

0o 20-1 0o 1-20 Wwi_g 1
Y ds = 5 ds = — = -
0o Wo+wis 0o wos? 4+ w Ng,zwowl ngg,2

Substituting from (17) in (16) gives that

e e] t71+29
- =N 22/7&@1:/ 2 du = [16]130.
1015, iy = N3 [ wilof (| oomm ) = [ wolofan = ol

It remains to justify that the infimum is indeed attained by (17). We note first that the definition of
f implies that fo (t)/t)dt = ¢, so that (1 1) holds Now suppose that g is another eligible function such
that (11) holds, and let § = g — f. Then [;°(6(t)/t) dt = 0 and, using (17),

> 23%/)( (/Ooot—l—%?(wo+w1t2)f(t)6(t)dt> dM:2N9272§R/Xw0¢ (/OO" o(t )dt> du=0.

The following is a straightforward corollary of the above theorem.

Corollary 3.2. Let H = (Hg, Hy) be a compatible pair of Hilbert spaces, (X, M, ) be a measure space
and let Y denote the set of measurable functions X — C. Suppose that there exists a linear map A :
Y(H) — Y and, for j = 0,1, functions w; € Y, with w; > 0 almost everywhere, such that the mappings
A: H; — L*(X,M,w;u) are unitary isomorphisms. For 0 < § < 1 define intermediate spaces HY, with
A(H) c H? c (H), by

HY {¢€E( ) ol —(/ g A du>1/2<00},

where wy := wy~ gw?. Then, for 0 <0 < 1, H? = K¢ 5(H) = Jpo(H), with equality of norms.

In the next theorem we justify our earlier statement that the situation described in Theorem 3.1 is
generic, the point being that it follows from the spectral theorem for bounded normal operators that
every Hilbert space compatible pair is unitarily equivalent to a compatible pair of weighted L?-spaces. We
should make clear that, while our method of proof that the K-method and J-method produce the same
interpolation space, with equality of norms, appears to be new, this result (for the somewhat restricted
separable Hilbert space case, with A(H) dense in Hy and H) is claimed recently in Ameur [2, Example 4.1]
(see also [3, Section 7]), though the choice of normalisation, details of the argument, and the definition of
the J-method norm appear inaccurate in [2].

In the following theorem and subsequently, for a Hilbert space H, (-,-) g denotes the inner product on
H. We note that A(H) and X(H) are Hilbert spaces if we equip them with the equivalent norms defined
by H¢||A(H) J(1,¢,H) and H(b”lz(ﬁ) := K(1,¢, H), respectively. In the next theorem we use standard

results (e.g., [13, Section VI, Theorem 2.23]) on non-negative, closed symmetric forms and their associated
self—adjoint operators.

Theorem 3.3. Suppose that H = (Hy, Hy) is a compatible pair of Hilbert spaces. Then, for 0 < <1,
||¢HK92(§) = |l 5, L) for ¢ € (Ho, H1)g2. Further, where Hi denotes the closure in Hi of A(H),

deﬁm'ﬁg the unbounded, self-adjoint, injective operator T : HY — HY{ by
(T(ba ¢)H1 = (¢7 ¢)H07 ¢7w S A(F)7

and where S is the unique non-negative square root of T, it holds that

I¢llata = 1561, and 118l ,cary = 615, s = 15" @l for 6 € A,

so that Kgo(H) is the closure of A(H) in S(H) with respect to the norm defined by ||¢|lo := [|S* 99| m, -



Proof. For j = 0,1, define the non-negative bounded, injective operator A; : A(H) — A(H) by the
relation (A;¢, ¢)A(ﬁ) = (¢,¥)m,, for ¢,¢ € A(H), where (-, ')A(ﬁ) denotes the inner product induced
by the norm || - H/A(ﬁ)' By the spectral theorem [11, Corollary 4, p. 911] there exists a measure space

(X, M, ), a bounded p-measurable function wy, and a unitary isomorphism U : A(H) — L?(X, M, u)
such that
Agp = U twoU¢, for ¢ € A(H),
and wg > 0 p-almost everywhere since Ay is non-negative and injective. Defining w; := 1 — wp we see
that Ay¢ = U tw U, for ¢ € A(H), so that also wy > 0 p-almost everywhere.
For ¢ € A(H),

||¢H12LI] = (U_leU¢7¢)A(ﬁ) = (U, Ud)r2(x, ) = HU(ZS”%z(X,M,w]‘/,L)’ for j =0, 1.

Thus, where (similarly to HY) HS denotes the closure of A(H) in Hy, U extends to an isometry U :
H? — L2(X,M,w;u) for j = 0,1. These extensions are unitary operators since their range contains
L%*(X, M, 1), which is dense in L*(X, M,w;u) for j = 0,1. Where " = (H§, HY), U extends further
to a linear operator U : E(Fo) — Y, the space of p-measurable functions defined on X'. Thus, applying
Corollary 3.2 and noting part (v) of Theorem 2.2, we see that H? = Ky o(H) = Jy2(H), with equality of
norms, where

= {6 e 2(H) : 9lue = Ul L2(x Mwop) < 0}

and wy = wi~%wf. Moreover, for ¢ € A( H), the unbounded operator T : HY — HY satisfies T¢ =
U~ (wo/w1)U¢ so that [|S'0¢|13 = (T, 0)u, = (AT 0, 0)am) = (WeUdUd)r2(xarp) =
#1370, for 0 < 0 < 1, and [|S@|3;, = (woU, Ud)r2(x arp) = |16l 74, - O

In the special case, considered in [15], that Hy is densely and continuously embedded in H;, when
A(H) = Hy and X(H) = Hy, the above theorem can be interpreted as stating that (Hg, H1)g 2 is the
domain of the unbounded self-adjoint operator S'=% : H; — H; (and Hj the domain of S), this a standard
characterisation of the K-method interpolation spaces in this special case, see, e.g., [15, p. 99] or [6]. The
following theorem (cf., [6, Theorem B.2]), further illustrating the application of Corollary 3.2, treats the
special case when Hy C Hp, with a compact and dense embedding (which implies that both Hy and H;
are separable).

Theorem 3.4. Suppose that H = (Hy, Hy) is a compatible pair of Hilbert spaces, with Hy densely and
compactly embedded in Hy. Then the operator T : Hy — Hy, defined by

(T(ba 1/1)H1 = (¢7 1p)l'fnv (buw € H17

is compact, self-adjoint, and injective, and there exists an orthogonal basis, {¢; : j € N}, for Hy, where
each ¢; is an eigenvector of T' with corresponding eigenvalue A;j. Further, Ay > A2 > ... >0 and A\; — 0
as j — 0o. Moreover, normalising this basis so that |||, = 1 for each j, it holds for 0 < 8 < 1 that

oo 0o 1/2
(Ho, H1)p2 = {¢ = Zaﬂbj € Ho : [|¢l5 == (Z/\;a|aj|2> < OO}-
k=1 =1

Further, for 0 <0 <1, [6ll; = 19l x, ) = I9ll,, @), for ¢ € (Ho, H1)o2, and, for j = 0,1, [|¢]} =
¢z, . for ¢ € H;.

Proof. Clearly T is injective and self-adjoint, and we see easily (this a standard argument) that T is
compact. The existence of an orthogonal basis of H; consisting of eigenvectors of T', and the properties of
the eigenvalues claimed, follow from standard results [18, Theorem 2.36], and the positivity and injectivity
of T. Further, (¢i, ¢;)u, = (T'his &)1, = Ni(Pis &j)m,- Thus, normalising by ||¢;|lm, = 1, it holds that
(¢i, )1, = 0ij, and (¢i,dj)m, = N; '6iz, for i,5 € N. Since H; is dense in Hy, {¢;} is an orthonormal
basis of Hy. Further, for ¢ € Hy and j € N, (¢;,9)m, = A; (T¢j,8)m, = A; (65, ) ,. Thus, for ¢ € Hy,

16113, = 22721 1(85,¢) 1, %, while, for ¢ € Hi,

6113, = ZA (6, ), |2 = ZA (8, ¢3) b0

Jj=1 Jj=1

To complete the proof we use Corollary 3.2, with the measure space (N, 2, 1), where p is counting measure,
and where Ag¢, for ¢ € Hy, is the function A¢ : N — C defined by Ad(j) = (¢, ¢;)m,, j € N, and wg and

w; are defined by wo(j) =1 and wy(j) = )\;1/27 jeN. O



3.2 Uniqueness of interpolation in the Hilbert space case

Theorem 3.3 is a statement that, in the Hilbert space case, three standard methods of interpolation
produce the same interpolation space, with the same norm. This is illustrative of a more general result.
It turns out, roughly speaking, that all methods of interpolation between Hilbert spaces that produce, for
0 < 0 < 1, interpolation spaces that are Hilbert spaces and that are exact of exponent 6, must coincide.
To make a precise statement we need the following definition: given a Hilbert space compatible pair
H = (Hy, H,), an intermediate space H between Hy and H; is said to be a geometric interpolation space
of exponent 0 [17], for some 0 < 6 < 1, relative to H, if H is a Hilbert space, A(H) is dense in H, and

the following three conditions hold for linear operators T":

i) If T maps A(H) to A(H) and ||T||, < Moll¢lla, and |T¢|z, < Ail|¢]lm,, for all ¢ € A(H), then
1Tl < Ao~ Alll¢lu, for all ¢ € ACH);

ii) If T maps A(H) to H, for some Hilbert space #, and [|[T¢[% < Aol|éllm, and [Tollz < M|¢]lm,,
for all ¢ € A(H), then | T¢llz < A\o~N||¢|| . for all ¢ € A(H);

iii) If 7 maps H to A(H), for some Hilbert space H, and | T¢|/z, < Aoll¢ll3 and [|Té||r, < Ail|dll2,
for all ¢ € H, then || T¢||m < Ay ON||¢|2, for all ¢ € H.

More briefly but equivalently, in the language introduced in Section 2, H is a geometric interpolation
space of exponent 6 if A(H) ¢ H C X(H), with continuous embeddings and A(H) dense in H, and if:
(i) (H,H) is a pair of interpolating spaces relative to (H, H) that is exact of exponent 6; and (ii) for
every Hilbert space H, where H := (H,H), (H,H) and (H, H) are pairs of interpolation spaces, relative
to (H,H) and (H, H), respectively, that are exact of exponent 6.

The following is the key uniqueness and existence theorem; the uniqueness part is due to McCarthy [17]
in the separable Hilbert space case with A(H) dense in Hy and H;. We emphasise that this theorem states
that, given a Hilbert space compatible pair, two geometric interpolation spaces with the same exponent
must have equal norms, not only equivalent norms.

Theorem 3.5. Suppose that H = (Hy, Hy) is a compatible pair of Hilbert spaces. Then, for 0 <0 <1,
Kp2(H) is the unique geometric interpolation space of exponent 0 relative to H.

Proof. That Hy := Ky 2(H) is a geometric interpolation space of exponent 6 follows from Lemma 2.1(iii)
and Theorem 2.2 (i) and (iv). To see that Hy is the unique geometric interpolation space we adapt the
argument of [17], but using the technology (and notation) of the proof of Theorem 3.3.

So suppose that G is another geometric interpolation space of exponent @ relative to H. To show that
G = Hy with equality of norms it is enough to show that ||¢|lc = ||¢|m,, for ¢ € A(H).

Using the notation of the proof of Theorem 3.3, recall that T': HY — HY is given by T = U~ 'wU,
where w := wo/wi. For 0 < a < b let x4 € ) denote the characteristic function of the set {z € X :
a < w(z) < b}, and define the projection operator P(a,b) : X(H ) — A(H) by P(a,b)¢ = U~ xasUd.
Recalling that U : H7 — L2(X,M,w;u) is unitary, we see that the mapping P(a,b) : H? — H has
norm one, for j = 0,1: since G and Hy are geometric interpolation spaces, also P(a,b) : G — G and
P(a,b) : Hyp — Hp have norm one. Thus P(a,b) is an orthogonal projection operator on each of H7,
j =0,1, G, and Hy, for otherwise there exists a ¢ in the null-space of P(a,b) which is not orthogonal
to some ¢ in the range of P(a,b), and then, for some n € C, ||¢|| > ||¢ + n|| > [|P(¢ + nv)| = ||¢|, a
contradiction.

Let H denote the range of P(a,b) : X(H) — A(H) equipped with the norm of Hy. Clearly P(a,b) :
HY — H has norm one, while it is a straightforward calculation that P(a,b) : Hj — #H has norm
< Xapw™ 2| Lo (20,0, < @ Y/2, s0 that P(a,b) : G — H has norm < a~(1=9/2_ Similarly, where R is the
inclusion map (so R¢ = ¢), R: H — Hy has norm one, R : H — H{ has norm < ||Xa)bw1/2||Loo(X’M’H) <
bY/2, so that R : H — G has norm < b(1=9/2 Thus, for ¢ € H,

a'CllolE, < llolie < b 0ol - (18)

Finally, for every p > 1, we observe that, for ¢ € A(H), where ¢,, :== P(p"™,p"1)¢, since {x : w(x) = 0}

has M-measure zero,
o0 o0

67, = D lealllr, and ol = D lenlz. (19)

n=—oo n=—oo

Further, for each n,

||¢n||%{9 :/Xw9‘U¢n|2d/‘:Axp”,p"+1w9|U¢n|2dﬂ:AXP",p"+1W1_0w1|U¢n|2dN
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so that
P N bnll, < llnllt, < PV 16,17, -

Combining these inequalities with (18) (taking a = p™, b = p"*!) and (19), we see that

p~NolE < lIgllF, < P 0lellE
Since this holds for all p > 1, ||¢||x, = ||4llc- O

Remark 3.6. For those who like the language of category theory (commonly used in the interpolation
space context, e.g. [5,24]), the above theorem says that there exists a unique functor F from the category
of Hilbert space compatible pairs to the category of Hilbert spaces such that: (i) for every Hilbert space
compatible pair H, A(H) C F(H) C X(H), with the embeddings continuous and A(H) dense in F(H);
(ii) for every Hilbert space H, where H := (H, H), it holds that F(H) = H; (iii) for every pair (H,H)
of Hilbert space compatible pairs, (F(H), F(H)) is a pair of interpolation spaces, relative to (H,H), that
is exact of exponent 0. Theorems 3.5, 2.2 (i), and 3.3 tell us that the K-method and the J-method are
both instances of this functor. It follows from Theorems 4.1.2, 4.2.1(c), 4.2.2(a) in [5] that the complex
interpolation method is also an instance of this functor, so that, for every Hilbert space compatible pair
H = (Hy, Hy), the standard complex interpolation space (Ho, H1)jg (in the notation of [5]) coincides with

Ky o(H), with equality of norms.

3.3 Duality and interpolation scales

Theorems 3.3 and 3.5 and Remark 3.6 make clear that life is simpler in the Hilbert space case. Two
further simplications are captured in the following theorem (cf., Theorem 2.2 (vii) and Theorem 2.4).

Theorem 3.7. Suppose that H = (Hy, Hy) is a Hilbert space compatible pair.

(Z) If 6y, 0, € [O, 1], and, for j =0,1, Hj = (HO’H1)0j72} if 0 < 9j < 1, while Hj = ng, ZfHJ S {0, 1},
then (Ho, H1)n.2 = (Ho, H1)s,2, with equal norms, for 8 = (1 —n)8p +nb1 and 0 <n < 1.

(ii) If A(H) is dense in Hy and Hy, so that H := (Hg, H}) is a Hilbert space compatible pair, then
(Ho, H1)p o = (Hy, H{)o 2,
for 0 < 0 < 1, with equality of norms.

Proof. To prove (i) we note first that, by Theorem 2.2 (v), we can assume A(H) is dense in Hy and H;.

With this assumption it holds—see the proof of Theorem 3.3—that there exists a measure space
(X, M, ), a unitary operator U : A(H) — L*(X, M, u), and functions w; : X — [0,00) that are u-
measurable and non-zero p-almost everywhere, such that U : H; — L*(X, M,w;pu) is a unitary operator
forj =0,1and U : (Ho, H1)g2 — L*(X, M, wpp) is a unitary operator for 0 < 6 < 1, where wy := wé_awf.
But this identical argument, repeated for (Ho, H1),.2, gives that U : (Ho, H1)y2 — L*(X, M, W,u) is a
unitary operator, where W, := WO1 MW and W = wy,. But this proves the result since W, = wg if
0=(1-—n)by+nb; and 0 <n < 1.

That (ii) holds is immediate from Theorems 2.4 and 3.3. O

Remark 3.8. A useful concept, used extensively in Section 4 below, is that of an interpolation scale.
Given a closed interval T C R (e.g., T = [a,b], for some a < b, T = [0,00), Z = R) we will say that a
collection of Hilbert spaces {Hs : s € I}, indexed by Z, is an interpolation scale if, for all s,t € T and
0<n<l,

(Hs;Ht)n,2 :H07 fore: (1_77)5+77t

We will say that {H, : s € T} is an exact interpolation scale if, moreover, the norms of (Hg, Hy)p2 and
Hy are equal, for s,t € Z and 0 < n < 1.

In this terminology part (i) of the above theorem is precisely a statement that, for every Hilbert space
compatible pair H = (Hy, Hy), where Hs := (Hy, H1)s2, for 0 < s < 1, {Hs : 0 < s < 1} is an evact
interpolation scale. If A(H) is dense in Hy and Hy, part (ii) implies that also {H? : 0 < s < 1} is an
exact interpolation scale.
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4 Interpolation of Sobolev spaces

In this section we study Hilbert space interpolation, analysed in Section 3, applied to the classical Sobolev
spaces H*(Q2) and H*(Q), for s € R and an open set 2. (Our notations here, which we make precise below,
are those of [18].) This is a classical topic of study (see, e.g., notably [15]). Our results below provide a
more complete answer than hitherto available to the following questions:

(i) Let Hy, for s € R, denote H*(2) or H*(2). For which classes of Q and what range of s is {H,} an
(exact) interpolation scale?

(ii) In cases where {H} is an interpolation scale but not an exact interpolation scale, how different are
the Hg norm and the interpolation norm?

Our answers to (i) and (ii) will consist mainly of examples and counterexamples. In particular, in the
course of answering these questions we will write down, in certain cases of interest, explicit expressions
for interpolation norms that may be of some independent interest. Our investigations in this section are
in very large part prompted and inspired by the results and discussion in [18, Appendix B], though we
will exhibit a counterexample to one of the results claimed in [18].

We talk a little vaguely in the above paragraph about “Hilbert space interpolation”. This vagueness
is justified in Section 3.2 which makes clear that, for 0 < # < 1, there is only one method of interpolation
of a pair of compatible Hilbert spaces H = (Hy, H;) which produces an interpolation space Hy that is a
geometric interpolation space of exponent 6 (in the terminology of §3.2). Concretely this intermediate space
is given both by the real interpolation methods, the K- and J-methods with ¢ = 2, and by the complex
interpolation method: to emphasise, these methods give the identical interpolation space with identical
norm (with the choice of normalisations we have made for the K- and J-methods). We will, throughout
this section, use Hy and (Hy, Hy)g as our notations for this interpolation space and || - |77, as our notation
for the norm, so that Hg = (Hy, Hy)p and || - [z, are abbreviations for (Ho, H1)g2 = Koo(H) = Jopo(H)
and || - ||, ) = I - |5, , (7r)> respectively, the latter defined with the normalisation (9).

4.1 The spaces H*(R")

Our function space notations and definitions will be those in [18]. For n € N let §(R™) denote the
Schwartz space of smooth rapidly decreasing functions, and 8*(R™) its dual space, the space of tempered
distributions. For u € §(R™), v € 8*(R"™), we denote by (u,v) the action of v on u, and we embed
L?(R™) D 8(R™) in 8*(R™) in the usual way, i.e., (u,v) := (u,v), where (-, -) denotes the usual inner product
on L?(R"), in the case that u € §(R"), v € L?(R™). We define the Fourier transform 4@ = Fu € §(R"),
for u € 8(R™), by

w(§) = ! / e &y(z)dx, for £ € R™,

(2m)"/2 Jg

and then extend F to a mapping from 8*(R™) to 8*(R™) in the canonical way, e.g., [18]. For s € R we
define the Sobolev space H*(R"™) C 8*(R™) by

) = {8 @) ol = ([ A lepra@ra) <o) (20

D(R™) c §(R™) C H*(R™) are dense in H*(R™) [18] (for an open set , D(Q) denotes the space of
those u € C°° () that are compactly supported in Q). Hence and from (20) it is clear that H*(R") is
continuously and densely embedded in H*(R"), for s < t, with |[u||g«®n) < ||u] ge@n), for u e H* (R™).
By Plancherel’s theorem, H°(R™) = L?(R") with equality of norms, so that H*(R") C L*(R") for s > 0.
Moreover, from the definition (20),

m (lal\ | qa
HU”%}m(Rn) = Z <|O(|> <O( ) ||8 u”%Q(Rn), for m € No:=NU {0}, (21)

lal<m

where, for @ = (a1,..a,) € Ng, |a] := S0 g, (19) = |al/(aa!- - an)), 8% =[], 8, and 9, :=
0/0z; (the derivative in a distributional sense).

The following result ([18, Theorem B.7]) is all there is to say about H*(R™) and Hilbert space inter-
polation.

Theorem 4.1. {H*(R"™) : s € R} is an exact interpolation scale, i.e., for sp,s1 € R, 0 < 0 < 1,
(H®(R™), H**(R™))g = H*(R™), with equality of norms, if s = so(1 — ) + s10.

Proof. This follows from Corollary 3.2, applied with A =F, X =R", and w;(¢) = (1 + |€]2)%3/2. O
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4.2 The spaces H*({)

For © C R™ there are at least two definitions of H*®(£2) in use (equivalent if € is sufficiently regular).
Following [18] (or see [24, Section 4.2.1]), we will define

H*(Q) := {u e D*(Q) : u=Ulg, for some U € H*(R")},

where D*(Q) denotes the space of Schwartz distributions, the continuous linear functionals on D(Q) [18,
p. 65], and Ul denotes the restriction of U € D*(R™) D 8*(R") to Q. H*(Q) is endowed with the norm

||u||Hs(Q) = inf{||U||Hs(Rn) : U|Q = u} s for u € HS(Q)

With this norm, for s € R, H*(Q2) is a Hilbert space, D(Q2) := {Ulq : U € D(R™)} is dense in H*(Q),
and H'(Q2) is continuously and densely embedded in H*(Q) with |[ul|g«q) < ||ullg (o), for s < t and
u € H'(Q) [18]. Further L*(Q) = H°(Q) with equality of norms, so that H*(Q) C L?(2) for s > 0.
For m € Ny, let
W3 () == {u € L*(Q) : 9%u € L*(Q) for |a| < m}

(our notation is that of [18] and other authors, but the notation H™ () for this space is very common,
e.g. [15]). WJ*(Q) is a Hilbert space with the norm

1/2
HUHW;L(Q) = ( Z aa,m||3au|%2(9)> )

la|<m

for any choice of positive coefficients aq .. The usual choice is aq,m = 1, but, comparing with (21), we
see that the choice aq,m = (|7 (‘O‘l) ensures that [[ullgm ) > Jullwy (), for w € H™(Q), with equality

when 2 = R". Clearly, H m(fll)‘ is continuously embedded in W3*(2), for all Q.

Whether H*(2) is an interpolation scale depends on the smoothness of 2. As usual (see, e.g., [18,
p. 90]), for m € Ny we will say that Q C R™ is a C™ open set if 9 is bounded and if, in a neighbourhood
of every point on 92, 9 is (in some rotated coordinate system) the graph of a C™ function, and the part
of © in that neighbourhood is part of the epigraph of the same function. Likewise, for 0 < 8 < 1, we will
say that © is a C%? open set, if it is a C° open set and 05 is locally the graph of a function that is Holder
continuous of index $. In particular, a C%! or Lipschitz open set has boundary that is locally the graph
of a Lipschitz continuous function. We say that {z € R" : z,, < l(x1,...,2,-1)} is a Lipschitz hypograph
if £: R"! — R is a Lipschitz function.

Let R : H*(R™) — H*(Q)) be the restriction operator, i.e., RU = Ulq, for U € H*(R™): this is an
operator with norm one for all s € R. It is clear that W3"(2) = H™(Q), with equivalence of norms,
if there exists a continuous extension operator £ : Wi*(Q) — H™(R™) that is a right inverse to R, so
that RE€u = u, for all uw € W3(2). Such an extension operator is also a continuous extension operator
E: H™(Q) — H™(R™). An extension operator & : H*(Q) — H*(R") exists for all Q and all s € R:
for u € H*(Q), set U := Esu to be the unique minimiser in H*(R™) of ||U| gs®n) subject to Ulg = u
(see [18, p. 77]). These operators & have norm one for all s € R and all Q. But whether H*(Q)
is an interpolation scale, for some range of s, depends on the existence of an extension operator which,
sitmultaneously, maps H®(2) to H*(R"), for two distinct values of s. The following lemma is a quantitative
version of standard arguments, e.g. [24, Section 4.3].

Lemma 4.2. Suppose that so < s1, 0 < 0 < 1, and set s = so(1 —0) + 510, H = (H*°(Q), H**(Q)). Then
H*(Q) C Hy = (H*°(Q), H**(Q))g, with lullz, < llullms@), forwe H*(2). If also, for some Ao, A1 > 1,
E : H*(Q2) — H*(R™) is an extension operator, with ||Eullge;@mny < Ajllullgoi (o) for u € H®(Q) and
j=0,1, then H*(Q) = Hy with equivalence of norms, precisely with

XTI Nl < llullg, < llullme@), forue H*(Q).
Further, {H?*(Q) : so < s < s1} is an interpolation scale.

Proof. By Theorem 4.1, (H®°(R"), H**(R"))g = H*(R"™) with equality of norms. For all t € R, R :
HY(R™) — H'(Q) has norm one. Thus, by Theorem 2.2 (i), H*(2) = R(H*(R")) C Hy and R :
H*(R") — Hg with norm one, so that, for u € H*(Q), [lullg, = [I[REullg, < I€ullms@ny = llullm-),
where Esu is the extension with minimal H*(R™) norm, described above.

If also the extension operator £ has the properties claimed, then, by Theorem 2.2 (i), £(Hy) C H*(R")
so that Hy = RE(Hy) C R(H*(R™)) = H*(Q). Further, £ : Hg — H*(R™) with norm < A\§~?)\Y, so that,
for u € H*Q) = Ho, [[ull -0y = [REul ey < |€ull ey < NN Jullz,.

Hence, noting Theorem 3.7 (i), {H*(Q) : so < s < s1} is an interpolation scale. O
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Example 4.3. As an example, consider the case that ) is the half-space Q = {x = (21, ..., 2p) : x1 > 0},
so =0, and s1 = 1. In this case a simple extension operator is just reflection: Eu(x) := u(x), for x1 >0,
and Eu(zx) = u(x'), for z1 < 0, where &’ = (—x1,22,....,xy). In this ezample € : H*(Q) — H*(R™) has
norm 2 for s = 0,1 and, applying Lemma 4.2, H*(Q) = H := (L*(2), H (), for 0 < s < 1, with

1 S
Slullme) < llullz, < llulwe@), forue H*(Q).

The construction of a continuous extension operator € : Wi (Q2) — H™(R"™), for each m € Ny in the
case  Lipschitz, dates back to Calderén [7]. Stein [22, p. 181], in the case © Lipschitz, constructed an
extension operator £ : Wi (Q2) — H™(R™), not depending on m € Ny, that is continuous for all m. It is
well known that if an open set is merely C%#, for some B < 1, rather than C%', then, for each m € N,
there may exist no extension operator £ : W3*(Q2) — H™(R"), so that H™(Q) G W3"(2). This is the
case, for example, for the cusp domain in Lemma 4.13 below: see [16, p. 88]. (Here, as usual, domain
means connected open set.) A strictly larger class than the class of C%! domains for which continuous
extension operators do exist is the class of locally uniform domains [12].

Definition 4.4. A domain Q C R"™ is said to be (¢€,0) locally uniform if, between any pair of points x,
y € Q such that |x — y| < 4§, there is a rectifiable arc v C Q of length at most |z — y|/e and having the
property that, for all z € 7,

elz —af|z -y

dist(z,0Q) >
(=,00) |z —yl

All Lipschitz domains are locally uniform, but the class of locally uniform domains contains also sets
Q) C R™ with wilder, fractal boundaries, in fact with 9 having any Hausdorff dimension in [n —1,n) [12,
p. 73]. Jones [12] proves existence of an extension operator £ : W3*(2) — H™(R™) for each m € N when
Q is locally uniform. More recently the following uniform result is proved.

Theorem 4.5 (Rogers, [20]). If Q C R" is an (¢,9) locally uniform domain then there exists an extension
operator € : Wir(Q) — H™(R™), not depending on m € Ny, that is continuous for all m.

The following uniform extension theorem for the spaces H*({2) is a special case of a much more general
uniform extension theorem for Besov spaces [21], and generalises Stein’s classical result to negative s.
Rychkov’s [21] result is stated for Lipschitz hypographs and bounded Lipschitz domains, but his localisa-
tion arguments for bounded domains [21, p. 244] apply equally to all Lipschitz open sets.

Theorem 4.6 (Rychkov, [21]). If Q C R™ is a Lipschitz open set or a Lipschitz hypograph, then there
exists an extension operator £ : H*(Q2) — H*(R™), not depending on s € R, that is continuous for all s.

Combining Theorems 4.5 and 4.6 with Lemma 4.2 and Theorem 3.7 (i) we obtain the following inter-
polation result.

Corollary 4.7. If Q C R™ is a Lipschitz open set or a Lipschitz hypograph, then {H®(Q) : s € R} is an
interpolation scale. If @ C R™ is an (e, 6) locally uniform domain then {H*®(Q2) : s > 0} is an interpolation
scale.

Except in the case Q = R", it appears that {H*({2) : s € R} is not an exact interpolation scale. In
particular, Lemma 4.13 below shows that, for @ = (0,a) with 0 < a < 1, {H*(Q) : 0 < s < 2} is not
an exact interpolation scale, indeed that, for interpolation between L?(Q) and H?((2), the ratio of the
interpolation norm to the intrinsic norm on H!(Q) can be arbitrarily small for small a. Example 4.14
below is a bounded open set 2 C R for which

H'(Q) S (L*(Q), H*()) (22)

1/2’
so that {H*(Q2) : 0 < s < 2} is not an interpolation scale. The following lemma exhibits (22) for
a C%? domain in R2, for every 3 € (0,1). These results contradict [18, Theorem B.8] which claims
that {H*(2) : s € R} is an exact interpolation scale for any non-empty open Q C R™. (The error in
McLean’s proof lies in the wrong deduction of the bound K (¢,U;Y) < K(¢,u; X) (in his notation) from
KU Y)? < luolZ, + 2l

Lemma 4.8. For some p > 1 let Q = {(z1,72) € R? : 0 < 21 < 1 and |xa| < 2l}. Then Q is a C%P
domain for B =p~t <1 and (22) holds, so that {H*(Q2) : 0 < s < 2} is not an interpolation scale.
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Proof. Let Hy := (H°(Q), H?(Q2))g, for 0 < # < 1. Choose an even function y € C*°(R) such that
0 < x(t) <1forte R, with x(¢) = 0if |[t| > 1, and x(¢) = 1if |[t| < 1/2. For 0 < h < 1 define
én € H*2Q) by én(x) = x(z1/h), x € Q. We observe that ¢,(z) = 0 for ; > h so that, where
Qp={zxeQ:0<z <h},

h
opp+1
bn| S/ dx=2/ xldry = .
|| ||L2(Q) a, 0 1441 p+1

Further, defining ¢, (z) = x(z1/h)x(x2/(2h)), for & = (z1,22) € R? and 0 < h < 1, it is clear that
on = &) |o. Moreover, [0%¢; || r2(re) = h'~1(|0%¢T || 12(re), for o € NZ. Thus, using the identity (21),

6nllr2) < 67 lr2rey = O(R™Y),  as h — 0,

so that, applying Lemma 2.1(i), [|¢nllz, = O(h?), as h — 0, where 8 := (1—-0)(p+1)/2—0. Let 6 = 1/2,

so that 8 = (p —1)/4 > 0. Put h, = n~9, for n € N, for some ¢ > 7. Then Ion, |7, ,, = O(n~99)

as n — 00, so that > ° | ¢y, is convergent in Hy/o to some ¢ € Hyjp. Let € be some C' bounded

domain containing . Then, by the Sobolev embedding theorem (e.g. [1, p. 97]), H*(,) C L"(£,) for all

1 <7 < oo, so that HY(Q) C L™(Q). We will show (22) by showing ¢ & L"(Q2) if r is sufficiently large.
Clearly, ¢ = Y7 | ¢p, satisfies ¢(z) > n, for 0 < 21 < h,, /2 =n"7/2, so that

00 n"9/2
/ [1|"dz > Qan/ xidxy
Q n=1 (
1

n+1)—42/2
o0 q 00
= o " ("_q(pH) —(n+ 1)_q(”+1)) > o= n"(n+1)TUP DL
(p+1)2r & 2 2

where in the last step we use the mean value theorem, which gives that, for some £ € (n,n+1), n~t —(n+
)t =t >t(n+1)"""", where t = q(p+1) > 0. Thus ¢ ¢ L"(Q) if r —q(p+1)—1 > -1, ie., if r >
q(p+1). Since we can choose any ¢ > 371, we see that, in fact, Hy;p ¢ L7(Q) forr > 4(p+1)/(p—1). O

4.3 The spaces H*(Q)

For s € R and Q C R" we define H*(Q) := D(Q)Ht * ), the closure of D(£2) in H*(R™). We remark

that if Q is C° then ﬁS(Q) = {u € H*(R") : suppu C Q} [18, Theorem 3.29], but that these two spaces
are in general different if Q is not CY [9]. Also, for any m € No, H™ () is unitarily isomorphic (via the
restriction operator R) to HJ'(Q), the closure of D(Q) in H™(Q). For any open Q C R, H*(Q) is a
natural unitary realisation of the dual space of H~*°(2), with duality paring (cf. [18, Theorem 3.14])

<U,U>gs(9)xH_s(Q) = (u,V)_s, forue H¥(Q),veH (),

where V € H*(R"™) denotes any extension of v with V|q = v, and (-, -)_; is the standard duality pairing
on H*(R™) x H—*(R"™), the natural extension of the duality pairing (-,-) on S§(R™) x 8*(R™). This result
is well known when € is C° [18]; that it holds for arbitrary 2 is shown in [8,9].

The following corollary follows from this duality result and Theorem 3.7 (ii).

Corollary 4.9. Suppose that sg < s1, 0 < 0 < 1, and set s = so(1 — 0) + 51,0, H = (H*(Q), H*1(2)),
and H = (H=*0(Q), H=*(Q)). Then Hy = (H=*(Q), H=**(Q))g C H~*(), with |[ull . q) < [l
foru € F;, Further, Hy = H*(Q) if and only if F; = IA{T*S(Q) and, if both these statements are true,
then, for a > 1,
a71||u||Hs(Q) < ||u|\ﬁ9, Yu € H*(Q) if and only if ||u\|ﬁ; < allul|, Yu € ﬁfs(Q).
Combining this with Corollary 4.7, we obtain the following result.

Corollary 4.10. If Q C R™ is a Lipschitz open set or a Lipschitz hypograph, then {fIS(Q) : s €R} is an
interpolation scale. If @ C R™ is an (¢, 0) locally uniform domain then {H*(Q) : s < 0} is an interpolation
scale.
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Except in the case 0 = R™, it appears that {f[ 5(Q) : s € R} is not an exact interpolation scale.
Example 4.15 below shows, for the simple one-dimensional case Q = (0,1), that {H*(Q) : 0 < s < 1} is not
an exact interpolation scale, using a representation for the norm for interpolation between L2(Q) = HO(€)
and H L(Q) given in the following lemma that illustrates the abstract Theorem 3.4 (cf., [14, Chapter 8]).
For the cusp domain example of Lemma 4.8, by Lemma 4.8 and Corollary 4.9, {H*(Q) : —2 < s < 0} is
not an interpolation scale at all.

Lemma 4.11. Let Q be bounded and set Hy := H°(Q) = L%(Q), Hy := HY(Q) = HY(Q). Then H :=
(Ho, Hy) satisfies the assumptions of Theorem 3.4, since the embedding of H(Q) into L?(2) is compact.
The orthogonal basis for Hq, {¢; : j € N}, of eigenvectors of T (with \; the eigenvalue corresponding to
¢; and ||¢;lla, = 1), is a basis of eigenfunctions of the Laplacian. [This follows since T¢p = A, for X >0
and ¢ € Hy = HY(Q), if and only if

/Q (Vo Vi — pod) dz =0, for v € HN(Q), (23)

with p = A=Y — 1. In turn, by local elliptic reqularity, (23) holds if and only if ¢ € HE () N C%(Q) and

—A¢ = po in Q (in a classical sense).] From Theorem 3.4, the interpolation norm on Hg is

00 1/2 o0 1/2 B
loll, = ol = (oN71aP) = (S0 +m)lal?) o foro<s<iodse. @
j=1 J=1

where, for j €N, p; = /\j_1 —1 and a; == [, ¢¢;dx. Further, HQSHE,J-(Q) = |¢llj for ¢ € H; = HI(Q) and

j = 0,1. Moreover, by Corollary 4.10, if Q is Lipschitz, Hy = ﬁS(Q) for 0 < s < 1, with equivalence of
norms.

4.4 One-dimensional examples and counterexamples

Our first example, Lemma 4.13, which illustrates that {H®(€2) : 0 < s < 2} needs not be an exact
interpolation scale, requires explicit values for the H*(Q) and H?(f2) norms, for Q = (0,a) with a > 0.
These norms are computed using the minimal extension operator & : H*(Q2) — H*(R) for s =1, 2.

Lemma 4.12. For Q = (0,a) C R, with a > 0, the H*(Q) and H?(QY) norms are given by

|w@mnamm2+wwﬁ+47w2+wmdn (25)
1612120 =IO + 6O + 16(0) — &' O)F + [6(@)[? + &' (@) + 6(a) — & (a)?
+/<wﬁ+mdﬁ+ww%Ma (26)
0

Proof. By the definitions (20) and (21), ||¢H%{1(Q) = ||51¢||%11(R) = [x(|€10]* + [(£19)'[*)da, where the
extension £1¢ of ¢ € H'(Q) with minimal H!(R) norm is computed as an easy exercise in the calculus of
variations, recalling that H'(R) C C°(R), to be

QS(O) eaz, r < Oa
E1o(x) = < ¢(x), 0<z<a,
¢(a)e? ", x> a.

The assertion (25) follows by computing [;(|€1¢|* 4 |(£10)'|?)d.
Similarly, for ¢ € H%(2), |¢lln2() = [|€2] m2(r) and €26 is computed by minimizing the functional

To () = 1172z :/R(1+§2)2|1/3|2d£:A(|¢Iz+2l¢’\2+l¢"lg)dx

under the constraint ©|q = ¢. By computing the first variation of the functional J» and integrat-
ing by parts, we see that ¢ solves the differential equation """ — 2¢” + ¢ = 0 (whose solutions are
e®, e~ xe® we~?) in the complement of Q, and, recalling that H?(R) C C*(R), we obtain

xe® @' (0) + (1 — x)e*¢(0), z <0,
Eo(x) = < P(x), 0<z<a,
(z —a)e" "¢ (a) + (1 —a+x)e""¢(a), z=a.
The assertion (26) is obtained by computing [, (|20 + 2|(E20)'[> + [(E20)"|?)d. O
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Lemma 4.13. If Q@ = (0,a), with a > 0, then {H*(Q) : 0 < s < 2} is not an exact interpolation

scale. In particular, where Hy = (L2(Q), H2(Q)g, it holds that Hy = H?(Q), for 0 < 6 < 1, but
||1||ﬁ1/2 # |11 zr1 (). Precisely,

||1Hﬁ1 a? + 4a 1/4
2 < in(a'/*,1). 27
||1||H1(Q) = <a2 —|—4a+4> <m1n(a s ) ( )

Proof. The inequality (27) follows from Lemma 4.12 and Lemma 2.1(i), which give that

120y = ar @) =2+a, Uiz =4+a [1F, o < He@llllnee = Ve + 4a. -

Lemma 4.13 shows that, for the regular domain Q = (0, a), the spaces H*(Q2) are not an ezact interpo-
lation scale, and that the ratio (27) between the interpolation norm and the H*(€2) norm can be arbitarily
small. (However, the two norms are equivalent: Corollary 4.7 shows that H*(£2) constitutes an interpola-
tion scale in this case.) The next example provides an irregular domain for which {H*(2) : 0 < s < 2}
is not an interpolation scale so that, by Corollary 4.9, also {H*(€2) : —2 < s < 0} is not an interpolation
scale

Example 4.14. Leta := (a1, a2, ...) be a real sequence satisfying a; := 1,0 < an41 < an /4, n € N, and let
Q= Uflo:l(an/lan) C (0, ].) Let H() = L2(Q), H1 = H2(Q), H = (H(],Hl), and Fl/g = (H(]7H1)1/2'
We note first that if u € H*(R) then, by standard Sobolev embedding results [1, p. 97], u € C°(R), so
ulg € L®(Q) and HY(Q) C L>=(Q). We will see that there is a choice of the sequence a = (a1, as, ...) such
that Hyo ¢ L>(Q) so that Hy /o # H'(Q).

To see this, choose an even function x € C°(R) such that x(t) = 0 for |t| > 1 and x(0) = 1, and
consider the sequence of functions in Hy C Fl/g NHYQ) defined by

1, te0,a,]NQ,
onlt) = { 0, t€ (an,00)NQ,

for n € N. Clearly

Inllm <@y and  Ndullm = f [Vl ®) < lvonll 2 @),

in
w€H2(R)a'¢'|Q:¢n
where 1, € C1(R) N H2(R) is defined by

x(t), t <0,
1/}n(t) = 17 Ogtganv
X((t = an)/bn), t > anp,

with by := 1 and b, = an_1/2 — an, for n > 2. Further, where o := ||x||g2(®),

oo o oo _ _
IIwanqz(R):/ ([onl? + 20 2 + [07]%) dt:5+an+/0 (Bulx ()1 + 265" [ (M) + b, X (1)) o

and, forn>2, a, <1/2,1/2 > b, > an—1/4, so that

(1+ (1+64a,%)) ).

M| —

1
Wl < 5 (14 (14 8,9 a) <

Applying Lemma 2.1(i) we see that, for n > 2,

1/2 1/2 - _ 1/4
Iénllar, , < Ionllie Idallsy <27 %al/* (14 (14 64a,%,) @) .
Now choosing a,, according to the rule
a1 =1, a,= an4_1 (1 + (1 + 64a;§1) oz)71 an4_1’ n=23,...,

it follows that a, < 47" and that ||¢””F1/2 < 271447/t < (\/2)™™ = 0 as n — co. In fact ¢, — 0 so

rapidly that Y, ¢n is convergent in Hy o to a limit ® € Hy /5. This limit is not in H*(Q) as ® & L>(2):
explicitly, ®(t) = n, for a,/2 <t < a,.
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Figure 1: Comparison of Sobolev and interpolation norms in HY (), for the functions ¢; and ¢s.

Our last example uses the results of Lemma 4.11, and shows that {H*(0,1) : 0 < s < 1} is not an exact
interpolation scale by computing values of the Sobolev and interpolation norms for specific functions. This
example also demonstrates that no normalisation of the interpolation norm can make the two norms equal.

Example 4.15. Let Q = (0,1), Hy = H(Q) = L*(Q) and H, = H'(Q) = H}(Q). The eigenfunctions
and eigenvalues in Lemma 4.11 are ¢;(z) = \/2sin(jrx) and p; = j272, so that, for 0 < 6 < 1, the
interpolation norm on Hy = H?(Q) is given by (24). In particular,

Iojll5 = (1+ 3272, forjeN.

Noting that

1
¢J(§) = 7/0 Sin(jﬂ'a:)efiggC de =

j2m2 — €2 o j2n2 g2 ising/2, j even,

GV (1= (=1)Je7*) _ 2jy/mei¢/2 {0055/2, j odd,

it holds that
0o 1/2 0o 216 1/2
_ A oy ([T HEY [ eoe)
losllane = ([ erigseras)  —aivan ([T e ba)

A comparison of ||¢;||; and Hqﬁij{g(Q) for j = 1,2 and 0 € (0,1) is shown in Figure 1(a). It is clear

from Figure 1(a) that the interpolation and Sobolev norms do not coincide in this case. In particular, for
0 =1/2 we have

||¢1||T/2 ~ 1.816, H¢1HH1/2(Q) ~ 1.656, ||¢2HT/2 ~ 2.522, ||¢2||1§1/2(Q) ~ 2.404.
The ratio between the two norms is plotted for both ¢1 and ¢o in Figure 1(b). In particular,
1611132/l s 2y ~ 1096, 1l o/ 2] 3 2y =~ 1.049.

As the values of these two ratios are different, not only are the two norms not equal with the normalisation
(9) we have chosen, it is clear that there is no possible choice of normalisation factor in the definition (7)
that could make the interpolation and Sobolev norms equal.
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