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Abstract

We give a characterisation of the spectral properties of linear differential operators with
constant coefficients, acting on functions defined on a bounded interval, and determined by
general linear boundary conditions. The boundary conditions may be such that the resulting
operator is not selfadjoint.

We associate the spectral properties of such an operator S with the properties of the
solution of a corresponding boundary value problem for the partial differential equation 0:q £+
iSq = 0. Namely, we are able to establish an explicit correspondence between the properties
of the family of eigenfunctions of the operator, and in particular whether this family is a basis,
and the existence and properties of the unique solution of the associated boundary value
problem. When such a unique solution exists, we consider its representation as a complex
contour integral that is obtained using a transform method recently proposed by Fokas and
one of the authors. The analyticity properties of the integrand in this representation are
crucial for studying the spectral theory of the associated operator.

MSC: 47A70, 47TE05, 35G16, 45P10, 35C10

1 Introduction

In this paper, we study the following two objects:

(1) A linear constant-coefficient differential operator S defined on a domain of the form
D(S) = {u € L?*[0,1] : u sufficiently smooth and satisfying n prescribed boundary
conditions}.

(2) An initial boundary value problem (IBVP) for the linear evolution partial differential
equation ¢ (z,t) £ iSq(z,t) = 0, z € (0,1) t € (0,T), with S as in (1), an initial
condition g(x,0) = qo(x) and n given boundary conditions.

The boundary conditions, assumed to be linear, can be prescribed at either end of the interval
[0,1], or can couple the two ends.

It is to be expected that the objects (1) and (2) are closely related. For each of these
objects, it is natural to formulate a basic question, whose answer depends on the specific
boundary conditions. Namely, given a set of n boundary conditions,

(Q1) does the resulting operator S admit a basis of eigenfunctions, in any appropriate sense?

(Q2) does the resulting initial-boundary value problem admit a unique solution representable
by a discrete series expansion in the eigenfunctions of S?



Although it should be clear that these are the same question posed in different contexts,
very little is explicitly known beyond the classical cases when the spatial operator has a
known basis of eigenfunctions. This basis can be used after separation of variables to express
the solution of the boundary value problem.

In this paper we give an explicit connection between the two problems in general; we give
a link between the solutions of (1) and (2), and we show precisely how the answer to (Q1)
and (Q2) are related. In particular, the rigorous answer to one question can be given through
answering the other. Our results are true for general n, however they are new and interesting
in particular for n odd.

Since in general S will not be self-adjoint, we expect that any spectral decomposition
involves not only S but also the adjoint S*. In terms of the PDE problem, we will see that
this is reflected in the need to consider both the initial time and the final time problems (the
evolution with reversed time direction).

The operator problem

We consider the linear ordinary differential operator S, given by

Su = (fi%) u,  ueDS), (1.1)
defined on the domain D(S) C L?[0,1] given by

D(S) = {u € AC™0,1] : A(u™ " (0), w1 (1),...,u(0),u(1)) = 0}, (1.2)

where
AC™ ={f e c" ' : f"7V absolutely continuous and f™ e L?[0,1]}. (1.3)
By D(S), we denote the L? closure of D(S). Here the order n > 2 is an integer and the

boundary coefficient matriz A € R"*?" encoding the given boundary conditions, is of rank n
and given, in reduced row-echelon form, by

01n-1 Pin-1 Qin-2 Pin-2 ... oc10 Bio
Qa2n—1 ﬂQ n—1 Qa2n—2 /32 n—2 o Q20 ﬂQO

A= _ . : (1.4)
Qpn—1 Bn n—1 QOnn-2 ﬁn n—2 .- Qn 0 BnO

The numbers o, B, are called the boundary coefficients.

This operator has been studied at least since Birkhoff (1908b). Depending on the particular
entries of the matrix A, the operator may or may not be selfadjoint. The theory of the
selfadjoint case was fully understood by the time Dunford and Schwartz (1963) presented it.

Locker (2000, 2008) used the theory of Fredholm operators to study the non-selfadjoint
case. He defined the characteristic determinant

Ap) = € Z=1"7 det M(p), (1.5)

where w = exp(27i/n) and the entries of the matrix M (p) are given by
i _ i k—1 n ) _
Mij(p) =) ajr(iw ™ p) ™™ P4y By (i )"
r=1 r=1

It is known that, provided A # 0, if A(c) = 0 then ¢” is an eigenvalue of S. Further,
the algebraic multiplicity of o™ as an eigenvalue of S is equal to the order of o as a zero of
A. Locker showed that, for Birkhoff-regular operators, the generalised eigenfunctions form a
complete system. However, he gives no general statement about the cases that do not satisfy
these regularity conditions.



The PDE problem

In a separate development, a novel transform method for analysing IBVPs was developed by
Fokas (see Fokas, 2008, for an overview). The method was applied to IBVPs posed for evolution
equations on the half-line by Fokas and Sung (1999) and on the finite interval by Fokas and
Pelloni (2001) with simple, uncoupled boundary conditions. In Smith (2012), Fokas’ method
was applied to IBVPs whose spatial part is given by the operator S, namely those of the form

Oeq(z,t) + a(—i0z)"q(z,t) =0, z€(0,1), t>0, a= =i, (1.6)

with prescribed boundary conditions and an initial condition go(z) = ¢(z,0), assumed smooth
to avoid technical complications. Usually the initial condition is assumed to be in C*°. How-
ever, the same results hold assuming that g0 € AC"™. Indeed, in this case, the uniform
convergence of the integral representation (see (1.7) below), the poynomial decay rate of the
integrand and the explicit exponential x dependence imply that the solution ¢ belongs to the
same class. In what follows we assume qo € AC™.

This method yields an integral representation of the solution of the initial-boundary value
problem in the form

1 ipr—apnt (T 1 ; ng 7
q(CC,t) _ %£‘+ olpr—ap t C (p) dp+ ‘/Fi ezp(zfl)fap t C (p) dp

APDE % APDE

. iocpx—aoyt } <+(p) - iog(x—1)—aoyt } C_ (P)

A R Gy 2 e R Bons 7 07
where the quantities go, (¥, Appg, ox and I'F are defined below in Definitions 2.1 and 2.4. In
many cases, including all problems with n even, the integrals in equation (1.7) both evaluate
to zero (Smith, 2012). We study these cases here.

In Pelloni (2004, 2005) and then in greater generality in Smith (2011), this method is used
to characterise boundary conditions that determine well-posed problems, and problems whose
solutions admit representation by series. To achieve this characterisation, the central objects
of interest are the PDE characteristic matriz A (see Definition 2.1 below) and its determinant
AppE .

Note that in this work, by ‘well-posed’, we mean existence and uniqueness of a solution
and make no claim to continuity with respect to data. By ‘ill-posed’ we mean that existence or
uniqueness fails. The results of Fokas and Sung (1999); Pelloni (2004); Smith (2012) establish
that a problem is well-posed if and only if it admits a solution via the method of Fokas.

The present work details results connecting the spectral theory of S with the behaviour
of the associated IBVPs for the PDE (1.6), as well as the one obtained from the same set of
boundary conditions but for the PDE

Oq(z,t) — a(—i0z)"q(z,t) =0, =x€(0,1), ¢>0. (1.8)

We refer to the latter in the sequel as the final time boundary value problem.

Summary of the main results

For an operator S of the type given by (1.1), and the associated initial- and final-boundary
value problems, we prove the following;:

o If the eigenfunctions of S and S* form a biorthogonal basis of D(S) and the IBVP is
well posed, then its solution is representable as a series.

This is the content of Proposition 2.7. It follows from this result that if a series represen-
tation does not exist, then the eigenfunctions of S and S* cannot form a basis of D(S5).
What is interesting is that we can use the PDE approach to obtain results on S in cases
that are not covered by usual operator theoretic techniques. In section 4 we provide an
example when (Q1) cannot be answered by the usual tests involving projector norms,
but may be settled through this result and a negative answer to (Q2).



e If the initial- and final-boundary value problems are well posed, then the eigenfunctions
of S and S* form a complete biorthogonal system in D(S).

This is the content of Theorem 2.6. The conclusion does not imply that the eigenfunc-
tions necessarily form a basis. However the integral representation (1.7) can always be
deformed to derive a series representation for the solution of the IBVP in terms of the
eigenfunctions.

e The departure of the family of eigenfunctions of S and S™ from being a biorthogonal basis
can be estimated in terms of the integrand in the representation of the solution of the
associated IBVP.

This is the content of Theorem 2.12. This departure is quantified in the notion of
‘wildness’ (see Davies, 2007). Indeed, if the eigenfunction of S and S* form a wild
system in L?[0, 1], then we provide an estimate of the wildness of the system in terms of
the quantities used to determine whether the initial- and final-boundary value problems
are well posed.

Outline of paper

In section 2, we review the necessary definitions and notation. Following this, we precisely
state and prove the results described above.

Each of sections 3 and 4 is devoted to the analysis of an example which illustrates the above
general results. We compare and contrast the results obtained through the new theorems with
those yielded by Davies’ wildness method.

2 Complete and basic systems of eigenfunctions

2.1 Notation, definitions and preliminary results

In this paper, we make extensive use of the notation developed in Smith (2012). We refer to
that paper for details, but we list here some of the notation used throughout the rest of this
work.
The initial-boundary value problem II(n, A, a,q): Find ¢ € AC™(]0,1] x [0,T]) which
satisfies the linear, evolution, constant-coefficient partial differential equation
Drg(x.t) + a(—id.)"q(z,t) = 0 (2.1)
subject to the initial condition
q(x,0) = go(x) (2.2)
and the boundary conditions
A(05719(0,0), 02 (1), 02 %q(0,1), 02 g1, ), q(0,1),0(1,1)) " = h(t),  (23)
where the quadruple (n, A, a,q) € N x R x C x AC™[0,1] is such that
(I11) the order n > 2,

(I12) the boundary coefficient matriz A is in reduced row-echelon form,
(TI13) the direction coefficient has the specific value a = =+,
(I14) the initial datum qo is compatible with the boundary conditions in the sense

A (a0 0,6 V10,082 0), 6" V1), a0 (D) =0 (24)

Given a problem II = II(n, A, a, qo), we define the corresponding final time time problem
I’ =T(n, A, —a, qo).

We assume that the boundary conditions are homogeneous to aid the comparison with
S, the differential operator representing the spatial part of the PDE problem II. There is
no loss of generality in this assumption. Without this restriction, II is no more difficult to
solve; the solution simply contains an additional term represented as an integral along the real
line (Smith, 2012).



Definition 2.1. Let oy ;, f5; be the boundary coefficients of the operator S*, adjoint to S.
We define

n—1

Afi(p) =D (=i p) ak, (2.5)
r=0
n—1

Aci(p) = Y _ (=i ") i, (2.6)
r=0

then Ax;(p) = AL (p) + Ay (p)e ™" (2.7)

is called the PDE characteristic matrix. The determinant Appr of A is called the PDE
characteristic determinant.

Remark 2.2. The PDE characteristic matrix is a realisation of Birkhoff’s characteristic ma-
trix for S* and also represents the Dirichlet-to-Neumann map for the problem II. Indeed, it
is through this matrix that the unknown (Neumann) boundary values are obtained from the
(Dirichlet) boundary data of the problem. Smith (2012) uses a different but equivalent defi-
nition of A which generalises the construction via determinants and Cramer’s rule originally
found in Fokas and Sung (1999). The validity of the new definition is established in Fokas and
Smith (2013) and the equivalence is explicitly proven in Smith (2013b).

Remark 2.3. In Definition 2.1, we construct A via the boundary conditions of S*. Tt is
possible to make an alternative but equivalent definition of A via an explicit construction
from the boundary conditions of S itself. For the examples considered in sections 3-4, this
is a simple matter. Indeed, provided the boundary conditions of S are non-Robin, Smith
(2011, Lemma 2.14) provides a simple construction. This can be done for general boundary
conditions (Smith, 2012) and can easily be coded to be done automatically.

Definition 2.4. Let (o%)ren be a sequence containing each nonzero zero of Appg precisely
once. We define the index sets KY = {k € N: o, € Ct}, K~ ={k € N:oy € C"}. Let
3e be the infimal separation of the zeros or. Then the contours I'* are the positively-oriented
boundaries of

{p € C* : Re(ap") > 0} \ | B(ow,e). (2.8)
keN
The minor X" (p) is the (n—1) x (n—1) submatriz of A whose (1,1) entry is the (r+1,j4+1)
entry. This is used to construct the spectral functions

(o) = 303 det X7 () AT (Pl p), (2.9)

r=1j=1

~(p,q0) ZZdetX AL (P)do(w" " p), (2.10)

r=1j=1

where )
i) = [ e an(e) da.
0

Definition 2.5. We say the IBVP is well-conditioned if it satisfies:
¢*(p) is entire and the ratio

¢t (p) -0 as p — oo from within a sector exterior

AppE (p) to I'F, away from the zeros of Appg . (211)

Otherwise, we say that the problem is ill-conditioned.

Well-conditioning of an IBVP is not a classical definition and is unrelated to the concept of
conditioning that appears in numerical analysis. Conditioning, in the sense of Definition 2.5,
is necessary for well-posedness but is also central to the validity of a series representation.
Indeed, switching the direction coefficient a — —a in the PDE (1.6) switches which sectors are



enclosed by the contours I'* thus, by Jordan’s Lemma, well-conditioning of the problem with
the opposite direction coefficient is equivalent to the two integrals in (1.7) vanishing (Smith,
2012).

The reader will recall that a system (¢»)nen in a Banach space is said to be complete if its
linear span is dense in the space and such a system is a basis if for each f in the space there
exists a unique sequence of scalars (an)nen such that

£ =l (Z %%) -

2.2 Well-posed PDE systems and bases of eigenfunctions

It is well known (see Coddington and Levinson, 1955, Section 12.5) that if the zeros of the
characteristic determinant A of S are all simple then the eigenfunctions of S form a complete
system in D(S). This theorem is proven using an analysis of the Green’s functions of both the
operator S and its adjoint S*. We prove the following result without directly analysing the
adjoint operator.

Theorem 2.6. Let S be such that the zeros of Appg are all simple. Let I = II(n, a, A, qo, 0)
be an IBVP associated with A and I be the corresponding problem with the opposite direction
coefficient, T(n, —a, A, qo,0). If II is well-posed and 1 is well-conditioned in the sense of
Definition 2.5 then the eigenfunctions of S form a complete system in D(S).

Rather than analysing both the original operator S and the adjoint operator S*, one
needs information on both the initial- and final-boundary value problems associated with the
operator S.

A stronger, but essentially straightforward, result in the reverse direction is:

Proposition 2.7. If the eigenfunctions of S form a basis in D(S) and, for some a, the
associated IBVP 11 is well-posed, then II' is well-conditioned.

Further, if (¢r)ken are the eigenfunctions of S, with corresponding eigenvalues (o} )ken
then there exists a sequence (Vr)ren biorthogonal to (¢)ken such that the Fourier expansion

> 6n() (o, tr)e 7 (2.12)

keN

converges to the solution of II.

Indeed, in the notation of Proposition 2.7, each v is an eigenfunction of the adjoint
operator S* with corresponding eigenvalue —oy (Birkhoff, 1908a).

The above results are essentially the translation into operator theory language of results
proved in Smith (2011). Here we extend the parallelism between PDE and operator the-
ory in important ways. Namely, under some further assumptions, we construct explicitly
the eigenfunctions of the differential operator directly from the PDE characteristic matrix.
The construction does not require knowledge of the integral representation even implicitly, as
neither II nor IT' need be well-posed.

In the sequel, we assume that the boundary conditions are non-Robin and that a technical
symmetry condition always holds, see Conditions A.1 and A.2 in the appendix. We also define

5 (P q0) Zdet X" (p)do(w" " p), (2.13)

so that
*(p; q0) ZAU )¢ (3 qo)- (2.14)

In the next proposition, we characterlse the eigenfunctions of S in terms of the PDE
characteristic matrix and the spectral functions.



Proposition 2.8. For each k € N and for each j € {1,2,...,n}, the function

n

$i(z) = e ™I dot X7 (gy,) (2.15)

r=1

is an eigenfunction of S with eigenvalue o}, . Further,

Cj(a—kyqo) = Ci<q07wljg>a ] = 17"'7”7 keN (216)
J

(G, q0) = Cj{qo, ¢L). (2.17)

Y1 —z) = C;l(x), (2.18)

where 1/1{; is the corresponding eigenfunction from the adjoint operator S* and Cj is a nonzero
real scalar quantity depending only upon j.

Remark 2.9. The proposition above requires that the boundary conditions be non-Robin
and obey the symmetry condition. These requirements may not be sharp but we have been
unable to find an example failing either condition for which the result holds.

By Proposition 2.8, the spectral functions of the original and adjoint problems, which we
denote by (j, ¢, obey the identity

Gi(ok,q0) _ Cf(Qoywb. (2.19)

G(@ra0)  (qo,))

The function go(x) denotes the initial datum of the IBVP. Hence it can be chosen arbitrarily
in D(S). The particular choice go(z) = ¢} () is admissible since ¢j (z) is C* by definition.
With this choice, equation (2.19) yields

Gilow ) _ llwdll* _ G lIeb Il

@R Yl) (Wl on) W1, o5

where Q) is the projection operator

= G511 Qxll, (2.20)

Qr(f) = ([, Pr) ¥k (2.21)

considered by Davies (2007). Note that the latter equality follows from equation (2.18).
By a simple change of variables we find

G (Pra0() = =Ci¢i(p, (1 = -)). (2.22)

We therefore deduce the following important result, which gives a way to control the norms of
the projection operators Qi explicitly in terms of the spectral functions associated with the
corresponding initial and boundary value problem.

Proposition 2.10. Let S be the operator associated with I1. Then the eigenfunctions d)f; and
Y] of S and of its adjoint satisfy
J 12 C.il J
(Dr %) —¢i(ow, 0L)

Remark 2.11. This result implies that we can estimate ||Q|| using only the spectral functions
of the initial- and final-BVPs, whose construction is algorithmic.

Conversely, this proposition has an important consequence, namely an estimate on the
unboundedness of the spectral functions in terms of the “wildness” of the family of biorthogonal
eigenfunctions of S. (Following Davies (2000), we say that a biorthogonal system is wild if
the corresponding projection operators are not uniformly bounded in norm.) We illustrate the
result of this theorem in the two examples we consider in sections 3 and 4.

Theorem 2.12. Let qo be any admissible initial condition for the boundary value problem,
and let (pr)ken be any sequence such that



® pp — 00 as k — oo.

® |pk| < |pr41l

e (pi) is bounded away from the set of zeros of Appg, uniformly in k:
W>0: VhjEN, [l —losll >0

Then

_ Gi(prs ) Appe (pr)
@l =0 (?;R [APDE (k) ¢ (ks 07, }) koo

2.3 Sketch of proofs

Proof of Theorem 2.6. As II is well-posed and II’ is well-conditioned, by Smith (2012, 2013a)
the solution g of the problem II can be expressed using a series as

eipzfap”t eip(zfl)fap”t

#)=i 3 Res " CH(p)+i 3 Res S (p).
alet) =i 3 Res Toa s ) +i 3 Res =i (o)
keK+ keK

As each oy, is a simple zero of Appg , the series is separable into x-dependent and ¢-dependent
parts

i iopx ¢t (p) . +

gk(x) _ 5‘6. k Resngk ﬁ}i}p(@ if k S K s (2.24)
%ew"‘ (==1) Reszgk Af:;Dig)()p) if k e I(_7

T(t) = e 7R, (2.25)

so that
a(@,0) = 3 €n(@) D). (2.26)
keN
Further, Smith (2012, Lemma 6.1) guarantees the existence of a nonzero complex constant C
such that o, = Ck + O(1) as k — oo, which, by Sedletskii (2005, Theorems 3.3.3 & 4.1.1),
guarantees that (7x)ren is a minimal system in L?[0,T].
As ¢ is the solution of II, ¢ satisfies

97 'q(0,1)
aytq(1,t)

The minimality of the t-dependent system means that this implies each £ satisfies the bound-
ary conditions of S, so & € D(S).
As ¢ satisfies the PDE,

0= a Y [0t + S)(6) ()mi (1)

keN

so, by minimality of (7%)ren, each & is an eigenfunction of S with eigenvalue o};.
Evaluating equation (2.26) at ¢ = 0 yields an expansion of qo in the system (§x)ken. O

Remark 2.13. We have to require the zeros of Appg are all simple. It would be desirable to
be able to say that the zeros of A and Appg are all the same and of the same order. It has been
shown that this holds under certain symmetry restrictions on the boundary conditions (Smith,
2011) and has been established in particular for all possible 3™ order boundary conditions.



Proof of Proposition 2.7. As (¢r)ren is a basis, the Fourier expansion

q0(2) = 3 61(2) (g0, 1)

keN

converges. By Smith (2013a), well-posedness of I guarantees that the o, are arranged in
such a way that the exponential functions e?kt are bounded uniformly in k, hence that the
series (2.12) converges for all ¢ € [0,T]. The eigenfunctions all satisfy the boundary conditions
of the operator so the Fourier series satisfies the boundary conditions of the initial-value
problem. The Fourier series also satisfies the partial differential equation. So we have a series
representation of the solution and IT" must be well-conditioned. O

Proof of Proposition 2.8. Let B; be the I*" boundary condition of S. As the boundary condi-
tions are non-Robin, they each have an order m;. Hence

n

Bu(¢]) = (o™ )™ [arme ™ 4 B, | det X7 (o). (2.27)

r=1

The bracketed expression is an entry from row 7 of the characteristic matrix of S. Provided
the boundary conditions also satisfy the symmetry condition, an algebraic manipulation yields
that each column of the characteristic matrix of S is a scalar multiple of a column of A (see
the proof of Smith, 2011, Theorem 4.15). So either B, (qﬁi) is the determinant of a matrix with
a repeated column or Bi(¢],) = Appr (0k). In either case, Bi(¢},) = 0, so ¢, € D(S). Finally,
S(61) = op ol

Let the map r — # be given by the permutation (1,n,n — 1,...,3,2), whose sign is
(—=1)™/21=1 Because the boundary conditions obey Conditions A.1-A.2,

C; detyrj(p) = e P det X7 *(p), VpeC (2.28)

where the real constant

o = o ] A

C 1]

and f; is the coupling constant appearing in the I*® column of A (1 if there is no coupling
constant in that column).

Indeed, as S is a closed operator, densely-defined on L?[0,1], the eigenvalues of S* are
the points 7, and & are the zeros of the adjoint PDE characteristic matrix (Smith, 2011,
Theorem 4.15). Note also that the construction of the adjoint boundary conditions from the
boundary conditions of the original problem (Coddington and Levinson, 1955, Theorem 3.2.4)
ensures that the adjoint boundary conditions also satisfy Conditions A.1-A.2.

As the boundary conditions are non-Robin, the only columns that may appear in A are

1 e’ (67 + Bm)
U.)l wlefzwp wl(efzwp + ﬁm)
) . ) . , (2.29)
w(n—l)l w(n—l)le—iwnflp w(n—l)l(e—iwnflp + ﬁm)
where [ may vary over {0,1,...,n — 1}. To each of these corresponds a unique column in A4*,
with the same values of [ as each column in A: respectively,
1 (€7 +1/B1)
wlefzwp wl wl(efzwp + ]-/ﬁm)
) ) . (2.30)
W= Dlg—iw"1p W=Dl wn =Dl (=" e 4 178,

Hence, to construct A(p) from A*(p) we apply the following operations:

—1—

1. For all v, multiply the r*® row by e TP,



2. For all m, multiply the m*® column by S,,.
3. Apply the permutation r — 7 to the row index.
4. Take the complex conjugate of each entry.

This justifies equation (2.28).
By equation (2.15), the eigenfunctions of the adjoint operator are

n

Pi(x) =S e TN qot XTI (57, ). (2.31)
r=1
By the definition of 7+ #, w'™" = w™~'. Hence
Yi(z) =3 T ot XTI (57, ). (2.32)
r=1

Hence, by equation (2.28),

Gl@) =G e T det X (o)
r=1

=Cy) e tokr det X7 (o).

r=1

Hence, by the definition of (;, it follows that ;(o%) = {qo, wi>/0j. O

3 Third order coupled and uncoupled examples

In this section we outline the analysis of a particular class of boundary value problems, de-
pending on a real parameter 3, for the third order PDE ¢; = @zz.. Namely we consider the
following problem:

qt = Qzaa, T € [07 1}7 te [07 T]a (31)
q(a:,O) = qO(x)v S [07 1}
q(0,2) = q(1,t) =0, q=(0,1) + Bg=(1,t) =0, t€[0,7], BER

where go € D(S) is a known function.

In the limit as the constant 8 — 0, the second boundary condition at = 0 is ¢ (0,t) = 0.
The spectral properties of this limiting case are very different from the case 5 # 0, when the
coupling between the first order derivatives is lost. Hence we refer to the boundary conditions
corresponding to the value 8 = 0 as uncoupled.

In this section we analyse the behaviour of the associated differential operator in the two
cases. To avoid technicalities, and to concentrate on the 8 = 0 limit, we assume in what
follows that g € (—1,1).

The associated differential operator

Let S? be the differential operator corresponding to the boundary value problem (3.1), hence
specified by n = 3 and by the boundary coefficient matrix

1 80 0
00 1 0|, Be(=1,1). (3.2)
00 0 1

Setting

3
L3
2

10



we find that the characteristic determinant (1.5) is given by

2 ) B o
A%(p) =ipy_w(e P 4 B)(e T — )
j=0

2 2
= ip(w — w?) Zwreiwrp -B Zwrefi“’rp (3.3)
r=0 =0
2
in particular A°(p) = ip(w — w?) Zwrewrp, (3.4)
=0

In all these cases, the PDE discrete spectrum is equal to the discrete spectrum of the
operator (Smith, 2011).

A calculation of the associated polynomials shows that the differential operator S? is
Birkhoff regular if 8 # 0. On the other hand, the differential operator S° obtained when
B = 0 is degenerate irregular by Locker’s (2008) classification.

Although the only difference between the coupled and uncoupled operators is the first
boundary condition, it is expected from the classification result that the operators have very
different behaviour. This difference is reflected in the spectral behaviour of the two differential
operators, as is shown in section 3.1 below. The initial-boundary value problems also have
very different properties. These are discussed in section 3.2.

3.1 The spectral theory

In this section we use operator theoretic results to investigate whether the eigenfunctions of
S# form a basis.

The case § # 0. It is shown in Smith (2011) that this differential operator is regular,
hence by the theory of Locker (2000) we conclude that the eigenfunctions form a complete
system in D(S).

The case § = 0. Since this differential operator is degenerate irregular, Locker’s theory
does not apply. Indeed, the proof of the following result can be found in Smith (2011) and
also in Papanicolaou (2011).

Theorem 3.1. Let S° be the differential operator corresponding to 8 = 0. Then the eigen-
functions of S° do not form a basis in D(S).

The proof is based on the following steps:

e The eigenvalues of S° are the cubes of the nonzero zeros of the exponential polynomial
ip iwp 2 iw2p
e’ + we™’ +we™ . (3.5)

The nonzero zeros of expression (3.5) may be expressed as complex numbers oy, woy,
w?oy, for each k € N, where Re(o,) = 0 and Im(ox) > 0. Then o}, is given asymptotically
by

—io), = % (k + é) +0 (efﬁﬁk) as k — oo. (3.6)

e For each k € N, ¢, is an eigenfunction of S° with eigenvalue o3, where

2
d(z) = Zeiu.ﬂ‘gkx (eiwr+2gk _ eiwr+lak) . keN. (3.7)

r=0

e The adjoint operator (S°)* has eigenvalues —o}, k € N, and eigenfunctions

Yr(z) = Ze_“f""l (e_mrﬁg’“ - e_mrﬂ"’“) , keN. (3.8)
0
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o Define Uy(x) = 9r(z)/{¥k, x). Then there exists some minimal ¥ € N such that
((Pr)iZy, (¥r)7ly ) is a biorthogonal sequence in AC™[0, 1]. Moreover

(Vr, k) = (—1)’6?6‘/‘3’”(1”%) +0(1) as k — 0. (3.9)

e The eigenfunctions have the same norm and it grows at a greater rate than their inner
product.

3\/§e%(k+%) (exz/%k

lell* = llpell* = yy - ) as k — oo. (3.10)

e Assume Y =1 (if Y > 1 the biorthogonal sequence ((¢r)iZy, (¥r)i—y ) is not complete).
Then the projections Qx = ||¢x||||Tk|| are well defined, and

_ lewl?
194 = T, o
) (o
_ 3evs e V3
_27r(k+é)+0<k ) as k — oo. (3.11)

Hence the biorthogonal sequence is wild. Now the results of Davies (2007, Chapter 3)
show that (¢)ken is not a basis in AC™[0, 1].

The case g =0 as a limit

We now consider the uncoupled case as the limit 8 — 0 of such calculations for the coupled
operator. The zeros of Appg B are given by

(k—%)ﬂ—i—ilog(—ﬂ)—&—O(e_ 23“) k even,

—V3kx

(3.12)
(—k—2)m+ilog(—B)+ O (e 2 ) k odd,

Ok =

and the eigenfunctions of S and S* are given by equations (3.7) and (3.8) respectively using
the new oj. After a suitable scaling, the eigenfunctions of the operator and its adjoint form a
biorthogonal sequence.

A direct computation shows that for 8 # 0, the fastest-growing terms in H¢>£ || cancel out
so that, for large k,

VBkm VBkr
||¢£|\2:O<e >k 1), <¢£,w£>:o(e 7"k 1).

(This cancellation does not occur in the case 8 = 0.) This causes the projection operators Q.
to be uniformly bounded in terms of the parameter 8 for 8 € [-1+¢, —¢] for every 0 < & < 1.
However, the bound is not uniform as ¢ — 0. This lack of uniformity is reflected in the
transition from a regular to a degenerate irregular problem.

It is useful to compare the positioning of the eigenvalues, of. Asymptotic estimates as
well as numerical evidence suggest that for any particular 5 € (—1,0) the zeros of Appg are
distributed approximately at the crosses in Figure 1; the solid rays and line segments represent
the asymptotic locations of the zeros; the dashed lines are 9D, the contours of integration in
the associated initial-boundary value problem. As 8 — 07, hence log(—f8) — —o0, the solid
rays move further from the origin, leaving the complex plane entirely in the limit, so that the
solid line segments emanating from the origin extend to infinity.

3.2 The PDE theory

We now show, using the Fokas method, that while the initial-boundary value problems is
well-posed for any value of 3, the solution admits a series representation only if 8 # 0, in
agreement with the operator theory result of the previous section.

12



Figure 1: The asymptotic position of oy, for g € (—1,0).

The case 8 # 0
It is already well known (Fokas and Pelloni, 2005; Smith, 2011) that in this case we have
the following result.

Theorem 3.2. The initial-boundary value problem associated with (Sﬁ,i) is well-posed and
its solution admits a series representation.

The case =0
Theorem 3.3. The initial-boundary value problem associated with (So,i) is well-posed but

the problem (S°, —i) is ill-conditioned.

Proof. The proof of the well-posedness claim in this statement can be found in Smith (2011).

However, for this example we now show that the statement ‘¥ (p)/Appr (p) — 0 as p — oo

from within the sets enclosed by I't’ does not hold, implying that (8°, —i) is ill-conditioned.
The reduced global relation matrix in this case is given by

c2(p)  cap)e™” ci(p)e””
iwp

AQp) = [e2lp)  calpe ™ er(ppwe e |,

alp) eap)e ™ P ea(p)we P

hence its determinant Appg (p) = A%(p) given by (3.4), and the functions
Gi(p) = ip(w? —w) > w Go(w p)e’ ?,
r=0
2 . rt1 )
(o) = ip S () (e e,
r=0

Glp) =ip Y do(ep) (77— e,
Gi(p) = Gs(p) = Galp) = 0.

As a = i, the regions of interest are

E; = E; \ {neighbourhoods of each o},

27 —1 27
Ej:{pEC:%<arg(p)<%}.
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We consider the particular ratio

G(p) ™
Ao (0) o)’ p € Fs. (3.13)

For p € Es, Re(iw"p) < 0 if and only if r = 2 so we approximate ratio (3.13) by its dominant
terms as p — oo from within Fs,

(do(p) — do(wp))e ™" + Go(w?p) (™" — ™) + o(1)
(w? —w)etr + (1 — w?)er 4 o(1)

We expand the integrals from go in the numerator and multiply the numerator and denominator
by e™*“” to obtain

ifol (eip(lfz) _ eip(lfwz) _ eipw2(17$) + efip(2wfw2z)) qAO(ZE) dz + o (eIm(wp))
V3(eir(1=w) 4 ) + o (elm(wr))

(3.14)

Let (Rj)jen be a strictly increasing sequence of positive real numbers such that p; =

Rjei% € E», R; is bounded (uniformly in j aEd k) away from {%(k + &) : k € N} and
R; — o0 as j — 0co. Then p; — oo from within E,. We evaluate ratio (3.14) at p = pj,
R V3R . . . R
ifol (%eTj(l_:‘)_Tj’ sin (7‘/55‘]' ) — e fi(1=2) (1 — e_‘/gR”)> Go(x)dz + o0 (e_TJ)

iy
V3(e V3Rit L ) 40 (e‘TJ)

(3.15)
The denominator of ratio (3.15) is bounded away from 0 by the definition of R; and the
numerator tends to co for any nonzero initial datum. O

Remark 3.4. In the proof of Theorem 3.3 we use the example of the ratio % being

unbounded as p — oo from within Es. Tt may be shown using the same argument that %

is unbounded in the same region and that both these ratios are unbounded for p € E3 using
pj = RjeillT’" for appropriate choice of (R;);en. However the ratio

Gl _ )
Arpe (p)  AppE (p)

is bounded in Ey = E™ hence it is possible to deform the contours of integration in the upper
half-plane. This permits a partial series representation of the solution to the initial-boundary
value problem.

Remark 3.5. For all 8 € (—1,1) the final time boundary value problem is ill-posed. The
asymptotic location of the zeros of Appgr, along rays wholly contained within {p € C :
Re(—ip®) < 0} means that for nozero initial data the solution exhibits instantaneous blow-up.
Nevertheless, for all 8 € (—1,0)U (0, 1) the final time problem is well-conditioned. In the case
B = 0, the final-time problem becomes ill-conditioned and S becomes degenerate irregular
under Locker’s classification.

When g = +1, S is self-adjoint and the initial- and final-boundary value problems are
both well-posed. For |3| > 1, the final-boundary value problem remains well-posed but the
initial-boundary value problem becomes ill-posed. Thus the self-adjoint cases represent the
transitions between well-posedness of the initial- and final-boundary value problems. Anal-
ogous to the = 0 case, in the limit 5 = oo, the initial-boundary value problem becomes
ill-conditioned, the solution to the final-boundary value problem may not be represented as a
series and S becomes degenerate irregular.
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3.3 Comparison

The explicit computation of the operator norms in section 3.2 requires the evaluation of the
biorthogonal family of eigenfunctions and the precise asymptotics for the corresponding eigen-
values.

On the other hand, the integral representation of the solution of the boundary value prob-
lem can be constructed algorithmically from the given data, without the need for any precise
asymptotic information about the eigenvalues, except their asymptotic location (always along
a ray for odd-order problems; see Smith, 2012, Theorem 6.3). This is sufficient for a direct
analysis of the terms that blow up and prevent deformation of the contour of integration and
a residue computation around the eigenvalues, thereby precluding a series representation of
the solution.

In the example above, the particular term in the integral representation exhibiting this
blow-up is the term

1 . R; V3R, | R;
/msin V3R, G- slidy v 2P (3.16)
0 2 RJ’

where the right hand side is obtained by an integration by parts. Note that in particular we
__ 4w 1
can choose R; = 7% (k+3).
Comparing this with expression (3.10),

e

2 2

it is evident that the lack of boundedness of the norms of the operators, responsible for the
lack of the properties of a basis for the eigenfunctions biorthogonal family, is exactly the same
lack of boundedness in the integrand of the integral representation for the solution of the PDE,
yielding a barrier to the contour deformation. Indeed, using the notation of Theorem 2.12, we
have shown that, for this example,

le|=O< sup <J<Wk+6¢k>> and

1> le[>0 AppE (WK + €)

sup QUIEEV) 6 0,).

1> e[ >0 Appg (woy + €)

This is a tighter bound on the blowup of ||Qx|| than that obtained in section 2. No examples
have been found that violate the tighter bound but an example is presented in section 4 for
which ||Qr|| = O(1) while the spectral ratio grows exponentially with k.

4 3" order pseudoperiodic examples

In this section we outline the analysis of another class of boundary value problems, depending
on a real parameter (3, for the linearized Korteweg-de Vries equation. Namely:

Gt = —Quue, z €10,1], telo,T], (4.1)
q(:L',O) = qo(x)’ T € [Oa 1]a
q(Ov t) = q(lvt)v q2(07t) = 7/8(11(1725)7 ql‘fc(ov t) = qzl(lvt)v te [OvT} BER

where go € D(S) is a known function.

For all 8 # 0, these are pseudoperiodic boundary conditions. In the limit as the constant
B — 2, the boundary conditions fall into the special class of pseudoperiodic conditions for
which the solution cannot be represented as a discrete series (Smith, 2012, Section 5). As in
Section 3, the spectral properties of this limiting case are very different from the case § # 2.

In this section we analyse the behaviour of the associated differential operator in the two
cases. To avoid technicalities, and to concentrate on the f = 2 limit, we assume in what
follows that 8 € (2 —¢,2].
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The associated differential operator

For the real parameter 8 € (2 — ¢,2], we investigate the differential operator SP with pseu-
doperiodic boundary coefficient matrix

1 -1 0 00 0
A=l0o 0o 1 B 0 0],
0 0 0 0 1 -1

and the associated initial- and final-boundary value problems II? and IT’?.

Remark 4.1. The restriction from 8 € R\ {-1,0,1/2} to 8 € (2 — ¢,2] is not of any
consequence other than notational convenience but the cases § = —1, 8 = 0 and 8 = 1/2
require special treatment.

Indeed, B = 1/2 is equivalent to the final-boundary value problem I’ being well-posed but
with solution lacking a series representation (as II is ill-conditioned) and, as S1/8 is the adjoint
of SP for any 8 # 0, the below analysis carries over to this case with a relabeling between S
and S*.

If 8 = 0 then the boundary conditions are no longer pseudo-periodic. A description of
well-posedness for this case is given in Smith (2013a).

If B = —1 then the operator is periodic hence, from the classical theory, its eigenfunctions
form a basis and the problems IT and I’ are both well-posed.

4.1 The spectral theory

In this section we attempt to use operator theoretic results to investigate whether the eigen-
functions of S? form a basis.
The case (8 < 2

It is shown by Smith (2011) that this differential operator is regular, hence by the theory
of Locker (2000) we conclude that the eigenfunctions form a complete system in D(S).
The case § = 2

Since this differential operator is degenerate irregular, Locker’s theory does not apply.
However, in this example we are unable to apply Davies’ method to discern whether the
eigenfunctions form a basis. The eigenfunctions form a tame (in the sense of Davies, 2000)
system, which is a necessary but not sufficient condition for a basis.

Indeed, following the same outline method as in Section 3.1, we obtain

e The eigenvalues of S? are the cubes of the nonzero zeros of the exponential polynomial
e p e e g, (4.2)

The nonzero zeros of expression (4.2) may be expressed as complex numbers oy, wo,
w20y, for each k € N, where Re(or) = 0 and Im(ox) < 0. Then oy, is given asymptotically

by
. 2m 1 —k7r\/§/3
_ 2 (L ( ) k . 4.

1ok \/§< 2)—|—O e as k — 00 (4.3)

o Let
2 . . . r42 .41
¢k(37) _ Zwrelw OkZT (e—lw Tk _ W Tk _ oW > + 1) , k € N. (4.4)
r=0

Then, for each k € N, ¢y, is an eigenfunction of S? with eigenvalue .
e The adjoint operator (S?)* has eigenvalues {—o} : k € N}, corresponding to eigenfunc-
tions

+ T+

2 . . . 2 . 1
wk(x) _ Zw'reflw oRT (6“" oK 6711;.1 oK 672“) ok + 1) , k c N. (45)
r=0

and there are at most finitely many eigenfunctions of (S<2>)* that are not in the set

{'l,bk tk EN}

16



o Let
Wy (z) = Y (z)

(Vi dx)

(4.6)

Then there exists a minimal Y € N such that ((¢x)iey, (¥x)iey) is a biorthogonal

sequence in AC™[0, 1]. Moreover

V3
(r, or) = W

S

i (F-3) + O(eﬁ”kkfl) as k — oo.

(4.7)

e The eigenfunctions have the same norm and it grows at the same rate as their inner

product.

3v3

Az (-1 V3rky, —
Me\@( 2)+O(€ 3 k; 1) ask—)oo.

llvkll* = lloell* =

(4.8)

e Then the projection Qg has norm ||@x||||¥«||, which is bounded uniformly in k. From
this result, it is impossible to determine whether the eigenfunctons form a basis or not.

4.2 The PDE theory

As shown in Smith (2012, Example 5.2), IT is ill-posed if and only if 8 = 2. Via Proposition 2.7,
this yields the result that the analysis of section 4.1 could not—the eigenfunctions do not form

a basis.

Proposition 4.2. Let Ry = 4kn/+/3 and let py = Rie'™ . Then, using the notation of Smith

(2012), the ratio

(2) _1\k 7 Ry /2 )
my () (=) (ar(O) = 29r(D)e ™7 o Rz g8y gk oo,

2
Ag}%E (px) 61

Proof. A quick calculation yields

AggE (pr) = Z\/gRi

2 ) 2 )
3843+ (8-2)) €™ +(1-20) Ze—iw%} :

Jj=0 j=0
hence

AP (pr) = i3V3R}

2 .
3N eiwlen

J=0

The spectral function

2 . . . . . -
ns” (pr) = iVBW RE Y~ w™ g (@ pi) (6M’)k — e T i e 1)

=0

is independent of 5.
By the definition of p, the functions

—i Ry /2 iRpV3/2 —i Ry /2 —iRp/3/2
e Pk oRk/2,0RKVB/2 g gTiwek _ (Ri/2,—iRkV3/

iw?pp _ eltk e
- )

grow exponentially with k, while

) . . . .
- —-R . —Ry/2 —iRp\/3/2 . —Ry/2 iRk\V3/2
T WPk — o Rk itk — ¢ k/2,=iRVB/2 14 WPk _ o~ Ri/2iRkV3/

decay. Hence

AR (o) = (=1)"i6VBRE /2 1 O(e Tk RY), as k — oo.
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Also
—iw —i iw?
052 (pr) = —iw’V3RE (-%(m)e Pk — wiqr(wpr)e” % + war(wpr)e p’“)

+ O(e"*/?R3)

1 R )
,in\/gRi (7/ qT(x)eTk[erlJr“/g(I*l)] da
0

1 R, . 1
_(4)2/ qT(x)eTL[Z+171\/§(171)] de'+(lJ/ qT(m)eRk[lfz] dI)
0 0

+ O(™+/?R})

) 2qr(1)elt 2g7(1)eftr (0)eftr
2 \[ 2 QT( )6 2 «qr qr
—w iV3R; | — —w +w

’“( Re(l+iv3)  Ru(l—iv3) Ry

+O(e™ ;) + O(e™/* RY)
— —iV3R (240(1) - qr(0)) €™ + O("™),

Note that ¢r(1) = ¢(1,T) = —q(0,T) = —qr(0), by the first boundary condition. Hence,
provided we can be sure that gr(0) # 0, 2¢r (1) — gr(0) # 0. O

As 0 < arg(pr) < m/3, and Ry, was chosen to ensure that Appg (px) is bounded away from
0, pr € D1. Hence, by Smith (2012, Theorem 1.1), II is ill-posed.

The rate of blowup exhibited in Proposition 4.2 is maximal in the sense that for any
sequence (px)ren such that |ox_1| < |px| < |ok| and for any j € {1,2,3},

s (o)

Ag}%E (px)

The problem IT’ is well-conditioned for all 3 € (2 — ¢, 2]. Indeed, for any sequence (px)ken

= O(eR’“/zR,Zz).

with pr € D, and pr — oo, we find the asymptotic behaviour:

15" (pr)

—L———=0(p| ™).
A%@E (Px)

4.3 Comparison

In order to find the asymptotic behaviour of |Qk||, the complex calculation outlined in sec-
tion 4.1 is necessary. However, the result we obtain is that the projection operators are
uniformly bounded in norm, from which we cannot discern whether the eigenfunctions form a
basis.

The calculation required to prove Proposition 4.2 is relatively simple and from that result,
via Proposition 2.7, it follows that the eigenfunctions are not a basis.

Conclusions

In this paper, we have gathered and summarised old and new results on a newly analysed
correspondence between the spectral theory of linear differential operators with constant coef-
ficients and the analysis and solution of IBVPs for linear constant coefficient evolution PDEs.
We also presented two specific examples to illustrate the power of this connection for inferring
results on the spectral structure of the operator.

In Section 2, we developed a new method for showing that the eigenfunctions of certain
differential operators do not form a basis. This method relies crucially upon finding a well-
posed IBVP whose solution cannot be represented as a series.

In Sections 34, we compare the new method to the established method of Davies by apply-
ing each method to examples. The calculations we present suggest that the PDE approach is
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more straightforward in deriving estimates for the boundedness of projector operators, hence
results on the existence of eigenfunction bases. Indeed, it is sufficient to estimate the bound-
edness of functions constructed algorithmically in certain well defined complex directions.

The second example represents a case where the new method yields a result but the
operator-theoretic methods we considered do not. Indeed we show that the solution of the only
well-posed initial-boundary value problem cannot be represented as a discrete series hence, by
Proposition 2.7, the eigenfunctions cannot form a basis. But the eigenfunctions are not wild,
indeed the associated projection operators are uniformly bounded in norm, so we cannot reach
the same conclusion using e.g. the operator-theoretic framework of Davies.

The remainder of Section 2 investigates the relation between the two methods. Indeed, for
the class of operators we discuss, determining the wildness of the eigenfunctions is equivalent
to the calculation of precisely the same quantities used to determine well-posedness of the
associated initial-boundary value problems.

It is expected that the well-posedness of both the initial- and final-boundary value problems
is sufficient to guarantee that the projection operators are uniformly bounded in norm.

The applicability of the new method has only been shown for eigenfunctions of the class
of differential operators considered herein, whereas Davies’ method could be applied to any
complete biorthogonal system, whether it is constructed from the eigenfunctions of differential
operator or not. However, it should be possible to extend the new method, along with the
results of Smith (2012) to a wider class of differential operators, providing a powerful tool to
investigate the spectral properties of linear differential operators. For example, throughout
this work we have assumed that S = (—i9;)". A general constant-coefficient linear differential
operator may have more terms, but its principal part could always be represented by such an
operator S. As the spectral behaviour of the operator is governed by its principal part, we
expect the above results to carry over to such operators.
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A Appendix

The statements of results 2.8-2.12 all require the following additional conditions:

Condition A.1. The boundary coefficient matrix A is non-Robin:

None of the boundary conditions represent couplings between different orders of boundary
function.

That is, for each k € {1,2,...,n}, if ax; #0 or Bx; # 0 then ax, =0 = By, for all r # j.

Note the following contrast with Robin’s original definition. Our Robin/non-Robin classifi-
cation is independent of coupling between the two ends of the interval; the boundary condition
¢=(0,t) = q(1,t) is of Robin type and couples the ends of the interval.

Condition A.2. Recall that A is reduced row-echelon form. The boundary conditions are
such that if the boundary function of order r at one end corresponds to a pivoting entry in the
boundary coefficient matrix A then the boundary function of order n — 1 — r at the other end
must correspond to a non-pivoting entry in A. Further, the coupling constants for coupled
boundary conditions of order r and n — 1 — r are equal.

For simple boundary conditions, this means that if the boundary function of order r at
one end is specified then the boundary function of order n — 1 — r at the other end must not
be specified.
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