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We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-
Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The
main result is that the relaxation time is found to be weakly dependent on the molecular structures
used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are
expected to be at equilibrium. The implications of our results for the modelling of dynamic wetting
processes and interpretation of dynamic contact angle data are discussed.

The wetting of solid materials by a liquid is at the heart
of many industrial processes and natural phenomena.
The main difficulty in theoretical description and mod-
elling of wetting processes is the formulation of boundary
conditions at the moving contact line [1–3]. For exam-
ple, the standard no-slip boundary condition of classi-
cal hydrodynamics had to be relaxed to eliminate the
well-known non-integrable stress singularity at the con-
tact line [1–5].

The principal parameter of the theoretical description
is the dynamic contact angle, which is one of the bound-
ary conditions to determine the shape of the free surface
[1–3]. The notion of the contact angle has two mean-
ings in macroscopic modelling. One is apparent contact
angle θa, which is observed experimentally at some dis-
tance from the contact line defined by the resolution of
experimental techniques (usually about a few µm) and
another one is true contact angle θ right at the contact
line. When the contact line is moving, the apparent con-
tact angle deviates from its static values and becomes a
function of velocity. For example, quite often the contact-
angle-velocity dependence θa(U) observed in experiments
can be accurately described by

cos θa = cos θ0 − a1 sinh−1(a2U), (1)

where a1, a2 are material parameters depending on tem-
perature and properties of the liquid-solid combination,
U is the contact-line velocity and θ0 is the static con-
tact angle [3]. However useful relationship (1) may be, it
is neither general, due to the well known effects of non-
locality [6, 7], nor it can be directly used in macroscopic
modelling since it is the true contact angle which enters
the boundary conditions used in macroscopic analysis.
While the apparent contact angle can be experimentally
observed, the true contact angle can be only inferred from
theoretical considerations or from microscopic modelling
such as MD simulations. This is the one of the main fun-
damental problems of wetting hydrodynamics, and that
problem, despite decades of research, is still far from a
complete understanding. The main question still remains
open and debates continue: how (and why) does the true
dynamic contact angle change with the contact-line ve-
locity?

The simple hypothesis that θ = θ0 has been used
in the so-called hydrodynamic theories, for example [8],

where the experimentally observed changes in the appar-
ent contact angle were attributed to viscous bending of
the free surface in a mesoscopic region near the contact
line. Some early observations of the meniscus shapes at
the contact line have indicated that indeed the menis-
cus curvature may strongly increase at the contact line
[9]. The subsequent analysis has shown that while the
dynamic contact angle effect may be purely apparent in
some cases, it was difficult to rule out variations in the
true contact angle. Later on, a numerical study of slip
models has shown that whereas viscous bending can con-
tribute to the observed changes in the apparent contact
angle, this effect alone is insufficient to explain observa-
tions [10]. Moreover, recent MD simulations of spreading
of LJ liquid drops have shown that the true contact an-
gle does change with the velocity and produce a contact-
line-velocity dependence similar to (1), [11–13]. The re-
sults of MD simulations have been successfully compared
against the molecular-kinetic theory (MKT) [11, 12]. In
the MKT, which is also in a good agreement with ex-
periments [3], the true contact angle is a function of
velocity. This velocity dependence comes from the dif-
ference in the probability (asymmetry) of molecular dis-
placements parallel to the solid substrate at the moving
contact line, according to the phenomenological assump-
tions made in the model. The asymmetry is proportional
to the contact-line velocity and, on the other hand, to
the work done by a macroscopic out-of-balance surface
tension force fc = γLV (cos θ0 − cos θ) acting on the con-
tact line. The net result is (1) with a1 = 2kBT/γLV λ

2,
a2 = (2k0λ)−1, where γLV is surface tension at the liquid-
gas interface, kB is the Boltzmann constant, T is the tem-
perature and k0 is the frequency of displacements over
the distance λ, which is regarded as the inverse relax-
ation time of the surface phase (k0)−1 = τLS which is
supposed to be proportional to the viscosity τLS ∝ µ.
The key feature of the model is the concentrated force fc
acting on the contact line, similar to the resistive force
introduced in [14], so that the MKT is local.

Since the MKT is local, it would be difficult to ex-
plain effects of non-locality solely within the model. A
more general and potentially universal approach to mod-
elling the dynamic wetting, the interface formation the-
ory, has been proposed by Shikhmurzaev [1, 2]. The self-
consistent macroscopic approach naturally introduces dy-
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FIG. 1: Profiles of the integrand of (2) in static (at ε12 =
0.9, γLS(5) = −0.89, θ0 = 15◦, and ε12 = 0.37, γLS(5) =
0.68, θ0 = 138◦, in the plain geometry) and dynamic (slug
geometry, Fig. 4, averaged over ∆za = 10 at the contact line,
U = 0.1 and ε12 = 0.9) conditions for a liquid with NB = 5
at T = 0.8. The dashed line shows surface tension level at
θ0 = 138◦.

namic contact angle through dynamic values of surface
tension on forming liquid-solid interfaces. The approach
is very appealing and has shown excellent agreement with
experimental observations [15], but requires the knowl-
edge of macroscopic surface tension relaxation time τLS
of the liquid-solid interface which is also supposed to be
proportional to viscosity, τLS ' 4µ × 10−6 Pa−1, [15].
As a consequence, the theory is truly non-local, that
is able to explain effects of non-locality [6, 7, 16, 17],
with the key characteristic feature, the relaxation tail
of the dynamic surface tension with the length scale
∼ UτLS(CaSc)−1, Ca = µU/γLV , Sc ' 5(τLS/6 ×
10−9 s)1/2(1.5×10−3Pa s/µ)1/2 is a non-dimensional ma-
terial parameter defining the strength of the interface for-
mation effect cos θ0 − cos θ ∼ CaSc [15].

In summary, we have at least two principally different
models of dynamic wetting, both of them seem to be in
a very good agreement with experimental data, [3, 15].
But, which mechanism does actually determine the dy-
namic contact angle? To what extent the dynamic inter-
faces can be in non-equilibrium conditions and contribute
into the dynamic contact angle effect?

The key to answering those questions appears to be the
surface tension relaxation time τLS of the liquid-solid in-
terface, and in this Letter, we directly establish this fun-
damental parameter by MD simulations. The simulations
have been conducted in a model system consisting of LJ
particles and/or chain molecules. We investigate τLS de-
pendence on liquid viscosity and temperature, and con-
duct direct MD experiments with dynamic contact angle
to get insights into the mechanism of dynamic wetting.

The MD model we use is similar to [18] but with the
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FIG. 2: Relaxation of liquid-solid surface tension (integrated
to ym = 5) at different temperatures T and molecular compo-
sitions NB after switching the interaction parameter ε12 from
0.2 to 0.65 at t0 = 100 during ∆ts. The data are averaged over
∆ta = 1 and 200 independent experiments. The dashed line
is fit f0. The inset shows individual dependence at T = 0.8
and NB = 5. The solid (red) line in the inset is fit f1.

LJ potentials ΦijLJ(r) = 4εij

((σij

r

)12 − (σij

r

)6)
and the

cut off distance 2.5σij . Here i and j are either 1 or
2 to distinguish between liquid and solid wall particles
with the masses mi. Note, hereafter, all units are non-
dimensional, the length is measured in σ11, energy and
temperature in ε11, mass in m1 and time in σ11

√
m1/ε11.

The beads interacting via LJ potentials are connected
into linear chains of NB beads by the finitely extensible
non-linear elastic (FENE) springs, and the strength of
the springs is adjusted so that the chains cannot cross

each other, ΦFENE(x) = −k2R
2
0 ln

(
1−

(
x
R0

)2)
. Here

R0 = 1.5 is the spring maximum extension and k = 30 is
the spring constant.

The idea of our MD experiment is simple and is similar
to experimentally designed reversibly switching surfaces
[19]. First, we equilibrate a square (Lx = 30×Lz = 20) of
a liquid film of thickness Ly ' 20 (the y-axis is perpen-
dicular to the film surface and periodic boundary con-
ditions are applied in the x, z-directions) consisting of
12000 particles during ∆teq = 1000 with the time inte-
gration step ∆tMD = 0.01, which is used in the study.
The temperature 0.8 ≤ T ≤ 1.2 is controlled by means
of a DPD thermostat with friction ςdpd = 0.5 to preserve
liquid motion. The film was positioned between two solid
substrates consisting of three [0, 0, 1] fcc lattice layers of
LJ atoms with the shortest distance between the beads
σ22, σ22 = 0.7, m2 = 10 and ε22 = 0. The pressure in the
system was kept close to the vapour pressure at given T
by adjusting Ly accordingly and making the second wall
potential at y = Ly purely repulsive. This has allowed
for a small gap between the wall and the liquid phase to
establish the gas phase. The solid wall particles were at-
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FIG. 3: Evolution of the density distributions ρ(y, t), the main
plot, and surface density (ρs(t) − ρs(0))/ρs(0), the inset, at
T = 0.8, NB = 5 after switching the interaction parameter
ε12 from 0.2 to 0.65 at t0 = 100 during ∆ts, ∆t = t− t0. The
solid (red) line in the inset is fit f1.

tached to anchor points via harmonic potential Φa = ξx2,
with the strength ξ = 800 chosen such that the root-
mean-square displacement of the wall atoms was small
enough to satisfy the Lindemann criterion for melting√
< δr2 > < 0.15σ22 [20]. The anchor points in the layer

of the solid wall facing the liquid molecules have been ran-
domised in the vertical y direction to increase/vary the

surface roughness. The amplitude
√
< δy2 > = 0.1σ22

was shown to be sufficient to prevent the substrate from
having large and shear-rate divergent/dependent actual
slip length [21]. The slip length measured in our exper-
iments, as in [21], was ' 2 − 4σ11. After equilibration,
parameter ε12 of the wall at y = 0 is changed from one
value to another and we observe relaxation of interfacial
parameters, including the surface tension.

The surface tension of a plane liquid-solid interface is
calculated according to [22], in the assumption of the
rigid solid substrate

γLS = lim
ym→∞

∫ ym

0

{
Tt − Tn − yρ(y)

dψ

dy

}
dy. (2)

Here ρ(y) is distribution of density, ψ(y) is the substrate
potential generated by the solid wall particles, Tt,n(y) are
the tangential and normal components of the microscopic
stress tensor evaluated according to [23], all quantities
are averaged in the (x, z) plane. We note here that (2)
is an approximation in our case of the weakly rough wall
consisting of moving particles, [22, 24, 25]. So that the
numerical procedure has been verified using the Young-
Dupree equation by placing a substantially large cylindri-
cal liquid drop (about 30000 particles) on the solid sub-
strate and measuring the static contact angle θ0 applying
a three-parameter circular fit (y − y0)2 + (z − z0)2 = R2

to the free surface profile. The free-surface profile was
defined in the study as the locus of equimolar points.

The obtained values of θ0 were found to be within 3◦ of
the contact angles calculated directly from the Young-
Dupree equation using independently evaluated values
of the surface tensions. The liquid-gas γLV surface ten-
sion has been calculated using large liquid drops (radius
∼ 30), similar to [26]. Typical dependencies of the in-
tegrand of (2), γLS(y), in static conditions are shown in
Fig. 1 at different values of ε12.

In the dynamic experiments parameter ε12 was
switched from 0.2 to 0.65 (equivalently θ0 = 165◦ to 90◦

at T = 0.8, NB = 5) during ∆ts = 1 with fixed σ12 = 0.7.
The evolution of surface tension, density distribution and

surface density ρs = (ρBym)−1
∫ ym=5

0
ρ(y)dy are shown

in Figs. 2 and 3 for different liquid compositions and tem-
peratures. One can see that in general the relaxation is
very quick and almost independent of viscosity of the liq-
uid at the first glance (the results are insensitive to lower-
ing ςdpd to 0.3). Simple fit, f0 = C1+C2 exp(−(t−t0)/τ0),
applied on average to normalised surface tension evolu-
tion data reveals τ0 = 7.8. The individual dependencies,
inset Fig. 2, reveal more complex behaviour, which can
be approximated by f1 = C1 + C2 exp(−(t − t0)/τ1) +
C3 exp(−(t− t0)/τ2) sin(ω(t− t0)+φ0), Table I. One can
see that both τ1 and τ2 are almost independent of molec-
ular structure/viscosity despite the seventy-fold variation
in µ. The observed values of τ1 (the major relaxation)
are close to the relaxation times found in the free sur-
faces of LJ liquids, [26], and thus correspond to the local
relaxation on the length scale of the individual density
peaks, Fig. 3, that is on the beads level rather than
on the level of the whole molecules. This is similar to
the multi-scale relaxation commonly observed in poly-
mer dynamics, [27]. In our case, initial, at early times
relaxation is defined by the mean square displacement
of individual monomers over relatively short distance of
the order of the half of the distance between the density
peaks (∆y = 0.5), Table I, while the liquid viscosity is
defined by the much slower molecular relaxation. This is
also consistent with the weak dependence on the desti-
nation value ε12(t > t0), Table I last row.

The second, oscillatory relaxation, τ2 and ω, is likely to
be due to the collective excitation of the particle motion
triggered by the sharp change of the solid wall poten-
tial, since the amplitude of oscillations decreases with
increasing the switching time interval ∆ts. In this case,
τ2 is simply the time during which the excited wave of
frequency ω travels some distance l2 comparable to the
interfacial layer width. Indeed, the product τ2ω = l2k2,
k2 = 2π/λ2 is the wave vector of the excited wave (wave
length λ2), varies within 4 ≤ τ2ω ≤ 4.8, < τ2ω >= 4.4,
Table I. Only for NB = 50 τ2ω = 5.8 and for NB = 1,
τ2ω = 3.1. Then on average < l2/λ2 >= 0.7 which
means that the wave length of the excitations is roughly
the width of the interfacial layer.

We would like to note that the observed weak depen-
dence τ1,2(µ) is in contrast to the relaxation time scaling
τLS ∝ µ found in the MKT and in the interface forma-
tion theory. While the first peak density characteristic
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FIG. 4: Snapshots and free surface profiles (the circular fits)
in static and dynamic (U = 0.1) situations at T = 0.8, NB = 5
and ε12 = 0.9 (θ0 = 15◦). The observed static and dynamic
contact angles are θ0 = 12±3◦ and θ = 138±4◦. The direction
of the moving solid wall particles is indicated by the arrow.
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FIG. 5: Density distribution at different distances from the
contact line ∆z averaged over ∆za = 1.25 in the dynamic case
shown in Fig. 4 at U = 0.1, ε12 = 0.9 (slug geometry) and in
static conditions (plain geometry) at T = 0.8, NB = 5, and
ε12 = 0.9 (θ0 = 15◦) and ε12 = 0.37 (θ0 = 138◦).

time scale found in the MD simulations [12] τdp ' 16.5 is
roughly comparable to our results, Table I, the observed
weak dependence τ1,2(µ) rules out possible connections
between τLS and the MKT parameter (k0)−1.

The relaxation times revealed by the dynamic experi-
ments directly imply that in the liquid compositions used
in our study, in the slow hydrodynamic motion, param-
eter UτLS/L << 1 (L >> 1 is any macroscopic length
scale) and surface tension is expected to be at equilib-
rium. This in turn implies that the dynamic surface ten-
sion is unlikely to be the cause of dynamic angle in our
case, Sc << 1. To verify this conclusion, we have per-
formed a series of MD experiments with a large cylindri-
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FIG. 6: Distribution of the force from the solid substrate
acting on the liquid molecules in 0 ≤ y ≤ ym = 2, zcl ≤ z ≤
zcl + ∆cl in the case shown in Fig. 4 at U = 0.1, ε12 = 0.9.
The dashed line indicates the mean background value.

cal liquid slug (60000 particles) forced between two iden-
tical rough solid plates, Fig. 4. The geometry is periodic
in the x-direction with reflective boundary conditions at
the simulation box ends in the z-direction. The solid wall
particles are moving with velocity U in the z-direction to
mimic forced wetting regime. After initial equilibration
during ∆teq = 5000, we measure the dynamic contact an-
gle and interface parameters in steady conditions. The
dynamic contact angle can be clearly seen in the snap-
shot and in the developed free surface profile, Fig. 4.
This is an extreme case (Ca = 1.1) of typical profiles
observed in the case of long-chain molecules when the
dynamic contact angle θ is changing monotonically with
the substrate velocity U from its equilibrium value. We
have checked that the system size has already no dra-
matic effect on the observed contact angle. For example,
in a similar case ε12 = 0.65, θ0 = 90◦, U = 0.1, at 60000
particles θ = 143.7±3◦, at 40000 particles, 1.2 smaller in
the y, z-directions, θ = 141± 3◦, while at 10000 particles
θ = 129± 3◦.

The direct measurements of surface tension and dis-
tribution of density, in the case shown in Fig. 4, right
after the contact line (the contact line width is taken at
∆cl = 6 counting from the intersection of the free surface
and the substrate at zcl = 0, Fig. 4, just to fully cover
the interfacial zones of both interfaces) are shown in Figs.
1, 5. One can see that indeed while the liquid motion has
some effect on the first layer of particles, the overall ef-
fect is not large, and both the surface tension and the
density are close to equilibrium, and far away from the
values in the case ε12 = 0.37 (θ0 = 138◦ similar to the
observed dynamic angle). How had then that dynamic
angle (different from θ0 = 15◦) been generated? We anal-
ysed the tangential force acting on the interface molecules
in the region (0 ≤ y ≤ ym = 2, zcl ≤ z ≤ zcl + ∆cl) at
the contact line. We found that the tangential force f clz
acting on the liquid from the solid substrate is concen-
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T NB γLV ρB µ† τ1 τ2 ω τρ1 τρ2 ωρ
√
< r2M >

0.8 1†† 0.36 ± 0.02 0.73 1.2 2.4 ± 0.6 15.3 ± 2.2 0.20 5.5 ± 0.5 16.1 ± 0.4 0.20 0.61

0.8 5 0.92 ± 0.04 0.91 10.5 3.9 ± 0.3 10.7 ± 0.8 0.43 3.8 ± 0.1 9.3 ± 0.2 0.39 0.40

0.8 10 1.01 ± 0.05 0.93 20.2 4.3 ± 0.3 9.2 ± 0.7 0.48 3.6 ± 0.1 8.7 ± 0.2 0.44 0.42

0.8 15 1.05 ± 0.05 0.93 30.1 3.5 ± 0.6 13.8 ± 1.8 0.35 4.6 ± 0.3 12.1 ± 0.5 0.32 0.38

0.8 20 1.08 ± 0.05 0.94 41.1 3.9 ± 0.5 9.2 ± 1.1 0.45 3.8 ± 0.2 9.2 ± 0.3 0.40 0.40

0.8 30 1.1 ± 0.06 0.94 72.3 3.6 ± 0.2 5.3 ± 0.3 0.79 3.0 ± 0.1 5.5 ± 0.2 0.72 0.38

1.0 5 0.71 ± 0.03 0.86 5.7 4.0 ± 0.5 12.2 ± 1.2 0.33 4.5 ± 0.2 13.2 ± 0.3 0.3 0.56

1.0 8 0.78 ± 0.03 0.87 9.4 3.7 ± 0.5 13.2 ± 1.2 0.33 4.0 ± 0.2 11.9 ± 0.3 0.32 0.54

1.0 50 0.92 ± 0.05 0.89 61.8 4.4 ± 0.8 27.5 ± 2.9 0.21 5.1 ± 0.3 27.2 ± 1.2 0.21 0.55

1.2 5 0.52 ± 0.03 0.79 3.8 2.3 ± 0.6 20.7 ± 3.2 0.23 4.5 ± 0.3 17 ± 0.7 0.24 0.56

0.8 5††† 0.92 ± 0.04 0.91 10.5 4.3 ± 0.3 9.6 ± 0.8 0.44 3.7 ± 0.1 8.3 ± 0.2 0.42 0.44

TABLE I: Parameters of the liquids (equilibrium surface tension γLV , bulk density ρB , dynamic viscosity µ†) and characteristic
times of the liquid-solid interface formation (τ1,2, ω for the surface tension and τρ1,2, ω

ρ for the surface density ρs applying fit

f1) at different molecular compositions (number of beads NB) and temperatures T . † Viscosity was obtained as in [27] at the
bulk conditions. The last column is the end-monomer mean-square displacement during ∆t = τ1 across the interface at the
bulk conditions. †† 400 independent experiments. ††† ε12(t > t0) = 0.9.

trated within ∆cl and then drops significantly, Fig. 6.
The value of the force per unit length of the contact line
is found to be sufficient to generate the observed con-
tact angle according to the force balance, the modified
Young-Dupree equation, that is f clz = 1.52 ± 0.13 and
from γLV cos(θ) = −γLS − f clz , θ = 133◦ ± 10◦. But this
effect will need further studies.

In conclusion, we have directly established relaxation
time of the liquid-solid interfaces in a model system con-
sisting of LJ molecules. The relaxation time, impor-
tantly, appears to depend very weakly on the molecular
structure and viscosity and is found to be in such a range

that interfacial tension γLS should be in equilibrium in
slow hydrodynamic motion. This has been also verified
in the MD experiments on dynamic wetting, where the
dynamic contact angle was observed. Our results have di-
rect repercussions on the theoretical interpretation and
modelling of the dynamic contact angle. The question to
answer is to what extent our results can be generalised
to the actual liquids consisting of non-polar molecules.
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