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Abstract

The fully compressible semi-geostrophic system is widely used in the modelling of
large-scale atmospheric flows. In this paper, we prove rigorously the existence of weak
Lagrangian solutions of this system, formulated in the original physical coordinates. In
addition, we provide an alternative proof of the earlier result on the existence of weak
solutions of this system expressed in the so-called geostrophic, or dual, coordinates.
The proofs are based on the optimal transport formulation of the problem and on
recent general results concerning transport problems posed in the Wasserstein space
of probability measures.
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1 Introduction

The behaviour of the atmosphere is governed by the compressible Navier-Stokes equations,
together with the laws of thermodynamics, equations describing phase changes, source
terms and boundary fluxes. These equations are too complex to be solved accurately in a
large-scale atmospheric context and therefore reductions and approximations of the Navier-
Stokes equations are often used to validate and understand the solutions that have been
computed.

One such approximation, valid on scales where the effects of rotation dominate the
flow, is the system of semi-geostrophic equations, see equations (3.1)-(3.5) below. First
introduced by Eliassen [11] and then rediscovered by Hoskins [13], the semi-geostrophic
equations are an extremely useful model, particularly in describing the formation of fronts,
and are both studied theoretically and used widely for numerical modelling and simulations.

In this paper, we prove rigorously the existence of weak Lagrangian solutions of the
fully compressible semi-geostrophic system. The proof combines ideas of several previous
papers, starting with the pioneering work of Benamou and Brenier [6] on the formulation of
the semi-geostrophic equations as an optimal transport problem, and modern methods in
the analysis of Hamiltonian ODEs in probability spaces, in particular the work of Ambrosio
[4], [5].

For an accurate representation of the behaviour of large-scale atmospheric flow, one
should consider the fully compressible semi-geostrophic equations with variable Coriolis
parameter and a free upper boundary condition. The complexity of this problem means
that so far results have only been obtained after relaxing one or more of these conditions.
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In [6], Benamou and Brenier assumed the fluid to be incompressible, the Coriolis param-
eter constant and the boundaries rigid. They then used a change of variables, introduced by
Hoskins in [13], to derive the so-called dual formulation. In this formulation, the equations
are interpreted as a Monge-Ampère equation coupled with a transport problem, to prove
the existence of stable weak solutions.

In [9], Cullen and Gangbo relaxed the assumption of rigid boundaries with a more phys-
ically appropriate free boundary condition. However, they additionally assumed constant
potential temperature to obtain the 2-D system known as the semi-geostrophic shallow wa-
ter system. After passing to dual variables, they showed existence of stable weak solutions
for this system of equations.

In [10], Cullen and Maroofi proved that stable weak solutions of the 3-D compressible
semi-geostrophic system in its dual formulation exist, returning to the assumption of rigid
boundaries.

The main problem posed by the existence results in [6], [9] and [10] is that they are
all proved in dual space. It is difficult to relate these results directly to the Navier-Stokes
equations, or indeed other reductions of them. For this reason, and in order to give the dual
space results physical meaning, Cullen and Feldman [8] mapped the solutions back to the
original, physical coordinates and extended the results of [6] and [9], proving existence of
weak Lagrangian solutions in physical space, in the incompressible case. We mention that
very recently results on the existence of Eulerian solutions have been proved in the case of
a two-dimensional torus, and of a convex open subset in 3-dimensional space [2], [3].

In this paper, we make use of recent results in the analysis of ODEs in spaces of measures,
in particular those of [4], [5], in order to provide an alternative proof of the dual space
result in [10]. We also extend considerably the results of [10] to prove the existence of
weak Lagrangian solutions of the fully compressible semi-geostrophic system in the original
physical coordinates. As in the incompressible case studied in [8], the proof is based on
the existence of an appropriate flow map with rather low regularity; however we also show
that, if we could assume additional regularity, then the solutions derived would determine
classical solutions.

The paper is organised as follows: in Section 2 we introduce various definitions, and the
notation to be used throughout; in Section 3 we summarise the existing results regarding
existence of solutions in dual space that are necessary for the theory presented in the
following sections; in Section 4 we use the results of [4] to provide an alternative proof of the
existence of solutions in dual space; in Section 5 we define the concept of a weak Lagrangian
solution and formulate our main theorem; in Section 6 we summarise the existence proof
and important properties of a Lagrangian flow in dual space, given in [10]; finally, in Section
7 we map the dual space Lagrangian flow to physical space and use it to prove our main
result, namely the existence of a weak Lagrangian solution.

2 Useful Conventions, Notation and Definitions

We start by assembling all notation and conventions used in the sequel.

Physical quantities and constants (2.1)

(i) Ω denotes an open bounded convex set in R3, representing the physical domain con-
taining the fluid; τ > 0 is a fixed positive constant; all functions in physical coordinates
are defined for (t,x) ∈ [0, τ)× Ω;

(ii) u(t,x) represents the 3-D velocity of the fluid;
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(iii) ug(t,x) = (ug1(t,x), ug2(t,x), 0) represents the geostrophic velocity;

(iv) p(t,x) represents the pressure;

(v) ρ(t,x) represents the density;

(vi) θ(t,x) represents the potential temperature. Given its physical meaning, we assume
θ(t,x) to be strictly positive and bounded;

(vii) φ(x) is the given geopotential representing gravitation and centrifugal forces. We
assume that φ ∈ C2(Ω̄) and that ∂

∂x3
φ(x) 6= 0 for all x ∈ Ω;

(viii) fcor denotes the Coriolis parameter, which we assume to be constant; indeed we will
normalise this parameter to be equal to 1;

(ix ) pref is the reference value of the pressure;

(x ) cv is a constant representing the specific heat at a constant pressure;

(xi) cp is a constant representing the specific heat at a constant volume;

(xii) R represents the gas constant and satisfies R = cp − cv;

(xiii) κ = cp/cv denotes the ratio of specific heats (this is approximately 1.4 for air).

Notations and other conventions (2.2)

• Throughout, we will only consider measures that are absolutely continuous with re-
spect to Lebesgue measure. Given an open set A in R3, we will denote by

- Pac(A) - the set of probability measures in R3 with supports contained in A;

- χA - the characteristic function of A.

• Unless otherwise specified, measurable means Lebesgue measurable and a.e. means
Lebesgue-a.e.

• Dt denotes the Lagrangian derivative, defined as Dt = ∂t + u · ∇, where u denotes
the velocity of the flow.

• e3. denotes the unit vector (0, 0, 1) in R3

• For convenience, we will sometimes use the notation F(t)(·) = F (t, ·) to denote the
map F evaluated at fixed time t.

Important definitions

Definition 2.1. We define

P 2
ac(R3) := {µ ∈ Pac(R3) :

∫
R3
|x|2 µ(x)dx < +∞},

with tangent space

TµP
2
ac(R3) = {∇ϕ : ϕ ∈ C∞c (R3)}

L2(µ;R3)
. (2.3)
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Definition 2.2. Given two Borel probability densities µ1(·) and µ2(·) in R3, we define the
Wasserstein-2 distance, W2, between µ1 and µ2 as follows:

W 2
2 (µ1, µ2) := inf

γ∈Γ(µ1,µ2)

∫
R3×R3

|x− y|2 dγ(x,y). (2.4)

with

Γ(µ1, µ2) = {γ : γ probability measure on R3 × R3 with marginals µ1 and µ2}.

We denote by Γ0(µ1, µ2) the set of minimisers of (2.4).

The Wasserstein distance indeed defines a distance in the space of probability measures on
R3 (or more generally, any complete separable metric space); it can be used as an optimal
transport cost between these measures, see [17].

Definition 2.3. Let F : R3 → R3 be a measurable map. Let µ1 be a measure in R3. Then
we say that the measure µ2 on R3 is the push forward of µ1 with respect to F , denoted
F#µ1 = µ2, if

µ2[A] = µ1[F−1(A)]

for all measurable A ⊂ R3. If, in addition, µ1 ∈ L1(R3), µ2 ∈ L1(R3) and F#µ1 = µ2,
then (see [8, Corollary A.3])∫

R3
ϕ(F (x))µ1(x) dx =

∫
R3
ϕ(X)µ2(X) dX, ∀ ϕ ∈ L∞(R3). (2.5)

Remark 2.1. Since we are only interested in measures that are absolutely continuous with
respect to Lebesgue measure, we can guarantee existence of a unique minimiser γ0 in (2.4);
see, for example, [5, Section 6.2.3]. We also have that γ0 = (id,Rµ2

µ1
)#µ1 for some map

Rµ2
µ1

: R3 → R3 which coincides µ1 − a.e. with the gradient of a convex function. Thus, the
map Rµ2

µ1
is the unique minimiser of

R→
∫

R3
|x−R(x)|2 µ1(x)dx (2.6)

over all R such that R#µ1 = µ2.

3 The semi-geostrophic equations: formulation and ex-
isting results

The fully compressible semi-geostrophic equations posed in the domain [0, τ)×Ω, with rigid
boundaries ∂Ω, are the following system of equations (see, for example, [10]):

Dtug + fcore3 × u +∇φ+
1
ρ
∇p = 0, (3.1)

Dtθ = 0, (3.2)

Dt
1
ρ

=
1
ρ
∇ · u, (t,x) ∈ [0, τ)× Ω (3.3)

fcore3 × ug +∇φ+
1
ρ
∇p = 0, (3.4)

p = Rρθ

(
p

pref

)κ−1
κ

; (3.5)

u · n = 0, (t,x) ∈ [0, τ)× ∂Ω. (3.6)
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The unknowns in the above equations are ug = (ug1, u
g
2, 0), u = (u1, u2, u3), p, ρ, θ.

Equation (3.1) is the momentum equation; (3.2) represents the adiabatic assumption;
(3.3) is the continuity equation and (3.4) represents hydrostatic and geostrophic balance.
The equation (3.5) is the equation of state which relates the thermodynamic quantities to
each other, and (3.6) is the rigid boundary condition, where n is the outward normal to
∂Ω.

The semi-geostrophic equations are a valid approximation to the compressible Euler
equations when UL << 1, and are accurate when H

L < 1
N , where U is a typical scale for

horizontal speed; L is a typical horizontal scale; H is a typical vertical scale; N is the
buoyancy frequency.

The energy associated with the flow, known as the geostrophic energy, is defined as

E(t) =
∫

Ω

[
1
2
|ug|2 (t,x) + φ(x) + cvθ(t,x)

(
p(t,x)
pref

)κ−1
κ

]
ρ(t,x) dx. (3.7)

In what follows, we set fcor = 1.

3.1 Dual formulation

In [10], solutions were obtained using a transformation into the so-called dual (geostrophic)
coordinates y = (y1, y2, y3). The coordinate transformation is given by:

T : Ω→ Λ ⊂ R3, T(t,x) = (T1(t,x), T2(t,x), T3(t,x)) = (y1, y2, y3),

with
y1 = x1 + ug2(t,x), y2 = x2 − ug1(t,x), y3 = θ(t,x). (3.8)

Note that, by (2.1)(vi), Λ ⊂ R2 × [δ, 1
δ ] for some 0 < δ < 1.

Using this transformation, as well as (3.5), it was shown in [10] that we can write the
energy in (3.7) as

E(t) = E(t, σ,T) =
∫

Ω

1
2{|x1 − y1|2 + |x2 − y2|2}+ φ(x)

y3
σ(t,x) dx +K1

∫
Ω

(σ(t,x))κ dx

=
∫

Ω

1
2{|x1 − T1(t,x)|2 + |x2 − T2(t,x)|2}+ φ(x)

T3(t,x)
σ(t,x) dx +K1

∫
Ω

(σ(t,x))κ dx

(3.9)

where K1 := cv

(
R
pref

)κ−1

is constant and

σ(t,x) := θ(t,x)ρ(t,x). (3.10)

Using the results of [15], it was shown that stable solutions of (3.1)-(3.6) correspond to
solutions that, at each fixed time t, minimise the energy E given by (3.9). We refer to this
requirement as Cullen’s stability condition.

This stability condition can be formulated in terms of optimal transport concepts. In-
deed, define the potential density ν := T#σ as the push forward of the measure σ under
the map T. For a stable solution, the energy in (3.9) can be written in the following form

Eν(σ) = E(σ, ν) +K1

∫
Ω

(σ(t,x))κ dx, (3.11)
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where
E(σ, ν) = inf

T#σ=ν

∫
Ω

c(x,T(t,x))σ(t,x) dx (3.12)

with c a cost function, given by

c(x,y) =
1
2{|x1 − y1|2 + |x2 − y2|2}+ φ(x)

y3
. (3.13)

Hence the energy minimisation required by Cullen’s stability condition can be reformulated
as an optimal transport problem. Indeed, this condition is equivalent to the condition that,
at each fixed time, the pair (σ,T) minimises the energy (3.9) amongst all pairs (µ,T) with
µ ∈ Pac(Ω) and T#µ = ν. In other words, Cullen’s stability condition amounts to the
requirement that the change of variables T(t, ·) from physical coordinates to geostrophic
coordinates given by (3.8) is the optimal transport map between σ and ν.

In [10], it is shown that, given a potential density ν, there exists a unique minimiser
σ of (3.11). Given this pair ν, and σ, there always exists a unique minimiser T in (3.12),
given by the optimal map in the transport of σ to ν; the map T admits a unique inverse
T−1, which is the optimal map in the transport of ν to σ with cost c̃(y,x) = c(x,y).

Using the stability condition and the transformation given by (3.8), the compressible
semi-geostrophic equations (3.1)-(3.4) can be written in dual variables as follows [10]:

∂tν(t,y) +∇ · (ν(t,y)w(t,y)) = 0 in [0, τ)× Λ, (3.14)

w(t,y) = ug(t,S(t,y)) = e3 × [y − S(t,y)] , (3.15)

S(t, ·) = T−1(t, ·), (3.16)

T(t, ·) is the unique optimal transport map in (3.12), (3.17)

σ(t, ·) minimises Eν(t,·)(·) over Pac(Ω), (3.18)

ν(0, ·) = ν0(·) ∈ Lr(Λ0), r ∈ (1,∞), Λ0 ⊂ R3 compact. (3.19)

Equation (3.14) is the continuity equation satisfied by the potential density; (3.15)
defines the geostrophic velocity in dual variables; (3.16), (3.17) and (3.18) are required for
a stable solution; and (3.19) is the prescribed initial condition.

The main result of [10] is the existence of a stable weak solution of the semi-geostrophic
system in dual variables (3.14)-(3.19), proved by an approximation procedure. In the same
paper, several important results concerning optimal transport are proved. In Section 3.2,
we summarise these results.

Remark 3.1. Since ν0 has compact support, for all t ∈ (0, τ) the solution ν(t,y) of the
evolution (3.14) starting at time t = 0 from ν0 has compact support in R3. By (2.1)(vi),
supp(ν) is contained in a bounded open set Λ, which is dependent on τ , such that Λ ⊂
R2 × [δ, 1

δ ], for some δ with 0 < δ < 1. This follows from a standard fixed-point argument;
see, for example, [7], [14].

Remark 3.2. In [12], Faria et al. have extended the results of [8] for the incompressible
equations to the case of an initial potential density ν0 in L1.
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3.2 Existence and uniqueness for the energy minimisation

Assume that

• Ω and Λ are bounded open domains in R3,

• Ω is convex ; Λ ⊂ R2 ×
[
δ,

1
δ

]
for some δwith 0 < δ < 1,

(3.20)

where the assumption on the vertical coordinate of Λ is justified by (2.1)(vi). Cullen and
Maroofi proved in [10, Theorem 4.1] that, given ν ∈ Pac(Λ), there exists a unique σ ∈ Pac(Ω)
that minimises the energy Eν(·):

Theorem 3.3. Assume that Ω and Λ satisfy (3.20). Let ν ∈ Pac(Λ) and assume that φ
satisfies (2.1)( ix). Then there exists a unique minimiser σ of Eν(·), over Pac(Ω). This
minimiser is given by (3.11).

By fixing this minimising σ, we can complete the energy minimisation by considering
(3.12) as an optimal transport problem. Indeed, given two probability densities σ ∈ Pac(Ω)
and ν ∈ Pac(Λ), consider the following optimal transport problem:

inf
T#σ=ν

Iσ[T], with Iσ[T] :=
∫

Ω

c(x,T(x))σ(x) dx, (3.21)

where c(x,y), given by (3.13), is the cost of transporting one unit of mass from x to y.
The Kantorovich relaxation of (3.21) amounts to finding γ ∈ Γ(σ, ν) that minimises

I[γ] :=
∫

Ω×Λ

c(x,y) dγ(x,y), (3.22)

with Γ(σ, ν) given in Definition 2.2. Note that every transport map T generates a transport
plan γT ∈ Γ(σ, ν) defined by

γT := (id,T)#σ,

such that Iσ[T] = I[γT].
Now consider the Kantorovich dual problem corresponding to (3.21) (see, for example,

[17, Chapter 5]):

sup
(f,g)∈Lipc

J(σ,ν)(f, g), with J(σ,ν)(f, g) :=
∫

Ω

f(x)σ(x) dx +
∫

Λ

g(y)ν(y) dy, (3.23)

where

Lipc := {(f, g) : f ∈W 1,∞(Ω), g ∈W 1,∞(Λ), f(x)+g(y) 6 c(x,y) for all (x,y) ∈ Ω×Λ}.

The solution of the dual problem is a crucial ingredient of proving the main result of this
section, namely the existence result for the optimal transport problem. See [10] for all
relevant definitions and for a proof.

Theorem 3.4. Assume that Ω and Λ satisfy (3.20). Let σ ∈ Pac(Ω) and ν ∈ Pac(Λ).
Assume that φ satisfies (2.1)( ix). Then there exist maps T : Ω → Λ and S : Λ → Ω,
unique σ − a.e. and ν − a.e. respectively, such that

(i) T is optimal in the transport of σ to ν with cost c(x,y),
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(ii) S is optimal in the transport of ν to σ with cost c̃(y,x) = c(x,y),

(iii) S and T are inverses, i.e. S ◦T(x) = x for σ − a.e. x and T ◦ S(y) = y for ν − a.e.
y,

(iv) γ0 = (id,T)#σ is a minimiser of the relaxed optimal transport problem (3.22),

(v) For J(σ,ν)(f, g) defined by (3.23), the following equality holds:

sup
(f,g)∈Lipc

J(σ,ν)(f, g) = inf
γ∈Γ(σ,ν)

I[γ] = inf
T#σ=ν

Iσ[T].

4 The main existence result in dual space - an alterna-
tive proof

4.1 Statement of the theorem

Theorem 4.1. Let 1 < r <∞ and ν0 ∈ Lr(Λ0) be an initial potential density with support
in Λ0, where Λ0 is a bounded open set in R3 with Λ0 ⊂ R2 × [δ̃, 1/δ̃] for some 0 < δ̃ < 1.
Let Ω be an open bounded convex set in R3. Assume that c(·, ·) is given by (3.13) and
that φ satisfies (2.1)( ix). Then the system of semi-geostrophic equations in dual variables
(3.14)-(3.19) has a stable weak solution (σ,T) such that, with ν(t, ·) = T(t, ·)#σ(t, ·) and
w as in (3.15),

(i)
ν(·, ·) ∈ Lr((0, τ)× Λ), ‖ν(t, ·)‖Lr(Λ) 6 ‖ν0(·)‖Lr(Λ) , ∀ t ∈ [0, τ ],

(ii)
σ(t, ·) ∈W 1,∞(Ω), ‖σ(t, ·)‖W 1,∞(Ω) 6 C = C(Ω,Λ, c(·, ·), κ,K1), ∀ t ∈ [0, τ ],

(iii)
‖w(t, ·)‖L∞(Λ) 6 C = C(Ω,Λ) ∀ t ∈ [0, τ ],

where Λ is a bounded open domain in R3 containing supp(ν), such that Λ ⊂ R2×
[
δ, 1
δ

]
for

some 0 < δ < 1.

The proof of this theorem is given in [10, Theorem 5.5], using a time-approximation
argument, similar in spirit to the original argument of the proof given by Benamou and
Brenier in [6] of the existence of solution of the incompressible system in a fixed domain.

The result of this section is an alternative proof of this theorem. The proof given here
avoids the time-discretisation and makes use of the general theory developed in [4] on the
solution of Hamiltonian ODEs, showing explicitly how it may be applied to the dual space
existence problem.

4.2 The solution of Hamiltonian ODEs

We briefly summarise the general results of [4] on the solution of Hamiltonian ODEs.

Remark 4.2. In what follows we deal with concave rather than convex functions. Hence
we replace all definitions in [4] regarding subdifferentiability and (λ)−convexity with the
following definitions regarding superdifferentiability and (λ)−concavity. This replacement
does not affect the results of [4].
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Definition 4.1. Let H : P 2
ac(R3)→ (−∞,+∞] be a proper, upper semicontinuous function

and let ν ∈ D(H). We say that v ∈ L2(ν; R3) belongs to the Fréchet superdifferential ∂H(ν)
if

H(νh) 6 H(ν) +
∫

R3
v(y) · (Rνh

ν (y)− y) ν(y) dy + o(W2(ν, νh))

as νh → ν. We denote by ∂0H(ν) the element of ∂H(ν) of minimal L2(ν; R3)−norm. Note
that, by the minimality of its norm, ∂0H(ν) belongs to ∂H(ν) ∩ TνP 2

ac(R3).

In the following lemma we state a continuity property of optimal plans or maps.

Lemma 4.3. Assume that {νn}∞n=1, {µn}∞n=1 are bounded sequences in P 2
ac(R3) narrowly

converging to ν and µ respectively. Assume that Γ0(ν, µ) contains a unique plan γ0 induced
by the optimal map Rµ

ν : R3 → R3 (see Remark 2.1). Then

lim
n→+∞

∫
R3
g(y,Rµn

νn (y))νn(y) dy =
∫

R3
g(y,Rµ

ν (y))ν(y) dy,

where Rµn
νn is optimal in the transport of νn to µn, and for any continuous function g :

R3 × R3 → R3 satisfying

lim
|(y,x)|→+∞

|g|(y,x)
|y|2 + |x|2

= 0.

Assume furthermore that there exists a closed ball Br, of finite radius r, containing the
supports of µn and µ. Then there exist Lipschitz, convex functions un, u : R3 → R∪ {+∞}
such that ∇un = Rµn

νn νn−a.e. in R3 and ∇u = Rµ
ν ν−a.e. in R3. In addition, there exists

a subsequence {nk}∞k=1 of integers such that

∇unk → ∇u a.e. in R3. (4.1)

Proof. See [5, Proposition 7.1.3] for proof.

Definition 4.2. Let H : P 2
ac(R3)→ (−∞,+∞] be proper and let λ ∈ R. Let π1 : R3×R3 :

(x,y)→ x and π2 : R3×R3 : (x,y)→ y be the first and second projections of R3×R3 onto
R3. We say that H is λ−concave if for every ν1, ν2 ∈ P 2

ac(R3) and every optimal transport
plan γ ∈ Γ0(ν1, ν2) we have

H(ν(t)) > (1− t)H(ν1) + tH(ν2)− λ

2
t(1− t)W 2

2 (ν1, ν2)

for all t ∈ [0, 1], where ν(t) = ((1− t)π1 + tπ2)#γ.

Proposition 4.4. Let H : P 2
ac(R3)→ (−∞,+∞] be upper semicontinuous and λ−concave

for some λ ∈ R and let ν ∈ D(H). Then, the following condition is equivalent to v ∈ ∂H(ν):

H(νh) 6 H(ν) +
∫

R3
v(y) · (Rνh

ν (y)− y)ν(y) dy +
λ

2
W 2

2 (ν, νh)

for all νh ∈ P 2
ac(R3).

Proof. See [4, Proposition 4.2] for proof.

Following [4], we define Hamiltonian ODE’s as follows:
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Definition 4.3. Let H : P 2
ac(R3)→ (−∞,+∞] be a proper, upper semicontinuous function.

Define the linear transformation J̃ : R3 → R3 by

J̃(v1(y), v2(y), v3(y)) = y3(−v2(y), v1(y), 0), (4.2)

for all v(y) ∈ R3. We say that an absolutely continuous curve ν(t) : [0, τ ] → D(H) is a
Hamiltonian ODE relative to H, starting from ν0 ∈ P 2

ac(R3), if there exist v(t) ∈ L2(ν(t); R3)
with

∥∥v(t)

∥∥
L2(ν(t))

∈ L1(0, τ), such that{
d
dtν(t) +∇ · (J̃v(t)ν(t)) = 0, ν(0) = ν0, t ∈ (0, τ)
v(t) ∈ Tν(t)P

2
ac(R3) ∩ ∂H(ν(t)) for a.e. t.

(4.3)

The main result of [4] concerns Hamiltonians H satisfying the following properties:

(H1) There exist constants C0 ∈ (0,+∞), R0 ∈ (0,+∞] such that for all ν ∈ P 2
ac(R3)

with W2(ν, ν0) < R0 we have ν ∈ D(H), ∂H(ν) 6= ∅ and v = ∂0H(ν) satisfies
|v(z)| 6 C0(1 + |z|) for ν − a.e. z ∈ R3.

(H2) If ν, νn ∈ P 2
ac(R3), supnW2(νn, ν0) < R0 and νn → ν narrowly, then there

exists a subsequence n(k) and functions vk, v such that vk = ∂0H(νn(k)) νn(k) − a.e.,
v = ∂0H(ν) ν − a.e. and vk → v a.e. in R3 as k → +∞.

To ensure the constancy of H along the solutions of the Hamiltonian system we consider
also:

(H3) H : P 2
ac(R3)→ (−∞,+∞] is proper, upper semicontinuous and λ−concave for some

λ ∈ R.

For Hamiltonians H as above, the following result holds (see [4, Theorem 6.6] for full
details and proof):

Theorem 4.5. Assume that (H1) and (H2) hold for H(ν) and that τ > 0 satisfies

C0τ

√
24(1 + e(25C2

0+1)τ (1 +M2(ν0))) < R0. (4.4)

Then there exists an absolutely continuous Hamiltonian flow ν(t) ∈ P 2
ac(R3), ν(t) : [0, τ ] →

D(H) starting from ν0 ∈ P 2
ac(R3), satisfying (4.3), such that the velocity field v(t) coincides

with ∂0H(ν(t)) for a.e. t ∈ [0, τ ]. Furthermore, the function t→ ν(t) is Lipschitz continuous.
Finally, there exists a function l(r) depending only on τ and C0 such that

ν0 > mr a.e. on Br for all r > 0 =⇒ ν(t) > ml(r) a.e. on Br for all r > 0 (4.5)

and

ν0 6 Mr a.e. on Br for all r > 0 =⇒ ν(t) 6 Ml(r) a.e. on Br for all r > 0. (4.6)

If in addition (H3) holds, then t 7→ H(ν(t)) is constant.

4.3 An alternative proof of Theorem 4.1

We now apply Theorem 4.5 to our problem in order to obtain directly the existence result
of Theorem 4.1.
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Let Λ, Ω be as in (3.20). For ν ∈ Pac(Λ), define the Hamiltonian H by

H(ν) = inf
µ∈Pac(Ω)

{
E(ν, µ) +K1

∫
Ω

(µ(x))κ dx
}
, (4.7)

where
E(ν, µ) = inf

S#ν=µ

∫
Λ

c̃(y,S(y))ν(y) dy (4.8)

with c̃(y,x) = c(x,y) defined by (3.13). We begin with the following:

Proposition 4.6. Let Ω and Λ satisfy (3.20). Let the Hamiltonian H(ν) on Pac(Λ) be
defined by (4.7). Then H is superdifferentiable, upper semicontinuous and (−2)−concave.

Proof. Given ν ∈ Pac(Λ), denote by σ the minimiser in (4.7). The existence and uniqueness
of this minimiser follows from Theorem 3.3. For any νh ∈ Pac(Λ) we have

H(νh) = inf
µ∈Pac(Ω)

{
E(νh, µ) +K1

∫
Ω

(µ(x))κ dx
}

6 E(νh, σ) +K1

∫
Ω

(σ(x))κ dx.

First, recall that we can guarantee that there exists a unique optimal transport map Rνh
ν

from ν to νh with respect to the Wasserstein cost function d(y,yh) = 1
2 |y − yh|2; see

Remark 2.1.
We consider now transport with respect to the cost function c̃(y,x) = c(x,y) given by

(3.13). Let Sσν be the optimal map in the transport of ν to σ and let Sσνh be the optimal
map in the transport of νh to σ. Therefore, we have

inf
S#ν=σ

∫
Λ

c̃(y,S(y))ν(y) dy =
∫

Λ

c̃(y,Sσν (y))ν(y) dy

and
inf

S#νh=σ

∫
Λ

c̃(y,S(y))νh(y) dy =
∫

Λ

c̃(y,Sσνh(y))νh(y) dy.

The existence of Sσν and Sσνh follows from Theorem 3.4. Note that, since (Sσν◦(Rνh
ν )−1)#νh =

σ and since Sσνh is optimal in the transport of νh to σ, we have∫
Λ

c̃(y,Sσνh(y))νh(y) dy 6
∫

Λ

c̃(y,Sσν ◦ (Rνh
ν )−1(y))νh(y) dy.

It follows that

H(νh)−H(ν) 6 E(νh, σ) +K1

∫
Ω

(σ(x))κ dx− E(ν, σ)−K1

∫
Ω

(σ(x))κ dx

=
∫

Λ

c̃(y,Sσνh(y))νh(y) dy −
∫

Λ

c̃(y,Sσν (y))ν(y) dy

6
∫

Λ

c̃(y,Sσν ◦ (Rνh
ν )−1(y))νh(y) dy −

∫
Λ

c̃(y,Sσν (y))ν(y) dy

=
∫

Λ

c̃(Rνh
ν (y),Sσν (y))ν(y) dy −

∫
Λ

c̃(y,Sσν (y))ν(y) dy

=
∫

Λ

[
c̃(Rνh

ν (y),Sσν (y))− c̃(y,Sσν (y))
]
ν(y) dy,

=
∫

Λ

∇c̃(y,Sσν (y)) · [Rνh
ν (y)− y]ν(y) dy + o(W2(ν, νh)).

11



(4.9)

where we have used (2.5).
Hence, using Definition 4.1, we conclude that ∇c̃(y,Sσν (y)) ∈ ∂H(ν). Thus, ∂H(ν) is

non-empty, H is superdifferentiable and we can use [17, Proposition 10.12] to conclude that
H is semi-concave, i.e.

H is (−2)− concave. (4.10)

Also, from the narrow continuity of E(·, ·) (see [10, Theorem 3.4]) and the uniform conver-
gence of σ as the minimiser of (4.7) (see [10, Lemma 4.3]), we have that

H is upper semicontinuous. (4.11)

From (4.10) and (4.11), we have that (H3) holds.

The following proposition yields a proof of Theorem 4.1, alternative to the proof given
in [10].

Proposition 4.7. Let 1 < r < ∞ and ν0 ∈ Lr(Λ0) be an initial potential density with
support in Λ0, where Λ0 is a bounded open set in R3 with Λ0 ⊂ R2 × [δ̃, 1/δ̃] for some
0 < δ̃ < 1. Let Ω and Λ satisfy (3.20) and let the Hamiltonian H be defined by (4.7).
Then, there exists a Hamiltonian flow ν(t) ∈ Pac(Λ) and constant τ > 0 such that

d

dt
ν(t) +∇ · (J̃(v(t))ν(t)) = 0, ν(0) = ν0, t ∈ (0, τ)

where J̃(v(t)) = w a.e. in [0, τ ].

Proof. We compute ∂0H(ν) (as defined in Definition 4.1) explicitly to show that the condi-
tions required to apply Theorem 4.5 hold. From the definition of J̃ in (4.2), velocity fields
transporting ν will have vanishing components in the y3 direction so that we need only
consider variations of ν in the (y1, y2)−directions. Thus, to characterise the elements of
∂H(ν), we let ϕ̃ ∈ C∞c (R2) and define ϕ(y1, y2, y3) := ϕ̃(y1, y2) for all y ∈ R3. We then set

gs(y) = ((gs)1(y), (gs)2(y), (gs)3(y)) = y + s∇ϕ(y).

Note that (gs)3(y) = y3 and, for |s| sufficiently small, gs is the gradient of a convex function,
since gs(y) = ∇( 1

2y2 + sϕ). Define νs = gs#ν. Denote by σs the minimiser in

H(νs) = inf
µ∈Pac(Ω)

{
E(νs, µ) +K1

∫
Ω

(µ(x))κ dx
}
.

The existence and uniqueness of the minimiser σs follows from Theorem 3.3. Let ξ ∈ ∂H(ν).
Combining the (−2)−concavity of H and (4.11) with Proposition 4.4, we obtain

H(νs)−H(ν)−
∫

Λ

ξ(y) · (Rνs
ν (y)− y)ν(y) dy +W 2

2 (ν, νs) 6 0. (4.12)

Brenier’s polar factorisation theorem states that any suitable mapping from ν to νs can be
uniquely factorised as the composition of a measure-preserving mapping and the gradient
of a convex function (see, for example, [16, Chapter 3]). Since, for |s| sufficiently small, gs
is the gradient of a convex function, we conclude that

W 2
2 (ν, νs) =

∫
Λ

|y −Rνs
ν (y)|2ν(y) dy =

∫
Λ

|y − gs(y)|2ν(y) dy = s2

∫
Λ

|∇ϕ(y)|2ν(y) dy

12



and∫
Λ

ξ(y) · (Rνs
ν (y)− y)ν(y) dy =

∫
Λ

ξ(y) · (gs(y)− y)ν(y) dy = s

∫
Λ

ξ(y) · ∇ϕ(y)ν(y) dy.

Combining this with (4.12), we therefore obtain

−s
∫

Λ

ξ(y) · ∇ϕ(y)ν(y) dy + s2

∫
Λ

|∇ϕ(y)|2ν(y) dy 6 H(ν)−H(νs)

6 E(ν, σs)− E(νs, σs)

=
∫

Λ

c̃(y,Sσsν (y))ν(y) dy −
∫

Λ

c̃(y,Sσsνs (y))νs(y) dy

6
∫

Λ

c̃(y,Sσsνs ◦ gs(y))ν(y) dy −
∫

Λ

c̃(y,Sσsνs (y))νs(y) dy

=
∫

Λ

c̃(g−1
s (y),Sσsνs (y))νs(y) dy −

∫
Λ

c̃(y,Sσsνs (y))νs(y) dy, (4.13)

since gs#ν = νs. Here Sσsν denotes the optimal transport map from ν to σs and Sσsνs
denotes the optimal transport map from νs to σs with respect to the cost function c̃(·, ·).
The existence of Sσsν and Sσsνs follows from Theorem 3.4.

Note that

g−1
s (y) = y − s∇ϕ(y) +

s2

2
∇2ϕ(y)∇ϕ(y) + ε(s,y),

where ε is a function such that |ε(s,y)| 6 |s|3‖ϕ‖C3(R3).
Combining this expression for g−1

s with (4.13) and using ∂
∂y3

ϕ = 0, we conclude that

−s
∫

Λ

ξ(y) · ∇ϕ(y)ν(y) dy + s2

∫
Λ

|∇ϕ(y)|2ν(y) dy

6
∫

Λ

[
c̃(g−1

s (y),Sσsνs (y))− c̃(y,Sσsνs (y))
]
νs(y) dy

=
∫

Λ

 1
2

{∣∣(gs)−1
1 (y)− (Sσsνs )1(y)

∣∣2 +
∣∣(gs)−1

2 (y)− (Sσsνs )2(y)
∣∣2}+ φ(Sσsνs (y))

y3

−
1
2

{∣∣y1 − (Sσsνs )1(y)
∣∣2 +

∣∣y2 − (Sσsνs )2(y)
∣∣2}+ φ(Sσsνs (y))

y3

 νs(y) dy

=
∫

Λ

1
y3

[
1
2

{∣∣∣∣y1 − s
∂

∂y1
ϕ(y)− (Sσsνs )1(y)

∣∣∣∣2 +
∣∣∣∣y2 − s

∂

∂y2
ϕ(y)− (Sσsνs )2(y)

∣∣∣∣2
}

− 1
2

{∣∣y1 − (Sσsνs )1(y)
∣∣2 +

∣∣y2 − (Sσsνs )2(y)
∣∣2}] νs(y) dy + o(s)

= s

∫
Λ

(
Sσsνs (y)− y

y3

)
· ∇ϕ(y) νs(y) dy + o(s).

Recall now that νs → ν in Pac(Λ) and σs → σ in Pac(Ω) as s→ 0, hence Lemma 4.3 gives

−s
∫

Λ

ξ(y)·∇ϕ(y)ν(y) dy+s2

∫
Λ

|∇ϕ(y)|2ν(y) dy 6 s

∫
Λ

(
Sσν (y)− y

y3

)
·∇ϕ(y) ν(y) dy+o(s).

13



Dividing both sides first by s > 0, then by s < 0 and letting |s| → 0 we obtain

−
∫

Λ

ξ(y) · ∇ϕ(y) ν(y) dy =
∫

Λ

(
Sσν (y)− y

y3

)
· ∇ϕ(y) ν(y) dy.

Thus, we have that J̃(πνξ(y)) = J̃
((

y−Sσν (y)
y3

))
, where πν : L2(ν; Λ)→ TνP

2
ac(Λ) denotes

the canonical orthogonal projection, where the tangent space is defined in (2.3). The
minimality of the norm of ∂0H then gives

J̃(∂0H(ν)) = J̃

((
y − Sσν (y)

y3

))
= w(y), (4.14)

where w is defined as in (3.15).
We can now check directly that conditions (H1) and (H2) hold. Using Theorem 3.4, we

may conclude from (4.14) that

J̃(∂0H(ν)) = w(y) = J̃(∇g0(y)).

Condition (H1) then follows from g0 ∈ W 1,∞(Λ), where g0 is the solution of the dual
problem (3.23). Condition (H2) follows from the stability of optimal maps (see, for example,
[17, Corollary 5.23]). Hence we may apply the result of Theorem 4.5 to conclude that there
exists a Hamiltonian flow ν(t) such that

d

dt
ν(t) +∇ · (J̃(v(t))ν(t)) = 0, ν(0) = ν0, t ∈ (0, τ)

where J̃(v(t)) = J̃(∂0H(ν(t))) for a.e. t ∈ [0, τ ]. By (4.14), this then completes the proof
that the dual space continuity equation (3.14), with velocity field defined as in (3.15), is
satisfied. In addition, from (H3) and the definition of J̃ , the energy associated with the
flow is conserved.

Proof of Theorem 4.1. By the definition of w in Proposition 4.7, we have that (σ,T) is a
stable solution of (3.14)-(3.19), where T = S−1 (see Theorem 3.4). Theorem 4.1 (i) follows
from (4.5), (4.6); Theorem 4.1 (ii) follows from the fact that σ is a minimiser of (4.7) (see
[10, Theorem 4.2]); Theorem 4.1 (iii) follows from the definition of w in terms of ∇g0 and
the fact that, as a solution of the dual problem (3.23), g0 ∈W 1,∞(Λ).

5 Lagrangian statement of the equations in physical
space

In this section, our aim is to prove the existence of a weak Lagrangian solution of the
fully compressible semi-geostrophic system (3.1)-(3.6). We also show that, with additional
regularity, a weak Lagrangian solution would determine a weak Eulerian solution. These
statements are proved following closely the treatment given in [8] of the incompressible
case.

We begin by rewriting the system (3.1)-(3.6) in a form that enables us to state the
equations in Lagrangian form. These new equations (with prescribed initial conditions) are
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DtT(t,x) = e3 × [T(t,x)− x] , (5.1)

∂tσ(t,x) +∇ · (σ(t,x)u(t,x)) = 0, (5.2)

∇xc(x,T(t,x)) + κK1∇((σ(t,x))κ−1) = 0, (5.3)

u · n = 0 on [0, τ)× ∂Ω, (5.4)

σ(0,x) = σ0(x), T(0,x) = T0, T0#σ0 ∈ Lr(Λ0), Λ0 ⊂ R3 compact, (5.5)

where r ∈ (1,∞), c(x,T(t,x)) is defined in (3.13) and K1 is defined as in (3.9).

Proposition 5.1. A solution of (5.1)-(5.5) determines a solution of the original system
(3.1)-(3.6).

Proof. Given a solution (u,T, σ) of (5.1)-(5.5), we set the function u in (3.1)-(3.6) to be
equal to the function u in (5.1)-(5.5) and we define

θ(t,x) := T3(t,x), ρ(t,x) :=
σ(t,x)
θ(t,x)

, ug(t,x) := e3 × [T(t,x)− x]. (5.6)

Then (3.2) follows from (5.6) and equation DtT3 = 0 of (5.1). Using this together with
(5.6) and the fact that (5.2) is satisfied, we see that (3.3) holds.

In order to show that (3.4) holds, we first rearrange (3.5) to obtain p = Rκp1−κ
ref (ρθ)κ.

Thus,
∇p = Rκp1−κ

ref κ(ρθ)κ−1∇(ρθ). (5.7)

Then, substituting (5.6) into (5.3) gives

e3 × ug +∇φ+ θκK1∇(ρθ)κ−1 = 0.

Recalling that K1 = cv

(
R
pref

)κ−1

, this becomes

e3 × ug +∇φ+ θκcv

(
R

pref

)κ−1

∇(ρθ)κ−1 = 0,

and therefore

e3 × ug +∇φ+
1
ρ
κ(κ− 1)cv

(
R

pref

)κ−1

(ρθ)κ−1∇(ρθ) = 0.

Then, using (2.1)(xiv), (2.1)(xv) and (5.7) we obtain

e3 × ug +∇φ+
1
ρ
∇p = 0

and thus conclude that (3.4) is satisfied.
Finally, we obtain (3.1) using (3.4) together with the first two components of (5.1)

and the definition of ug in (5.6). Hence, we obtain a solution of the original system of
semi-geostrophic equations.

We define a weak solution of (5.1)-(5.5) as follows:

15



Definition 5.1. Let Ω be an open bounded convex set in R3. Let u : [0, τ) × Ω → R3

satisfy u ∈ L1([0, τ) × Ω) and let T : [0, τ) × Ω → R3 satisfy T ∈ L∞([0, τ) × Ω). Also,
let σ(t, ·) ∈ W 1,∞(Ω) for all t ∈ [0, τ ]. Then (u,T, σ) is a weak (Eulerian) solution of
(5.1)-(5.5) if∫

[0,τ)×Ω

{T(t,x) · [∂tϕ(t,x) + (u(t,x) · ∇)ϕ(t,x)] + e3 × [T(t,x)− x] · ϕ(t,x)}σ(t,x) dtdx

+
∫

Ω

T0(x) · ϕ(0,x)σ0(x) dx = 0, (5.8)

for any ϕ ∈ C1
c ([0, τ)× Ω), and∫

[0,τ)×Ω

{∂tψ(t,x) + (u(t,x) · ∇)ψ(t,x)}σ(t,x) dtdx +
∫

Ω

ψ(0,x)σ0(x) dx = 0, (5.9)

for any ψ ∈ C1
c ([0, τ)× Ω).

Given a solution T(t,x) and x(t,y) = S(t,y) of the system (3.14)-(3.19) in dual coordi-
nates, formally we have that (u,T, σ) satisfy (5.1)-(5.5). However, due to the low regularity
of T(t,x) and thus S(t,y) obtained as a weak solution of (3.14)-(3.19), this argument is not
rigorous. Indeed, the regularity obtained in [10] may not be enough to provide a solution
of the Eulerian problem.

Instead, we seek to find weak Lagrangian solutions of the problem (5.1)-(5.5). Here we
define such solutions and then we use the methods of [8] to prove their existence. We define
the Lagrangian flow map

F : [0, τ)× Ω→ Ω

corresponding to the velocity u. Note that F maps Ω to itself so that the boundary
conditions of the problem are respected. Then, we can rewrite the system (5.1)-(5.5) in
terms of this Lagrangian flow F and define the corresponding weak solution (F,T, σ).

Definition 5.2. Let Ω be an open bounded convex set in R3 and let τ > 0. Let T ∈
L∞([0, τ) × Ω) and let σ(t, ·) ∈ W 1,∞(Ω) for all t ∈ [0, τ ]. For 1 6 q < ∞, let F :
[0, τ)× Ω→ Ω be a Borel map, satisfying

F ∈ C([0, τ);Lq(Ω; R3)). (5.10)

Then (F,T, σ) is called a weak Lagrangian solution of (5.1)-(5.5) in [0, τ)× Ω if:

(i) For σ0 − a.e. x ∈ Ω,

F(0,x) = x, T(0,x) = T0(x).

(ii) For any t > 0, the mapping

F(t) = F(t, ·) : [0, τ)× Ω→ Ω

pushes forward the probability measure σ0(·) to σ(t, ·), i.e.

F(t)#σ0(·) = σ(t, ·). (5.11)
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(iii) There exists a Borel map
F∗ : [0, τ)× Ω→ Ω

such that, for every t ∈ (0, τ), the map

F∗(t) = F∗(t, ·) : Ω→ Ω

satisfies
F∗(t) ◦ F(t)(x) = x and F(t) ◦ F∗(t)(x) = x,

for σ − a.e. x ∈ Ω, and
F∗(t)#σ(t, ·) = σ0(·).

(iv) The function
Z(t,x) := T(t,F(t)(x)) (5.12)

is a weak solution of

∂tZ(t,x) = e3 ×
[
Z(t,x)− F(t)(x)

]
in [0, τ)× Ω,

Z(0,x) = T0(x) in Ω,
(5.13)

in the following sense:
for any ϕ ∈ C1

c ([0, τ)× Ω; R3),∫
[0,τ)×Ω

{Z(t,x) · ∂tϕ(t,x) + e3 × [Z(t,x)− F(t)(x)] · ϕ(t,x)}σ0(x) dtdx

+
∫

Ω

[T0(x) · ϕ(0,x)]σ0(x) dx = 0.
(5.14)

Remark 5.2. Let us comment on Definition 5.2:

• Continuity in time of F considered as a map on [0, τ) with values in Lq(Ω) as required
in (5.10), combined with the initial condition for F in (i), implies that

lim
t→0+

∥∥F(t) − id
∥∥
Lq(Ω)

= 0. (5.15)

Furthermore, the continuity property (5.10) may be interpreted as continuity of par-
ticle paths in physical space.

• Property (ii) is the Lagrangian form of the mass conservation principle in equation
(5.2) with boundary condition (5.4).

• Equation (5.13) is the Lagrangian form of (5.1).

• Equation (5.14) is derived by multiplying (5.13) by σ0(x) as well as the test function
and then integrating by parts, as in [8, Definition 3.4]. The reason for this choice will
become clear in the proof of Proposition 5.3.

• We have omitted equation (5.3) since this holds as a result of the energy minimisation;
see [10, Theorem 4.2].
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In order to justify Definition 5.2, we must show that a weak Lagrangian solution corre-
sponds to a weak (Eulerian) solution of (5.1)-(5.5), as defined by Definition 5.1. Indeed, we
prove that, with additional regularity property ∂tF ∈ L∞([0, τ) × Ω), a weak Lagrangian
solution (F,T, σ) as defined in Definition 5.2 determines a weak (Eulerian) solution of (5.1)-
(5.5) and, furthermore, that a smooth Lagrangian solution determines a classical solution
of (5.1)-(5.5). This is the content of the following result:

Proposition 5.3. Let Ω be an open bounded convex set in R3 and let τ > 0. Let (F,T, σ)
be a weak Lagrangian solution of (5.1)-(5.5) in [0, τ)× Ω.

(i) If ∂tF ∈ L∞([0, τ)× Ω; R3), then the function

u(t,x) := (∂tF)(t,F∗(t)(x)) (5.16)

satisfies u ∈ L∞([0, τ)×Ω; R3) and (u,T, σ) is a weak Eulerian solution of (5.1)-(5.5)
in [0, τ)× Ω in the sense of Definition 5.1.

(ii) If (F,F∗,T) ∈ C2([0, τ ]×Ω), then the function (5.16) satisfies u ∈ C1([0, τ ]×Ω; R3),
and (u,T, σ) is a classical solution of (5.1)-(5.5) in [0, τ)× Ω.

Proof. Let us first prove (i). Since F∗ is a Borel map and, by our additional regularity
assumption, ∂tF ∈ L∞([0, τ)×Ω), we know that the right-hand side of (5.16) is a bounded
measurable function. Therefore, u ∈ L∞([0, τ)× Ω). Now, in order to prove that (u,T, σ)
is a weak Eulerian solution of (5.1)-(5.5), we must show that (5.8) and (5.9) hold. We begin
with (5.9). Let ψ ∈ C1

c ([0, τ)×Ω), so that the support of ψ in t is a closed subset of [0, τ),
and fix t ∈ (0, τ). Note that, since σ(t, ·) ∈W 1,∞(Ω) for all t ∈ [0, τ ] (by Theorem 4.1 (ii))
we have that σ(t, ·) ∈ L1([0, τ) × Ω) and, since F(t)#σ0(·) = σ(t, ·), we can apply (2.5) to
yield ∫

Ω

(∂tψ)(t,F(t)(x))σ0(x) dx =
∫

Ω

∂tψ(t,X)σ(t,X) dX.

Then, applying the chain rule, integrating both sides with respect to t and using our
assumption that ∂tF ∈ L∞([0, τ)× Ω), we obtain∫

[0,τ)×Ω

{∂t[ψ(t,F(t)(x))]− ∂tF(t)(x) · (∇ψ)(t,F(t)(x))}σ0(x) dtdx

=
∫

[0,τ)×Ω

∂tψ(t,X)σ(t,X) dtdX.

Now, using (5.15) and the fact that ψ(τ, ·) ≡ 0 (by compact support), we get∫
[0,τ)×Ω

∂t[ψ(t,F(t)(x))]σ0(x) dtdx = −
∫

Ω

ψ(0,x)σ0(x) dx.

Hence,

−
∫

Ω

ψ(0,x)σ0(x) dx−
∫

[0,τ)×Ω

∂tF(t)(x) · (∇ψ)(t,F(t)(x))σ0(x) dtdx

=
∫

[0,τ)×Ω

∂tψ(t,X)σ(t,X) dtdX.
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If we make the change of variables X = F(t)(x) in the second integral above, then, by (ii),
(iii) in Definition 5.2 and by (2.5), we have that

−
∫

Ω

ψ(0,x)σ0(x) dx−
∫

[0,τ)×Ω

(∂tF(t))(F∗(t)(X)) · ∇ψ(t,X)σ(t,X) dtdX

=
∫

[0,τ)×Ω

∂tψ(t,X)σ(t,X) dtdX.

Then, rearranging and using the definition of u in (5.16), we obtain∫
[0,τ)×Ω

{∂tψ(t,X) + u(t,X) · ∇ψ(t,X)}σ(t,X) dtdX +
∫

Ω

ψ(0,x)σ0(x) dx = 0.

Changing notations X to x gives us (5.9).
We now prove that (5.8) also holds. By the properties of F and T in Definition 5.2,

we have that Z(t,x) as defined in (5.12) satisfies Z ∈ L∞([0, τ ] × Ω). Also, applying the
definition of Z(t,x) in (5.12) to equation (5.14) gives∫

[0,τ)×Ω

{T(t,F(t)(x)) · ∂tϕ(t,x) + e3 × [T(t,F(t)(x))− F(t)(x)] · ϕ(t,x)}σ0(x) dtdx

+
∫

Ω

[T0(x) · ϕ(0,x)]σ0(x) dx = 0,

(5.17)

for any ϕ ∈ C1
c ([0, τ) × Ω). Now, since Ω is a bounded set and F(t)#σ0(·) = σ(t, ·) for all

t ∈ [0, τ), equation (2.5) allows us to make the change of variables X = F(t)(x) in the first
integral of (5.17). Thus, by (iii) of Definition 5.2, we have that x = F∗(t)(X) for σ − a.e.
x ∈ Ω for every t ∈ [0, τ) and then, from (5.17), we obtain∫

[0,τ)×Ω

{T(t,X) · ∂tϕ(t,F∗(t)(X)) + e3 × [T(t,X)−X] · ϕ(t,F∗(t)(X))}σ(t,X) dtdX

+
∫

Ω

[T0(x) · ϕ(0,x)]σ0(x) dx = 0,
(5.18)

for any ϕ ∈ C1
c ([0, τ)× Ω). We now show that (5.18) also holds for all ϕ such that

ϕ ∈ L∞([0, τ)× Ω),
∂tϕ ∈ L∞([0, τ)× Ω), (5.19)

supp(ϕ) ⊂[0, τ − ε]× Ω for some ε > 0

In order to do this, we construct an approximating sequence for such ϕ. Let us extend ϕ to
(−∞,∞)× Ω by defining, for x ∈ Ω, ϕ(t,x) = ϕ(−t,x) for t < 0 and ϕ(t, ·) ≡ 0 for t > τ .
Then, we let h > 0 and define Ωh = {x ∈ Ω : dist(x, ∂Ω) > h}, where ∂Ω denotes the
boundary of Ω. Thus, ϕχΩh is now defined on R1×R3, where χΩh denotes the characteristic
function of the set Ωh. Next, let jh(t,x) = 1

h4 j(
|(t,x)|
h ), where j(·) is a standard mollifier,

and let k > 1
ε be an integer. We then have that functions ϕk = (ϕχΩ4h)∗jh, with h = 1

k < ε,
satisfy

ϕk ∈ C1
c ([0, τ)× Ω) with ‖ϕk, ∂tϕk‖L∞([0,τ)×Ω) 6 C,

where C does not depend on k, and

(ϕk, ∂tϕk)→ (ϕ, ∂tϕ) a.e. on [0, τ)× Ω as k →∞.
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Thus, by the dominated convergence theorem,

lim
k→∞

∫
[0,τ)×Ω

(ϕk, ∂tϕk)(t,x)σ0(x) dtdx =
∫

[0,τ)×Ω

(ϕ, ∂tϕ)(t,x)σ0(x) dtdx.

Also, since ϕ ∈ L∞([0, τ)×Ω) by (5.19) and F∗(t)#σ(t, ·) = σ0(·) , we have from (2.5) that∫
[0,τ)×Ω

(ϕk, ∂tϕk)(t,x)σ0(x) dtdx =
∫

[0,τ)×Ω

(ϕk, ∂tϕk)(t,F∗(t)(X))σ(t,X) dtdX

and ∫
[0,τ)×Ω

(ϕ, ∂tϕ)(t,x)σ0(x) dtdx =
∫

[0,τ)×Ω

(ϕ, ∂tϕ)(t,F∗(t)(X))σ(t,X) dtdX.

Hence,

lim
k→∞

∫
[0,τ)×Ω

(ϕk, ∂tϕk)(t,F∗(t)(X))σ(t,X) dtdX =
∫

[0,τ)×Ω

(ϕ, ∂tϕ)(t,F∗(t)(X))σ(t,X) dtdX.

Then, since Ω is bounded, T ∈ L∞([0, τ)×Ω) and (5.18) holds for each ϕk, it follows that
(5.18) holds for ϕ satisfying (5.19). Now, let

ϕ(t,x) = η(t,F(t)(x)), (5.20)

where η ∈ C1
c ([0, τ) × Ω). Then, since supp(η) ⊂ [0, τ − ε] × Ω and ∂tF ∈ L∞([0, τ) × Ω)

by our additional regularity property, we have that ϕ satisfies the conditions in (5.19).
Therefore, (5.18) holds for ϕ as defined in (5.20). We also see from (5.20) and use of the
chain rule that

∂tϕ(t,x) = (∂tη)(t,F(t)(x)) + ∂tF(t)(x) · (∇η)(t,F(t)(x)).

Thus, by property (iii) of Definition 5.2, we have

ϕ(t,F∗(t)(X)) = η(t,X)

and
∂tϕ(t,F∗(t)(X)) = ∂tη(t,X) + [(∂tF)(t,F∗(t)(X))] · ∇η(t,X)

for σ − a.e. X ∈ Ω for every t ∈ [0, τ). Then, inserting ϕ(t,x) = η(t,F(t)(x)) into (5.18)
gives∫

[0,τ)×Ω

{T(t,X)·[∂tη(t,X)+[(∂tF)(t,F∗(t)(X))]·∇η(t,X)]+e3×[T(t,X)−X]·η(t,X)}σ(t,X) dtdX

+
∫

Ω

T0(x) · η(0,F(0)(x))σ0(x) dx = 0,

and, using the definition of u in (5.16) together with property (i) of Definition 5.2, we
obtain∫

[0,τ)×Ω

{T(t,X) · [∂tη(t,X)+(u(t,X) ·∇)η(t,X)]+e3× [T(t,X)−X] ·η(t,X)}σ(t,X) dtdX

+
∫

Ω

T0(x) · η(0,x)σ0(x) dx = 0.

Finally, changing notations X to x and η to ϕ gives (5.8), proving statement (i). Then,
statement (ii) follows directly from (i).
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We now state the main result, which we will prove in Sections 6 and 7:

Theorem 5.4. Let Ω ⊂ R3 be an open bounded convex set. Assume that

T0#σ0 ∈ Lr(Λ0)

for r ∈ (1,∞), where Λ0 ⊂ R3 is compact. Then, for any τ > 0, there exists a weak
Lagrangian solution (F,T, σ) of (5.1)-(5.5) in [0, τ) × Ω, where T ∈ L∞([0, τ) × Ω) and
(5.10) is satisfied for any q ∈ [1,∞). Moreover, the function Z(t,x) defined by (5.12)
satisfies Z(·,x) ∈ W 1,∞([0, τ)) for σ0 − a.e. x ∈ Ω, and (5.13) is satisfied, in addition to
the weak form (5.14), in the following sense:

∂tZ(t,x) = e3 × [Z(t,x)− F(t,x)] for σ0 − a.e. x ∈ Ω and every t ∈ [0, τ),
Z(0,x) = T0(x) for σ0 − a.e. x ∈ Ω.

(5.21)

To prove this theorem, we show the existence of a Lagrangian flow map Φ in dual
variables. We then define F in terms of Φ.

Throughout the next two sections, we will use σ and ν to denote the measures σ(t, ·)
and ν(t, ·) considered at some fixed time t ∈ [0, τ). Thus, if we write ν − a.e. y ∈ R3, for
example, then we mean ν(t, ·)− a.e. y ∈ R3 for a fixed t ∈ [0, τ).

Remark 5.5. In a recent development, Ambrosio et al in [2] and [3] have proven the
existence of weak Eulerian solutions of the incompressible semi-geostrophic equations on
the 2-dimensional torus and in a convex 3-dimensional domain.

6 Existence of the Lagrangian flow map in dual space

In this section we mimic the the approximation technique of [8], which makes use of the
results of [1], to show existence of the Lagrangian flow map in dual space. The proof is
based on the sequence of approximating equations defined in [10] for the dual space solution
of the compressible case.

Let Ω, Λ be as in Theorem 4.1, let T0, σ0 be as in (5.5) and let ν0 = T0#σ0. Then, by
Theorem 4.1 there exists a solution (T,S, σ) of the system (3.14)-(3.19), with initial data
ν0, satisfying all assertions of Theorem 4.1. From [10, Lemma 3.1] and Theorem 3.4 we
have that, for a.e. y ∈ Λ,

∇g0(y) = ∇c(S(y),y), (6.1)

where g0 is a solution of the Kantorovich dual problem (3.23). Combining this with the
definition of w in (3.15), we see that the dual space velocity can be written as

w = y3e3 ×∇g0(y). (6.2)

Thus, the vector field w is divergence free. In addition, since c(x,y) ∈ C2(Ω × Λ), there
exists some constant λ such that

D2
yyc(x,y) 6 λI (6.3)

for all (x,y) ∈ Ω × Λ. Furthermore, since the potential temperature y3 is assumed to be
bounded, we can use (6.2) to obtain the following properties of w:

• by the semi-concavity of g0 in Λ, it follows that w(t, ·) ∈ BVloc(R3) for a.e. t ∈ (0, τ);
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• by Theorem 4.1 we have that w ∈ L∞([0, τ)× Λ),

• by (6.1), (6.2) and (6.3) we have that |Dw(t, ·)|(Λ) ∈ L1
loc(0, τ).

Since ν has compact support in [0, τ ] × R3, we can modify w away from Λ so that the
modified function w̃ satisfies

w̃ ∈ L∞([0, τ)× R3), w̃(t, ·) ∈ BVloc(R3) for a.e. t ∈ (0, τ), (6.4)

|Dw̃(t, ·)|(R3) ∈ L1
loc(0, τ), ∇ · w̃(t, ·) = 0 in R3 for every t ∈ [0, τ) (6.5)

and
w = w̃ in Λ. (6.6)

We construct such a modification as follows. Following [10, Section 5], define Λ := B(0, R)×
(δ, 1

δ ), where 0 < δ < 1 and B(0, R) represents the open ball of radius R centered at the
origin in R2. Defining δ, R as in [10, (55), (56)] ensures that supp(ν) is contained in Λ.
Define ζ ∈ C∞(R) as ζ = 1 on {|s| < R}, ζ = 0 on {|s| > R} and 0 6 ζ 6 1 on R. Define
ξ ∈ C∞(R) as ξ = 1 on {δ < s < 1

δ }, ξ = 0 when s 6 δ
2 or when s > 2

δ and 0 6 ξ 6 1 on R.
Then, define for y ∈ R3

M(y) = (M1(y),M2(y),M3(y)) = (ζ(|y1|)y1, ζ(|y2|)y2, ξ(y3)y3) (6.7)

and define the modified velocity as

w̃ = e3 × (M(y)− S(t,M(y))) = ξ(y3)y3e3 ×∇g0(M(y)). (6.8)

Then w̃ satisfies (6.4)-(6.6). These conditions enable us to apply the theory of [1] to the
transport equation (3.14) with w replaced by our modified velocity w̃:

Lemma 6.1. There exists a unique locally bounded Borel measurable map Φ : [0, τ)×R3 →
R3 satisfying

(i) Φ(·,y) ∈W 1,∞([0, τ)) for ν0 − a.e. y ∈ R3;

(ii) Φ(0,y) = y for ν0 − a.e. y ∈ R3;

(iii) for ν0 − a.e. y ∈ R3,
∂tΦ(t,y) = w̃(t,Φ(t,y)); (6.9)

(iv) there exists a Borel map Φ∗ : [0, τ) × R3 → R3 such that, for every t ∈ (0, τ), the
map Φ∗(t) : R3 → R3 is Lebesgue-measure preserving, and such that Φ∗(t) ◦ Φ(t)(y) =
Φ(t) ◦ Φ∗(t)(y) = y for ν − a.e. y ∈ R3;

(v) Φ(t, ·) : R3 → R3 is a Lebesgue-measure preserving map for every t ∈ [0, τ).

Proof. The proof is essentially identical to that of [8, Lemma 2.8].

We now show that the image of the flow map Φ is contained in Λ, and therefore corre-
sponds to the velocity field w.

Lemma 6.2. Let Λ be as in Theorem 4.1. Let Φ be the map defined in Lemma 6.1 and let
w be defined as in (3.15). Then

Φ(t,y) ⊂ Λ for ν0 − a.e. y ∈ T0(Ω) and every t ∈ [0, τ). (6.10)

In particular,

∂tΦ(t,y) = w(t,Φ(t,y)) for ν0 − a.e. y ∈ T0(Ω) and every t ∈ [0, τ). (6.11)
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Proof. Firstly note that, since T0#σ0 = ν0 and the measures σ0 and ν0 are contained
within Ω and Λ respectively, we may assume

T0 : Ω→ Λ. (6.12)

Therefore, for σ0 − a.e. x ∈ Ω, we have that T0(x) ∈ Λ.
We begin with the vertical component of Φ; Φ3. From (6.6) and (6.9), we have that

∂tΦ3(t,y) = w̃3(t,Φ(t,y)) = 0 for all y ∈ R3 and every t ∈ [0, τ). Therefore, we have
Φ3(t,y) = Φ3(0,y) = y3 for ν0−a.e. y ∈ R3 and every t ∈ [0, τ), where we have used
Lemma 6.1 (ii). We therefore conclude that δ < Φ3(t,y) < 1

δ for ν0−a.e. y ∈ T0(Ω) and
every t ∈ [0, τ), where δ is as in Remark 3.1.

The proof that the horizontal components of Φ stay inside Λ proceeds in a similar way
to that of [8, Lemma 2.12].

Finally, we wish to prove that when (ν,T) is a weak solution of (3.14)-(3.19) then ν is
a weak Lagrangian solution of the transport equation (3.14), i.e. ν satisfies the property
ν = Φ#ν0. To do this, we use the time-approximation scheme in dual space of [10, Section
5], as well as the following result (see [5].

Proposition 6.3. Let ν(t, ·) be narrowly continuous Borel probability measures solving the
continuity equation

∂tν +∇ · (vν) = 0

with respect to a vector field v satisfying∫
[0,τ)×R3

|v|ν dtdy < +∞, (6.13)∫ τ

0

[
sup
B
|v|+ Lip(v, B)

]
dt < +∞, (6.14)

for every compact set B ⊂ R3. Then, for ν0 − a.e.y ∈ R3 the characteristic system

Φ(0,y) = y,
d

dt
Φ(t,y) = v(t,Φ(t,y)) (6.15)

admits a globally defined solution Φ(t,y) in [0, τ) and

ν(t, ·) = Φ(t, ·)#ν0(·) for all t ∈ [0, τ). (6.16)

The time approximation scheme is based on the discretisation of (3.14), with time step
h. One then considers piecewise smooth approximate solutions νh(·, ·) to (3.14)-(3.19),
and corresponding velocities vh as defined in [10, Section 5]. Using these approximating
solutions, we can prove the following result.

Proposition 6.4. Let Ω, r, T0 be as in Theorem 4.1, and let (ν,T) be the weak solution
of (3.14)-(3.19) as constructed in Theorem 4.1. Let w̃ be defined by (6.6) and let Φ be the
regular Lagrangian flow of w̃ defined in Lemma 6.1. Then, for every t ∈ [0, τ ],

ν = Φ(t)#ν0. (6.17)

Moreover, for every t ∈ [0, τ ],

ν(y) = ν0(Φ∗(t)(y)) for ν − a.e. y ∈ R3, (6.18)

where the map Φ∗(t) is defined in Lemma 6.1 (iv).
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Proof. For h, k, jh, gkh as in [10, Section 5] define

w̃k
h(y) := ξ(y3)y3e3 ×∇(jh ∗ gkh)(M(y)), (6.19)

where M, ξ are defined in (6.7). Define functions w̃h on [0, τ ]× R3 by setting them equal
to w̃k

h on the time-interval t ∈ [kh, (k+ 1)h). Following [10, Lemma 5.3], the corresponding
potential density νh is a weak solution of

∂tνh +∇ · (νhw̃h) = 0 in (0, τ)× R3,

νh(0,y) = ν0
h(y).

(6.20)

The construction of w̃h implies that w̃h is a divergence-free vector field satisfying (6.4)-
(6.6) and

(i)
∫

[0,τ)×R3
|w̃h|νh dtdy < +∞,

(ii)
∫ τ

0

[
sup
B
|w̃h|+ Lip(w̃h, B)

]
dt < +∞,

(6.21)

Thus, by [1, Section 6], there exists a unique Lagrangian flow Φh : R3 × R → R3 induced
by w̃h and, for each t, the map (Φh)(t) : R3 → R3 is L3-measure preserving.

As in [10, Section 5], we can find a decreasing sequence {hj} converging to 0 such that

νhj → ν weakly in Lr((0, τ)× R3),

νhj w̃hj → νw weakly in Lr((0, τ)× R3), (6.22)

νhj (t, ·)→ ν(t, ·) weakly in Lr(R3), for all t ∈ [0, τ ].

Thus, since we have compact support, we can use (6.6) and the dominated convergence
theorem to obtain

w̃hj → w̃ weakly in Lr((0, τ)× Λ). (6.23)

Finally, we can use [1, Theorem 6.6] to conclude that for each t ∈ [0, τ ],

(Φhj )(t) → Φ(t) in L1
loc(R3) (6.24)

as j →∞.
Since νh is narrowly continuous, we may combine (6.20) with (6.21) and thus use Propo-

sition 6.3 to conclude that the system

d

dt
Φh(t,y) = w̃h(t,Φh(t,y)),

with initial condition Φ(0,y) = y, admits a globally defined solution Φh(t,y) and

νh(t, ·) = (Φh)(t)#ν0
h. (6.25)

Using (2.5) and the properties of νh, we obtain for any t > 0, j = 1, ... and any
ϕ ∈ Cc(R3) ∫

R3
ϕ(Φhj (t,y))ν0

hj (y) dy =
∫

R3
ϕ(Y)νhj (t,Y) dY.
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Passing to the limit j → ∞ in the last equality, using (6.24), the fact that ν0
hj
→ ν0 as

j →∞ in Lr(R3) and the dominated convergence theorem in the left-hand side, and using
(6.22) in the right-hand side, we obtain∫

R3
ϕ(Φ(t,y))ν0(y) dy =

∫
R3
ϕ(Y)ν(t,Y) dY (6.26)

for any ϕ ∈ Cc(R3). This implies (6.17).
Since Φ(t) is a measure preserving map, we use Lemma 6.1 (iv) to conclude that the

left-hand side of (6.26) is equal to∫
R3
ϕ(Y)ν0(Φ∗(t)(Y)) dY,

and now (6.26) implies (6.18).

Remark 6.5. It would be desirable to be able to avoid using the approximating solutions
in dual space when showing that ν is a weak Lagrangian solution of the transport equa-
tion. However, we have not been able to approximate in L1 the velocity w̃ directly. We
appeal instead to the sequence of solutions of the approximating equations in dual space
constructed in [10], as was done for the proof of the analogous result for the incompressible
case given in [8].

7 Lagrangian flow in physical space

Throughout this section we will assume that Ω, Λ, r, T0, T, ν, w, w̃, Φ are as in Proposition
6.4. Note that, by Theorem 4.1, we can apply (2.5) to σ0, σ, ν0, ν throughout this section.

We now perform the last step of the analysis and prove the existence of a Lagrangian
flow F : [0, τ)× Ω→ Ω in the physical space. Indeed, we define F(t) : Ω→ Ω for t ∈ [0, τ)
as

F(t) := S(t) ◦ Φ(t) ◦T0, (7.1)

where T0 is as in (5.5), S(t) is the inverse of T(t) (see Theorem 3.4) and Φ(t) is the La-
grangian flow in dual space constructed in Lemma 6.1. To justify this definition, we prove
the following lemma:

Lemma 7.1. For any t ∈ [0, τ), the right hand side of (7.1) is defined σ0 − a.e. in Ω. The
map F : [0, τ)× Ω→ Ω defined by (7.1) is Borel.

Proof. Since T0 exists and is unique σ0 − a.e. in Ω, we have that T0 exists and is unique
on Ω \ N1

0 where N1
0 is a Borel subset of Ω with σ0[N1

0 ] = 0. Also, since S exists and is
unique ν − a.e. in Λ for every t ∈ [0, τ), we have that S exists and is unique on Λ \N2 for
every t ∈ [0, τ), where N2 is a Borel subset of Λ with ν[N2] = 0. Then, the right-hand side
of (7.1) is defined for all

x ∈ Ω \ (N1
0 ∪M),

where
M =

{
X ∈ (Ω \N1

0 ) : Φ(t)(T0(X)) ∈ N2
}
.

Note that, from its definition, M is a Borel set.
It remains to prove that σ0[M ] = 0 for every t ∈ [0, τ)
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Fix t ∈ [0, τ). Then, using that T0#σ0 = ν0 and thus T0#σ0 = ν0 for all x ∈ Ω \N1
0 ,

and using (6.17) as well as Lemma 6.1 (iv), we can apply (2.5) and compute

σ0

[
M(t)

]
= σ0

[{
x ∈ Ω \N1

0 : T0(x) ∈ Φ−1
(t) (N2)

}]
=
∫
T−1

0 (Φ−1
(t) (N2))

σ0(x) dx =
∫

Φ−1
(t) (N2)

ν0(y) dy

=
∫
N2
ν(y) dy = 0.

Thus, we can define F : [0, τ) × Ω → Ω by (7.1). Then, by Lemma 6.1, F is a Borel
mapping.

It remains to prove that, if F is defined by (7.1), then (F,T, σ) is a weak Lagrangian
solution of (5.1)-(5.5) in the sense of Definition 5.2. We begin by showing that the initial
condition for the flow in Definition 5.2 (i) is satisfied.

Proposition 7.2. Let F be defined as in (7.1). Then, F(0,x) = x for σ0 − a.e. x ∈ Ω.

Proof. By (7.1) we have that F(0)(x) = S(0) ◦Φ(0) ◦T0(x) for all x ∈ Ω \N0 where N0 is a
Borel set with σ0[N0] = 0.

By Lemma 3.4, there exist Borel sets N1 ⊂ Ω, N2 ⊂ Λ with σ0[N1] = ν0[N2] = 0 such
that T0 exists and is unique in Ω \N1 and S(0) exists and is unique in Λ \N2. Moreover,
if x ∈ Ω \ [N1 ∪T−1

0 (N2)], then S(0) ◦T0(x) = x. Also, by Lemma 6.1 (ii), we have that
Φ(0)(y) = y in Λ \N3, where N3 is a Borel set with ν0[N3] = 0.

Therefore, F(0)(x) = x for all x ∈ Ω \ [N0 ∪N1 ∪ T−1
0 (N2 ∪N3)]. We must now show

that σ0

[
Ω ∩T−1

0 (N2 ∪N3)
]

= 0.
We have that ν0[N2 ∪N3] = 0. Then, since T0#σ0 = ν0, we obtain

σ0

[
Ω ∩T−1

0 (N2 ∪N3)
]

=
∫
T−1

0 (N2∪N3)

σ0(x) dx =
∫
N2∪N3

ν0(y) dy = ν0[N2 ∪N3] = 0.

Next, we prove that property (ii) of Definition 5.2 is satisfied.

Proposition 7.3. For every t > 0, the map F(t) : Ω → Ω as defined in (7.1) satisfies
F(t)#σ0 = σ.

Proof. In order to prove that F(t)#σ0 = σ, we must show that, for any ϕ ∈ C(R3),∫
Ω

ϕ(F(t)(x))σ0(x) dx =
∫

Ω

ϕ(X)σ(X) dX.

Then the result will follow from (2.5).
Let ϕ ∈ C(R3). From the definition of F(t) in (7.1) we have∫

Ω

ϕ(F(t)(x))σ0(x) dx =
∫

Ω

ϕ ◦ S(t) ◦ Φ(t) ◦T0(x)σ0(x) dx.

Then, using T0#σ0 = ν0 we apply (2.5) to obtain∫
Ω

ϕ ◦ S(t) ◦ Φ(t) ◦T0(x)σ0(x) dx =
∫

Λ

ϕ ◦ S(t) ◦ Φ(t)(y)ν0(y) dy,
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since ϕ ◦ S(t) ◦ Φ(t) ∈ L∞(Λ). Then, since ϕ ◦ S(t) ∈ L∞(Λ) we can use (6.17) and apply
(2.5) to get ∫

Λ

ϕ ◦ S(t) ◦ Φ(t)(y)ν0(y) dy =
∫

Λ

ϕ ◦ S(t)(Y)ν(Y) dY.

Finally, since S(t) satisfies S(t)#ν = σ, we have that∫
Λ

ϕ ◦ S(t)(Y)ν(Y) dY =
∫

Ω

ϕ(X)σ(X) dX.

Thus, we have shown that∫
Ω

ϕ(F(t)(x))σ0(x) dx =
∫

Ω

ϕ ◦ S(t) ◦ Φ(t) ◦T0(x)σ0(x) dx

=
∫

Λ

ϕ ◦ S(t) ◦ Φ(t)(y)ν0(y) dy

=
∫

Λ

ϕ ◦ S(t)(Y)ν(Y) dY

=
∫

Ω

ϕ(X)σ(X) dX,

as required.

We now prove that (5.10) holds for all q ∈ [1,∞).

Proposition 7.4. For any t0 ∈ [0, τ) and any q ∈ [1,∞),

lim
t→t0,t∈[0,τ)

∫
Ω

|F(t)(x)− F(t0)(x)|qσ0(x) dx = 0.

Proof. By Lemma 7.1 we have that, for any t ∈ [0, τ), (7.1) holds σ0 − a.e. in Ω. Thus,
since T0#σ0 = ν0, we see that, for any t, t0 ∈ [0, τ),∫

Ω

∣∣F(t)(x)− F(t0)(x)
∣∣q σ0(x) dx =

∫
Ω

∣∣S(t) ◦ Φ(t) ◦T0(x)− S(t0) ◦ Φ(t0) ◦T0(x)
∣∣q σ0(x) dx

=
∫

Λ

∣∣S(t) ◦ Φ(t)(y)− S(t0) ◦ Φ(t0)(y)
∣∣q ν0(y) dy

=
∫

Λ

∣∣S(t) ◦ Φ(t)(y)− S(t0) ◦ Φ(t)(y) + S(t0) ◦ Φ(t)(y)− S(t0) ◦ Φ(t0)(y)
∣∣q ν0(y) dy

6 C

∫
Λ

∣∣S(t) ◦ Φ(t)(y)− S(t0) ◦ Φ(t)(y)
∣∣q ν0(y) dy

+C
∫

Λ

∣∣S(t0) ◦ Φ(t)(y)− S(t0) ◦ Φ(t0)(y)
∣∣q ν0(y) dy

=: C(I1 + I2).

Firstly, we show that I1 → 0 as t → t0. Note that, using (6.18) and Lemma 6.1 (iv)
we have that

∥∥ν(t)

∥∥
Lq(Λ)

= ‖ν0‖Lq(Λ) for t ∈ (0, τ), so that
∥∥ν(t)

∥∥
Lq(Λ)

is independent of t.

Let r and r′ be conjugate exponents (i.e. 1
r + 1

r′ = 1), with 1 < r <∞. Then, we can use
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(6.17) and Hölder’s inequality to estimate

I1 =
∫

Λ

∣∣S(t) ◦ Φ(t)(y)− S(t0) ◦ Φ(t)(y)
∣∣q ν0(y) dy

=
∫

Λ

∣∣S(t)(y)− S(t0)(y)
∣∣q ν(t)(y) dy

6

{∫
Λ

∣∣S(t)(y)− S(t0)(y)
∣∣qr′ dy} 1

r′
{∫

Λ

∣∣ν(t)(y)
∣∣r dy} 1

r

=
∥∥S(t) − S(t0)

∥∥q
qr′

∥∥ν(t)

∥∥
r

=
∥∥S(t) − S(t0)

∥∥q
qr′
‖ν0‖r → 0 as t→ t0.

Next, we show that I2 → 0 as t→ t0. Since S(t) ∈ Ω for each t and for ν − a.e. y, then,
by the dominated convergence theorem, it remains to prove that for every t0,

S(t0) ◦ Φ(t)(y)− S(t0) ◦ Φ(t0)(y)→ 0 as t→ t0 (7.2)

for ν−a.e. y ∈ Λ. First we note that, since Φ(t) is measure preserving, then it follows from
Lemma 6.1 (i), and the fact that w̃ ∈ L∞([0, τ)× R3) by (6.4), that

Φ(t)(y)→ Φ(t0)(y) as t→ t0

in [0, τ ] for ν − a.e. y ∈ Λ. If y is such a point and if, in addition, Φ(t0)(y) is a point of
continuity for S(t0), then convergence in (7.2) holds at y. Since Φ(t0) is measure preserving,
it follows that Φ(t0)(y) is a point of continuity for S(t0) for ν − a.e. y. Thus, (7.2) holds for
ν − a.e. y ∈ Λ.

Lemma 7.5. Let Z be defined as in (5.12) with F defined as in (7.1). Then, for all
t ∈ [0, τ),

Z(t)(x) = Φ(t) ◦T0(x)

for σ0 − a.e. x ∈ Ω.

Proof. Using (5.12), we have that Z(t) = T(t) ◦ F(t). Therefore, we need to justify the
following formal computation:

T(t) ◦ F(t) = T(t) ◦ S(t) ◦ Φ(t) ◦T0 = Φ(t) ◦T0

since, by (3.16), T(t) ◦ S(t) is the identity on the support of ν.
Now we make this argument rigorous. Since T exists and is unique σ − a.e. in Ω for

every t ∈ [0, τ), we have that T exists and is unique in Ω \ N1 for every t ∈ [0, τ), where
N1 is a Borel subset of Ω with σ[N1] = 0. Then, by Proposition 7.3 we have that

σ0

[
Ω ∩ F−1

(t) (N1)
]

=
∫
F−1

(t) (N1)

σ0(x) dx =
∫
N1
σ(X) dX = 0.

Now, using Lemma 7.1, we conclude that

Z(t)(x) = T(t) ◦ S(t) ◦ Φ(t) ◦T0(x)

for x ∈ Ω \ Ñ where σ0[Ñ ] = 0.
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Let M̃ = {y ∈ Λ : T(t,S(t,y)) 6= y}, Then M̃ is a Borel set. Now, the proof of the
lemma will be completed if we show that

σ0

[
{x ∈ Ω \ Ñ : Φ(t) ◦T0(x) ∈ M̃}

]
= 0. (7.3)

From Theorem 3.4 (iii) we have that, for any t ∈ [0, τ),

T(t) ◦ S(t)(y) = y for ν − a.e. y ∈ Λ.

Thus, we have ∫
fMν(y) dy = 0

for any t ∈ [0, τ). Therefore, using that σ0[Ñ ] = 0, which implies that T0#σ0 = ν0 for all
x ∈ Ω \ Ñ , and also using (6.17), we obtain for any t ∈ [0, τ)

σ0

[
{x ∈ Ω \ Ñ : Φ(t) ◦T0(x) ∈ M̃}

]
= σ0

[
{x ∈ Ω \ Ñ : T0(x) ∈ Φ∗(t)(M̃)}

]
=
∫
T−1

0 (Φ−1
(t) (fM))

σ0(x) dx

=
∫

Φ−1
(t) (fM)

ν0(y) dy

=
∫

fMν(y) dy = 0,

as required.

We now show existence of the map F∗ from Definition 5.2 (iii).

Proposition 7.6. The map F as defined in (7.1) satisfies property ( iii) of Definition 5.2.

Proof. As with Lemma 7.1, we can show that for every t ∈ [0, τ) the expression S(0) ◦Φ∗(t) ◦
T(t)(x) is defined for σ − a.e. x ∈ Ω, and the map

F∗(t) = S(0) ◦ Φ∗(t) ◦T(t)

is Borel:

Since T exists and is unique σ − a.e. in Ω for every t ∈ [0, τ), we have that T
exists and is unique on Ω \N1 for every t ∈ [0, τ), where N1 is a Borel subset
of Ω with σ[N1] = 0. Also, since S(0) exists and is unique ν0 − a.e. on Λ, we
have that S(0) exists and is unique on Λ \N2

0 , where N2
0 is a Borel subset of Λ

with ν0[N2
0 ] = 0. Then, we have that S(0) ◦ Φ∗(t) ◦T(t)(x) is defined for all

x ∈ Ω \ (N1 ∪M),

where
M =

{
X ∈ (Ω \N1) : Φ∗(t,T(t)(X)) ∈ N2

0

}
.

Note that, from its definition, M is a Borel set. We must now show that
σ[M ] = 0 for every t ∈ [0, τ). Fix t ∈ [0, τ). Then, using that T(t)#σ = ν and
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thus T(t)#σ = ν for all x ∈ Ω \ N1, and using (6.17), we can apply (2.5) and
compute

σ [M ] = σ
[{

x ∈ Ω \N1 : T(t)(x) ∈ Φ(t)(N2
0 )
}]

=
∫
T−1

(t) (Φ(t)(N
2
0 ))

σ(x) dx =
∫

Φ(t)(N
2
0 )

ν(y) dy

=
∫
N2

0

ν0(y) dy = 0.

Thus, we can define F∗(t) = S(0) ◦ Φ∗(t) ◦T(t) and F∗ is a Borel mapping.

We can now prove that property (iii) of Definition 5.2 holds. Since F(t)#σ0 = σ, we
have that F∗(t) ◦F(t)(x) = S(0) ◦Φ∗(t) ◦T(t) ◦F(t)(x) for σ− a.e. x ∈ Ω. Then, using Lemma
7.5, we get F∗(t) ◦ F(t)(x) = S(0) ◦ Φ∗(t) ◦ Φ(t) ◦ T0(x) σ0 − a.e. in Ω. Since, by Lemma 6.1
(iv), Φ∗(t) ◦Φ(t)(y) = y for ν−a.e. y and thus for ν0−a.e. y ∈ Λ, and since T0#σ0 = ν0, we
have Φ∗(t) ◦Φ(t) ◦T0(x) = T0(x) for σ0−a.e. x ∈ Ω. Thus, F∗(t) ◦F(t)(x) = S(0) ◦T0(x) = x
for σ − a.e. x ∈ Ω by Lemma 3.4 (iii).

By a similar argument, we we have that F(t) ◦ F∗(t) = x for σ − a.e. x ∈ Ω.

Finally, we show that property (iv) of Definition 5.2 holds for F defined in (7.1).

Proposition 7.7. Let F be defined as in (7.1). Then, equality (5.14) holds for any ϕ ∈
C1
c ((0, τ)×Ω; R3). Moreover, we have that Z(·,x) ∈W 1,∞([0, τ)) for σ0 − a.e. x ∈ Ω, and

(5.21) holds.

Proof. From the definition of the Lagrangian flow Φ in Lemma 6.1, we have that

Φ(t,y) = y +
∫ t

0

w̃(s,Φ(s)(y)) ds

for ν0 − a.e. y ∈ Λ and every t ∈ [0, τ). Thus, this equality holds for all y ∈ Λ \N where
ν0[N ] = 0. Since T0#σ0 = ν0 it follows that

σ0

[
Ω ∩T−1

0 (N)
]

=
∫
T−1

0 (N)

σ0(x) dx =
∫
N

ν0(y) dy = 0.

Thus, for σ0 − a.e. x ∈ Ω and every t ∈ [0, τ), we have

Φ(t,T0(x)) = T0(x) +
∫ t

0

w(s,Φ(s)(T0(x))) ds, (7.4)

where we have replaced w̃(s,Φ(s)(T0(x))) by w(s,Φ(s)(T0(x))) based on (6.10), (6.11).
Multiplying (7.4) by σ0(x) and by ∂tϕ(t,x), where ϕ ∈ C1

c ([0, τ)×R3), and then integrating
we obtain∫

[0,τ)×Ω

∂tϕ(t,x)Φ(t,T0(x))σ0(x) dtdx =
∫

[0,τ)×Ω

∂tϕ(t,x)T0(x)σ0(x) dtdx

+
∫

[0,τ)×Ω

σ0(x)∂tϕ(t,x)
∫ t

0

w(s,Φ(s)(T0(x)))ds dtdx.

Now, in the right-hand side, we perform the integration with respect to t in the first integral
and integrate by parts with respect to t in the second integral to obtain
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∫
[0,τ)×Ω

∂tϕ(t,x)Φ(t,T0(x))σ0(x) dtdx = −
∫

Ω

ϕ(0,x)T0(x)σ0(x) dtdx

−
∫

[0,τ)×Ω

ϕ(t,x)w(t,Φ(t)(T0(x)))σ0(x) dtdx,

(7.5)

where we have used that ϕ(τ,x) ≡ 0 due to its compact support. Note that, by (3.15),
(7.1) and Lemma 7.5, we have

w(t,Φ(t)(T0(x))) = e3×
[
Φ(t)(T0(x))− S(t)(Φ(t)(T0(x)))

]
= e3× [Z(t,x)− F(t,x)] (7.6)

for σ0 − a.e. x ∈ Ω and every t ∈ [0, τ). Substituting (7.6) into the right-hand side of (7.5)
and using Lemma 7.5 to replace Φ(t,T0(x)) by Z(t,x) in the left-hand side of (7.5), we
obtain∫

[0,τ)×Ω

∂tϕ(t,x)Z(t,x)σ0(x) dtdx = −
∫

Ω

ϕ(0,x)T0(x)σ0(x) dtdx

−
∫

[0,τ)×Ω

ϕ(t,x)e3 × [Z(t,x)− F(t,x)]σ0(x) dtdx,

and rearranging gives (5.14).
Finally, Z(·,x) ∈W 1,∞([0, τ)) for σ0 − a.e. x ∈ Ω follows from Lemma 7.5 and Lemma

6.1 (i). Then, (7.4), (7.6) and Lemma 7.5 imply (5.21).

Now the properties of (T, σ) in Theorem 4.1 and the properties of F proved in Propo-
sitions 7.2, 7.3, 7.4, 7.6, 7.7 imply Theorem 5.4.

8 Conclusion

The main result of this paper is the proof of existence of weak Lagrangian solutions of the
fully compressible semi-geostrophic equations with rigid boundary conditions, in the original
formulation with variables expressing physically relevant quantities. This result is stated
in Theorem 5.4, and can be considered as the conclusion of the analysis of the problem
given in [10], where an existence result is proved but only in the so-called dual formulation.
We have also proved that, if additional regularity of the flow could be assumed, this weak
Lagrangian solution would determine a weak (Eulerian) solution of these equations.

In addition to the main result, we have given an alternative proof, based on recent
results of Ambrosio and Gangbo on Hamiltonian ODEs in spaces of probability measures,
of the previous result on the existence of weak solutions of the dual formulation of the
equations.
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