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Abstract

Energy suppliers are facing ever increasing competition, so that factors like qual-

ity and continuity of offered services must be properly taken into account. Further-

more, in the last few years, many countries are interested in Renewable Energy’s

(RE) such as solar and wind. RE resources are mainly used for environmental and

economic reasons such as reducing the carbon emission. It also be used to reinforce

the electric network especially during high peak periods. However, the injection of

such energy resources in the Low-Voltage (LV) network can lead to a high voltage

constrains. One possible solution is for electricity companies to motivate customers

to use thermal or electric storage devices during high-production periods of PV to

foster the integration of RE generation into the network. In this paper, we are in-

terested in forecasting household-level electricity demand which represents a key

factor to assure the balance supply/demand in the LV network. We propose a novel

methodology able to improve short term functional time series forecasts. An appli-

cation to the Irish smart meter data set showed the performance of the proposed

method for forecasting intra-day household level load curves.

Keywords: Household-level forecasting, nonparametric statistics, unsupervised classi-
fication, curve discrimination, functional data, intra-day load curve, smart grids.
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1 Introduction and Motivations

In recent years we have seen the arrival of new technologies such as Electrical Vehicle
(EV) and electric heating as well as the increase of RE sources such as wind and so-
lar. Therefore, the power grid is going through change. In fact, the stochastic nature
of the RE sources will lead the power grid to a highly stochastic system. Within this
new context, two main problems arise: (1) because of the electrification of appliances
and mobility applications, the peak demand will increase and the load curve shape will
change. In fact, at the moment a great deal of attention is attracted by EV, both hybrid
and not, that will allow users to recharge their vehicles directly at home. It is there-
fore important to understand and expect what might be the impact on the power grid
capacity of this recharging activity. This question has been studied recently by several
authors, see for instance [1], [2], for more details. (2) It is well-known that one of the
expected solutions to reduce the peak demand is to reinforce the power grid by RE gen-
eration. In fact, one can use energy storage system during surplus energy periods, e.g.
PV generation during the day, and discharges during peak load moments. Neverthe-
less, the integration of a large quantity of RE might lead to a serious problems in the
power network. Since most feeders in the LV network have a decreasing cross section,
only uni-directional electric charges might be received. Moreover, with the injection
of RE sources the electric charge becomes multi-directional depending on consumption
and RE production. Obviously, LV networks are designed to support such scenarios but
only for short time periods (few hours). It is worth noting that in both cases (1) and (2)
explained above, the problem of load forecasting represents a crucial issue for opera-
tional planners. In fact, reference [3] shows that short-term load forecasting (STLF) is a
key step for proper operation of a battery energy storage system. They used an artificial
neural network forecaster for hourly based forecasting of the distributed power genera-
tion and load consumption. Recently, reference [4] used updated load forecast for peak
shaving and battery lifetime prolonging.
Regularly, the network constraints are evaluated on a specific area in order to prevent
over-voltage problems on the network. Very localised consumption and PV/wind pro-
duction forecasts are needed to detect constraints of current intensity and voltage on
each node and each line of the LV network. On the other hand, in order to improve the
management of energy demand, the customer is always considered, by the Distribution
Network Operators (DNOs), as an important actor that might be involved in the regu-
lation of the electricity network. In fact, to reduce the peak demand, DNOs may ask a
selected number of influential customers to reduce their demand during some specific
days in the year in conjunction with an incentivised tariff. Another way to make the cus-
tomer an actor in the management of the energy in the power network is to transform
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himself as a producer of PV energy for instance. It is well-known that the develop-
ment of smart meter and its massive deployment in Europe (80% households will be
equipped by 2020) and North America allows us to get individual electricity consump-
tion measures on a very fine time scale.
One-day-ahead forecasting of aggregated electricity demand has been widely studied in
statistical literature. Different approaches have been proposed to solve this issue. Time
series analysis methods like (S)ARIMA models or exponential smoothing can be found
in [5]-[9]. Those based on state-space models in [10]. Machine Learning approaches
such as artificial neural networks and support vector machine have also been used in
[11]-[13]. Among Nonparametric and semiparametric methods, [14] used kernel-based
regression model and [15] applied a dimension reduction approach named “Moving
Average Variance Estimation” (MAVE, see [16] for more details) to forecast French ag-
gregated load curve. Generalized additive models for short term electricity load curve
forecasting were studied in [17]-[18] for instance. For an extensive review on forecast-
ing electric load we refer to, e.g. [19] and [20].
The arrival of smart meters allows us to receive energy demand measurements at a finite
number of equidistant time points, e.g. every half hour or every ten minutes. Thus, in
order to forecast the load demand of the next day, one has to predict the load demand
at forty-eight or one hundred forty four, respectively, time points. From a statistical
point of view, it is convenient to think of the daily load demand recorded at these forty-
eight or one hundred forty four points as a segment and to perform load prediction for
the whole segment of time points rather than forecasting the load demand at each one
of these time points separately. This implies that we adopt the functional time series
framework. Functional approach can be also seen as a solution to overcome the prob-
lem of incorporating a high number of past values into the statistical model such as in
SARIMA model. The idea of forming a functional time series has been considered by
several authors, including [21]-[23]. Within this framework of functional time series,
several approaches has been proposed e.g. [24] used a semi-functional partial linear
model for one-day-ahead forecasting of electricity demand and price, [25] forecasted
peak load demand by using functional linear model and [26] developed a functional
linear regression model when the response variable and the covariate are both func-
tional. The authors in [27] proposed a nonparametric functional approach based on
functional kernel regression estimator. Their developed methodology supposes that all
the available information for predicting a segment is essentially contained in the last
observed segment. Moreover, an application to sub-aggregated stationary load curve
has shown the efficiency of this method with respect to SARIMA model. Recently, [28]
performed the approach proposed by [27] by means of a weighted average of past daily
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load segments. In that case, the past load segments are identified by mean of their
closeness to some reference load segment which captures some expected qualitative
and quantitative characteristics of the segment to be predicted.
In this paper, we are interested in short term forecasting of household-level intra-day
electricity load curve. In contrast to aggregated load curves, which are characterised by
their seasonality, regularity and sensibility to meteorological conditions, the household
load curves are very volatile, their shape depends mainly on the customer behaviour and
are less dependent to weather conditions. It is easy to see that the presence of customer
behaviour, which is difficult to quantify, as a determinant factor of the shape of the in-
dividual load curve makes the issue of household-level forecasting difficult to solve. In
this paper, we propose an improved version of the approach proposed by [27] adapted
to household-level forecasting. The improvement procedure here is based on the use
of an unsupervised clustering step of the historical segments which allows us to find
segments describing a common consumption behaviour. Then, we use a nonparametric
curve discrimination approach to assign a cluster to the last segment. This step allows
us to identify segments which will be used to forecast the target segment.
The paper is organised as follows. In Section 2, we introduce the concept of functional
time series methodology. Then, we summarize the functional wavelet-kernel approach
proposed by [27] and describe the methodology proposed in this paper. Section 3 is
devoted to an application of our method to intra-day household level load curve fore-
casting. A comparison study and an extension to 2000 Irish customers load forecasting
is given in the same section. Some concluding remarks are given in Section 4.

2 Functional time series forecasting

Let us consider the household electricity demand as a (real-valued) continuous-time
stochastic process X = (X(t); t ∈R). We are interested in the evolution of this process
in the future. We suppose that we observe the process X over an interval [0,T ] and one
would like to predict the behaviour of X on the entire interval [T ,T + δ], where δ > 0,
rather than at specific time points. To this end we can divide the interval [0,T ] into
subintervals [`δ, (`+ 1)δ], ` = 0,1, . . . , k −1 with k = T /δ, and to consider the (functional-
valued) discrete-time stochastic process S = (Sn; n ∈N), where N = {1,2, . . . }, defined
by

Sn(t) = X(t + (n− 1)δ); n ∈N,∀t ∈ [0,δ). (1)

In this paper we are interested in one-day ahead intra-day load curve forecasting,
the segmentation parameter δ corresponds to the daily electricity demand. In practice,
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the electricity demand is recorded at a finite number of equidistance time points within
each day, say t1, t2, . . . , tP , for instance, every half hour (in that case P = 48) or every
10 minutes (then P = 144). Let us denote by Sn(ti) the observation at time point ti ,
i = 1,2, . . . , P , within curve Sn, n ∈N. We denote by

Sn = [Sn(t1),Sn(t2), . . . ,Sn(tP )], n ∈N,

the segment of the total number of observations of the n-th curve Sn, n ∈N. Therefore,
given a "sample" S1,S2, . . . ,SL of segments, our purpose is then to predict the whole next
segment SL+1. In other words we want to predict

SL+1 = [SL+1(t1),SL+1(t2), . . . ,SL+1(tP )].

This forecasting issue has been a subject of several publication in statistical literature.
The Functional Autoregressive (FAR) process has been introduced and studied theoret-
ically by [29] and extensively used in both practical and theoretical studies since then,
see [30]-[31] among numerous other contributions. Under the FAR model, the best pre-
dictor, ŜL+1, of the curve SL+1, given the historical curves S1,S2, . . . ,SL is the conditional
mean of SL+1 given the last curve SL.

2.1 Functional wavelet-kernel approach (FWK)

A nonparametric approach based on kernel method has been developed by [27] to solve
the same forecasting issue. In contrast to the FAR model, authors in [27] supposed
that the regression operator is unknown and they estimated it non-parametrically. More
precisely, the prediction of segment SL+1 was obtained by kernel smoothing, condition-
ing on the last observed segment SL, while the resulting predictor was expressed as
a weighted average of the past segments, placing more weight on those segments the
preceding of which is “similar” to the present one. The notion of similarity between
two segments (or curves) plays an important role in the calculus of weights and there-
fore in the prediction of segment SL+1. The authors in [23] defined some semi-metrics
which allows to measure the similarity between curves. Another approach based on a
distance metric on the discrete wavelet coefficients of suitable wavelet decomposition
of the available segments has been proposed by [27]. This approach consists in apply-
ing the discrete wavelet transform to the historical segments in order to decompose the
temporal information of those segments into discrete wavelet coefficients that are asso-
ciated both with time and scale. Let us consider two segments Sn and Sm, n , m, and
let θ(n)

j,k and θ(m)
j,k be the discrete wavelet coefficients of Sn and Sm respectively at scale j

and location k. Then, the measure the closeness of the two segments Sn and Sm can be
summarized in the following two steps:
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(a) at each scale j, the closeness of the two segments, Sn and Sm, might be defined by
measuring the euclidean distance between their discrete wavelet coefficients

dj(θ
(n),θ(m)) =


2j−1∑
k=0

(
θ

(n)
j,k −θ

(m)
j,k

)2


1/2

,

(b) to quantify the similarity between any two segments Sn and Sm it suffices to com-
bine all scales, then the distance is defined as fellow

D (Sn,Sm) =
J−1∑
j=j0

2−j/2dj(θ
(n),θ(m)).

Recall that the predictor ŜL+1 (of the segment SL+1) is a weighted average of all segments,
then we have

ŜL+1(ti) =
L−1∑
`=1

wL,` S`+1(ti), i = 1,2, . . . , P , (2)

where the weights wL,` := w(SL,S`), ` = 1,2, . . . ,L − 1 satisfy wL,` ≥ 0, ` = 1,2, . . . ,L − 1
and

∑L−1
`=1wL,` = 1. In the nonparametric literature the weights wL,`, ` = 1,2, . . . ,L−1, are

known as Nadaraya-Watson weights and are defined as follow

wL,` =
Kh (D (SL,S`))∑L−1
`=1Kh (D (SL,S`))

, ` = 1,2, . . . ,L− 1, (3)

where Kh(·) = h−1K(·/h) for some symmetric function K : R→R centered at zero (called
Kernel) such that K(x) ≥ 0,

∫
K(x)dx = 1 and

∫
x2K(x)dx < ∞. The tuning parameter h

(the so-called bandwidth) controls the effective number of segments for which wL,` is
positive and therefore the smoothness of the predictor.

Remark: an implicit assumption was assumed in the approach proposed by [27] which sup-
poses that all the available information for predicting segment SL+1 is mainly contained in
the last observed segment SL.

2.2 Clustering-based improvement of the FWK approach (CFWK)

The proposed prediction procedure consists in the following three main steps (a) clas-
sification of the sample of historical segments into M (could be fixed or not) clusters
containing typical daily load curves. In contrast to aggregated load curves, for which
it is easy to observe a common pattern for the working days, week-ends and holidays
(see [32] for the use of a type-of-day classification to a national-level load forecasting),
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household load curves do not contain such kind of similarity between days. For that
reason, we use in this step, an unsupervised classification method to identify days de-
scribing a common consumption behaviour pattern. (b) Assign to the last observed seg-
ment SL to the most “appropriate” cluster. The main purpose of this step is to find days
that contain the same information as the last observed day. In other words, we look,
in the historical segments, for those that describe a similar behaviour as what I observe
today. (c) Apply the FWK method to forecast the segment SL+1 by using segments that
belong to the cluster obtained in step (b). The following algorithm describes in more
detail how we improve the FWK forecasts using clustering and curve discrimination
approaches.

• Step1: Unsupervised curve classification

Suppose that we have L − 1 historical segments S1,S2, . . . ,SL−1. In this step we
are interested in splitting automatically these L − 1 curves into M clusters, say
G1,G2, . . . ,Gm, . . . ,GM . Because we do not have at hand any categorial response vari-
able and the data set are clearly of functional nature then this problem can be
seen as an unsupervised curves classification. Since the number M of clusters is
unknown in our case, then the unsupervised curves classification problem be-
comes harder to solve. In the statistical literature few authors gave a solution to
that problem. These contributions are mainly restricted to the works by [33]-[34]
and [35] in which k-means techniques for classification analysis are extended to
curves data. In this paper we used the hierarchical algorithm proposed by [36].
The reader is referred to [36] to get more about this algorithm and the methodol-
ogy behind.

• Step2: Curve discrimination

The curve-discrimination step can be stated as follows. Given the historical seg-
ments S1,S2, . . . ,SL−1, then from step1 we know in which cluster each segment be-
longs to. Let us denote by G` the cluster of the segment S`. Assume that each pair
of variables (S`,G`) has the same distribution as a pair of random variables (S,G).
Given a new segment SL (the last observed daily load curve) the purpose now is
to identify its class membership. For that we estimate, for each m ∈ 1,2, . . . ,M, the
following conditional probability:

pm(SL) = P (G = Gm | S = SL) . (4)

This means that, whenever the last observed segment is SL, what is the probability
that it belongs to cluster Gm. Observe that this conditional probability, given by
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(4) can be seen as a regression function. Therefore, a nonparametric estimator of
these probabilities has been proposed in [37]. For all m ∈ 1,2, . . . ,M,

p̂m(SL) =

∑
{`:G`=Gm}Kh(D(SL,S`))∑L−1
`=1Kh(D(SL,S`))

.

Therefore, say Gm, the cluster corresponding to the highest probability. We sup-

pose that Gm =
{
S

(m)
1 ,S

(m)
2 , . . . ,S

(m)
K(m)

}
, where S(m)

d , ∀d = 1,2, . . . ,K(m) are the seg-

ments that belong to the cluster Gm and K(m) is the total number of segments in
Gm.

• Step3: Forecasting

Using results obtained in step2, we can now build the following sample of seg-

ments
{(
S

(m)
d ,S

(m)
d+1

)}
d=1,...,K(m)

, where S(m)
d is the segment (corresponding to day d)

that belongs to the cluster Gm and S(m)
d+1 is the segment observed at the day d + 1.

Observe that S(m)
d+1 doesn’t necessarily belongs to the cluster Gm. Recall that our tar-

get is to forecast the segment SL+1. Therefore we propose the following estimator

ŜL+1(ti) =
K(m)∑
d=1

w
(m)
L,d S

(m)
d+1(ti) i = 1,2, . . . , P , (5)

where w(m)
L,d := w(SL,S

(m)
d ), for all d = 1,2, . . . ,K(m), and w(·, ·) are as defined in (3).

Remark: the hierarchical classification and the curve discrimination algorithms have been
implemented in language. The program is available on-line through the npfda package1.

3 Application to intra-day load forecasting

3.1 Description of the data set

To evaluate the proposed approach to the household-level load curve, we used the
smart meter data from the Irish smart meter trial2. The data set we used consists of
N = 2000 residential customers with a half-hour electricity demand between 14/07/2009
to 31/12/2010. Figures 1 gives some examples of residential load curves. We can eas-
ily observe the high volatility of those curves. In this section, our target is to forecast,
one-day ahead, the daily half-hour electricity demand (here P = 48) for the 2000 res-
idential customers. We also compare results obtained the proposed method CFWK to
those obtained by FWK approach.

1http://www.math.univ-toulouse.fr/staph/npfda/
2http://www.ucd.ie/issda/data/commissionforenergyregulation/
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Figure 1: First sample of residential customer’s load curve.

Figure 2: Second sample of residential customer’s load curve.

3.2 An illustration of CFWK approach to customer 1016

In this section, we focus on the application of the CFWK method to one randomly chosen
customer. We take as example the customer number 1016 in the Irish data. Later, we
suggest to extend the results to the entire sample of 2000 customers. Figure 3 (a) shows
the original time series which represents the half-hourly electricity demand of this cus-
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Figure 3: (a) Half-hour electricity demand of customer 1016 between 14/07/2009 and
31/12/2010. (b) A sample of 535 daily load curve (segments) of the same customer.

tomer between 14/07/2009 and 31/12/2010. In Figure 3 (b), we split the original signal
into daily load curves (P = 48) in order to be able to apply the proposed functional ap-
proach. Thus we obtain a sample, say S1,S2, . . . ,S535, of 535 daily load curves (segments).
One can easily observe, from Figure 3 (b), that the electricity demand for that customer
is very low between 00:00 and 07:00. Then, the demand increase around 07:30 which
corresponds to the morning activity in the household. During the day, consumption de-
creases in the most of days. Finally, we can observe the classical evening peak demand
between 19:00 and 20:00.

To validate our method, we split this sample in two parts. Firstly, denoted by
L = {S1,S2, . . . ,S170}, a learning sample containing daily load curves from 14/07/2009
to 31/12/2009. This sample will be used to build clusters and find the “optimal” band-
width h. The second part, denoted by T = {S171,S172, . . . ,S535}, is the test sample which
will be used to compare our forecasts to the observed daily load curves for the period
between 01/01/2010 to 31/12/2010 (365 days). Each segment in the test sample T is
forecasted independently. In fact, to forecast the segment S171 we use as historical seg-
ments S1,S2, . . . ,S169 and the last observed segment is S170. Then to forecast the segment
S172, we consider the historical data S1,S2, . . . ,S170 and the last observed segment now
is S171 (the true one and not its forecast). This procedure will be repeated until we fore-
cast all segments that belong to the test sample T . Based on the sample S1,S2, . . . ,S170

of segments, the goal now is to forecast the segment S171 (which corresponds to the 1st
Jannuary 2010) using CFWK approach. To this end, the following steps are taken:

1. How many clusters do we have?

Based on segments S1,S2, . . . ,S169 and using the hierarchical algorithm proposed by [36],

10



Figure 4: Clusters obtained for cluster 1016.

we find three clusters which are represented in Figure 4 (a)-(c). The median daily pro-
file has been plotted for each cluster in Figure 4 (d). One can easily observe the peak
around 07:30 for all clusters. In contrast to the other clusters, cluster 1 contains three
other important peaks at 10:30, at 19:30 and at 21:00. We can also observe that in the
first cluster 50% of segments have electricity demand between 0.5 KW and 2 KW dur-
ing the day period from 10:00 to 15:00. On the other hand, in addition to the small
peak observed at 10:30, clusters 2 and 3 are characterized by an important peak at the
evening (more important for cluster 3) and very small electricity demand during the
day.

Table 1 summarizes the type of days within each cluster. We can observe that the
first cluster contains mainly week-ends (Saturdays and Sundays) which explain why this
customer consumes more electricity during the morning and the afternoon. Working
days are in majority within Cluster 2 and for that reason we observe a small peak in
the morning (around 07:30), roughly no consumption during the day and then another
peak in the evening when people come back to home. Cluster 3 contains mainly Fridays
and Sundays (about 50% of the total number of days in that cluster) and some holidays
like 25/12/2009. In comparison to cluster 2, this may explain the high values, during
the day, of the electricity demand.
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Table 1: Type of days within each cluster

Cluster 1 Cluster 2 Cluster 3

Mon. 3 17 4

Tue. 8 9 8

Wed. 1 15 8

Thu. 4 15 5

Fri. 4 8 12

Sat. 22 1 1

Sun. 9 5 10

Total 51 70 48

2. Which cluster to be assigned to the last observed segment SL = S170?

A nonparametric curve discrimination method introduced by [37] has been used to as-
sign a cluster for each last observed segment SL in the training sample. In this example
the last segment S170 corresponds to the load curve observed on 31/12/2009. Our main
task is to predict the corresponding class (which will be in our case cluster 1, 2 or 3) for
this segment. To apply the discrimination method explained in sub-section 2.2 several
tuning parameters should be fixed. The kernel is chosen to be quadratic and the op-
timal bandwidth is chosen by the cross-validation method on the k-nearest neighbors
(see [23], p. 115 for more details). Another important parameter needs to be fixed is
the semi-metric D(·, ·). In this example, because of the roughness of the load curves, we
used a semi-metric computed with the functional principal components analysis (see
[38]) with an optimal dimension equal to 2. The optimality here was measured with
respect to the rate of misclassified curves obtained within the learning sample (17% in
this case). Finally, the discrimination method assigned the cluster 1 to the segment S170.
This result looks to be compatible with the shape of the load curve of the segment S170

presented in Figure 5. In fact, since 31/12/ 2009 is a Christmas Holiday, the customer
behaviour in that period is expected to be the same as on the week-end. We can easily
see, from Figure 5, the absence of the small peak demand usually observed at 07:30 on
working days. We also observe the presence of two important peaks during the day: the
first one around 12:30 which corresponds to lunch time and another more important
one around 15:30.

3. Day-head forecasting and validation criteria
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Figure 5: Last observed segment in the training sample for customer 1016: SL = S170

which corresponds to 31/12/2009.

Recall that our main purpose in this example is to forecast the half-hour load curve of
the 1st of January 2010 which corresponds to the segment S171. Using results obtained

in step 1 and 2 we can then consider the following sample
{(
S

(1)
d ,S

(1)
d+1

)}
d=1,2,...,51

, where

51 is the number of segments in cluster 1. Therefore, the forecast of S171 is obtained as
follow

Ŝ171(ti) =
51∑
d=1

w
(1)
170,d S

(1)
d+1(ti) i = 1,2, . . . ,48,

where
{
w

(1)
170,d

}
d=1,...,51

are the Nadaraya-Watson weights obtained by measuring the

similarity between the load curve observed day-ahead (segment S170) and load curves
within the cluster 1. Those weights are determined by equation (3). In this step sev-
eral tuning parameters should be fixed: the kernel K is chosen to be the gaussian den-
sity function and the bandwidth h being selected by the empirical risk of prediction
methodology suggested by [39]. In order to extend our study for one-year day-ahead
forecasting, we need just to repeat steps one, two and three, 365 times.

The accuracy of each model (CFWK and FWK) will be measured using half-hourly and
daily errors. For each fixed day d, with d = 1, . . . ,365, in the test sample, the Half-Hour
Absolute Errors (HHAE) are defined by

HHAEd(ti) =
∣∣∣Ŝd(ti)− Sd(ti)

∣∣∣ , i = 1,2, . . . ,48,

where Sd(ti) and Ŝd(ti) are the observed and the forecasted value at the i-th half hour in
the d-th day of the year to be predicted. The Daily Median Absolute Errors (DMAE) are
defined, for all d=1, . . . , 365, by

DMAEd = Median {HHAEd(t1), . . . ,HHAEd(t48)} .
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Figure 6: Half-hour Absolute Errors (HHAE) obtained by CFWK method (case of customer
1016).

The choice of the median instead of the mean here is because it is less sensitive to out-
liers (highest values of HHAE). Figure 6 displays the HHAE errors obtained for one year
(from 01/01/2010 to 31/12/2010) day-ahead forecasting using the proposed method
CFWK. One can observe that the HHAE are between 0 KW and 3.5 KW and much im-
portant errors are obtained during the evening, a period of the day corresponding to
a high volatility of demand. A comparison between the proposed method and the FWK

approach has been made. Figure 7 displays, for each month in the year, the distribu-
tion of the DMAE errors obtained with each method. We can observe clearly that CFWK
method provides smaller errors than the FWK one. One can observe that the median of
DMAE obtained by CFWK are always less than those obtained by FWK. Other similar results
are given in Figure 8 and 9 for customers number 39 and 708.

3.3 Extension of the study to 2000 Irish customers

To measure the efficiency of the proposed approach, we extend the analysis to a sam-
ple of 2000 customers randomly selected from the Irish data. We applied the fore-
casting algorithm given by the CFWK approach to this panel of customers. The tun-
ing parameters has been fixed to be the same for all customers. For each customer,
the number of clusters in step 1 of the algorithm has been found automatically. To
measure the performance of the proposed method over the panel of 2000 customers,
we define the following validation procedure: for each customer, k = 1,2, . . . ,2000, we
calculate, as in the previous subsection, the 365 Daily Median Absolute Errors, say
DMAE

(k)
1 ,DMAE

(k)
2 , . . . ,DMAE

(k)
365. Then, for each day, d = 1, . . . ,365, we determine the Sample
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Figure 7: Distribution (by month) of the daily median absolute errors (DMAE) obtained
by CFWK and FWK (case of customer 1016).

Figure 8: Distribution (by month) of the daily median absolute errors (DMAE) obtained
by CFWK and FWK (case of customer 39).

Daily Median Absolute Error (SDMAE) defined as follow:

SDMAEd = Median

{
DMAE

(1)
d ,DMAE

(2)
d , . . . ,DMAE

(2000)
d

}
.

Figure 10 displays the distribution, for each month, of the SDMAE errors provided by
CFKW and FKW approaches. Table 2 gives numerical summary of results obtained in
Figure 10. For instance, if we take the January 2010 as an example, one can observe
that, with the CFWK (resp. FWK) approach, 50% (of the 2000 customers in the panel) have
a daily median absolute error (DMAE) less than 0.206 KW (resp. 0.222 KW) and 75% of
them have a DMAE errors between 0.195 KW and 0.215 KW (resp. 0.211 and 0.235). The
same analysis might be made for the other months. Table 2 shows that CFWK approach
is more efficient than the FWK one.
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Figure 9: Distribution (by month) of the daily median absolute errors (DMAE) obtained
by CFWK and FWK (case of customer 708).

Figure 10: Distribution (by month) of the Sample Daily Median Absolute Errors (SDMAE)
obtained by CFWK and FWK.

4 Conclusion

In this paper, a new approach for forecasting functional time series has been pro-
posed. An application to short-term intra-day household-level load curve forecasting
has shown the performance of the proposed methodology. The idea behind the use of a
classification step is mainly to get a reasonable assumption of stationarity for our time
series. Moreover, because the intra-day individual load curve shape is mainly affected
by the consumption behaviour of the customer and there is no evidence to identify a
common pattern between days we used an unsupervised classification method to find

16



Table 2: Distribution (by month) of the Sample Daily Median Absolute Errors (SDMAE)
obtained by CFWK and FWK.

CFWK FWK

Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75

Jan. 0.209 0.195 0.206 0.215 0.226 0.211 0.222 0.235

Feb. 0.183 0.175 0.183 0.193 0.196 0.187 0.193 0.205

Mar. 0.177 0.173 0.174 0.184 0.189 0.181 0.187 0.194

Apr. 0.171 0.166 0.172 0.174 0.181 0.175 0.180 0.188

May 0.164 0.160 0.163 0.167 0.171 0.165 0.169 0.175

Jun. 0.156 0.151 0.155 0.159 0.163 0.157 0.162 0.166

Jul. 0.151 0.147 0.151 0.156 0.158 0.152 0.158 0.164

Aug. 0.148 0.144 0.148 0.151 0.155 0.151 0.154 0.158

Sep. 0.151 0.148 0.151 0.156 0.158 0.153 0.156 0.162

Oct. 0.156 0.152 0.153 0.163 0.164 0.157 0.162 0.172

Nov. 0.164 0.158 0.163 0.170 0.174 0.169 0.173 0.178

Dec. 0.178 0.169 0.180 0.186 0.193 0.182 0.198 0.203

similar segments. The numerical results obtained showed that the clustering based ap-
proach works very satisfactorily and outperforms the functional wavelet-kernel time
series predictor. We note the proposed methodology might be improved by using some
daily exogenous functional random variables, like internal/external daily temperature
and sunshine curves. Other discrete variables, such as surface of the property, number
of electric appliances and number of occupants can also be taken into account which
might affect daily individual load demand.
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