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Abstract

Although the tube theory is very popular and successful, the tube concept remains evasive and ill de�ned. This
paper proposes a simple computer algorithm to construct the tube axis as a center line of the cloud of chain con�gura-
tions at di¤erent moments of time. We test this algorithm on trajectories generated from simulations of concatenated
well entangled ring polymers, thus avoiding all disentanglement processes. We �nd that entanglements are clearly
manifested through the curvature of tube axis, and we can succesfully identify binary and ternary entanglements in
molecular dynamics simulations. Several quantitative characteristics of entanglements are reported and disussed.

1 Introduction

The tube theory[1] is a standard tool to describe the motion of concentrated polymer solutions and melts. It assumes
that if polymers are long enough, their motion is happening predominantly along the contour of the tube (sometimes
called a primitive path), and perpendicular motion is somehow restricted by the surrounding chains. This remarkably
simple picture has explained many experimental observations and led to several qualitative predictions. It is however
notoriously di¢ cult to quantify this idea[2], which explains why the numerous attempts in creating a universal and
quantitative theory of polymer dynamics were inconsistent and often unsatisfactory.
In this paper we attempt to quantify the notion of the tube axis by suggesting a computer algorithm which takes

the trajectory of one chain from a simulation of some model of entangled dynamics and constructs a tube axis as an
average of the chain position during the simulation time. The main di¢ culty, which we attempt to overcome below, is
to de�ne the meaningful average of chain con�gurations at di¤erent moments of time.
In ref.[3] Read et. al. considered a simple network model, where each monomer of a Rouse chain was constrained

by an additional harmonic potential representing the in�uence of other chains. This model is similar to the slip-spring
model[4] apart from the fact that slip-links did not slip, i.e. the potentials were always acting on the same monomer.
For such simple model Read et.al. demonstrated that the mean path R̂i, constructed from the average positions of
each monomer i over long enough time, had a free energy of a semi�exible chain, with bending modulus directly related
to the strength and number of constraining potentials (or slip-springs). However, in reality entanglements are di¤erent
from network cross-links because the chain can slip through them. This means that the force due to a particular
entanglement will be applied to di¤erent monomers of the chain, until the chain end passes through the entanglement.
After that, the entanglement might disappear all together. This means that averaging monomer positions of the chain
sliding through the mesh of entanglements over a time longer than the Rouse time of one entanglement strand �e would
not give meaningful results. Moreover, the results will depend on the averaging time. We illustrate it in the Figure1
below, where we simulated a two-dimensional ring Rouse chain in a square array of point obstacles which can not be
crossed. The details of this simulations can be found in ref.[5]. Fig.1 shows 6 con�gurations of one chain at di¤erent
moments of time. Since the ring is entangled with the obstacles, the entanglements are permanent and the averaging
time can be arbitrarily long. It is obvious that the average positions of all monomers will coincide somewhere in the
center of this picture, and thus the mean path will be a point, which is not a very good candidate for the tube axis. The
reason for this collapse is that each monomer ( for example monomer i = 0 is shown by slightly larger grey spheres) is
traveling around a circle, from one obstacle to another. Thus its average position can not tell us much about individual
obstacles.
The solution is clear: instead of averaging positions of monomers with the same index, we need to average positions

of the monomers which are in the same section of the tube, or passing the same obstacle. However, there are practical
problems in implementing such an idea. One can try for example to construct a principal curve[6],[7],[8], which is
a smooth curve de�ned such that its intersection with the planes perpendicular to itself coincides with the average
over points where all chains intersect this plane. This is however problematic for our case of �exible chains, which
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Figure 1: Simulations of 2d Rouse ring chain in an array of obstacles. 6 chain con�gurations at di¤erent moments of
time are shown in grey, and the constructed tube axis in blue. Grid spacing is g = 4b, and the chain length is N = 128:

Figure 2: Simplest examples of curve averaging in two dimensions. The average of green and black is shown by red.

intersect each plane many times, and intersections do not necessarily mean that the intersecting monomer is close to
the particular obstacle.
In this paper we propose a simple algorithm which averages over many chain con�gurations and constructs the

tube axis, avoiding the problems discussed above. Section 2 outlines the algorithm, whereas section 3 tests the tube
axis construction on the simple grid model in 2 and 3 dimensions. Then section 4 provides main results of the paper
by constructing tube axis from molecular dynamics (MD) trajectories of concatenated well entangled rings. Section 5
provides conclusions and outlook.

2 Tube axis algorithm

First, we seek a meaningful de�nition of the average between two spacial curves r1(s) and r2(s), where s = 0::1 is the
contour variable. For simplicity, we shall consider closed curves here. What is for example the average in two dimensions
of two circles (Fig.2, left) with centres in C1 and C2 and radii q1 and q2? To answer this, we �rst should �nd for each
point s on the �rst curve the corresponding point s2(s) on the second curve. Once this is done, the average curve can
be just composed from the average position of corresponding points

R̂(s) =
r1(s) + r2 (s2(s))

2
: (1)

For the two circles, it is natural to assume that the corresponding points on the second circle are equidistant if the
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points on the �rst circle are. Thus, if the �rst circle is given by

x1(s1) = C1x + q1 cos(2�s1)

y1(s1) = C1y + q1 sin(2�s1)

the corresponding points on the second circle will be the ones with s2(s1) = s1 +�

x2(s2(s1)) = C2x + q2 cos(2�(s1 +�))

y2(s2(s1)) = C2y + q2 sin(2�(s1 +�))

where � is the phase shift between the two con�gurations. The distance between two curves can be then de�ned as

d2 =

Z 1

0

(r1(s1)� r2 (s2(s1)))2 ds1 (2)

Using this de�nition, we postulate that s2(s1) should be chosen to minimize the distance between the two curves.
It is easy to show that in two dimensions � = 0 always minimizes this distance, and therefore one can show that the
average of two circles is a circle with the centre given by the average of two centres, and with the average radius.
Next, we consider a slightly more complicated case shown in Fig.2 on the right. What shall the average be if the two

curves follow each other closely apart from a small part, where the black curve bulges out far from the green curve. This
can for example represent an unentangled loop. We expect that such a loop should not strongly a¤ect the averaging
in the rest of the chain. Thus, the function s2(s1) should be locally stretched in the area of the bulge, with the aim
to obtain the desired result shown schematically by red. To achieve this in the general case, we de�ne s2(s1) as the
function which minimizes the functional in eq.2. Then, the average between the two curves is given by eq.1.
It�s logical to impose several conditions on the function s2(s1). For closed curves we must have s2(0) = s2(1).

Besides, we would like to require local monotonicity. To be more speci�c, we require that s2(s1) =mod(f(s1)), where
f(s1) is a monotonically increasing function and mod(x) is the fractional part of x, i.e. mod(2.3)=0.3.
Another required generalization is the de�nition of the average of many curves. We call

R̂(s) =
1

M

MX
i=1

ri(si(s)) (3)

an average ofM curves ri(si) if for each curve si(s) minimizes the distance de�ned in eq.2 from i-th curve to the average
curve.
We now want to de�ne the tube axis as an average of trajectories of one ring over a long time. To apply this

de�nition to the stored trajectories, we must deal with the implicit character of the de�nition in eq.3. Indeed, the
functions si(s) on the right hand side depend in turn on the average path in the left hand side of the equation. This
can be treated by the usual iterative method. Another more serious problem is the existence of multiple solutions for
si(s): Besides, the number of unknowns is very large, i.e. if we analyze 1000 stored con�gurations, and each si(s) is
parametrized by 100 numbers, we need to perform minimization over 105 variables.
The algorithm we propose to deal with the described problems is inspired by the slip-springs model[4], but it is

di¤erent in details. For the set of saved chain con�gurations rk(i), where i = 0::N � 1 is a monomer index (which
replaces s = i=N) and k is the time index, we de�ne the tube axis R̂(m) with m = 0::N=n0 by introducing slip-springs
connecting each point R̂(m) with a monomer sk(m) on con�gurations frkg. Here n0 > 1 is the average number of
monomers between slip-links. We will use n0 = 2 throughout the paper, but we have veri�ed that n0 = 4 gives very

similar but slightly noisier results. Thus, we de�ne a dynamical system with variables fsk(m)g and
n
R̂(m)

o
and with

the potential energy

U
�
fsk(m)g ;

n
R̂(m)

o�
=
�

M

MX
k=1

N=n0X
m=0

�
R̂(m)� rk(sk(m))

�2
+
�sl
M

MX
k=1

0@N=n0�1X
m=0

D2(sk(m+ 1)� sk(m)) +D2 (sk(0)� sk(N=n0))

1A
(4)

where � is the strength of the slip-springs and M is the number of stored con�gurations. The second term here
introduces some attraction between the neighboring slip-links with strength �sl, where D(s1 � s2) means the minimal
number of monomers between slip-links sitting on monomers s1 and s2: for linear chains it is equal to s2 � s1, but for
rings it follows the minimal image convention similar to the periodic boundar conditions. This attraction is introduced
in order to prevent large pieces of the chain to be left without the slip-links and thus ignored by the algorithm. This
term imposes a weak constraint on the gradients of the functions si(s). The dynamic variables are vectors R̂(m) and
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Figure 3: Schematic illustration of the tube axis algorithm. Thin lines show stored chain con�gurations or mean paths,
whereas thick line shows the constructed tube axis.

integers sk(m); and we impose the constraint that slip-links remain ordered on each con�guration and can not occupy
the same monomer. This constraint is equivalent to monotonicity constraint of si(s) functions. The single occupancy
requirement explains why n0 must be chosen larger than 1: for n0 = 1 the slip-links would not be able to move because
there will be no vacancies for them.
We then run Monte Carlo (MC) simulations, updating R̂(m) and sk(m) according to the Metropolis algorithm

governed by potential energy U from eq.4. For slip-links positions sk(m), we use two types of moves, one local and
one global. The local move is just moving one slip-link to the left or to the right by one monomer. If this monomer
is already occupied, the move is rejected. If not, it is accepted according to Metropolis criteria. The global move is
a reptation move, when all slip-links on the chain move simultaneously either to the left or to the right. This never
creates occupancy clashes, and therefore the acceptance is just given by the Metropolis criteria. Each step we attempt
to move each slip-link once on average, attempt 10-100 reptation steps, and perform one R̂(m) step for each monomer.
During the simulation, we slowly increase the strength of the potential � to �nd the optimal R̂(m) corresponding to
the minimal energy of the system. In practice, the result is independent on details and universal if the rate of change
of � (cooling rate) is su¢ ciently small.
To improve the e¢ ciency and convergence of the algorithm when analyzing trajectories from molecular dynamics

(MD) simulations, instead of instantaneous con�gurations we use the mean paths, averaged over �av = 1200, which is
smaller than �e � 4000 for the �exible Kremer-Grest model. Another simpli�cation is that the slip-links are moved
according to a standard Metropolis algorithm, but the tube axis variables R̂(m) are computed every step as an average
of all monomers currently connected to R̂(m). This results in smoother R̂(m) path as compared to Metropolis step for
R̂(m) coordinates, but does not a¤ect the results in any signi�cant way. Before saving results for R̂(m), we average
over last 1000 MC steps to provide unique and smooth curve.

3 Testing algorithm on toy grid model

3.1 Two-dimensional grid

We �rst test the algorithm on a simple two-dimensional Rouse model of polymer ring in a grid of point obstacles. We
save instantaneous chain con�gurations with time interval �save = 10 in units where temperature, statistical segment
and bead friction coe¢ cient are equal to 1. We then use 1000 con�gurations to construct the tube axis as their average.
The results of the algorithm are shown in Fig.1 by the smooth curve made of blue spheres. The constructed curve looks
very plausible. Indeed, it shows straight sections between the obstacles, and smooth bends around the obstacles. The
tube axis passes at some distance from the obstacles, re�ecting an entropic repulsion from them, although their physical
size is zero. This repulsion is also apparent in the right upper corner of the �gure, where the tube axis is slightly bent
downwards because of repulsion from the upper right obstacle, even if the chain is not "entangled" with it in a usual
sense. Finally, we notice that the tube axis correctly re�ects the chain topology with respect to the bottom obstacle
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Figure 4: Curvature plot allows associating curvature maximums with individual entanglements.

Figure 5: Tube axis for 3d grid model for typical chains, g = 4b; chain length N = 128 (left) and N = 64 (right).

in the bottom row. This is remarkable since the algorithm does not know about existence of the obstacles: the only
input are the chain con�gurations. Thus, the information about entanglements or obstacles is somehow encoded in the
con�gurations, and our algorithm reveals it. Indeed, we see that we can almost precisely reconstruct the positions of
the obstacles by looking at the tube axis only. This can be done by associating the curvature of the tube axis with
entanglements. In Fig.4 we plot the curvature of tube axis as a function of monomer index, and point out that the
curvature maxima (shown by bigger spheres) correspond to the points where chain is most a¤ected by the obstacles.
Indeed it is not surprising: the curvature in the mean path must be induced by an additional force acting on a chain.
Thin grey lines show vector curvature � indeed we see that these "forces" are acting on a group of neighboring
monomers with a certain direction and the amplitude, which can be described by a Gaussian peak.

3.2 Three-dimensional grid model

We now test the algorithm on a 3d grid model described in details in ref.[5]. It is similar to the 2d model used in
the previous section, but in three dimensions obstacles are in�nitely thin lines forming a simple cubic lattice with the
period g = 4b; where b is statistical segment of the Rouse chain.
Typical tube axis results together with the grid are shown in Fig.5 for chains N = 128 and N = 64. We see again

that the tube axis nicely follows the grid, with the large curvature corresponding to proximity of the obstacle. For
the longer chain on the left we also see that the topology of the tube axis is not identical to the underlying chain
topology. Indeed, the strong curvature near the red marker corresponds to the entanglement with the vertical grid line
just behind it, but the tube axis does not go behind the grid line. These occasional topology violations are unavoidable
since the algorithm does not know about the obstacle positions. Of course for these simple models we can enforce
topology preservation, but the aim is to apply the algorithm to the cases where entanglements are not well de�ned, i.e.
to multichain MD simulations. We now turn to this task, which is the main point of this paper.

4 Molecular dynamics of concatenated rings

4.1 Main results

In order to test our construction on a more realistic model of entangled polymer melt, we use the Kremer-Grest model
of purely repulsive Lennard-Jones beads connected by �nitely extensible non-linear springs (FENE). The details of the
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Figure 6: The tube axis of a typical N = 512 ring (blue) shown together with 50 mean path con�gurations (left) or 50
instanteneous con�gurations (right) at di¤erent moments of time. More con�gurations were used to construct the tube
axis (several thousand)

model are standard and described elsewhere [9]. We do not use any bending or torsional potentials. Following the
previous sections, we would like to simulate well-entangled polymer rings. On the one hand, the entanglements will be
permanent and we can use very long trajectories to produce accurate averages without worrying about tube destruction
by reptation, contour length �uctuations or constraint release. On the other hand, locally we want the structure of our
chains and their surroundings to be identical to the structure of entangled linear chains of the same chemistry. This is
achieved by �rst simulating rings with soft potentials, which were adjusted to match the internal monomer distances
of the Kremer-Grest model, and which allow chains to pass through each other easily[10],[11]. These rings obey Rouse
dynamics on large timescales, and become well concatenated after simulation time of many Rouse times. We then use
�nal con�gurations of this soft simulation as initial con�gurations for MD simulation of Kremer-Grest model of rings.
We hope that this procedure leads to the same melt structure as the one of linear chains in the limit of long chains
N � Ne; where Ne is an average number of monomers between consecutive entanglements.
We performed MD simulations with Nc rings each consisting of N bonds for the total time tmax in Lennard Jones

units, saving instantaneous con�gurations and mean paths every �av = 1200 or 105 steps (this time is smaller than
�e � 4000 de�ned in the tube theory). In this paper we report results from three di¤erent systems fN;Nc; tmaxg =
f256; 100; 2:5 � 106g; f512; 150; 3 � 106g; f1024; 240; 1 � 106g: Each was running on a 12 core node for several months
using our own OPENMP code. We then used several thousand stored mean paths to construct the tube axes for all
rings independently, using n0 = 2 and �sl = 0:5. The virtual spring constant � is increased during the simulation from
� = 0:05 to � = 0:4, and the typical simulation consistes of 3 � 105 steps. Increasing it to 106 steps does not change
the results. The number of required steps depends however on the chain length as well as on the trajectory time, so
the tests were carried out to make sure that the results do not depend on the choice of the algorithm parameter. All
distances in this section will be reported in units of Lennard-Jones � parameter, which is the monomer diameter. In
these units, the bond length is 0:97 and the statistical segment length b =

p
hR2ei =N � 1:32, where Re is the end-to-end

vector.
Figure 6 shows the result of tube axis construction (blue thick line) for a typical ring of N = 512 bonds. Thin lines

show 50 (out of 2500) chain con�gurations which were used to construct it. The left panel shows the mean paths, which
were actually used for the construction, whereas the right panel shows corresponding instantaneous con�gurations. We
see that the smoothness of the paths has increases dramatically from instantaneous con�gurations to mean paths to tube
axis, as expected. We also see that the tube axis lies in the middle of the chains cloud where the chain con�gurations
are relatively straight, but shows prominent features of sudden direction changes and the areas of strong curvature.
Interestingly, the spread of the mean paths around the tube axis is almost the same as the spread of instantaneous
con�gurations. This means that many �uctuations are not averaged out by calculating the mean paths, and averaging
over much longer times, performed by our algorithm, is essential to obtain unique tube axis. The spread is further
analyzed quantitatively in Fig.8.
The reasons for these sudden curvature peaks are interactions with other chains, as revealed by Fig.7. Here we

performed tube axis constructions for all 150 rings in the box independently of each other, and show in the left panel
the tube axis for one ring together with pieces of tube axes of all other rings which happen to pass our chosen tube
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Figure 7: Tube axis for the same chain as in Fig.6 together with pieces of tube axis of other chains, which passed the
blue tube axis within less than rc = 1:5 (left) and other pieces with minimum distance between 1:5 and 3 (right).

axis within a critical distance rc = 1:5 (in units of Lennard-Jones �). We see very clearly that all turns of the tube
axis are caused by a close contact with the axes of another chain. In contrast, the more distant contacts, shown in the
right panel of Fig.7, do not seem to be correlated with the chain curvature. Of course the cut-o¤ at rc = 1:5 is not
sharp, and there are occasional entanglements with larger rc. The particular value 1.5 is just a reasonable estimate,
with additional support provided by Fig.13 later.
This intuitive picture is quanti�ed by plotting the absolute value of the curvature of the tube axis, de�ned as

c(i) =
Ri+� +Ri�� � 2Ri

�2

The choice of � is guided by two criteria: it should be larger than 1 to avoid the in�uence of small scale �uctuations, but
smaller than the typical distance to the next entanglement. Following these two limitations, we set � = 10 monomers.
Fig.8 shows that the curvature of the tube axis exhibits very distinct maxima, and each of such maxima corresponds

to a close contact with another chain (the pieces of tube axes which pass a selected tube axis within rc = 1:5 are shown
by di¤erent colours). We mark curvature maxima on the blue tube axis with larger blue spheres, and the monomers
in contact with other chains by yellow spheres. We see that many yellow spheres are close to the blue spheres. The
particular chain presented here has also two self-entanglements marked by orange arrows, thus 5 curvature maxima do
not correspond to contacts with other chains. Such curvature plot clearly leads to two important conclusions. First,
the selected chain feels discrete number of constraint forces rather than a continuous �eld. This picture is referred to as
entanglements concept, whereas the continuous �eld is a key premise of the tube theory. The second conclusion is that
the information about all contacts is encoded in the tube axis in a very compact form, and one can infer the reasons
for a particular tube axis conformation. We have also de�ned the tube radius as the square root of the average squared
length of all springs attached to point Ri of the tube axis. This is shown in Fig.8 by the dashed and dotted lines,
corresponding to the average distance to mean paths and to instantaneous con�gurations. In contrast to the curvature
plot, the tube radius does not seem to show any prominent features at entanglement points and is remarkably close
to constant. It is also smaller than the tube radius reported by Zhou and Larson[8], although they used a di¤erent
de�nition. We also con�rm the conclusion drawn initially from Fig.6: the average distance from the tube axis to the
mean paths (about 2.3) is quite similar to the distance to the instantaneous con�gurations (about 2.5).

We �nd it quite remarkable that the entanglements can be seen very clearly by naked eye just by plotting the tube
axes of a selected rings and its neighbors. This is further illustrated in Fig.9 with 4 di¤erent rings and all rings those
tube axis have passed within rc = 1:5 of the selected blue ring. One can clearly see that the particular tube axis shape
is created by the other chains entangled with it.
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Figure 8: Tube axis of one N = 512 chain (blue) together with all other axes which pass within a cut-o¤ distance
rc = 1:5: The plot at the bottom shows the curvature of the tube axis along the chain (solid line, scaled arbitrary),
and the arrows show the points on the tube axis corresponding to the curvature maxima. The dashed line shows the
tube radius in units of � computed with mean paths, whereas dotted line shows the same using instanteneous chain
con�gurations.

Figure 9: Tube axis for 4 di¤erent rings from N = 512 simulation (thick blue), together with tube axis of all other rings
which passed within rc = 1:5 of the selecter ring.
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Figure 10: Randomly selected contacts with rc < 1:5 (left) and 1:5 < rc < 3 (right).

Figure 11: Probability density to observe a close contact between two tube axis as a function of minimal distance
between them and their curvature product.

4.2 Individual entanglements

We now turn our attention to individual entanglements, which we de�ne as close contacts between the tube axes of
di¤erent chains. We �nd that contacts with minimal distance between two tube axes rc < 1:5; shown in Fig.10, left
panel, indeed look like simple entanglements. In contrast, contacts with larger minimal distances 1:5 < rc < 3 do not
seem to be correlated with each other.
To quantify this, we notice that vector curvature of two chains participating in a simple entanglement should be

anti-parallel with respect to each other. We de�ne curvature product for each entanglement as

cp =
cj1 (i1) � cj2(i2)
jcj1(i1)j jcj2(i2)j

where j1 and j2 are chains participating in the entanglement and i1 and i2 are their monomers which are closest to each
other. Clearly, cp is just the cosine of an angle between two curvatures, with cp � �1 corresponding to the anti-parallel
orientation. Fig.11 shows the probability density to observe an entanglement with a particular minimal distance and
curvature product in the melt of N = 512 rings. We see that for the contacts with small minimal distance (tight
contacts) there is a high probability to �nd a negative curvature product, whereas for less tight contacts the curvature
product distribution is roughly uniform.
Next we can ask the question whether entanglements on one ring interact with each other. This can be tested by

calculating the pair correlation function g(s), which is proportional to the probability to �nd another entanglement s
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Figure 12: Pair correlation function for two di¤erent cut-o¤ radii as a function of distance along the chain: for all
entanglements (squares) and for nearest on the chain (dashed lines).

monomers away from any given entanglement along the chain. If we de�ne entanglement positions on the chain by the
monomer closest to another chain, the resulting pair correlation function is given in Fig.12 by the red squares. The func-
tion is normalized by the average entanglement density such that g(s!1) = 1. Clearly, such g(s) corresponds to the
short-range e¤ective repulsion between entanglements along the chain. The e¤ective potential Uent(s) is approximately
�kBT ln(g(s)) and can be �tted by an exponential form A exp(�s=s0); with A = 2:5 being the strength of the potential.
The parameter s0 has the physical meaning as the range of the repulsion potential between the entanglements, and it
is interesting to see that our result s0 � 10 is smaller than the typical distance between entanglements (Ne � 30 � 50
from Fig.13). This repulsion is caused by the excluded volume interaction between the chains forming neighbouring
entanglements. If much more contacts are included with the cut-o¤ distance increased from rc = 1:5 to rc= 3, we
�nd that the interaction potential have similar range but smaller amplitude (black squares). For completeness, we also
report similar pair correlation function for the neighboring entanglements only, which is proportional to the proba-
bility distribution of number of monomers between neighboring entanglements on the chain (dashed lines in Fig.12).
They follow g(s) for small s and decay exponentially for larger s; similar to the ideal gas statistics. Tzoumanekas and
Theodorou [12] reported this function for the distance between consecutive kinks in the primitive path of the chain,
which they �tted by the di¤erence of two exponentials. We found that our results do not follow this functional form,
and that g(s) function is more informative in deducing an e¤ective repulsion between entanglements, which can be used
in the slip-spring model.
We would like to stress that the purpose of this paper is to understand what entanglements and tube axes are,

rather than to count them. This is because we do not believe that counting entanglements is meaningful without having
a reliable model which can use this number to predict all dynamical properties. Tube model clearly fails to do so
for variety of reasons described elsewhere[11],[5]. The slip-spring model on the other hand does a good job[13], but
requires strength of entanglements as well as their number. We therefore leave the slip-spring parameters estimation
to our future work. For completeness however, we compute here the number of contacts between di¤erent rings, which
is clearly a function of the cut-o¤ distance in the de�nition of what do we mean by the close contact. This is shown
in Fig.13 for three di¤erent systems simulated as Ne = N= hZi, where Z is the total contact number of each tube
axis. Horizontal lines show Ne estimate from the number of curvature maxima, as shown in Fig.8. This de�nition
probably misses few contacts, which produce shoulders rather than the separate maxima. It is interesting that these
two estimates intersect at the cuto¤ distance around rc = 1:5, which agrees with our previous conclusion that rc � 1:5
is a reasonable cut-o¤ value. Note however that our estimate Ne � 35 � 40 is smaller than the tube theory estimates
Ne � 70� 90 obtained by the primitive path analysis (PPA) [14],[15]. This is probably due to the inconcistency of the
tube theory equations used in PPA analysis.

We have also measured the length of the tube axes hLi and its average �uctuations �L2 �
D
(L� hLi)2

E
. Following

the tube theory de�nitions outlined again in our recent paper[5], the tube Kuhn step a (often called tube diameter)
and the statistical segment of the e¤ective Rouse chain inside the tube b1d are de�ned as

a =



R2e
�

L
; b21d =

3�L2

N
(5)

The computed tube theory parameters (in units of Lennard-Jones �) are

a = 11:5� 0:5; b21d = 1:25� 0:1;
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Figure 13: Average number of monomers between close contacts and between curvature maxima.

For comparison, the usual 3d statistical segment length for our chains is b23d � 1:75, and the tube theory usually assumes
that b1d = b3d: One should also note that the tube radius measured by our tube axis algorithm (Fig.8, dotted line) is
around 2.5, and therefore is signi�cantly smaller than the tube Kuhn step length.

4.3 Triple entanglements

The pictures discussed so far provide clear evidence that many entanglements are binary, i.e. involve a close contact
and strong interaction between two chains. This results in anti-parallel curvature of their tube axes in the vicinity of
entanglements. However, it is clear that there are many aspects in which entanglements are multi-chain events. For
example, deleting one entanglement can cause other entanglements to disappear and appear, several entanglements
among the same chains are strongly correlated etc. In this paper we consider the simplest multi-chain e¤ect, which
is a possibility of triple entanglement. We say that a pair of binary entanglements on chain A with chains B and C
participate in a triple entanglement if chains B and C are also entangled with each other. Besides that, we require that
the number of monomers between entanglements along chains A, B and C should be less than a cut-o¤ distance sc.
Fig.14 shows 9 randomly selected triple entanglements from our system with the cut-o¤ sc = 50. It is quite clear

that in these cases interactions are not binary. Then we can measure the fraction �trip of pairs of entanglements on the
same chain within monomer separation sc which participate in a triple entanglement. We �nd that �trip = 0:2 � 0:02
for N = 256; 512 and 1024 if we use rc = 1:5 and sc = 50. Changing monomer cut-o¤ to sc = 100 results in a very
slight decrease to �trip = 0:18 � 0:02. Reducing minimal distance cut-o¤ to rc = 1 results in a signi�cant decrease of
the triple entanglement fraction to �trip = 0:11 � 0:05, but we do not think this is very reasonable estimate because
many triple events go missing with rc = 1. If we increase the cut-o¤ to rc = 2, the fraction of triple entanglements
increases to �trip = 0:29 � 0:02 for sc = 50 and to �trip = 0:25 � 0:03 for sc = 100. Thus, we conclude that the
fraction of triple entanglements is signi�cant, somewhere in the range of 20� 30%, and might a¤ect the dynamics in at
least two possible ways. Triple entanglements must be stronger in average in a sense that they restrict the chain more
than a binary entanglement, but also might be more di¢ cult to disentangle. Secondly, the constraint release in triple
entanglements will be di¤erent. For example, if the red chain in the central entanglement of Fig.14 will reptate away,
both other chains will be disentangled as well. This is of course not true for many other examples in the same �gure.
We leave the study of constraint release to further publication.
Although triple entanglements do exist in signi�cant number, their fraction is still relatively small. This means

that binary entanglements still dominate the behavior of entangled melts, and that the role of even more complex
entanglements involving more than 3 chains is even smaller.
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Figure 14: Randomly chosen examples of triple entanglements.

4.4 Iso-con�gurational averages and primitive path analysis

The main drawback of the proposed tube axis construction is that it requires long trajectories of the length of order
100�e to produce unique and well de�ned results (�e � 4000 in Kremer-Grest model). This is problematic for the usual
linear or branched polymers, which will renew part or even all of their entanglements during this averaging period.
Fixing chain ends to stop tube renewal is not a good idea either: we �nd that these �xed points reduce �uctuations
available to the network of entanglements signi�cantly, and provide many "false positives" in entanglement detection
algorithms. In order to get an instantaneous snapshot of entanglement structure, one has to use shorter averaging times
of order of �e, or use topological constructs like the primitive path analysis (PPA).
The primitive path analysis [14],[15] however has several drawbacks comparing to the present method. First, the

primitive path construction is based on the assumption that the shortest path is the one which the chains will choose
to di¤use along. This is of course a simpli�cation, confusing the average with the minimum. In contrast, the tube axis
construction is based on the actual polymer con�gurations. Second, the primitive path construction is not unique, and
starting from di¤erent parts of the rings trajectory will lead to di¤erent results. Thus, only the average total primitive
path length is reproducible. This is in contrast to uniqueness of tube axis illustrated below. Third, the analysis of the
PPA results contains very crude assumptions about their statistical properties, leading to signi�cant underestimation
of the number of entanglements, as illustrated in Fig.13.
Reducing averaging time results in less smooth paths, with much more small curvature maxima due to random

�uctuations and not due to interactions with other chains. A tempting way to kill these �uctuations is iso-con�gurational
ensemble averaging[16], which is widely used in glass community[17]. Instead of averaging over a long trajectory, it
relies on many short trajectories started from the same con�gurations. If the length of such trajectories is of the order
of �e, then slip is not important and one can just average monomer positions over the �nal con�gurations, or over the
mean paths collected during these runs. The hope is then that all random �uctuations will be averaged out and the
unique tube axis will emerge, which would not depend on time if all entanglements are permanent. We test this idea
below by running 100 trajectories of length �iso = 1:2� 104 in units of Lennard-Jones times (this is slightly longer than
�e):We then average the positions of every monomer over the run time and over 100 trajectories. To test the uniqueness
of the obtained tube axis, this was done starting from two di¤erent initial con�gurations, which were frames of the same
run 1:2� 106 time units away from each other. These two iso-con�gurational averages are shown in Fig.15 in red. One
can see that these curves also show pronounced curvature maxima, but some of them are only present in one of the
curves, meaning that they were not caused by entanglements (which are permanent), but by the long-lived �uctuations.
These are compared with 2 tube axes (green), constructed using the �rst part of the trajectory (time 1:2�106) and the
second one. It is apparent that our tube axes are closer to each other than the iso-con�gurational averages. Besides,
the distance between them decreases with increasing trajectory length, whereas iso-con�gurational averages do not
change any more if more trajectories are used for the averages. In our opinion, this shows that some �uctuations in
the entanglement network live signi�cantly longer than �e and therefore can not be averaged out by iso-con�gurational
average. Increasing trajectory length will introduce problems discussed in the beginning of this paper, which can only
be avoided by our method.
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Figure 15: Tube axis construction using �rst 1000 and second 1000 mean paths (green) compared to two iso-
con�gurational ensemble average paths (red).

5 Conclusions

In summary, we have proposed a simple computer algorithm to construct the tube axis as an average path which a chain
follows in entangled polymer melts and solutions. The algorithm averages over thousands of stored chain con�gurations
and �nds a smooth path in space which minimizes the distance to all con�gurations. The procedure seem to be robust
and converges to a unique solution as the number of used trajectories increases.
Crucially, constructed tube axis have very distinct features, revealed for example as maxima of curvature along the

axis. We have demonstrated that these maxima are strongly correlated with close contacts with tube axes of other
chains, which is to be expected. Indeed, a free chain with �xed ends would have a straight line as its tube axis, and
therefore the curvature must be caused by the interactions with other chains. What is surprising is the discreteness and
predominantly pairwise nature of these interactions. This is in contrast to the popular interpretation of the packing
length scaling, predicting that about 20 chains are needed in a volume of tube diameter to create an entanglement. Our
results show that this does not mean that each entanglement is created by 20 chains. Instead, it should be reinterpreted
in probabilistic terms: if there are 20 chains in a volume a3, on average one entanglement will be formed between two
chains in this box. Triple entanglements also exist, but their role is smaller. An additional output of the tube axis
construction is the value of the tube radius, de�ned as an average distance from the tube axis. It is found to be around
2:5�, which is signi�cantly smaller than the tube theory estimate. This discrepancy highlights that one should not
assume that the tube diameter is equal to the tube Kuhn segment length.
The results of this paper do not provide a recipe for modelling entangled melts. For example, knowing the tube axis

does not yet mean that one can make predictions about dynamics, or even about the plateau modulus. These aims
will be addressed in the next publication. Instead, this paper is designed to illustrate the interplay between the tube
and entanglement concepts and provide some visual evidence of entanglements and a way of quantifying their strength
through the curvature of the tube axis.
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