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Online Bayesian Inference in Some

Time-Frequency Representations of

Non-Stationary Processes
Richard G. Everitt*, Christophe Andrieu, and Manuel Davy

Abstract—The use of Bayesian inference in the inference
of time-frequency representations has, thus far, been limited
to offline analysis of signals, using a smoothing spline based
model of the time-frequency plane. In this paper we introduce
a new framework that allows the routine use of Bayesian
inference for online estimation of the time-varying spectral
density of a locally stationary Gaussian process. The core of
our approach is the use of a likelihood inspired by a local
Whittle approximation. This choice, along with the use of
a recursive algorithm for non-parametric estimation of the
local spectral density, permits the use of a particle filter for
estimating the time-varying spectral density online. We provide
demonstrations of the algorithm through tracking chirps and
the analysis of musical data.

Index Terms—Signal processing algorithms, particle filters,
spectrogram, Bayesian methods, frequency domain analysis.
EDICS Categories: DSP-TFSR, MLR-BAYL, MLR-MUSI,
SSP-NSSP, SSP-TRAC.

I. INTRODUCTION

A. Background

Time-frequency representations (TFRs) are celebrated sig-

nal processing tools, for they turn time domain signals into

images, representing the time-frequency decomposition of

the signal, whose interpretation is intuitive. Such images are

thus often used as early analysis tools, to be used when

faced with non-stationary signals for which the concept of

frequency is relevant. Typical applications range from audio

signals (speech, music, animal cries) [1], biomedical time

series (EEG, ECG, EMG) [2], accelerometer signals [3]

collected on dynamic mechanical systems, etc.

Aside their ability to provide easy-to-understand images,

TFRs can be used in automated decision applications. [4]

showed that some Cohen’s group TFRs can be used to im-

plement optimal linear detection, by providing an equivalent

implementation of the time domain matched filter in the time

frequency domain. This seminal work was followed by a

number of studies about time-frequency detection / classi-

fication of signals, see e.g., [5]–[8]. All these approaches
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rely on the idea that the noise is spread all over the time-

frequency plane, thus increasing the local signal-to-noise

ratio. Based on the same idea, several algorithms have been

proposed to estimate signal parameters directly from TFRs,

most of which being devoted to linear chirps, see e.g., [9].

Others are devoted to more general time-varying spectrum

estimation. In particular, many studies have focused on

estimating narrow band time-frequency trajectories (also

termed components), see [10], [11] among others. Most

of these techniques implement Kalman filtering where the

observations are extracted from peaks of TFRs (sequential

approach), or fit curves onto the TFR (batch approach). As

shown by these many previous studies, using TFRs for es-

timation or decision purposes leads to powerful algorithms.

Many practical problems have received a convincing solution

through the use of these methods [12], [13]. For a general

overview of the time-frequency analysis, see [14].

In parallel to the development of time-frequency tech-

niques, statistical signal processing tools have developed

considerably over the last few years. In particular, up-to-

date Bayesian approaches enable to estimate parameters in

situations where the model is highly non-linear and/or non-

Gaussian, thanks to Monte Carlo methods. Surprisingly, few

works have been devoted to apply these techniques to TFRs.

Previous work can be summarised as follows:

1) Monte Carlo Markov Chain (MCMC) for estimating

the coefficients of Gabor representations [15], [16].

2) Tracking the pole parameterisation of time-varying

autoregression (TVAR) models using sequential Monte

Carlo [17].

3) Tracking trajectories in spectrograms by sequential

Monte Carlo (SMC) [18].

4) Using reversible-jump MCMC to infer the parameters

of a model for the time-varying spectrum of a locally

stationary process [19] and [20]. The model in these

papers partitions the process into segments, using a

mixture of smoothing splines to model the log spec-

trum of each segment and time varying mixing weights

to introduce non-stationarity across the segments.

Despite these advances, there exists no principled approach

to Bayesian inference that uses the full TFR as a raw

observation and relates it to some statistical model through

a likelihood function. Devising such a methodology is the

aim of this paper.
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B. Overview of the approach

This paper brings together TFRs and the Bayesian

paradigm for statistical inference. More precisely, we aim

to take advantage of the numerous conceptual benefits of

TFRs in order to motivate and develop models for non-

stationary processes while at the same time exploiting the

Bayesian paradigm for both incorporating prior information

and quantifying uncertainty in the inference procedure. This

leads to a natural description of the process to be analysed

in terms of a state-space model which is well suited to

the sequential processing of data (often referred to as fil-

tering) and the incorporation of prior temporal information

(e.g. smoothness, abrupt changes, etc). Sequential processing

might be desirable in scenarios where an update of the

information contained in the signal is required as soon as

a new data is available, but can also present a significant

computational and storage advantage when large datasets are

involved. SMC methods (aka particle filters) are well estab-

lished statistical techniques that allow one to effectively and

efficiently carry out sequential inference for such models, in

the presence of nonlinearity and non-Gaussianity.

The main difficulty inherent to achieve the goals set

above was to find a principled way of relating TFRs to the

classical statistical parametric inference framework and in

particular define a likelihood function for such objects. Our

approach consists of exploiting Whittle type approximations

to the likelihood of Gaussian processes. These approximate

likelihoods have the advantage that they can be shown to

depend exclusively on the spectral properties of the data

and the candidate statistical parametric model. Although

originally developed in the context of stationary processes,

recent theoretical advances have allowed for the rigorous

generalisation of this framework to some types of non-

stationary processes; a review of such approximations is

provided in section II. This is the route we follow in this

paper. In section III we show how the standard Bayesian

state-space modelling framework, in conjunction with Whit-

tle type likelihoods, lends itself naturally to the modelling of

non-stationary processes in the spectral domain. A generic

particle filter to perform sequential inference is also briefly

reviewed.

At the core of our approach to sequential estimation is to

use efficient recursive estimators of time-frequency images

from data. A novel solution to this problem is described

in section III-C, which relies on an unusual interpretation

of the power spectral density (PSD) of stationary processes

and its non-stationary counterparts. In section IV we apply

our methodology to tracking chirps whose signals overlap in

time-frequency space and in section V to a simple problem

in the analysis of musical data.

II. FROM THE GAUSSIAN LIKELIHOOD TO THE

SPECTROGRAM

A. The Whittle approximation

When looking at TFRs, it is tempting to try to fit a

parametric model in order to reduce dimensionality and

improve interpretability, including interpretability by a com-

puter. However the choice of a likelihood in such situations

is not always obvious. In this section we develop such a

likelihood which is motivated by Whittle’s approximant of

the likelihood for stationary processes and inspired by its

extension suggested in [21] for locally stationary processes.

Consider a zero mean real valued stationary Gaussian

process {yt|t = 1, . . . , T} for some T ≥ 1 with nonzero

PSD fθ : [−π, π] → (0,∞) dependent on a parameter

θ ∈ Θ. In [22] it was shown that the log-likelihood of a

real valued realisation of such a stationary Gaussian process

can for a general class of processes be approximated for T
large enough by

Lθ(y1:T ) := C−
T

4π

ˆ π

−π

[log(2πfθ(ω))+ IT (ω)/fθ(ω)]dω,

(1)

for some constant C, where IT (ω) is the periodogram of the

data, defined for ω ∈ [−π, π] as

IT (ω) :=
1

T

∣∣∣∣∣

T∑

t=1

yt exp(−ıωt)

∣∣∣∣∣

2

. (2)

This approximation can easily be extended to accommo-

date vector valued time series and rates of convergence

of this approximation can also be derived (see [22] and

[23]). The interest of this approximation is that it relates

the spectral properties of the data (the periodogram) to the

statistical model for the data (the PSD fθ) in a principled

manner and presents the advantage of allowing modelling of

this class of processes directly in the spectral domain.

There is a large literature on the use of this approximation

for maximum likelihood inference of the parameter θ ( [23]

is a good starting point). However, the approach of [24],

where the Whittle approximation to the likelihood as a part

of a Bayesian model, is of more relevance to this paper.

In this paper a numerical approximation to the integral in

equation (1) is used, evaluating the integrand at the Fourier

frequencies {ωk = 2πk/T | 0 ≤ k ≤ ⌊T/2⌋} to obtain

L̂θ(y1:T ) = C −
1

2

∑

k

[log(2πfθ(ωk)) + IT (ωk)/fθ(ωk)].

(3)

In the Bayesian model in [24] this likelihood is further

approximated by a mixture of Gaussians (for computational

reasons), and MCMC is used to infer a smoothing spline

representation of the log PSD. From our perspective, the

most important characteristic of this work is that the use of

the Whittle approximation provides a principled approach to

Bayesian inference of any appropriate statistical model of the

PSD, using the periodogram directly as an observation. This

flexibility in the choice of model for the PSD is exploited

in [25] and [26], amongst others.

B. Locally stationary processes

For our analogous methodology for the Bayesian estima-

tion of TFRs, a natural question is that of the existence of

such approximations for Gaussian non-stationary processes
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that would allow us to relate a TFR of the observed pro-

cess and a parametric model through a likelihood, or an

approximation of such a likelihood. A significant step in

this direction was achieved by [21] who extended Whittle’s

approximant to a particular class of non-stationary processes

called “locally stationary processes” [21], [27]–[30]. This

class of processes can be thought of as being a time varying

generalisation of stationary harmonisable processes and are

assumed to have a representation of the form (assuming for

simplicity that E(Yt,T ) = 0 for t = 1, . . . , T )

Yt,T =

ˆ π

−π

exp(ıωt)ΛT (t, ω)dξ(ω), (4)

where {ξ(ω)} is a complex valued Gaussian process on

[−π, π] with additional statistical properties detailed in the

appendix and {ΛT (t, ω) : {1, . . . , T} × [−π, π] → C, T ∈
N} is a family of complex valued functions which can be

approximated by a function Λ : [0, 1] × [−π, π] → C,

Λ(u, ω)∗ = Λ(u,−ω) such that there exists K satisfying

sup
(t,ω)∈{1,...,T}×[−π,π]

|ΛT (t, ω)− Λ (t/T, ω)| ≤ KT−1. (5)

This class of processes is especially useful, since it

defines a unique evolutionary spectrum for many commonly

used processes, including time-varying ARMA or GARCH

processes, for example.

In the context of parametric estimation it is natural to con-

sider a family of potential candidates {Λθ, θ ∈ Θ} in order to

explain the data. The quantity fθ(u, ω) := |Λθ(u, ω)|
2 ≥ 0,

the evolutionary spectrum, can be thought of as being a

parametric TFR for the process.

In close analogy with Whittle’s likelihood approximation

for Gaussian stationary processes, and for the purpose of

statistical inference, In [21] the following approximation of

the log likelihood for T observations of a Gaussian locally

stationary process is derived

Lθ(y1:T ) := C +

T∑

t=1

−
1

4π

ˆ π

−π

[log(2πfθ(t, ω)) +

ĨT (t, ω)/fθ(t, ω)]dω, (6)

where C is a constant and ĨT (t, ω) is the pre-periodogram

ĨT (t, ω) =
∑

{k∈N:1≤t+1/2±k/2≤T}

y⌊t+1/2+k/2⌋

y∗⌊t+1/2−k/2⌋ exp(−ıωk), (7)

with ∗ denoting complex conjugation and ⌊⌋ the largest

integer smaller than the argument (the pre-periodogram is

a particular discretisation of the Wigner-Ville distribution,

and is essentially an estimator of the evolutionary spectrum).

It is noted in [21] that the likelihood approximation may

be factorised as Lθ =
∑T

t=1 lθ,t, where each factor can

be thought of as the “local log likelihood” at time t. By

analogy with the stationary case, it is suggested by [21]

to maximise this approximate likelihood over values of θ,

approximating a maximum likelihood estimator. Theoretical

results are provided concerning the asymptotic consistency

of the maximum approximate likelihood estimator derived

by maximising Lθ(y1:T ), as well as a central limit theorem.

Bayesian estimation of the evolutionary spectrum of a

locally stationary process has previously been considered

in [19] and [20]. In common with this paper, the choice

of likelihood in these papers is also motivated by [30].

However, they differ from our work in that the likelihood

used for the segmented process in their model (see section

I-A) is simply the Whittle approximation for the likelihood

of the data in each segment - inference of the parameters of

their model is based on the periodogram of the data in each

segment. In addition, our goal is to infer the evolutionary

spectrum online, whereas these papers take a batch approach.

C. Approach

In the present paper we develop a methodology to perform

sequential Bayesian inference for processes modelled in the

spectral domain that uses time-frequency estimates as input.

Our model for the observed data y1:T is parameterised by

the time-varying parameter {θt}, which we treat as a random

variable. The aim of the Bayesian approach is to infer

a sequence of posterior distributions {p(θt|Y1:t = y1:t)}
thus describing the uncertainty present in inferring {θt},

in contrast to maximum likelihood estimators which seek

only a point estimate. The Bayesian formulation consists of

specifying: a prior p(θ1:T ) on the time-varying parameter;

and a likelihood g(Y1:T |θ1:T ), modelling how a random

process Y1:T arises given the underlying parameter θ1:T . The

posterior p(θ1:T |Y1:T = y1:T ) is then found via Bayes’ the-

orem: p(θ1:T |Y1:T = y1:T ) ∝ p(θ1:T )g(Y1:T = y1:T |θ1:T ).
The likelihood we use is inspired by Dahlhaus’ develop-

ments for locally stationary processes, but differs in that we

assume the evolutionary spectrum to consist of a succession

of local spectra fθt for the varying values {θt} and we chose

the prior such that p(θ1:T ) forms a Markov chain: p(θ1:T ) =
p(θ1)

∏T−1
t=1 p(θt+1|θt). This flexible approach allows us

to easily incorporate information about the shapes for the

possible “local” spectra as well as smoothness or jump in the

sequence {θt}. This, together with the sequential constraint

naturally leads us to formulate the related inference about

the process as that of a filtering problem in a dynamical

system framework. Due to the non-linearity involved, one

needs to resort to a particle filter in in order to estimate the

sequence of posterior distributions {p(θt|y1:t)}. A crucial

point in order to carry out this inference sequentially in time

is the ability to recursively estimate the evolving spectrum;

this is detailed in section III.

III. STATE-SPACE FORMULATION AND PARTICLE FILTER

A. Statistical model

We assume that the data {yt} ⊂ Y
N is generated by the

following state-space model

log(g(yt|θt, y1:t−1)) = C −
1

4π

ˆ π

−π

[log(2πfθt(ω)) +

Î(t, ω)/fθt(ω)]dω (8)
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for some constant C, a time-frequency estimate Î(t, ω) of

the the evolving spectrum and a parametric model for the

evolving spectra fθt : [−π, π] → [0,+∞) dependent on a

parameter θt ∈ Θ. The sequence {θt} is a Markov chain with

initial distribution θ0 ∼ µ and θt|θ1:t−1 ∼ f(·|θt−1). Note

that there are numerous other possibilities for the choice of

the log-likelihood, such as −
´ π

−π
|fθt(ω)− Î(t, ω)|2dω, but

that their choice might be more difficult to justify statistically

than ours (see section III-E).

Example 1. Assume that we are interested in tracking

chirps, but that we are not given enough information con-

cerning the evolution the instantaneous frequency of the

process. In such situations one for example may choose that

for θ = (a, ω0, s) ∈ Θ = [0,+∞)× [0, π)× [0,+∞)

fθ(ω) = a exp(−(ω − ω0)2/s)I(0 ≤ ω ≤ π) (9)

or

fθ(ω) =
a

1 + (ω − ω0)2/s
I(0 ≤ ω ≤ π). (10)

Then one can suggest the following a priori evolution

in time of the parameter of the evolving spectrum, where

N (.; , σ2) denotes a normal distribution with variance σ2:

at+1|(at, ω
0
t , st) ∼ N (at+1; at, σ

2
a)I(at+1 ≥ 0) (11)

ω0
t+1|(at, ω

0
t , st) ∼ N (ω0

t+1;ω
0
t , σ

2
ω)I(0 ≤ ω0

t+1 ≤ π)
(12)

st+1|(at, ω
0
t , st) ∼ N (st+1; st, σ

2
s)I(st+1 ≥ 0). (13)

Using a model such as that defined above, it is possible

to use static inference methods such as MCMC for the

inference of the parameters {θt}. However, our aim is to

estimate {θt} recursively in time as the data {yt} become

available. In our framework all information about {θt} is

given by the so-called filtering distributions {p(θt|y1:t)}
which cannot be computed analytically and recursively in

time due to the intractability of the likelihoods involved.

Hence we suggest here to resort to a particle filter algorithm.

B. Particle filters

Particle filters fall in the category of Monte Carlo algo-

rithms, whose principle consists of replacing the difficult to

use algebraic representation of a probability density with

a non-parametric representation in terms of (dependent)

samples from the underlying distribution. The concentration

of samples in a particular region of the space is repre-

sentative of the probability distribution that we are trying

to approximate. This turns out to be a powerful principle

which has the major advantage of circumventing analytical

intractability in complex systems. We now briefly describe

how such methods can be used in the present context in

order to perform sequential inference.

Assume that at time t − 1, a collection of N (N ≫ 1)

random samples {θi1:t−1|i = 1, . . . , N}, called particles,

distributed approximately according to p (dθ1:t−1| y1:t−1) is

available. The empirical distribution

p̂N (dθ1:t−1| y1:t−1) =
1

N

N∑

i=1

δθi
1:t−1

(dθ1:t−1) (14)

is an approximation of p (dθ1:t−1| y1:t−1), where δθ0 (dθ0)
represents the delta Dirac mass function located in θ0. Now

at time t, we wish to produce N particles which will

define an approximation p̂N (dθ1:t| y1:t) of p (dθ1:t| y1:t).
The simplest method to achieve this consists of sampling

θit ∼ f( ·| θit−1). The resulting empirical distribution of the

particles {θi1:t} is an approximation of the joint density

p (dθ1:t−1| y1:t−1) f (θt| θt−1). We correct for the discrep-

ancy between this density and the target p (θ1:t| y1:t) using

importance sampling. This yields the following approxima-

tion of p (dθ1:t| y1:t)

pN (dθ1:t| y1:t) =
N∑

i=1

W i
t δθi

1:t
(dθ1:t) , (15)

where

W i
t ∝ g(yt|θ

i
t, y1:t−1) and

N∑

i=1

W i
t = 1. (16)

To obtain an unweighted approximation of p (dθ1:t| y1:t)
of the form (14), we resample particles {θi1:t} according

to probabilities proportional to their weights {W i
t }. The

underlying idea is to get rid of particles with small weights

and multiply particles which are in the regions with high

probability masses. Many such resampling schemes have

been proposed in the literature; see [31]. The resampling

step is crucial for the method to work in practice.

This brief description only covers the simplest particle

filtering algorithms since we use nothing more complex than

this in our application. For more difficult problems, more

sophisticated algorithms will be required (see [32] for a

recent review).

C. Computation of the likelihood

There are two issues that require resolution in order to im-

plement the particle filter in practice. Firstly, each evaluation

of the likelihood (equation (8)) requires the calculation of an

intractable integral. Thus in practice our choice of likelihood

is analogous to the numerical approximation used in the sta-

tionary case by [24]. In particular, we use a likelihood based

on fixed, evenly spaced grid of M frequencies ωk = πk/M
over [0, π]:

log(ĝ(yt|θt, y1:t−1)) = C −
1

2

M∑

k=1

[log(2πfθt(ωk)) +

Î(t, ωk)/fθt(ωk)] (17)

The grid of frequencies must be chosen such that it is fine

enough to capture the important features of the modelled

and observed spectra. However, M should not be larger

than necessary since the sum in equation (17) dominates the

computation time of our particle filtering algorithm. Moving
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further from the statistical justification for our choice of

likelihood, one can envisage that for some applications it

may be useful to choose the set of frequencies in a different

way. For example, in the analysis of long memory processes

one may follow [33], omitting higher frequency terms.

The second problem we face in the evaluation of the

likelihood is the calculation of the time-frequency estimate

Î(t, ω) at every iteration. For the method to be computation-

ally feasible, it is required to estimate the evolving spectrum

recursively. The method used here is as follows. Consider

the PSD of a stationary process (with {Ȳt = Yt − E(Yt)})

2πf(ω) = E(Ȳ 2
t ) + 2

+∞∑

τ=1

E
[
ȲtȲt−τ

]

exp(−ıωτ) (18)

= E(Ȳ 2
t ) + 2E[Ȳt

+∞∑

τ=1

Ȳt−τ

exp(−ıωτ)], (19)

where E is the expectation with respect to the probability dis-

tribution of the process. The recursive estimation of the first

term from realisations of {Yt} is standard (see the recursion

for {Σt} below), but this is far less standard for the second

term. However one can notice that the second term can be

interpreted as being the product of two random variables,

Ȳt and B =
∑+∞

τ=1 Ȳt−τ exp(−ıωτ) (whose distributions

are by assumption independent of the time index t). One

can generate random variables asymptotically distributed

according to the distribution of B using the following

recursion (assuming here for simplicity that E(Yt) = 0),

initialised with B1 = Y1 exp(−ıω) and defined for t ≥ 1 as

Bt+1 = exp(−ıω)(Bt + Yt+1). (20)

Naturally these random variables are dependent by con-

struction, but under rather mild ergodicity assumptions on

{Yt} one can construct the following estimator for t ≥ 2

At =
1

t

t−1∑

j=1

Yj+1Bj . (21)

This sum can itself be recursively updated as follows

At+1 = (1−
1

t+ 1
)At +

1

t+ 1
Yt+1Bt, (22)

and the PSD easily estimated by combination with an

estimator of the variance.

In the non-stationary case {At} can be thought of as

being “instantaneous” estimates of the cross term in the

expression for the PSD. These estimates are likely to have a

high variance and hence averaging over several neighbouring

time instants might be needed, resulting in the introduction

of the classical bias/variance dilemma. An example of such

a smoothing procedure is described below, where the time

dependent and decreasing stepsize 1/(t + 1) in the recur-

sion above has been replaced with a time invariant factor

ρ ∈ [0, 1], whose role is to discard estimates far in the past.

Parameter ρ will control the bias/variance tradeoff. The re-

cursions are initialised with µ1 = y1, A1 = y2y1 exp(−ıω),
B1 = y1 exp(−ıω) and given for i ≥ 1 by

µt+1 = (1− ρ)µt + ρyt+1 (23)

ȳt+1 = yt+1 − µt+1 (24)

At+1 = (1− ρ)At + ρȳt+1Bt (25)

Bt+1 = exp(−ıω)(Bt + ȳt+1) (26)

Σt+1 = (1− ρ)Σt + ρȳ2t+1, (27)

from which one can evaluate the estimate Î(t, ω):

Î(t, ω) =
1

2π
(Σt + 2At) . (28)

Generalisations to multivariate time series, and a time-

scale variant, are also possible. A common modification is

the introduction of a “lag window” λ into the definition of

B =
∑+∞

τ=1 ȳt−τλ(τ) exp(−ıωτ) to reduce the variance of

the PSD estimator (see [34], for example). In this case, only

equation (26) changes. For example, if λ(τ) = ντ , we have

Bt+1 = ν exp(−ıω)(Bt + ȳt+1). (29)

D. Overall algorithm

An example of the method described in this section is

given in algorithm 1. Here the SIR particle filter [35] is

used, with exponential windows in lag and time for the time-

frequency estimate. Note that this particular algorithm is pre-

sented only for expository purposes - for many applications

more sophisticated algorithms may be used.

E. Discussion of the choice of likelihood

Our favoured model for the data, in equation (17), is

derived through taking several different approximations to

the exact likelihood of a locally stationary Gaussian process.

Specifically, these approximations are:

1) the use of a Whittle/Dahlhaus approximation, as in

equation (6);

2) the use of a numerical approximation to the integral in

equation (6), analagous to the one in 3 in the stationary

case;

3) substituting the pre-periodogram ĨT (t, ω) in equation

(6) for our own recursive estimator in equation (28).

The effect of each of these approximations has been inves-

tigated in previous work, most of which focusses on the use

of the approximations in the maximum likelihood setting,

thus the theoretical results about the approximations only

concern the large data limit. In this limit it has been shown

in [21] that when the first two approximations are used, the

approximate likelihood tends to the exact likelihood. [30]

proves an equivalent result when local periodograms are used

as an alternative to the pre-periodogram, but no equivalent

result yet exists when our recursive estimator is used.

There is a further difference between the approach in [21]

and our chosen likelihood, which is that we use a different

parameterisation of the plane. In [21] the time-frequency
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Algorithm 1 The SIR particle filter applied to sequential

inference of a TFR of a process.

Input: A realisation of a time series, {yt}
T
t=1, a set of

frequencies {ωj}
M
j=1, a number of particles P , parameters

of the recursive estimator ρ, ν.

Output: A weighted sample (θ
(i)
t+1, w

(i)
t+1)

P
i=1 from the

posterior p(θt+1 | y1:t+1) on receipt of each data point.

µ1 = y1;

ȳ1 = 0;

Σ1 = 0;

for j = 1 : M
B

ωj

1 = 0;

A
ωj

1 = 0;

end

for i = 1 : P
Simulate θ

(i)
1 ∼ p(θ1);

Let w
(i)
1 = 1/P ;

end

for t = 1 : T − 1
µt+1 = (1− ρ)yt+1 + ρµt;

ȳt+1 = yt+1 − µt+1;

Σt+1 = (1− ρ)ȳt+1(ȳt+1)
T + ρΣt;

for j = 1 : M
A

ωj

t+1 = (1− ρ)ȳt+1(B
ωj

t )T + ρA
ωj

t ;

B
ωj

t+1 = ν exp(−iωj)(ȳt+1 +B
ωj

t );

Î(t+ 1, ωj) =
1
2π (Σt+1 + 2A

ωj

t+1);
end

for i = 1 : P
Simulate θ

(i)
t+1 ∼ p(. | θ

(i)
1:t, y1:t+1);

Reweight w
(i)
t+1 = w

(i)
t exp

(
− 1

2

∑M
j=1

{
log
[
(2π)2d

det f
θ
(i)
t+1

(t+ 1, ωj)
]
+ tr

[
f
θ
(i)
t+1

(t+ 1, ωj)
−1Î(t+ 1, ωj)

]})

;

end

Resample (θ
(i)
t+1, w

(i)
t+1)

P
i=1;

end

plane is parameterised by a single parameter θ, whereas in

our work we use a vector of parameters θ1:T , one for each

data point. This is significant since [21] studies the behaviour

of the likelihood in the large data limit, with the dimension

of the parameter unchanged in this limit. In our approach the

size of the parameter increases with the size of the data, thus

the theory of [21] does not directly apply to our likelihood.

The sense in which our chosen model approximates the exact

likelihood of a locally stationary Gaussian process is a topic

for future work that would provide statistical justification for

our approach.

IV. APPLICATION: TRACKING MULTIPLE COMPONENTS

A. Data description and spectrogram

In this section we apply our method to the analysis of two

signals, both over the domain 0 ≤ t ≤ 2: the first (with a

sampling frequency of 103Hz) consists of two chirps, one

linear and one quadratic, and the second (with a sampling

frequency of 104Hz) consists of three components, two of

which exhibit a frequency modulation. In this section we will

apply our methodology to sequentially infer the fundamental

frequency of the two chirps.

Spectrograms of these signals are shown in Fig. 1 (a) and

Fig. 3 (a) respectively. For the first signal, since the chirps

overlap in time-frequency space, separately inferring their

fundamental frequencies is not completely straightforward

directly from the spectrogram (or other traditional TFRs).

However, similar problems to this are often encountered in

target tracking and are routinely solved through the use of

parametric models. The framework developed in this paper

allows us to apply the same approach here. We note that

this problem is relatively simple - our reason for including

these analyses is expository: firstly as a simple example of

the utility of a parametric approach; and secondly since the

existence of a ground truth enables a quantitative analysis

of the effect of different parameters of the algorithm.

B. Bayesian model

To model the components we parameterise the time-

frequency plane so that at each time at which the signal

is observed, frequency space is modelled using a mixture of

K kernels plus a constant. Specifically we use the model:

fθ(ω) =
K∑

k=1

a(k)

1 +
(
ω − µ(k)

)2
/v(k)

+ c (30)

The parameter µ(k) represents the positions of the two com-

ponents. To allow us to distinguish between the components

when they have the same location, we also include the

derivative, µ′(k), of the component position in our model. In

this model θ =
({

µ(1), µ̇(1), v(1), a(1)
}K
k=1

, c
)
∈ Θ, where

µ(k) ∈ [0, π), µ̇(k) ∈ (−∞,+∞), v(k), a(k), c ∈ [0,+∞).
Our a priori model for the evolution of each of these

parameters is a random walk, except for the location param-

eters for which we use a constant velocity (CV) model. We

have

ct+1|θt ∼ N (ct+1; ct, σ
2
cτ)I(ct+1 ≥ 0) (31)

and

v
(k)
t+1|θt ∼ N (v

(k)
t+1; v

(k)
t , σ2

vτ)I(v
(k)
t+1 ≥ 0) (32)

a
(k)
t+1|θt ∼ N (a

(k)
t+1; a

(k)
t , σ2

aτ)I(a
(k)
t+1 ≥ 0) (33)

(
µ
(k)
t+1

µ̇
(k)
t+1

)
|θt ∼ MVN

((
µ
(k)
t+1

µ̇
(k)
t+1

)
;A

(
µ
(k)
t

µ̇
(k)
t

)
, Q

)
,

(34)

where

A =

(
1 τ
0 1

)
(35)

and

Q =

(
τ3/3 τ2/2
τ2/2 τ

)
σ2
µ, (36)

with τ = 0.001 for the first signal and τ = 0.0001 for

the second. We used algorithm 1, and our default parameter
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settings are to use 500 particles, to take ν = 0.97 and

ρ = 0.97, and to use σ2
c = 10−5, σ2

v = 10−3, σ2
a = 10−3

and σ2
µ = 1. These prior parameters are not optimal. They

were determined through a consideration of how much the

parameters might evolve in one time step and tuned through

pilot runs (we note that more accurate results may be

obtained by using more particles and appropriately tuned

priors). Below we examine the sensitivity of our results to

the choice of priors.

C. Results

We first consider the analysis of the first signal. Fig.

1 (b), (c) and (d) display the results of a single run of

the algorithm under the default settings. The TFR obtained

by the recursive non-parametric estimator, Î(t, ω) given by

equation (28) and estimated expected reconstruction from

the particle filter, i.e. Êθt|y1:t
[fθt(ω)] for each time t are

shown in Fig. 1 (b) and (c) respectively. The non-parametric

estimator gives comparable results to that of the spectrogram

in Fig. 1 (a), and we observe that the components in the

Bayesian reconstruction of the TFR follow the chirps closely.

However, the strengths of our approach are not fully illus-

trated through simply examining the TFRs that are inferred.

More detailed information about the signal under study can

be obtained through examining the posterior distribution

of θt itself. In particular, the posterior distribution on the

µ(k) allows us to retrieve estimates of the fundamental

frequencies of the chirps over time. Fig. 1 (d) shows the

estimated expected fundamental frequencies, Ê
µ
(k)
t |y1:t

[µ(k)]

of the chirps estimated from the particle filter (compared to

the true values). We observe that the Bayesian approach has

successfully tracked the two overlapping components.

We now explore the dependence of our method on the cho-

sen prior parameters through examining the mean squared er-

ror of the posterior expectation of the fundamental frequency

of each component over multiple runs of the particle filter.

Note that this method is not necessarily the most appropriate

way to evaluate a Bayesian technique since the aim of

such an approach is not usually to obtain estimators with

good frequentist properties, but it does provide a quantitative

approach to describing the sensitivity of our method to the

choice of prior. Fig. 2 shows the log mean squared error over

time of several choices for the different parameters compared

to the default choice. In general we observe some sensitivity

to prior choice: changing the prior standard deviation by

an order of magnitude for any of the parameters can have

a large effect on the results, although finer tuning of the

parameters was not found to be necessary. These observa-

tions are congruent with the situation that is encountered in

many other target tracking problems. The effect of altering

the prior on the σ2
µ parameter is particularly clear. For

very small values of the parameter the prior informs the

posterior more than the likelihood, and thus the posterior

very closely follows the constant velocity model with the

result that it completely loses track of the quadratic chirp

relatively quickly (by 0.3s). Whereas, for large values of the

parameter, large deviations from the constant velocity model

are possible, thus the ability of the algorithm to distinguish

between the two separate components is diminished, also

resulting in a large error.

Finally we consider the analysis of the second signal. Fig.

3 (b) shows the estimated expected fundamental frequencies

of the components from the output of the particle filter. We

observe that the three components are successfully tracked,

along with the frequency modulation that is observed in the

spectrogram for the two lower frequency components.

V. APPLICATION: FLUTE

A. Pitch transcription

TFRs are a natural tool for the analysis of musical data

(for example, [15], [36], [37]). Further, as described in [38],

such data is particularly amenable to a Bayesian analysis:

often accurate physical models for the notes produced by

different instruments are known, thus the use of prior

knowledge in parameterising the time-frequency plane is

natural. In this section we consider the problem of pitch

transcription: estimating the pitch, onset time and duration

of notes in a music signal. In the frequency domain a

note in a music signal consists of a fundamental frequency,

determining the pitch of the note, and partials or harmon-

ics at approximately integer multiples of the fundamental

frequency, whose amplitudes dictate the note’s timbre. In

the polyphonic case, the resultant complex structure in the

time-frequency plane makes pitch transcription challenging

[16]. Here we consider the monophonic case as a simple

illustration of the methodology introduced in the paper. We

use a prior model for the time-frequency plane similar to

that in [39] and the likelihood described in section III.

B. Transcription of monophonic flute data

We use our methodology for the transcription of a

flute playing the opening twelve seconds of Debussy’s

Syrinx, available from the first authors’s webpage at

http://www.personal.reading.ac.uk/

~gt904211/flute.wav. In frequency space, we choose

the following harmonic model for a flute note:

fθ(ω) = c+

K∑

k=1

a(k)/
(
1 + ((ω − (k + δ(k))ω0)2/S)

)
.

(37)

For the data we analyse taking K = 3 (so that two

partials are modelled) is sufficient to account for the most

important parts of the signal (although note that, as expected,

higher partials are observed in the data). In this case,

θ = (ω0, S, a(1), a(2), a(3), δ(1), δ(2), δ(3), c) ∈ Θ, with fun-

damental frequency ω0 ∈ [0, π), peak width S ∈ [0,+∞),
peak amplitudes a(k) ∈ [0,+∞), detuning parameters [38]

δ(k) ∈ (−∞,+∞) and constant c ∈ [0,+∞).
In passing we note that, as in [38], polyphonic data can be

modelled simply by using a sum over several such models

(one term per note). Our a priori model for the evolutionary
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(a) A spectrogram. (b) The TFR inferred by the obtained by the recursive
non-parametric estimator given by equation (28).

(c) The TFR given by the posterior expectation from
the particle filter.

(d) The posterior expectations of µ
(1) and µ

(2) esti-
mated from the particle filter output (black) and the true
fundamental frequencies (grey).

Fig. 1: Analysis of the first signal.

spectrum of a note is that the parameters in θ each evolve

with random walks (some truncated):

ω0
t+1|θt ∼ N (ω0

t+1;ω
0
t , σ

2
ω0)I(0 ≤ ω0

t+1 ≤ π) (38)

St+1|θt ∼ N (St+1;St, σ
2
S)I(St+1 ≥ 0) (39)

a
(k)
t+1|θt ∼ N (a

(k)
t+1; a

(k)
t , σ2

a)I(a
(k)
t+1 ≥ 0) (40)

δ
(k)
t+1|θt ∼ N (δ

(k)
t+1; δ

(k)
t , σ2

δ ) (41)

ct+1|θt ∼ N (ct+1; ct, σ
2
c ) (42)

The parameters of these priors were chosen in such a way

as to allow the note to change quickly enough to describe

normal musical data, but not so much as to take account

of unrealistic changes (in which case a large number of

particles would be needed to obtain accurate results). Specif-

ically, we chose σ2
ω0 = 10−4, σ2

S = 10−12, σ2
a = 10−8,

σ2
δ = 10−16 and σ2

c = 10−10: these choices are sufficiently

small to impose the desired smoothness on the inferred

time-frequency plane, whilst still large enough to allow the

changes in note that we expect in the flute data. Pilot runs

of the algorithm suggest that the sensitivity of our results

to these priors is not dissimilar from our observations in

section IV, in that intricate tuning is not required in order

to obtain adequate results, but pilot runs to check the order

of magnitude of the initially specified priors was important.

For example, we found that setting σ2
ω0 = 10−2 results in

the filter losing resolution of the finer features (such as the

frequency modulation) of the evolution of the note (although

we observed that a change of a similar magnitude to another

of the parameters does not have such a dramatic effect). We

used algorithm 1 with 100 particles, taking ν = ρ = 0.999.

The data was downsampled to 22050 Hz.

The log of the TFR obtained by the recursive non-

parametric estimator (given by equation (28)) and log of the

reconstruction from the expected parameter values found by

the particle filter are shown in Fig. 5. In both representations

we observe the basic structure of the signal: the rising and

falling notes played by the flute; the “steps” representing

the individual notes that are played; and the decomposition

of the signal into a fundamental frequency and partials (in

the non-parametric estimator the log scale also shows higher

order partials that are not included in the model).

The Bayesian reconstruction of the time-frequency plane

is smoother than the non-parametric version (as is promoted

by our choice of prior), but not so much as to obscure the

discrete changes between the notes. Again, we emphasise

that a more direct use of the posterior distribution of our
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(a) log MSE of the estimate of µ
(1)
t for

different values of σ2
µ.

(b) log MSE of the estimate of µ
(1)
t for

different values of σ2
v .

(c) log MSE of the posterior expectation of

µ
(1)
t for different values of σ2

a.

(d) log MSE of the posterior expectation of

µ
(1)
t for different values of σ2

c .

(e) log MSE of the estimate of µ
(2)
t for

different values of σ2
µ.

(f) log MSE of the estimate of µ
(2)
t for

different values of σ2
v .

(g) log MSE of the posterior expectation of

µ
(2)
t for different values of σ2

a.

(h) log MSE of the posterior expectation of

µ
(2)
t for different values of σ2

c .

Fig. 2: The log mean-squared error of the posterior expectations of the fundamental frequency of the linear chirp (top) and

the quadratic chirp (bottom) over 50 runs of the particle filter for different prior parameters. In each case the result for the

default parameters uses a solid line.

(a) A spectrogram. (b) The posterior expectations of µ(1)
, µ

(2)
, µ

(3) esti-
mated from the particle filter output (black) and the true
fundamental frequencies (grey).

Fig. 3: Analysis of the second signal.

parametrisation of the time-frequency plane can reveal a

much richer and subtle structure underpinning the signal

being analysed. Examination of the posterior distribution of

our parameterisation of the time-frequency plane can tell

us more about the data. For example, Fig. 6 (a) shows the

estimated expected note played by the flute at each time step,

Êω0
t |y1:t

[note(ω0)], found by the sample mean of note(.)
evaluated at the fundamental frequency of each particle,

where

note(ω0) = 69 +
12

log(2)

(
log

(
22050ω0

2π

)
− log(440)

)

(43)

is the function that converts the fundamental frequency of the

note into its MIDI pitch number. We observe that our method

has successfully tracked the short changes in the note played

by the flute, but also see the superimposed modulation that is
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heard in the audio file towards the end of the longer notes;

a feature that is not immediately obvious from the TFRs

themselves. Further, our Bayesian approach also allows us to

assess the uncertainty associated with such summaries of the

data. For example, Fig. 6 (b) shows the posterior uncertainty

over the note played by the flute at each time, as represented

by the transformation of the fundamental frequency of each

particle into its pitch number. Fig. 6 (c) shows the standard

deviation of the expected note estimated from 50 runs of

the particle filter - we see that this error is small compared

to the posterior uncertainty. We find 100 particles to be

sufficient for this application - using 1000 particles does

not dramatically alter the results.

Fig. 4: The standard deviation of the estimated expected note

found from 50 runs of the particle filter.

VI. CONCLUSIONS

This paper presents a new methodology for the sequential

Bayesian estimation of a TFR of a time series, providing a

connection between Bayesian estimation and the literature

on TFRs. The key underpinning ideas in the work are the

use of a likelihood motivated by the extension of the Whittle

approximation in [21] and, within this, the use of a recursive

estimate of a time-frequency estimate. Our approach has the

following features:

1) The Bayesian approach is used, which allows the use

of prior knowledge in the modelling of a TFR.

2) Signals are modelled directly in the time-frequency

domain in a flexible manner.

3) Inference of the evolutionary spectrum is performed

sequentially, which is particularly useful for some

applications.

The work in this paper paves the way for a wider use of

Bayesian methods in time-frequency analysis. Our frame-

work permits the freedom to use the full power of Bayesian

methodology in time-frequency estimation: this should make

a significant impact in applications where advanced mod-

els (for example, trans-dimensional and/or semi-parametric

models) are appropriate.

There are several opportunities for future research arising

from this work. We have already mentioned that the compu-

tational cost of the algorithm is an important consideration,

and we expect parallel implementations to make a significant

contribution here. We note that this paper only considers a

relatively low-dimensional example, but we also expect the

methods introduced here to be of use in high dimensional

settings. In such cases, since particle filters can become

challenging to implement for high-dimensional problems,

the careful design of the particle filtering algorithm becomes

more important, but the basic framework remains the same.

We anticipate that in such cases, the simple SIR filter will not

be appropriate, and the users of the method introduced here

will need to draw on the large literature (e.g. [32]) devoted

to the design of particle filters in such settings. There is also

a clear opportunity for the study of the theoretical properties

of our approach. Whilst our local Whittle likelihood is

inspired by that in [21], our approach contains several

differences and thus the theoretical results in that paper do

not apply. We note that in order to formalise the notion of

our approach being used to infer a TFR, some constraints on

the choice of prior may be necessary; for example, it may

be important to represent the well documented Uncertainty

Principle between time and frequency [40].

APPENDIX

Definition of the evolutionary spectrum

The framework is similar to that for stationary processes.

Suppose that {Xt,N | t = 1, ..., N} is a Dahlhaus locally

stationary process with transfer function matrix Λ0 and mean

function vector µ. That is, directly from Dahlhaus [21], there

exists a representation

Xt,T = µ

(
t

T

)
+

ˆ π

−π

exp{ıωt}Λ0
t,T (ω)dξ(ν) (44)

with the following properties:

1) ξ(ω)is a complex valued Gaussian vector process on

[−π, π] with ξa(ω) = ξa(−ω), E[ξa(ω)] = 0 and

E[dξa(ω1) dξb(ω2)] = δabη(ω1 +ω2) dω1 dω2, (45)

where η(ω) =
∑∞

j=−∞ δ(ω + 2πj) is the period 2π
extension of the Dirac delta function.

2) There exists a constant K and a 2π-periodic matrix

valued function Λ : [0, 1]×R → C
d×d with Λ(u, ω) =

Λ(u,−ω) and

sup
t,ω

∣∣∣∣Λ
0
t,T (ω)ab − Λ

(
t

T
, ω

)∣∣∣∣ ≤ KT−1 (46)

for all a, b = 1, ..., d and T ∈ N. Λ(u, ω) and µ(u)
are assumed to be continuous in u.

We define that f(u, ω) = Λ(u, ω)Λ(u, ω)
T

is the time-

varying spectral density matrix or evolutionary spectrum of

the process.
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