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Abstract

This paper considers various formulations of the sum-product problem. It is shown
that, for a finite set A ⊂ R,

|A(A+A)| � |A| 32+ 1
178 ,

giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that

|A(A+A+A+A)| � |A|2

log |A|
,

a bound which is optimal up to constant and logarithmic factors. We also prove several
new results concerning sum-product estimates and expanders, for example, showing that

|A(A+ a)| � |A|3/2

holds for a typical element of A.

1 Introduction

Given a finite set A ⊂ N, one can define the sum set, and respectively the product set, by

A+A := {a+ b : a, b ∈ A}

and
AA := {ab : a, b ∈ A}.

The Erdős-Szemerédi [7] conjecture states, for all ε > 0,

max {|A+A|, |AA|} � |A|2−ε,
∗The first author was supported by a WUN Researcher Mobility Grant, and would like to thank Bristol

University for their hospitality while this research was conducted. He would also like to thank the students
of MTH 440 for their generous support during the Fall 2013 semester. The second author was partially
supported by the Grant ERC-AdG 321104 and EPSRC Doctoral Prize Scheme (Grant Ref: EP/K503125/1).
The third author was supported by grant mol a ved 12–01–33080, Russian Government project 11.G34.31.0053,
Federal Program “Scientific and scientific–pedagogical staff of innovative Russia” 2009–2013 and grant Leading
Scientific Schools N 2519.2012.1.
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and it is natural to extend this conjecture to other fields, particularly the real numbers. In
this direction, the current state-of-the-art bound, due to Solymosi [23], states that for any
A ⊂ R

max {|A+A|, |AA|} � |A|4/3

(log |A|)1/3
. (1)

When looking to construct a set A which generates a very small sum set A + A, one needs
to impose an additive structure on A, and an additive progression is an example of a highly
additively structured set. Similarly, if A has a very small product set, it must be to some
extent multiplicatively structured. Loosely speaking, the Erdős-Szemerédi conjecture reflects
the intuitive observation that a set of integers, or indeed real numbers, cannot be highly
structured in both a multiplicative and additive sense.

In this paper, we consider other ways to quantify this observation. In particular, one would
expect that a set will grow considerably under a combination of additive and multiplicative
operations. Consider the set

A(A+A) := {a(b+ c) : a, b, c ∈ A}.

The same heuristic argument as the above leads us to expect that this set will always be
large. Indeed, any progress towards the Erdős-Szemerédi conjecture immediately yields a
lower bound for the quantity |A(A + A)|. To see this, let us assume for simplicity that
0, 1 ∈ A. This implies that AA and A+A are subsets of A(A+A), and therefore, Solymosi’s
result (1) implies that

|A(A+A)| � |A|4/3

(log |A|)1/3
. (2)

The expectation that |A(A+A)| is always large was formalised by Balog1 [1], who conjectured
that, for all ε > 0,

|A(A+A)| � |A|2−ε.

Note that if A = {1, 2, · · · , N}, then

A(A+A) ⊂ {nm : n,m ∈ [2N ]}.

This set obviously has cardinality O(N2), and in fact it is known that the product set deter-
mined by the first N integers has cardinality o(N2).2 Therefore, we cannot expect to prove
anything stronger than this conjecture.

It is worth pointing out that Balog’s conjecture is also close to being sharp in the dual case
where A is a geometric progression. Indeed, A(A+A) ⊂ AA+AA, and if AA has cardinality
O(|A|), then |AA+AA| = O(|A|2).

By attacking the problem of establishing lower bounds on |A(A + A)| directly (as opposed
to applying Solymosi’s sum-product estimate rather crudely), it is possible to obtain quan-

1This conjecture was made as part of a talk at the conference “Additive Combinatorics in Paris”. A similar
conjecture was made in [1] for the set A+AA.

2See Ford [8] for a precise statement concerning the size of this product set.
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titatively improved results. Using a straightforward application of the Szemerédi-Trotter
theorem3, one can show that

|A(A+A)| � |A|3/2. (3)

The original aim here was to improve on this lower bound, which we do by proving4 that

|A(A+A)| ' |A|
3
2
+ 1

178 . (4)

Although the method leads only to a small improvement for this problem, it turns out to be
much more effective when more variables are involved. To this end we prove the following
result:

|A(A+A+A+A)| � |A|2

log |A|
. (5)

Observe that this bound is tight, up to logarithmic factors, in the case when A is an arithmetic
progression. Indeed, the aforementioned work of Ford tells us that some logarithmic factor
is necessary here. The set A(A + A + A + A) has similar characteristics to A(A + A), and
inequality (5) proves a weak version of Balog’s conjecture.

The main tool in this paper is the Szemerédi-Trotter theorem, although its applica-
tion is a little more involved than the straightforward application which gives the bound
|A(A+A)| � |A|3/2. To be more precise, we use an application of the Szemerédi-Trotter
theorem to establish our main lemma, which bounds the cardinality of A(A+A) in terms of
the multiplicative energy of A. The multiplicative energy, denoted E∗(A), is the number of
solutions to the equation

a1a2 = a3a4, (6)

such that a1, a2, a3, a4 ∈ A. This quantity has been an important feature in some of the
existing bounds for the sum-product problem (see [23] and [24]).

Of particular importance in this paper is the forthcoming Lemma 2.5, which gives an im-
provement to (3) unless the multiplicative energy is almost as large as possible. However, in
the case where the multiplicative energy is very large, the Balog-Szemerédi-Gowers Theorem
implies the existence of a large subset A′ ⊂ A with the property that the ratio set5 A′ : A′

is small. We can then use a sum-product estimate from [16] to get an improvement to (3).
This gives a sketch of the proof of (4).

Another variation of the sum-product problem is to consider product sets of additive shifts,
which we might expect to be large. It was shown by Garaev and Shen [9] that for a finite set
A ⊂ R, one has |A(A+ 1)| � |A|5/4, and this bound was improved slightly in [13]. Note that
the value 1 is not important here, and these results hold if 1 is replaced in the statement by
any non-zero value. The problem of determining the best possible lower bound for the size
of A(A+ 1) remains open.

3To the best of our knowledge, a proof of this does not appear in the existing literature. Exercise 8.3.3 in
Tao-Vu [27] observes that |AA+A| � |A|3/2, and this proof can easily be adapted to show that |A(A+A)| �
|A|3/2. These simple proofs are similar to those of the earlier sum-product estimates of Elekes [6].

4The rough inequality ' is used here to suppress logarithmic and constant factors. See the forthcoming
notation section for a precise definition of the meaning of this symbol.

5The ratio set A : A determined by A is the set of all pairwise ratios; that is the set {a/b : a, b ∈ A}.
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We will prove several bounds which relate to this problem, as well as the problem of finding
better lower bounds for |A(A+A)|. For example, in the forthcoming Theorem 2.9, it will be
established that, for at least half of the elements a ∈ A we have

|A(A+ a)| � |A|3/2. (7)

Note that this result reproves the bound (3), but using two variables as opposed to three.

Structure of this paper

The rest of this paper is structured as follows. We conclude this introductory section by
explaining some of notation that will be used. In section 2, we give a full list of the new
results in this paper. Section 3 gives proofs of the main preliminary results, all of which
follow from the Szemerédi-Trotter theorem. Section 4 provides proofs of the main results
- including (4) and (5). In section 5, we prove several other results concerning growth of
sets under additive and multiplicative operations; this includes (7) and several results in a
similar spirit. It will be necessary to call upon some results from earlier works, such as the
Szemerédi-Trotter Theorem and the Balog-Szemerédi-Gowers Theorem; any such results will
be stated as and when they are needed.

Notation

Throughout the paper, the standard notation �,� and, respectively, O,Ω is applied to
positive quantities in the usual way. Saying, X � Y or X = Ω(Y ) means that X ≥ cY , for
some absolute constant c > 0. We write X ≈ Y if both X � Y and X � Y . The notation '
is occasionally used to suppress both constant and logarithmic factors. To be more precise,
we write X ' Y if there exist positive constants C and c such that X ≥ c Y

(logX)C
. All

logarithms in this paper are to base 2.

Let A,B ⊂ R \ {0} be finite sets6. We have already defined the sum set A + B and the
product set AB.

The difference set A−B and the ratio set A : B are defined by

A−B = {a− b : a ∈ A, b ∈ B} and A : B = {a/b : a ∈ A, b ∈ B}.

Given x ∈ R, we use the notation rA+B(x) to denote the number of representations of x as
an element of A+B. To be precise

rA+B(x) := |{(a, b) ∈ A×B : a+ b = x}|.

This notation will be used flexibly throughout the paper to define the number of representa-
tions of x as an element of a given set described in the subscript. For example,

rA(B+C) := |{(a, b, c) ∈ A×B × C : a(b+ c) = x}|.
6Note that the assumption that 0 /∈ A is merely added to avoid the inconvenience of the possibility of

dividing by zero, and simplifies matters slightly. All of the bounds in this paper are unaffected; we may simply
start all proofs by deleting zero and apply the analysis to A′ := A\{0}, with only the implied constants being
affected.
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In a slight generalisation of the earlier definition, the multiplicative energy of A and B,
denoted E∗(A,B) = E∗2(A,B), is defined to be the number of solutions to the equation

a1b1 = a2b2,

such that ai ∈ A and bi ∈ B. This quantity is also the number of solutions to

a1
a2

=
b2
b1

and
a1
b2

=
a2
b1
.

Observe that E∗(A,B) can also be defined in terms of the representation function r as follows:

E∗(A,B) =
∑
x

r2A:B(x)

=
∑
x

rA:A(x)rB:B(x)

=
∑
x

r2AB(x).

We use E∗(A) as a shorthand for E∗(A,A).

One of the fundamental basic properties of the multiplicative energy is the following well-
known lower bound:

E∗(A,B) ≥ |A|
2|B|2

|AB|
. (8)

The proof is short and straightforward, arising from a single application of the Cauchy-
Schwarz inequality. The full details can be seen in Chapter 2 of [27].

The above definitions can all be extended in the obvious way to define the additive energy of
A and B, denoted E+(A,B). So,

E+(A,B) :=
∑
x

r2A−B(x).

The third moment multiplicative energy is the quantity

E∗3(A) :=
∑
x

r3A:A(x),

and similarly, the third moment additive energy is defined by

E+
3 (A) :=

∑
x

r3A−A(x).

In recent years, third moment energy has played an important role in quantitative progress
on various problems in arithmetic combinatorics. See for example [13], [16], [19],[20],[21], [22]
and [27].
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We will use the Katz–Koester trick [14], which is the observation that

|(A+A) ∩ (A+A− s)| ≥ |A+As| ,

and
|(A−A) ∩ (A−A− s)| ≥ |A− (A ∩ (A+ s))| ,

where As = A ∩ (A− s). We also need the following identity (see [22], Corollary 2.5)∑
s

|A±As| = |A2 ±∆(A)| , (9)

where
∆(A) = {(a, a) : a ∈ A} .

2 Statement of results

2.1 Preliminary Results - Applications of the Szemerédi-Trotter Theorem

The most important ingredient for the sum-product type results in this paper is the Sze-
merédi-Trotter Theorem [26]:

Theorem 2.1. Let P ⊂ R2 be a finite set of points and let L be a collection of lines in the
real plane. Then

I(P,L) := |{(p, l) ∈ P × L : p ∈ l}| � |P |2/3|L|2/3 + |L|+ |P |.

Here by I(P,L) we denote the number of incidences between a set of points P and a set of
lines L. Given a set of lines L, we call a point that is incident to at least t lines of L a t-rich
point, and we let Pt denote the set of all t-rich points of L. The Szemerédi-Trotter theorem
implies a bound on the number of t-rich points:

Corollary 2.2. Let L be a collection of lines in R2, let t ≥ 2 be a parameter and let Pt be
the set of all t-rich points of L. Then

|Pt| �
|L|2

t3
+
|L|
t
.

Further, if no point of Pt is incident to more than |L|1/2 lines, then

|Pt| �
|L|2

t3
.

This result is used to prove the main preliminary results in this paper, which give us infor-
mation about various kinds of energies.

Lemma 2.3. Let A,B and X be finite subsets of R such that |X| ≤ |A||B|. Then∑
x∈X

E+(A, xB)� |A|3/2|B|3/2|X|1/2.
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Note that E+(A, xB) ≥ |A||B| for all x, so the condition |X| ≤ |A||B| is necessary. Bourgain
formulated a similar theorem (“Theorem C” of [2]) for subsets of fields with prime cardinality.
Bourgain’s theorem is closely related to the Szemerédi-Trotter theorem for finite fields [5, 11].

This result works in the same way with the roles of addition and multiplication reversed.

Lemma 2.4. Let A,B and X be finite subsets of R such that |X| ≤ |A||B|. Then∑
x∈X

E∗(A, x+B)� |A|3/2|B|3/2|X|1/2.

A similar method is used to establish the following important lemma, which will be applied
several times in this paper.

Lemma 2.5. For any finite sets A,B,C ⊂ R, we have

E∗2(A)|A(B + C)|2 � |A|
4|B||C|

log |A|
.

We remark that Lemma 2.5 is optimal, up to logarithmic factors, in the case when A = B =
C = {1, · · · , N}.

2.2 Main Results

The next two theorems represent the main results in this paper. Although they were men-
tioned in the introduction, they are restated here for the completeness of this section.

Theorem 2.6. Let A ⊂ R be a finite set. Then

|A(A+A)| ' |A|
3
2
+ 1

178 .

Theorem 2.7. Let A ⊂ R be a finite set. Then

|A(A+A+A+A)| � |A|2

log |A|
.

We also prove the following suboptimal result, which is closely related to Theorems 2.6 and
2.7:

Theorem 2.8. Let A ⊂ R be a finite set. Then

|A(A+A+A)| ' |A|
7
4
+ 1

284 . (10)

2.3 Products of Additive Shifts

We will prove a family of results bounding from below the product set of translates of a set
A. One may observe a familiar gradient in this sequence of results: the bounds improve as
we introduce more variables and more translates. It was proven in [13] that, for any finite
set A ⊂ R and any value x ∈ R \ {0},

|A(A+ x)| � |A|24/19

(log |A|)2/19
. (11)

As mentioned in the introduction, we will prove the following Theorem, which shows that we
can usually improve on (11) in the case when x ∈ A.
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Theorem 2.9. Let A ⊂ R be a finite set. Then there exists a subset A′ ⊂ A, such that
|A′| ≥ |A|2 , and for all a ∈ A′,

|A(A+ a)| � |A|3/2.

Adding more variables to our set leads to better lower bounds:

Theorem 2.10. Let A ⊂ R be a finite set. Then there exists a subset A′ ⊂ A with cardinality
|A′| ≥ |A|2 , such that for all a ∈ A′,

|(A+A)(A+ a)| � |A|5/3

(log |A|)1/3
.

Theorem 2.10 is similar to the result of Theorem 2.6, especially if we think of the set A(A+A)
in the terms (A+ 0)(A+A). This result tells us that we can usually do better than Theorem
2.6 if 0 is replaced by an element of A.

The next theorem is quantitatively worse than Theorem 2.10, but is more general, since it
applies not only for most a ∈ A, but to all real numbers except for a single problematic value.

Theorem 2.11. Let A ⊂ R be a finite set. Then, for all but at most one value x ∈ R,

|(A+A)(A+ x)| � |A|11/7

(log |A|)3/7
. (12)

Unfortunately, this does not lead to an improvement to Theorem 2.6, since the single bad x
that violates (12) may be equal to zero.

2.4 Further results

Finally, we formulate a theorem of a slightly different nature.

Theorem 2.12. Let A,B ⊆ R be finite sets.

Then

|A+B|3 � |B|E
∗(A)

log |A|
≥ |A|4|B|
|AA±1| log |A|

, (13)

and

|B +AA|3 � |B||A|12

(E∗3(A))2|AA−1| log |A|
. (14)

Let us say a little about the meaning of these two bounds. If we fix A = B, then (13) tells
us that |AA| is very large if |A + A| is very small. Similar results are already known; for
example, a quantitatively improved version of this statement is a consequence of Solymosi’s
sum-product estimate in [23]. The benefit of (13) is that it also works for a mixed sum set
A+B.

One of the main objectives of this paper is to study the set A(A + A), and inequality (14)
considers the dual problem of the set A + AA. As stated earlier, it is easy to show that
|A + AA| � |A|3/2. If we fix A = B in (14), then this bound gives an improvement in the
case when E∗3(A) is small. We hope to carry out a more detailed study of the set A+AA in
a forthcoming paper.
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3 Proofs of Preliminary Results

Proof of Lemma 2.3

Recall that Lemma 2.3 states that for |X| ≤ |A||B|,∑
x∈X

E+(A, xB)� |A|3/2|B|3/2|X|1/2.

Note that ∑
x∈X

E+(A, xB) =
∑
x∈X

∑
y

r2A+xB(y). (15)

We will interpret rA+xB(y) geometrically and use corollary 2.2 to show that there are not too
many pairs (x, y) for which the quantity rA+xB(y) is large.

Claim. Let Rt = {(x, y) : rA+xB(y) ≥ t}. Then for any integer t ≥ 2,

|Rt| �
|A|2|B|2

t3
. (16)

Proof of Claim. Define a collection of lines

L := {la,b : (a, b) ∈ A×B},

where la,b is the line with equation y = ax+ b. Clearly, |L| = |A||B|.

Since rA+xB(y) counts the number of solutions (x, y) to y = ax+ b, we see that rA+xB(y) is
the number of lines of L that are incident to (x, y). Thus every pair (x, y) in Rt is a t-rich
point of L. Further, because

rA+xB(y) ≤ min {|A|, |B|} ≤ (|A||B|)1/2

there are no pairs (x, y) such that rA+xB(y) > (|A||B|)1/2; that is, there are no points incident
to more than |L|1/2 lines of L. It follows from Corollary 2.2 that

|Rt| ≤ |Pt| �
|L|2

t3
=
|A|2|B|2

t3
,

which proves the claim.

Now we will interpolate between (16) and a trivial bound. Let 4 ≥ 1 be an integer to be
specified later. The sum in (15) can be divided up as follows:∑

x∈X
E+(A, xB) =

∑
x∈X

∑
y

r2A+xB(y) (17)

≤
∑
x∈X

∑
y : rA+xB(y)≤4

r2A+xB(y) +
∑

(x,y) : rA+xB(y)>4

r2A+xB(y). (18)
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To bound the first term in (18), observe that∑
x∈X

∑
y : rA+xB(y)≤4

r2A+xB(y) ≤ 4
∑
x∈X

∑
y

rA+xB(y) (19)

= 4|A||B|
∑
x∈X

1 (20)

= |A||B|4|X|. (21)

To bound the second term in (18), we decompose dyadically and then apply (16) to bound
the size of the dyadic sets we are summing over:

∑
(x,y) : rA+xB(y)>4

r2A+xB(y) =
∑
j≥1

∑
(x,y) :42j−1<rA+xB(y)≤42j

r2A+xB(y) (22)

�
∑
j≥1

|A|2|B|2

(42j)3
(42j)2 (23)

=
|A|2|B|2

4
∑
j≥1

1

2j
(24)

=
|A|2|B|2

4
. (25)

For an optimal choice, set the parameter 4 =
⌈
|A|1/2|B|1/2
|X|1/2

⌉
≈ |A|

1/2|B|1/2
|X|1/2 > 1. The approxi-

mate equality here is a consequence of the assumption |A|
1/2|B|1/2
|X|1/2 > 1.

Combining the bounds from (21) and (25) with (18), it follows that∑
x∈X

E+(A, xB)� |A|3/2|B|3/2|X|1/2,

as required.

This completes the proof of Lemma 2.3.

The proof of Lemma 2.4 is essentially the same, with the roles of addition and multiplication
reversed. For completeness, a full proof is provided.

Proof of Lemma 2.4

Recall that Lemma 2.4 states that for |X| ≤ |A||B|,∑
x∈X

E∗(A,B + x)� |A|3/2|B|3/2|X|1/2.

Define a set of lines L := {la,b : (a, b) ∈ A×B}, where la,b now represents the line with
equation y = a(b + x). These lines are all distinct and so |L| = |A||B|. Since rA(B+x)(y) is

10



the number of such lines incident to a point (x, y), we can apply Corollary 2.2 and argue as
before to show that

|{(x, y) : rA(B+x)(y) ≥ t}| � |A|
2|B|2

t3
, (26)

for any integer t ≥ 1.

Next, we use the bound (26) in the following calculation, which holds for any integer 4 > 1:∑
x∈x

E∗(A,B + x) =
∑
x∈X

∑
y

r2A(B+x)(y)

≤
∑
x∈X

∑
y : rA(B+x)(y)≤4

r2A(B+x)(y) +
∑

(x,y) : rA(B+x)(y)>4

r2A(B+x)(y)

≤
∑
x∈X
4
∑
y

rA(B+x)(y) +
∑
j≥1

∑
(x,y) :42j−1<rA(B+x)(y)≤42j

r2A(B+x)(y)

� |A||B||X|4+
∑
j≥1

(2j4)2
|A|2|B|2

(2j4)3

= |A||B||X|4+
|A|2|B|2

4
.

If we set 4 :=
⌈
|A|1/2|B|1/2
|X|1/2

⌉
≈ |A|

1/2|B|1/2
|X|1/2 > 1, the proof is complete.

We observe the following Corollary of Lemmas 2.3 and 2.4. Equation (27) is sharp when A
is arithmetic progression, which shows that Lemma 2.3 is sharp when A and B are the same
arithmetic progression, for a suitable choice of X.

Corollary 3.1. For any A ⊂ R, we have∣∣∣∣A−AA−A

∣∣∣∣� |A|2 . (27)

∣∣∣∣{a2b2 − a1b1a1 − a2
: a1, a2 ∈ A, b1, b2 ∈ A

}∣∣∣∣� |A|2 . (28)

|A−A|3 ·
∣∣∣∣A−AA−A

∣∣∣∣1/2 � |A2 −∆(A)|2 . (29)

Proof. Let X(u) denote the indicator function on X. The statements of Lemma 2.3 and
Lemma 2.4 can be written as∑

x,y

rA−A(x)rB−B(y)X(x/y)� |A|3/2|B|3/2|X|1/2 (30)

and ∑
a1,a2∈A, b1,b2∈B

X

(
a2b2 − a1b1
a1 − a2

)
� |A|3/2|B|3/2|X|1/2 (31)
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respectively, provided that |X| ≤ |A||B|. Putting B = A and X = (A−A)/(A−A) into (30)
proves (27). Similarly, putting B = A and

X =

{
a2b2 − a1b1
a1 − a2

: a1, a2 ∈ A, b1, b2 ∈ B
}

into (31), we obtain (28).

Let D = A − A Taking A = B = D, X = D/D, summing just over x, y ∈ D in (30), and
using Katz–Koester trick as well as identity (9), we get

|A−A|3 ·
∣∣∣∣A−AA−A

∣∣∣∣1/2 �
(∑
x∈D

rD−D(x)

)2

≥

(∑
x∈D
|A−Ax|

)2

= |A2 −∆(A)|2

which coincides with (29).

Inequality (27) can also be deduced from Beck’s Theorem, which states that a set of N points
in the plane which does not have a single very rich line, will determine Ω(N2) distinct lines.
See Exercise 8.3.2 in [27]. A geometric result of Ungar [29], concerning the number of different
directions determined by a set of points in the plane, also yields (27) as a corollary. Although
the result here is not new, it has been stated in order to illustrate the sharpness of Lemma
2.3. Similar results to (28) were established in [12]; it seems likely that (28) is suboptimal.

Proof of Lemma 2.5

Recall that Lemma 2.5 states that

E∗(A)|A(B + C)|2 � |A|
4|B||C|

log |A|
.

Let S? denote the number of solutions to the equation

a1(b1 + c1) = a2(b2 + c2) 6= 0, (32)

such that ai ∈ A, bi ∈ B and ci ∈ C. This proof uses a familiar strategy: in order to
show that a given set is large, show that there cannot be too many solutions to a particular
equation. The easy part is to bound S? from below, using an elementary application of the
Cauchy-Schwarz inequality. First note that∑

x∈A(B+C)

rA(B+C)(x) = |A||B||C|.

Since there are at most |A||B ∩ −C|+ |B||C| solutions to a(b+ c) = 0, we have∑
x∈A(B+C)\{0}

rA(B+C)(x) ≥ 1

2
|A||B||C|.
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Now we apply the Cauchy-Schwarz inequality:

1

4
(|A||B||C|)2 ≤

 ∑
x∈A(B+C)\{0}

rA(B+C)(x)

2

(33)

≤ |A(B + C)|
∑
x 6=0

r2A(B+C)(x) (34)

= |A(B + C)|S?. (35)

The rest of the proof is concerned with finding a satisfactory upper bound for the quantity
S?. We will eventually conclude that

S? � E∗(A)1/2|B|3/2|C|3/2(log |A|)1/2. (36)

If this is proven to be true, one can combine the upper and lower bounds on S? from (36)
and (35) respectively, and then a simple rearrangement completes the proof of the lemma.

It remains to prove (36). To do this, first observe that (32) can be rewritten in the form

a1
a2

= z =
b2 + c2
b1 + c1

.

Note that we can divide by b1+c1 because we excluded 0 in (32). If we setQ = (B+C)/(B+C)
and

rQ(z) = |{(b1, b2, c1, c2) ∈ B ×B × C × C : z = (b2 + c2)/(b1 + c1)}|,
then

S? =
∑

z∈(A:A)∩Q

rA:A(z)rQ(z).

Applying Cauchy-Schwarz, we have

S? ≤

( ∑
z∈A:A

r2A:A(z)

)1/2( ∑
z∈A:A

r2Q(z)

)1/2

= E∗2(A)1/2

( ∑
z∈A:A

r2Q(z)

)1/2

. (37)

We will bound the RHS of (37) using the following distributional estimate on rQ(z):

Claim. Let Zt = {z : rQ(z) ≥ t}. Then for all t ≥ 1,

|Zt| �
|B|3|C|3

t2
.

If we assume this claim, then by dyadic decomposition:

∑
z∈A:A

r2Q(z) ≈
dlog |A:A|e∑

j≥1
22j |Z2j |

�
dlog |A:A|e∑

j≥1
22j
|B|3|C|3

22j
≤ 2|B|3|C|3 log |A|.

Combining this with (37) yields the desired bound on S?:

S? � E∗2(A)1/2|B|3/2|C|3/2(log |A|)1/2.

This concludes the proof of Lemma 2.5, pending the claim.

13



Now we will prove the claimed estimate for the distribution of rQ(z).

Proof of Claim. First we will get an easy estimate for |Zt| from Markov’s inequality. Since7

t|Zt| ≤
∑
z∈Zt

rQ(z) ≤
∑
z∈Q

rQ(z) = |B|2|C|2,

we have

|Zt| ≤
|B|2|C|2

t
. (38)

Note that if |Zt| ≥ |B||C|, then it follows from (38) that t ≤ |B||C|. But then

|B|2|C|2

t
≤ |B|

3|C|3

t2
,

so we have proved the claim in the case |Zt| ≥ |B||C|.

Now we will prove the claim when |Zt| ≤ |B||C| using Lemma 2.3. To do this we make a
key observation, which is inspired by the Elekes-Sharir set-up from [17]: every solution of the
equation

z =
b2 + c2
b1 + c1

is a solution to the equation
b2 − zc1 = zb1 − c2 = y

for some y. Thus

rQ(z) ≤
∑
y

rzB−C(y)rB−zC(y).

By the arithmetic-geometric mean inequality

rzB−C(y)rB−zC(y) ≤
r2zB−C(y) + r2B−zC(y)

2
,

so

rQ(z) ≤ E+(zB,−C) + E+(B,−zC)

2
.

Now if |Zt| ≤ |B||C|, we can sum over Zt and apply Lemma 2.3:

t|Zt| ≤
∑
z∈Zt

rQ(z) ≤ 1

2

∑
z∈Zt

E+(zB,−C) +
1

2

∑
z∈Zt

E+(B,−zC)� |B|3/2|C|3/2|Zt|1/2.

Rearranging yields the estimate

|Zt| �
|B|3|C|3

t2
,

as claimed.

7rQ(z) is supported on Q, so if t ≥ 1 we have Zt ⊆ Q.
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We remark here that this is not the only proof we have found of Lemma 2.5 during the
process of writing this paper. In particular, it is possible to write a “shorter” proof which is a
relatively straightforward application of an upper bound from [17] on the number of solutions
to the equation

(a1 − b1)(c1 − d1) = (a2 − b2)(c2 − d2),

such that ai ∈ A, · · · , di ∈ D.

Although this proof may appear to be shorter, it relies on the bounds from [17], which in turn
rely on the deeper concepts used by Guth and Katz [10] in their work on the Erdős distinct
distance problem. For this reason, we believe that this proof is the more straightforward
option. In addition, this approach leads to better logarithmic factors and works over the
complex number (see the discussion at the end of the paper).

The following corollary gives an analogous result for third moment multiplicative energy,
however, unlike Lemma 2.5, this result does not appear to be optimal.

Corollary 3.2. For any finite sets A,B,C ⊂ R, we have

E∗3(A)|A(B + C)|4 � |A|
6|B|2|C|2

(log |A|)2
.

Proof. By the Cauchy-Schwarz inequality,∑
x

r2A:A(x) =
∑
x

r
3/2
A:A(x)r

1/2
A:A(x)

≤

(∑
x

r3A:A(x)

)1/2(∑
x

rA:A(x)

)1/2

= (E∗3(A))1/2 |A|,

so that (E∗(A))2 ≤ E∗3(A)|A|2.

Meanwhile, Lemma 2.5 gives (E∗(A))2|A(B + C)|4 � |A|8|B|2|C|2
(log |A|)2 . Comparing these two

bounds gives the desired result.

4 Proofs of Main Results

The first task in this section is to prove Theorem 2.6. This will require an application of
the Balog-Szemerédi-Gowers Theorem. Following the conventional notation G represents a
group, whose operation here is written additively8, and E+(A) has the same meaning as was
given in section 1. We will need the following result.

Theorem 4.1. Let A ⊆ G be a set, K ≥ 1 and E+(A) ≥ |A|3
K . Then there is A′ ⊆ A such

that

|A′| ' |A|
K

,

8For our purposes the role of G will usually be played by the set of non-zero real numbers under multipli-
cation.
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and

|A′ −A′| / K4 |A′|3

|A|2
.

We remark that the first preprint of this paper used a different version of the Balog-Szemerédi-
Gowers Theorem, due to Schoen [18]. Shortly after uploading this, we were informed by M.
Z. Garaev of a quantitatively improved version of the Balog-Szemerédi-Gowers Theorem, in
the form of Theorem 4.1. This leads to a small improvement in the statement of Theorem
2.6, since our earlier result had an exponent of 3

2 + 1
234 . The proof of Theorem 4.1 result is

short, arising from an application of Lemmas 2.2 and 2.4 in [3]. It is possible that further
small improvements can be made to Theorem 2.6 by combining more suitable versions of the
Balog-Szemerédi-Gowers Theorem with our approach.

We will also need a sum-product estimate which is effective in the case when the product set
or ratio set is relatively small. The best bound for our purposes is the following9 (see [16],
Theorem 1.2):

Theorem 4.2. Let A ⊂ R. Then

|A : A|10|A+A|9 ' |A|24.

Proof of Theorem 2.6

Recall that Theorem 2.6 states that

|A(A+A)| ' |A|
3
2
+ 1

178 .

Write E∗(A) = |A|3
K . Applying Lemma 2.5 with A = B = C, it follows that

|A|3

K
|A(A+A)|2 ' |A|6,

and so
|A(A+A)| ' |A|3/2K1/2. (39)

On the other hand, by Lemma 4.1, there exists a subset A′ ⊂ A such that

|A′| � |A|
K

(40)

and

|A′ : A′| / K4 |A′|3

|A|2
. (41)

Now, Theorem 4.2 can be applied, and this states that

|A′ : A′|10|A′ +A′|9 ' |A′|24.

Applying (41), it follows that

|A′|30

|A|20
K40|A′ +A′|9 ' |A′|24,

9In the notation of [16], we apply this bound with C = −f(A) and f(x) := log x.
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so that after rearranging, and applying the crude bound |A′| ≤ |A|, we obtain

K40|A′ +A′|9 ' |A|
20

|A′|6
≥ |A|14

Using another crude bound,

|A(A+A)| ≥ |A+A| ≥ |A′ +A′|, (42)

yields

|A(A+A)| ' |A|
14/9

K40/9
. (43)

Finally, we note that the worst case occurs when K ≈ |A|
1
89 . If K ≥ |A|

1
89 , then (39) implies

that
|A(A+A)| ' |A|3/2K1/2 ≥ |A|

3
2
+ 1

178 ,

whereas, if K ≤ |A|
1
89 , one can check that (43) tells us

|A(A+A)| ' |A|
14/9

K40/9
≥ |A|

3
2
+ 1

178 .

We have checked that |A(A+A)| � |A|
3
2
+ 1

178 holds in all cases, and so the proof of Theorem
2.6 is complete.

Let us show that the main result can be refined to obtain

|A(A+A)| � |A|
3
2
+ 1

178
+ε0 , (44)

where ε0 > 0 is an absolute constant. To do this we need in an asymmetric version of
Balog–Szemerédi–Gowers theorem, see [27], Theorem 2.35.

Theorem 4.3. Let A,B ⊆ G be two sets, |B| ≤ |A|, and M ≥ 1 be a real number. Let also
L = |A|/|B| and ε ∈ (0, 1] be a real parameter. Suppose that

E(A,B) ≥ |A||B|
2

M
. (45)

Then there are two sets H ⊆ G, L ⊆ G and z ∈ G such that

|(H + z) ∩B| �ε M
−Oε(1)L−ε|B| , |L| �ε M

Oε(1)Lε
|A|
|H|

, (46)

|H −H| �ε M
Oε(1)Lε · |H| , (47)

and
|A
⋂

(H + L)| �ε M
−Oε(1)L−ε|A| . (48)
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Proof of inequality (44). To get ε0 we need to improve (42), that is to show |A(A + A)| ≥
|A + A|1+ε, where ε > 0 is some (other) absolute constant. Suppose not, then E∗(A,A +
A)�M |A|2|A+A|, where M = |A|ε. Using Theorem 4.3 with B = A, A = A+A, we find,
in particular, H ⊆ A such that |H| �M |A| and |HH−1| �M |H|. Applying Theorem 4.2,
we see that

|A(A+A)| ≥ |A+A| ≥ |H +H| �M |A|14/9 .

This completes the proof. 2

As one can see, the number ε0 from (44) is a result of using of the asymmetric version of
Balog–Szemerédi–Gowers theorem, and thus is rather small.

Note that the sum-product estimates in [16] are quantitatively better when the sum set is
replaced by the difference set A−A. To be precise, it is proven in [16] that

|A : A|6|A−A|5 � |A|14

(log |A|)2
.

Therefore, the argument of the proof of Theorem 2.6 outputs a slightly better bound for the
set A(A−A). One can check that

|A(A−A)| ' |A|
3
2
+ 1

106 . (49)

Again, the asymmetric version of the Balog-Szemerédi-Gowers Theorem can then be used as
above to prove that

|A(A−A)| � |A|
3
2
+ 1

106
+ε0 ,

where ε0 > 0 is an absolute constant.

Proof of Theorem 2.7

Recall that Theorem 2.7 states that

|A(A+A+A+A)| � |A|2

log |A|
.

The essential step in Solymosi’s [23] work on the sum-product problem was to obtain an
upper bound on the multiplicative energy in terms of the sum set, as follows:

E∗(A)� |A+A|2 log |A|. (50)

We mention this bound explicitly because it will now be used in the proof of Theorem 2.7.

Apply Lemma 2.5 with B = C = A+A. This implies that

E∗(A)|A(A+A+A+A)|2 � |A+A|2|A|4

log |A|
.

Applying the upper bound (50) on E∗(A) and then rearranging yields

|A(A+A+A+A)| � |A|2

log |A|
.
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Proof of Theorem 2.8

Recall that Theorem 2.8 states that

|A(A+A+A)| ' |A|
7
4
+ 1

284 .

For the ease of the reader, we begin by writing down a short proof of the fact that

|A(A+A+A)| ' |A|7/4

(log |A|)3/4
. (51)

First note that, since rA:A(x) ≤ |A| for any x,

E∗3(A) =
∑
x∈A:A

r3A:A(x) ≤ |A|
∑
x∈A:A

r2A:A(x) = |A|E∗(A) , (52)

so that (50) yields
E∗3(A)� |A||A+A|2 log |A|. (53)

Now, apply Corollary 3.2, with B = A and C = A+A. We obtain

E∗3(A)|A(A+A+A)|4 � |A|
8|A+A|2

(log |A|)2
.

Combining this with the upper bound on E∗3(A) from (53), it follows that

|A(A+A+A)| � |A|7/4

(log |A|)3/4
,

which proves (51).

Now, we will show how a slightly more subtle argument can lead to a small improvement in
this exponent. Apply (50) and Lemma 2.5, with B = A and C = A+A, so that

|A|5|A+A| / E∗(A)|A(A+A+A)|2 / |A+A|2|A(A+A+A)|2 , (54)

and thus
|A+A||A(A+A+A)|2 ' |A|5. (55)

Write E∗(A) = |A|3
K , for some value K ≥ 1. By the first inequality from (54), it follows that

|A(A+A+A)| ' |A|K1/2|A+A|1/2 . (56)

Applying Solymosi’s bound for the multiplicative energy then yields

|A(A+A+A)| ' |A|7/4K1/4. (57)

Now, by Theorem 4.1 there exists a subset A′ ⊂ A such that

|A′| ' |A|
K

(58)

and

|A′ : A′| / K4 |A′|3

|A|2
. (59)
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By Theorem 4.2 and (59),

|A′|24 / |A′ +A′|9|A′ : A′|10

� |A+A|9K40 |A′|30

|A|20
,

and then

|A+A|9 ' |A|20

|A′|6K40
≥ |A|

14

K40
.

From the latter inequality we now have |A+A| ' |A|14/9
K40/9 . Comparing this with (56) leads to

the following bound:

|A(A+A+A)| ' |A|
16/9

K31/18
. (60)

The worst case occurs when K ≈ |A|1/71. It can be verified that if K < |A|1/71, then

|A(A+A+A)| ' |A|
7
4
+ 1

284 ,

by inequality (60). On the other hand, if K ≥ |A|1/71, then it follows from inequality (57)
that

|A(A+A+A)| ' |A|
7
4
+ 1

284 .

Therefore, we have proved that (10) holds for all K (i.e. for all possible values of E∗(A)),
which concludes the proof.

5 Proofs of Results on Products of Translates

We record a short lemma which will be used in the proofs of Theorem 2.10 and 2.11

Lemma 5.1. Let A ⊂ R be a finite set. Then, for any x ∈ R,

|(A+ x)(A+A)||A+A| � |A|3

log |A|
.

Proof. Note that for any x ∈ R

|A+A|2 = |(A+ x) + (A+ x)|2 (61)

� E∗(A+ x)

log |A|
(62)

� |A|6

|(A+ x)(A+A)|2(log |A|)2
, (63)

where (62) is an application of Solymosi’s bound (50), and (63) comes from Lemma 2.5. The
lemma follows after rearranging this expression.
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Proof of Theorem 2.9

Recall that Theorem 2.9 states that

|A(A+ a)| � |A|3/2

holds for at least half of the elements a belonging to A. Lemma 2.4 tells us that, for some
fixed constant C ∑

a∈A
E∗(A, a+A) ≤ C|A|7/2.

Let A′ ⊂ A be the set

A′ := {a ∈ A : E∗(A, a+A) ≤ 2C|A|5/2},

and observe that

2C|A|5/2|A \A′| ≤
∑

a∈A\A′
E∗(A, a+A) ≤ C|A|7/2,

which implies that

|A \A′| ≤ |A|
2
.

This implies that |A′| ≥ |A|
2 . To complete the proof, we will show that for every a ∈ A′ we

have |A(A+ a)| � |A|3/2. To see this, simply observe that, for any a ∈ A′,

|A|4

|A(A+ a)|
≤ E∗(A,A+ a)� |A|5/2.

The lower bound here comes from (8), whilst the upper bound comes from the definition of
A′. Rearranging this inequality gives

|A(A+ a)| � |A|3/2,

as required.

We remark that it is straightforward to adapt this argument slightly—switching the roles of
addition and multiplication and using Lemma 2.3 in place of Lemma 2.4—in order to show
that there exists a subset A′ ⊂ A, such that |A′| ≥ |A|2 , with the property that

|A+ aA| � |A|3/2,

for any a ∈ A′.

It is also easy to adapt the proof of Theorem 2.9 in order to show that, for any 0 < ε < 1
and any A ⊂ R, there exists a subset A′ ⊂ A such that |A′| ≥ (1− ε)|A|, and for all a ∈ A′,

|A(A+ a)| �ε |A|3/2.

In other words, the set A(A + a) is large for all but a small positive proportion of elements
a ∈ A. The analogous statement for A+ aA is also true.
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Proof of Theorem 2.10

Recall that Theorem 2.10 states that

|(A+ a)(A+A)| � |A|5/3

(log |A|)1/3

holds for at least half of the elements a belonging to A. This proof is similar to the proof of
Theorem 2.9. Again, Lemma 2.4 tells us that for a fixed constant C, we have∑

a∈A
E∗(A+A, a+A) ≤ C|A|2|A+A|3/2.

Define A′ ⊂ A to be the set

A′ := {a ∈ A : E∗(A+A, a+A) ≤ 2C|A||A+A|3/2},

and observe that

2C|A||A+A|3/2|A \A′| ≤
∑

a∈A\A′
E∗(A+A, a+A) ≤ C|A|2|A+A|3/2.

This implies that |A \A′| ≤ |A|2 , and so

|A′| ≥ |A|
2
.

Next, observe that, for any a ∈ A′,

|A|2|A+A|2

|(A+ a)(A+A)|
≤ E∗(A+A,A+ a)� |A||A+A|3/2.

The lower bound here comes from (8), whilst the upper bound comes from the definition of
A′. After rearranging, we have

|(A+ a)(A+A)| � |A||A+A|1/2, (64)

for any a ∈ A′. To complete the proof we need a useful lower bound on |A+A|. This comes
from Lemma 5.1, which tells us that for any a ∈ R, and so certainly any a ∈ A,

|A+A|1/2 � |A|3/2

(log |A|)1/2|(A+ a)(A+A)|1/2
.

Finally, this bound can be combined with (64), to conclude that

|(A+ a)(A+A)| � |A|5/3

(log |A|)1/3
,

as required.
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Another upper bound on the multiplicative energy

Before proceeding to the proof of Theorem 2.11, it is necessary to establish another upper
bound on the multiplicative energy. This is essentially a calculation, based on earlier work
from [9] and [13]. We will need the following lemma:

Lemma 5.2. Suppose that A,B and C are finite subsets of R such that 0 6∈ A,B, and
α ∈ R \ {0}. Then, for any integer t ≥ 1,

|{s : rAB(s) ≥ t}| � |(A+ α) · C|2|B|2

|C|t3
.

This statement is a slight generalisation of Lemma 3.2 in [13]. We give the proof here for
completeness.

Proof. For some values p and b, define the line lp,b to be the set {(x, y) : y = (px−α)b}. Let
L be the family of lines

L := {lp,b : p ∈ (A+ α)C, b ∈ B}.

Observe that, since α is non-zero, |L| = |(A + α)C||B|.10 Let Pt denote the set of all t-rich
points in the plane. By Corollary 2.2, for t ≥ 2,

|Pt| �
|B|2|(A+ α)C|2

t3
+
|B||(A+ α)C|

t
, (65)

and it can once again be simply assumed that

|Pt| �
|B|2|(A+ α)C|2

t3
. (66)

This is because, if the second term from (65) is dominant, it must be the case

t > |(A+ α)C|1/2|B|1/2 ≥ min {|A|, |B|}.

However, in such a large range, |{s : rAB(s) ≥ t}| = 0, and so the statement of the lemma is
trivially true.

Next, it will be shown that for every s ∈ {s : rAB(s) ≥ t}, and for every element c ∈ C,(
1

c
, s

)
∈ Pt. (67)

Once, (67) has been established, it follows that |Pt| ≥ |C||{s : rAB(s) ≥ t}|. Combining this
with (66), it follows that

|{s : rAB(s) ≥ t}| � |B|
2|(A+ α) · C|2

|C|t3
, (68)

10Note that it is not true in general that |L| = |(A + α)C||B|. Indeed, if 0 ∈ B, then lp,0 = lp′,0 for
p 6= p′, and so the lines may not all be distinct. However, we may assume again that zero does not cause
us any problems. To be more precise, we assume that 0 /∈ B, as otherwise 0 can be deleted, and this will
only slightly change the implied constants in the statement of the lemma. If 0 /∈ B, then the statement that
|L| = |(A+ α)C||B| is true.
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for all t ≥ 2. We can then check that (68) is also true in the case when t = 1, since

|B|2|(A+ α)C|2

13|C|
≥ |B|2|(A+ α)C| ≥ |AB| = |{s : rAB(s) ≥ 1}|.

It remains to establish (67). To do so, fix s with rAB(s) ≥ t and c ∈ C. The element s can
be written in the form s = a1b1 = · · · = atbt. For every 1 ≤ i ≤ t we have

s = aibi

= (ai + α− α)bi

=

(
(ai + α)c

c
− α

)
bi,

which means that
(
1
c , s
)

belongs to the line l(ai+α)c,bi . As i varies from 1 through to t this
is still true, and it is also true that the lines l(ai+α)c,bi are distinct for all values of i in this

range. Therefore,
(
1
c , s
)
∈ Pt, as claimed. This concludes the proof.

We use this to prove another lemma:

Lemma 5.3. For any finite sets A and C in R, and any α ∈ R \ {0},

E∗(A)� |(A+ α)C||A|2

|C|1/2
.

Proof. Let 4 ≥ 1 be a fixed integer to be specified later. Observe that,

E∗(A) =
∑
x

r2A:A(x) =
∑

x : rA:A(x)≤4

r2A:A(x) +
∑

x:rA :A(x)>4

r2A:A(x).

The first term is bounded by∑
x : r2A:A(x)≤4

r2A:A(x) ≤ 4
∑
x

rA:A(x) = 4|A|2.

For the second term, apply a dyadic decomposition and use Lemma 5.2 as follows:∑
x:rA:A(x)>4

r2A:A(x) =
∑
j

∑
x : 2j−14<rA:A(x)≤2j4

r2A:A(x)

�
∑
j

(2j4)2
|(A+ α)C|2|A|2

|C|(2j4)3

=
|(A+ α)C|2|A|2

|C|4
.

This shows that

E∗(A)�4|A|2 +
|(A+ α)C|2|A|2

|C|4
,

and we optimise by setting 4 =
⌈
|(A+α)C|
|C|1/2

⌉
≈ |(A+α)C||C|1/2 . This shows that

E∗(A)� |(A+ α)C||A|2

|C|1/2
,

as required.
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Proof of Theorem 2.11

Let a and b be distinct real numbers. We will show that

|(A+ a)(A+A)|5|(A+ b)(A+A)|2 � |A|11

(log |A|)3
. (69)

Once we have established (69), the theorem follows, since this implies that for any a, b ∈ R
with a 6= b, we have

max {|(A+ a)(A+A)|, |(A+ b)(A+A)|} � |A|11/7

(log |A|)3/7
, (70)

and therefore, there may exist at most one value x ∈ R which violates the inequality

|(A+ x)(A+A)| � |A|11/7

(log |A|)3/7
.

It remains to prove (69). First, apply Lemma 5.3 with A = A+a, C = A+A and α = b−a 6= 0.
This yields

E∗(A+ a)� |(A+ a+ (b− a))(A+A)||A|2

|A+A|1/2
(71)

=
|(A+ b)(A+A)||A|2

|A+A|1/2
. (72)

Meanwhile, Lemma 2.5 informs us that

E∗(A+ a)� |A|6

|(A+ a)(A+A)|2 log |A|
, (73)

and combining (72) and (73), we have

|(A+ a)(A+A)|2|(A+ b)(A+A)| � |A|
4|A+A|1/2

log |A|
. (74)

Finally, we apply Lemma 5.1 which tells us that

|A+A|1/2 � |A|3/2

(log |A|)1/2|(A+ a)(A+A)|1/2
.

Plugging this bound into (74) and rearranging, it follows that

|(A+ a)(A+A)|5|(A+ b)(A+A)|2 � |A|11

(log |A|)3
.

Thus we have established (69), which completes the proof.
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Proof of Theorem 2.12

Before we prove Theorem 2.12, we need some auxiliary statements. First we note a corollary
of the proof of Lemma 2.5.

Corollary 5.4. Let A,B, and C be finite subsets of R, and let

S? = |{(a, b, c, a′, b′, c′) ∈ (A×B × C)2 : a(b+ c) = a′(b′ + c′) 6= 0}|

Then
S? =

∑
x 6=0

r2A(B+C)(x)� E∗2(A)1/2|B|3/2|C|3/2(log |A|)1/2. (75)

Now recall a lemma from [21].

Lemma 5.5. Let A be a subset of an abelian group, P∗ ⊆ A − A and
∑

s∈P∗ |As| = η|A|2,
η ∈ (0, 1]. Then ∑

s∈P∗

|A±As| ≥
η2|A|6

E3(A)
.

Corollary 5.6. Let A be a subset of an abelian group. Then

E(A+A) ≥ |A−A|−1|A×A+ ∆(A)|2 ≥ |A|2 max{|A−A|, |A+A|} , (76)

E(A−A) ≥ |A−A|−1|A×A−∆(A)|2 ≥ |A|2|A−A| , (77)

and

E(A±A) ≥ |A|12

E2
3(A)|A−A|

. (78)

Proof. We prove the statement for sums, the result for differences can be obtained similarly.
Put S = A+A and D = A−A. By Katz–Koester trick [14], we get

|(A+A) ∩ (A+A− s)| ≥ |A+As| ,

and
|(A−A) ∩ (A−A− s)| ≥ |A− (A ∩ (A+ s))| .

Thus by the Cauchy–Schwarz inequality

E(S) ≥
∑
s∈D

r2S−S(s) ≥
∑
s∈D
|A+As|2 ≥ |D|−1

(∑
s∈D
|A+As|

)2

= |D|−1|A×A+ ∆(A)|2 ≥ |A|2|A−A| ,

and, similarly,

E(S) ≥ |D|−1|A×A+ ∆(A)|2 ≥ |D|−1
(∑
x∈S
|A+ (A ∩ (x−A))|

)(∑
s∈D
|A+As|

)
≥ |A|2|A+A|
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as required. Here we have used the fact

|A×A+ ∆(A)| =
∑
s∈D
|A+As| =

∑
x∈S
|A+ (A ∩ (x−A))| ,

which follows from the consideration of the projections of the set A × A + ∆(A). More
precisely, one has A × A + ∆(A) = {(a1 + a, a2 + a) : a, a1, a2 ∈ A}. Whence, writing
s = (a1 + a) − (a2 + a) = a1 − a2 ∈ D, we get a2 ∈ As, a + a2 ∈ A + As and viceversa.
Similarly, put x = a1 + a2 ∈ S, one get a2 ∈ A ∩ (x − A), a + a2 ∈ A + (A ∩ (x − A)) and
viceversa.

Further, by Lemma 5.5

|A|6 ≤ E3(A)
∑
x

D(x)rS−S(x) .

Applying the Cauchy–Schwarz inequality, we get

|A|12 ≤ E2
3(A)E(S)|D|

and formula (78) follows. The result for the set D is similar.

Finally, we can prove Theorem 2.12:

Proof of Theorem 2.12. We begin with the first formula of the result.

Take C = A−B in Corollary 5.4. Note that r(A−B)+B(a) ≥ |B| for all a ∈ A, which implies
that rA(B+C)(x) ≥ rAA(x)|B|. Thus by Corollary 5.4 we have11

|B|2E∗2(A) ≤
∑
x 6=0

r2A(B+C)(x)� E∗2(A)1/2|B|3/2|A−B|3/2(log |A|)1/2.

Rearranging and applying the Cauchy-Schwarz lower bound for E∗2(A) yields

|A|4|B|
|AA±1|

≤ |B|E∗2(A)� |A−B|3 log |A|,

as required.

Combining (13) with Corollary 5.6, we obtain (14). This completes the proof.

Concluding remarks - the complex case

We conclude by pointing out that almost all of the results in this paper also hold in the more
general case whereby A is a finite set of complex numbers, since the tools we have made
use of can all be extended in this direction. Indeed, the Szemerédi-Trotter was extended
to points and lines in C2 by Toth [28]. More modern proofs have recently appeared due to
Zahl [30], and Solymosi-Tao [25], although the latter of these results has exponents which
are infinitesimally worse. The other main tool which has been imported to this paper is
Solymosi’s [23] bound on the multiplicative energy (which we earlier labelled (50)). This
result was recently extended to the case when A ⊂ C by Konyagin and Rudnev [15].

11Note that rAA(x) = 0 for x = 0 since we have assumed that 0 6∈ A.
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