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Abstract. We explore the influence of the choice of attenuation fac-
tor on Katz centrality indices for evolving communication networks. For
given snapshots of a network observed over a period of time, recently
developed communicability indices aim to identify best broadcasters and
listeners in the network. In this article, we looked into the sensitivity of
communicability indices on the attenuation factor constraint, in relation
to spectral radius (the largest eigenvalue) of the network at any point
in time and its computation in the case of large networks. We proposed
relaxed communicability measures where the spectral radius bound on
attenuation factor is relaxed and the adjacency matrix is normalised in
order to maintain the convergence of the measure. Using a vitality based
measure of both standard and relaxed communicability indices we looked
at the ways of establishing the most important individuals for broadcast-
ing and receiving of messages related to community bridging roles. We
illustrated our findings with two examples of real-life networks, MIT re-
ality mining data set of daily communications between 106 individuals
during one year and UK Twitter mentions network, direct messages on
Twitter between 12.4k individuals during one week.
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1 Introduction

Today’s interconnected world with millions of users of mobile devices, computers
and sensors leaving digital traces provides social scientists with previously unseen
opportunities to create and validate their theories on a large scale. These social
networks, captured in digital world, present us with research challenges: they
are large, multi-layered and dynamic, i.e. they evolve from moment to moment.
Thus, there is a need for the methods developed for regular and arbitrary static
networks to be extended and adapted to dynamic, evolving networks.

One of the very important and well researched characteristics of an individual
(a node) in a social network is its centrality score. Centrality measures the rela-
tive importance of a node and determines its involvement in a network. Although
different centrality measures were proposed, tested and compared on undirected,



directed and weighted networks (for reviews see [3,16]), only relatively recently
research focused on centrality in evolving networks [9,13].

For static networks, Katz centrality [15] computes the relative influence of
a node within a network by measuring the number of the immediate neighbors
and all the other nodes in the network that connect to the node under con-
sideration through the immediate neighbors. Walks made to distant neighbors
are penalised by an attenuation factor α. This concept was recently revisited
in [9,13]. Communicability across time-steps is based on the extension of Katz
centrality to evolving networks. The concept is already successfully implemented
on a small scale mobile phone and email communication networks [13,12] and C.
Elegans brain networks [6], however scaling it up to very large data-sets involves
handling large matrices.

Another measure of centrality in static networks, Bonacich centrality [1], [2]
introduces another parameter, similar to Katz centrality, but penalising direct
and indirect links. Recently, this measure was revisited in [11] where the authors
investigated whether the measure converges, and proposed a normalised variant.
Although their motivation came from the claim that computing a spectral ra-
dius ρA (the largest eigenvalue of an adjacency matrix of a graph) is difficult,
“especially for large networks” (see pp. 2 of [11]), we note that in social network
analysis settings where networks are mostly sparse, power iteration or similar
methods could be used, that efficiently compute an approximated value of ρ even
for very large sparse matrices, or else Perron-Frobenius theorem (see e.g. [10])
provides simple but useful bounds. However, we argue that a constraint such
as α < 1

ρ(A) is limiting and should be relaxed for different reasons, particularly

as it might penalise too heavily not-so-long paths, and thus lower significantly
the centrality ranking of nodes that connect different communities which might
have implications in large social network analysis. The “structural holes” theory
[4] refers to the absence of links between two parts of a network. Brokerage ex-
ploits structural holes – an individual is connected to two other individuals or
communities not mutually connected. This position could be beneficial for such
an individual (a broker) as she/he could control a flow of information between
two communities, profit from two different sources of information and mediate
trade between them. Also bridges between different communities in a social net-
work are important when trying to identify communities in the large unknown
network and to run a network-based intervention which depends on community
structure to change behaviour of individuals in the network [17].

In the empirical analysis of several real-world and artificial generic models of
networks, Jamaković et al. [14] looked at the different upper bounds of spectral
radius from the simple bound given by the graph’s maximal degree to more com-
plex bounds featuring local information (average neighbours degree) or global
information such as diameter. They found that for three real-world networks
they investigated, a bound given by [7] was the closest to the observed values,
while for the Internet autonomous systems topology the same bound was over-
estimating the real value significantly. When using artificial generic networks
(random, small-world, preferential attachment networks) with the same number



of nodes and edges as in the real-world networks, the spectral radii of all three
types of networks were much smaller then the real-world one in the Internet AS
topology case. This is important because the spectral radius is also found to be
connected to epidemic spreading in networks (see [18,5]).

In the following section we discuss how communicability indices are related to
spectral radius and propose a new centrality measure which relaxes convergence
constraints previously imposed by the spectral radius. We then create vitality
measure based on centrality indices and show how to detect the individuals whose
lack of existence would result in the biggest changes in centrality in evolving
networks. We apply our findings to two real-life networks, and conclude with the
discussion.

2 Relaxed Communicability

An evolving network is a family of graphs Gi = (V,Ei), where the vertex set
V is given in advance and is fixed throughout time, and an edge set Ei is a set
of edges on V in the time i. We assume that the time is discrete and finite, i.e.
i = 1, · · · , n. The corresponding adjacency matrices are denoted with Ai.

2.1 Communicability

For a static matrix A, the Estrada-Hatano communicability indices for a matrix
A can be obtained from a communicability matrix as the row/column sums,
given by

Q = eA (1)

where the matrix exponential of a matrix A is defined as

eA =
∞∑
k=0

1

k!
Ak (2)

This can be extended to evolving networks by Q =
∏n

i=0 e
Ai , which can be com-

puted directly for small-scale networks. Another version of a communicability
matrix, closer to the Katz definition, from [13] is given by:

Q =

n∏
i=0

(I − αAi)
−1 (3)

where I is identity matrix, α < 1
max(ρ(Ai))

, i = 0, . . . , n denotes consecutive time-

steps and ρ(Ai) is the spectral radius of Ai. Henceforth, we refer to (3) as the
“standard communicability”. Broadcast and receive indices are equal to the row,
resp. column sums of Q.



2.2 Spectral Radius Bound

In the case where existing communicability indices are used (3), Katz centrality
for each Ai can be written as

(I − αAi)
−1 =

∞∑
k=0

αkAk
i (4)

and in order that (4) converges in standard matrix norm, one has that the atten-
uation factor α < 1

ρ(Ai)
and similarly α < 1

max(ρ(Ai))
, i = 0, . . . ,M for (3). On

the other hand, looking at each individual Ai, if α is interpreted as a probability
that, once sent, a message will be successfully transmitted by any receiving node
to any of its contacts, then the expected length of a single transmission sent
from nodes in the network corresponding to Ai is

∞∑
k=0

kαk(1− α) =
α

(1− α)
(5)

This implies for matrices with a spectral radius of more than 3, we must
choose α < 1

max(ρ(Ai))
, the expected value of transmission length will be less

than 1
2 , and if a spectral radius is greater than 2, the expected transmission

length is less than 1.
As it was shown in [14] some of real-world networks have radius greater

than 2, resulting in expected path lengths between 1 and 2, which means that
especially paths between two communities are too heavily penalised. In order to
mitigate the attenuation, we propose to normalise A and relax the condition on
the attenuation which allows for longer paths and so rewards individuals that
act as bridges between different communities appropriately.

2.3 Relaxed Communicability

For a large data-set where the size of the matrix Q is prohibitive, and computing
inverse of such a large matrix represents a challenge, an approximation of Q
can be computed using a Taylor series approximation ignoring summands of
order higher than some n, depending on the application. In order to compute
(I − αA)−11 without storing Q, the following method can be used where b is
initialised to the all ones vector of length n.

(I − αA)−1b = b+ αAb+ α2A2b+ · · · (6)

We will use this representation to define new relaxed communicability indices.
Instead of having α = 1

2max(ρ(Ai))
, for the expression to converge, it is enough

for α to be less than 1, and that A is normalised. From the expression for the
expected path length (5), ensuring that

α <
l

1 + l
(7)



where l ∈ N is the expected path length, we have that α will always be less
than 1 and we can set parameter l on a desired path length depending on a
context, i.e. what kind of centrality we are interested in. Thus, to obtain relaxed
communicability indices, one should choose a length of path l depending on the
application, calculate α from (7) for given l, initialise b to be all-ones vector
and multiply it with α and matrix Ai normalised with 2-norm of Ai iteratively.
Summing up all iterative factors up to the order n, which depends on how small
one’s approximation error needs to be, gives the result for Ai. Results need to
be multiplied for all consecutive Ais. In the case of a small graph, Q can be
obtained directly from (3) using computed α and replacing A with A

∥A∥ .

2.4 Vitality Measure

In order to rank the nodes by importance during a time period we formulated
vitality-based measure by computing the corresponding centrality indices in the
absence of one node at time. For a series of adjacency matrices Ai1 , · · · , Ai2

we compute communicability indices using both standard and relaxed commu-
nicability indices. Furthermore, for each vertex k, we compute Qk,which is ob-
tained deleting exactly the kth row and the kth column from Ai1 , · · · , Ai2 , and
then calculating both versions of communicability. Then we calculate the differ-
ence between Qk indices and Q for each k, as a sum of least squares to check
which nodes are responsible for the biggest changes in indices’ values. We give a
pseudo-code for vitality measure on Fig 1, which is independent of the version of
communicability used (standard or relaxed). We will discuss in the next section
how results depend on the type of communicability used.

3 Applications

We used two real-world data sets. The first one is the mutual mobile phone
communications over a year for 106 individuals which was captured as a part of
the MIT reality mining data set [8]. The second is the data-set obtained from
Twitter UK mentions network collected on our behalf by Datasift, Twitters cer-
tified partner. The network was created from public messages that users located
in UK sent to each other on Twitter using @ sign during 1 week in Dec 2011.In
both cases we aggregated data on daily basis.

3.1 Case-study 1: MIT Reality Mining Data

Data is aggregated on a daily basis, and contains 365 binary adjacency matrices,
from the 20th July 2004 onwards, denoted with A1 to A365. An entry (i,j) of Ak

is equal to 1 if there was at least one phone call between i and j on day k. On
Fig 2 given are the spectral radii of all 365 matrices. One can observe how the
communication structure changes through the year.

On Fig 3 we show an example of a daily communication network. The vertices
with labels 10, 45, 59 and 71 (highlighted on Fig 3) have relatively small degree,



Vitality measure

compute indices (column and row sums of Q for A_i_1..A_i_2)

ls=0

for j=1:N

remove A_k(j, .) and A_k(., j) for k=i_1,..,i_2

compute indices_j (column and row sums of Q_j)

end

for i =1:j-1

ls(j,1)=ls(j,1)+(indices_j(i,1)-indices(i,1))^2;

ls(j,2)=ls(j,2)+(indices_j(i,2)-indices(i,2))^2;

end;

for i=(j+1):n

ls(j,1)=ls(j,1)+(indices_j(i-1,1)-indices(i,1))^2;

ls(j,2)=ls(j,2)+(indices_j(i-1,2)-indices(i,2))^2;

end;

ls=sqrt(ls)

Fig. 1. Computing vitality measure. Indices are 2xn array - the first column is Q’s
column sum, and the second is Q’s row sum. Qj is obtained from all Ais removing j-th
column and j-th row from each adjacency matrix, and indicesj are then column and
row sum of Qj .

but they connect different communities and therefore are important. We picked
a sample of seven daily networks on the days 32, 55, 96, 135, 158, 220 and 315,
looking at the different values of spectral radii. We computed communicability
indices using the standard and relaxed versions. The Table 1 presents results of
rankings in descending order (1 top to 106 bottom) in both cases, showing much
higher rankings when the relaxed version with the length of path 3 was used.
On Fig 4 we show scatter plot of standard vs. relaxed broadcast indidces (left
panel) and standard vs. Estrada-Hatano communicability indices on the right
panel. The upper left diagonal of the figure represent nodes that have higher
rankings in relaxed than in standard indices. Note that in both standard and
relaxed indices more weight for broadcast indices lies on the first matrix in the
sequence, while for receive indices it is the last matrix that carries most of weight.
While Estrada-Hatano indices do not correlate with standard or relaxed indices,
they still rank higher most of community bridges. Thus Estrada-Hatano indices
could be used when the expected transmission length is not known, but if the
length of transmission is important, our parametric approach will highlight more
relevant nodes.

3.2 Case-study 2: Twitter Mentions Network Data-set

The data-set comprised of around a million of tweets between UK users that
contained mention of another UK user (sign @). The nodes represented the



Fig. 2. MIT data:Spectral radii of A1 to A365 matrices.

Fig. 3. MIT data: An example of a daily network (its largest connected component),
on the day 32.

Table 1. Ranking (in descending order, top 1 to bottom 106) of broadcast vs. relaxed
broadcast

Vertex Rank (broadcast) Rank (relaxed broadcast)

10 71 21

45 35 25

59 85 28

71 71 21



Fig. 4. Standard vs. relaxed broadcast indices, left, and standard vs. exponential broad-
cast indices, right.

users, and if user A’s tweet contained ”@B”, an edge between A and B was cre-
ated. Only reciprocated edges were kept and multi-edges were ignored. All daily
tweets were aggregated into a daily network, so we finished with 7 daily undi-
rected graphs with 12408 nodes and around 2.7k edges in average. We computed
both communicability and relaxed communicability indices, both using rank ob-
tained from communicability, and rank obtained from vitality based measure
(deleting each node and computing the sum of differences for all the other nodes
as described earlier).

3.3 Results

Fig. 5. Top 50 vertices according to the ranking based on standard (left) and relaxed
(right) broadcast.

Although the computation of vitality measure is quite demanding (one needs
to recompute communicability matrices for each node once) this is feasible as
the daily networks are quite sparse. At 12408 vertices and 7 time-steps, this col-
lection contains relatively big, but not large networks. Their broadcast indices
decrease quickly so we ranked the indices from largest to smallest with respect



Fig. 6. Top 50 vertices according to the ranking based on standard (left) and relaxed
(right) vitality.

to broadcast and looked into more details at the first fifty indices. On Fig 6 one
can see the difference in ranking between the two methods. Several vertices that
are ranked much higher in relaxed than in standard broadcast index correspond
again to vertices with relatively small degrees and were picked up as they con-
nect different communities (e.g. vertex ranked 39 in relaxed is ranked 278 in
normalised and has a degrees equal to (2, 0, 0, 3, 1, 0, 0) respectively in 7 daily
networks.)

4 Conclusions

We used communicability indices to rank the nodes in evolving communica-
tion networks. While the computation of communicability for small-data sets
is relatively simple and fast, for the large data-sets it means handling of large
matrices, so one can use a Taylor approximation. We introduced a parameter
(transmission length) that allows for targeting specifically brokers or bridges
between communities. We have applied this approach on two real-life evolving
networks obtained from mobile phone communications and Twitter. Using the
vitality based measure, we proposed a way to rank vertices depending on the
amount of change their communication abstinence would bring to the rest of the
evolving network. We hope that a parametric approach that can be optimised
according to a particular application will be a useful addition to a standard
evolving social network analysis toolbox, especially when the expected length
of message/communication transmission plays an important role, i.e. it is either
given or can be approximated.
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14. A. Jamaković, R.E. Kooij, P. Van Mieghem, and E.R. van Dam. Robustness
of networks against viruses: the role of the spectral radius. In Symposium on
Communications and Vehicular Technology, 2006, pages 35 –38, November 2006.

15. L. Katz. A new index derived from sociometric data analysis. Psychometrika,
18:39–43, 1953.

16. Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks, 32(3):245, 2010.

17. Th. Valente. Network interventions. Science, 337(6090), 2012.
18. Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epi-

demic spreading in real networks: An eigenvalue viewpoint. In In SRDS, pages
25–34, 2003.


	Cover_13_09.pdf
	centrality

