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Abstract

In this paper we consider the structure of dynamically evolving networks modelling in-
formation and activity moving across a large set of vertices. We adopt thecommunicability
concept that generalizes that of centrality which is definedfor static networks. We define the
primary network structure within the whole as comprising ofthe most influential vertices (both
as senders and receivers of dynamically sequenced activity). We present a methodology based
on successive vertex knock-outs, up to a very small fractionof the whole primary network,
that can characterize the nature of the primary network as being either relatively robust and
lattice-like (with redundancies built in) or relatively fragile and tree-like (with sensitivities and
few redundancies). We apply these ideas to the analysis of evolving networks derived from
fMRI scans of resting human brains. We show that the estimation of performance parameters
via the structure tests of the corresponding primary networks is subject to less variability than
that observed across a very large population of such scans. Hence the differences within the
population are significant.Keywords. networks, communicability, brain science, fMRI data,

robustness, bimodality.

1 Introduction

There is an increasing interest in evolving graphs: networks where edges appear and disappear
over time (Grindrod and Higham, 2010; Crofts and Higham, 2011; Estrada, 2011). Such networks
model a range of phenomena where information is communicated from vertex to vertex. The
time ordering of the graphs (changing with the discrete appearance and disappearance of edges)
induces an asymmetry; since ifA communicates withB, and then laterB communicates withC,
the information fromA can reachC but not vice versa. For this reason some generalizations of
Katz centrality (Katz, 1953) have been developed so as to identify the role of individual vertices
within evolving networks as influential sources of information or efficient sinks for information
(Grindrod et al., 2011; Estrada et al., 2012; Grindrod and Higham, 2012). These ideas and meth-
ods have been applied to large scale networks form a range of applications including social media,
and peer to peer telecommunications and emails.
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When evolving networks are very large (in terms of the numberof vertices) there is usually
some need to summarize those networks. Here we introduce theidea of dividing the network into
a primary network containing all of the influential verticesand a consequent secondary network
containing the less important vertices. We shall discuss how this differs from existing coarse grain-
ing approaches (Mucha et al., 2010; Gfeller and Rios, 2007, 2008; Itzkovitz et al., 2005), which
provide a different type of (mesoscopic) summary.

Having identified a large primary network we have a need to characterize and summarize its
structure: is it relatively lattice-like and robust to insults, or is it relatively tree-like and fragile?
We introduce a methodology to test for this by making successive knock-outs of vertices within
the primary network and examining the losses in overall functionality. By knocking-out very small
fractions (typically 1% of the whole) we can remain within the linear regime and avoid second
order, collaborative, loss-effects. Thus we can classify networks, from within a possibly large
population of similar examples, with respect to performance measures representing the relative
size of the total functional loss due to a given number of knock-outs, and the variability of those
incremental losses.

To illustrate these ideas we consider their application to fMRI scans of (resting) human brains
and comparing the performance of the primary networks from almost 1000 such brains. We will
show that the variation in the performance measures observed for an individual brain (due to anal-
ysisng different random knock-out sequences) is far less than the variation observed across a large
population of brains. This leads to the inevitable conclusion that such individual brains are sig-
nificantly different, and in particular that they can be relatively robust or relatively fragile when
subject to successive knock-outs of rather small scale components.

We present both the framework to make this analysis tractable for primary networks of 105 or
more vertices. The discussion of the application is relatively self-contained so as to make the paper
accessible for analysts who can adapt and extend this methodology to any other types of data sets
whereinformation or activity of some kind is observed passing dynamically around a very large
population of entities.

2 Weighted evolving networks and communicability

An undirected weighted graph defined over a set ofn vertices,V = {vi|i = 1, ...,n}, is such that for
each possible edge, betweenvi andv j say, we have a real non-negative weightai j. The weighted
adjacency matrixA, with its (i, j)-th term given byai j, is symmetric and non-negative, and is
equivalent to a pairwisesimilarity matrix that might be used in clustering objects (here represented
by the vertices). We shall always assume that the diagonal terms inA are all zero (so there are no
self-connections).

Now consider an evolving weighted network given overK consecutive discrete time steps as a
sequence of such undirected weighted graphs represented bya corresponding sequence of weighted
adjacency matrices,{A1,A2, ...,AK}. A dynamic path from vi to v j is a sequence of successive ad-
joining edges, specified from the sequence of the adjacency matrices, linkingvi to vertexv j through
intermediate vertices, such that each edge occurs at the same time step or a later one than that of the
previous edge. The time ordering of the sequence allows us todefine the communicability matrix,
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Q ,(Grindrod et al., 2011) as the ordered product of resolvents:

Q = (I −ηA1)
−1.(I −ηA2)

−1 ... (I −ηAK)
−1 =

K

∏
k=1

(I −ηAk)
−1,

where 0< η < 1/max{ρ(Ak)} is a constant discount factor (ensuring convergence). Eachelement
of Q provides a sum over all possible vertex to vertex dynamic paths, of the products of the edge
weights, discounted for length.This is a generalization ofKatz centrality (which applies for a static
network, effectively recovered here whenK = 1).

It is evident thatQ is generally not symmetric, because of the time ordering of the sequence.
Thei-th row sum ofQ represents all of the paths emanating fromvi, and is a measure ofvi’s power
as asource or initiator of dynamic pathways; andi-th column sum ofQ represents all of the paths
coming intovi, and is a measure of thevi’s power as asink or destination for dynamic pathways.
Intuitively if many dynamic paths go through some vertex,vi, then the upstream and downstream
contributions of those paths are counted within the corresponding column and row sums ofQ.
Hence those vertices lying on themain highways of dynamic propagation (highly weighted paths)
will have relatively large corresponding row and column sums.

We will write the n-vector of the row sums asb, and then-vector of the column sums asr,
given by

b = (b1, ...,bn)
T = Q1, r = (r1, ...,rn)

T = QT 1.

The particular case we have in mind here is wheren is rather large. In that case we might seek
to avoid calculatingQ directly, but instead we are able to directly calculateb andr by multiplying
Q by 1 = (1,1, ...,1)T from the left or the right, respectively. In practice we start out from the
estimates̃r = 1 andb̃ = 1, and update those via successive linear solves equivalent to multiplica-
tion by the respectively, forward and backward ordered, resolvents. We might also wish to avoid
calculating or holding theAks in memory. For example, if we can writeAk = Xk.XT

k whereXk is
n×m with m << n, then we may work with theXks rather than theAks.

2.1 Nested primary networks

Consider the distribution of the values contained inb=(b1, ...,bn)
T , and respectivelyr=(r1, ...,rn)

T .
This may be bimodal or multimodal within some applications,and thus there may be naturalbreak-
points within these distributions. In any case let us suppose that for each distribution we may set a
suitable threshold valueβ ∗, and respectivelyρ∗, above which we consider vertex specificb-values
anr-values to be significant; and below which we consider them tobe negligible.

For any given pair of non-negative values(β ∗,ρ∗), we shall define the associatedprimary
network as that consisting of all edges at all time steps connecting only pairs of vertices within the
setV ∗:

V ∗(β ∗,ρ∗) = {vi| bi ≥ β ∗ or ri ≥ ρ∗} ⊂V.

As eitherβ ∗ or ρ∗ increasesV ∗ becomes smaller, approaching /0 once bothβ ∗ > maxbi and
ρ∗ > maxri. Thus we may generate nested primary networks defined as bothβ ∗ or ρ∗ increase.
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In practice in considering the primary network, the subgraph induced by the evolving network
in restrictingV to V ∗, we are excluding those edges which, even if they have a relatively large
weight in some or other time steps, merely connect vertices that are not significant as either sources
or sinks of the dynamic paths within the full evolving network system.

For the reduced, primary network, defined on the vertices inV ∗, we can calculate the associated
communicability,Q∗, and thus the associatedb∗ andr∗. These are the descriptors of that primary
network onV ∗. Only those edges connecting those vertices inV ∗ are admissible. This is done
simplest by setting all rows and columns in theAk’s to zero whenever the corresponding vertexvi

is in V\V ∗.
The resulting values withinb∗ andr∗, for the primary network, will be highly correlated with

their precursors for the full network,b andr. This follows by construction because the counts of
pathways made withinb andr will be dominated by paths within the primary network.

The identification of primary (sub)networks serves very distinct purpose from the concept of
coarse graining (Mucha et al., 2010). Here the aim is to identify the main subnetwork(s) that gives
rise to the majority of pathways, as counted by the communicability (a dynamic form of centrality).
If individual edges possess a high weighting yet lead nowhere and merely play a role in relatively
few pathways then they will be disregarded here if at least one of its end points has both a relatively
low source and sink communicability. In contrast methods ofcoarse graining seek a macroscopic
representation of the whole network by replacing subcomponents of the network’s vertices with
single “meta" vertices; and then inducing some aggregated weightings for connections between
those meta subcomponents. Both are simplifications of complex networks, but they achieve rather
different things.

2.2 Associated secondary networks

Consider a given primary network containing all edges, at each of the time steps, connecting pairs
of vertices withinV ∗(β ∗,ρ∗). The associated secondary network consists of all of the edges, at
each time step, that are not included within the primary network. Such edges must connect at least
one vertex which has both sub-threshold row and column sums within the full communicability
matrix, and thus is not inV ∗(β ∗,ρ∗).

2.3 Probing the structure of primary networks

Given a (large) evolving primary network with more than 100000 voxels, we wish to investigate
the nature of its structure through sampling rather than exhaustive analysis. We propose to do so
by making a number of sequentialknock-outs. In practice this means removing voxels, one at a
time, from the network and then recalculating a measure of the primary network’s functionality at
every successive iteration.

We proceed as follows. Communicability matrices, such asQ andQ∗, summarise the function-
ality observed in an evolving networks and are nonnegative,We define the norm of such matrices
as the sum of their elements

‖Q‖= 1T Q1 = 1T b = 1T r.
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Now consider a generated sequence of communicability matrices{Q j| j = 0, . . . ,M}, whereQ0 =
Q∗, that for the original primary network, and then successiveelements are generated by randomly
selecting a voxel that is “live” within the previous network, and deleting it. At each iteration we
may recalculate the communicability. Hereη remains fixed. Thus as voxels, and hence edges, and
consequently some paths, are deleted, we obtain a sequence{Q j} such that the corresponding se-
quence of norms{‖Q j‖} is monotonically decreasing. We shall only knock-outM voxels, which is
ideally less than 1% of all voxels inV ∗; so that there is a low probability of deleting voxels that are
highly connected together. We desire that the degradation remains firmly within the linear regime
(with small numbers of independent knock-outs). We shall observe the step-by-step degradation
of the evolving network, as measured by the monotonic reductions in{‖Q j‖}. For some values of
j we will annihilate a vertex that plays little role in many paths with the result that‖Q j−1‖−‖Q j‖
is relatively small. For other values we may annihilate a vertex with a large communicability score
and hence‖Q j−1‖−‖Q j‖ will be relatively large.

Suppose the evolving primary network is very lattice-like,with a high Watts-Strogatz clustering
coefficient, say. Then there is a large amount of redundancy in such a primary network, and
since the lattice is relatively homogeneous almost every random knock-out will produce a similar
reduction in functionalty, and the overall progress will beclose to linear. For example, imagine a
network on a grid, like the roads of Manhattan. If we knock outalmost any intersection the traffic
can drive two further blocks around it and little functionally is lost. On the other hand, suppose the
primary networks is very tree-like, with few cycles of any length. Then, when some vertices with
high centrality are knocked-out, we would expect to see a large reduction in functionality. Think
of the UK railway network, for example. If we knock-out Birmingham New Street the network
looses a large amount of functionality, yet if we knock-out Henley on Thames virtually nobody
will notice.

The random degradation process is also suggestive of early stage decline or damage of an
ageing network. This analogy is particularly useful in considering human brains of course, where
early onset cognitive decline is a major issue of interest. In fact it is clear that we ought to see
a range of different experiences of cognitive degradation displayed within ageing populations.
Some older people lose cognitive functionality in occasional, but large, steps (presumably having
occasional critical, un-replaceable, catastrophic losses), hence being somewhatfragile. Yet some
people’s loss is long term, and relatively smooth and slow (presumably exploiting some network
redundancies, and hence displaying a functional robustness to ageing). Thus the proposed approach
is a useful way to (destructively) test the network, as well as providing an experimental analogue
to random degradation through ageing. It may form a basis fora future clinical analysis of fMRI
scans.

The nature of the degradation arising from a random sequenceof knock-outs of these networks
may be characterized by two performance measures: the size (in absolute terms) and the nature
(variability) of the sequential reductions in functionality, as measured by the{‖Q j‖}.

Let M be the number of voxels removed. Then we calculate the quantity
(

1−
‖QM‖

‖Q0‖

)

,

which is the fractional loss of functionality (as a result ofM voxel knockouts). If this is small
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then thenM insults have had little impact on the primary network, whichmust consequently be
relatively large. If this is large then theM insults have removed a more significant amount of
functionality and the primary network must consequently berelatively small.

Next consider the successive fractional losses,
{

‖Q j−1‖−‖Q j‖

‖Q0‖−‖QM‖
| j = 1, . . . ,M

}

,

and suppose that they are sorted into descending order. Thenwe may plot the cumulative fraction
of total loss against the cumulative fraction of the total knockouts (ordered by descending size
of loss), see Fig. 1. This curve lies within the unit square, connecting(0,0) to (1,1), above the
diagonal with a negative second derivative. We shall calculate the area under this (ROC-like) curve.
It is equal to one half if and only if all of the fractional losses are equal (all knock-outs produce
the same loss). It is equal to exactly one if and only if all of the fractional losses are zero, except
for one which is unity (a single knock-out accounts for all ofthe loss). Heuristically, we may say
that if this is area is small, and close to a half, then the evolving primary network appears to be
lattice-like, with many redundancies, and is thus robust; if the area is larger, then the evolving
primary network has less redundancy and robustness and is more tree-like, and hence is relatively
fragile. We shall consider this pair of performance measures, plotted as a point in the plane, as a
summary of the primary network’s structure.

Figure 1: The effect of sequential vertex knocks from the primary networks:‖Q j‖/‖Q0‖ versus
knock-out j (left); and the cumulative distribution of loss versus the cumulative distribution of
knock-outs, sorted in descending order of size (right).

Now if we do this calculation many times we will obtain distinct results due to the random
selection of successive knockouts. Thus, by resampling theknock-out sequence many times over,
we calculate an estimate for the means for both measures, together estimates for the correspond-
ing ranges sampled on either side, see Fig. 2. Hence, we mightcompare a collection of distinct
evolving primary networks, each of which is represented by expect point locations, via two per-
formance measures, together with their corresponding ranges (achieved with a given number or
samples). It will be clear when the variability across the collection of individual primary networks
is significantly larger than the sampling error ranges on thepoint estimates.

6



Figure 2: Three primary networks plotted as estimates and two sided ranges, with respect to both
performance measures.

3 Primary networks for fMRI brain scan data

We consider data from an fMRI scan of a human brain, which contains aroundn = 2.5× 105

voxels (small three dimensional volumes within which activity can be measured), which we shall
treat as vertices. Hereai j represents a one-sided covariance of the measured activities (transient
blood oxygen level which is related to energy usage) within voxelsvi andv j, over 10 successive
time frames (from the scan). We step the 10-frame window through a full set of 110 time frames,
producing an evolving weighted network overK = 11 discrete time steps, as a sequence of such
undirected weighted adjacency matrices.

The calculation of then by n communicability matrixQ represents an immediate challenge. We
get around this by noting that each weighted adjacency matrix, Ak, can be represented by the (outer)
productXkXk

T , wherej-th row of the matrixXk contains the activities of voxelj over all snapshots
contained in time stepk; plus a small correction that takes care of the diagonal elements. Therefore,
we do not need to store any massive adjacency matrix and we mayuse Taylor expansion to compute
(I −ηAk)

−1x. In this way we control the precision of the approximation and the computational
cost. Finally, in order to estimate a suitable value forη, we may compute the largest eigenvalue
of Ak via the Power method (c.f. (Golub and Loan, 1996)), again without holding those matrices.
Typically we set 0< η < 0.25/max{ρ(Ak)} in order to ensure the convergence of the resolvents.

Now we can visualize the roles played by the distinct voxels within dynamic pathways (those
including edges from two or more timesteps). For example, ifwe take thesource-sink difference,
b− r, we can eliminate the counts of all vertex-to-vertex paths that take place within any single
timestep (since such paths are reversible, and opposite, sothey contribute to both counts). Then
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we may see those regions of the brain, voxel by voxel, for which b dominatesr: that is, they have
more downstream paths than upstream paths, coloured red in Fig. 3. Similarly, those voxels for
which r dominatesb: that is, they havemore upstream paths than downstream paths, which are
coloured green in Fig. 3.

Clearly these dynamics paths (representing successive chains of events carrying over at least
two time-steps) yield a highly structured field. Moreover, if we randomly permute all of the time-
steps (permute theAk’s) and then repeat the whole operation, the resulting differences,b− r, be-
come much smaller. Such a permutation can be carried throughto show this field observed within
the unpermuted data is highly statistically significant. Sothe dynamical information extracted con-
fidently reflects some sorts of processes that are actually taking place and is not simply an artifact
of the observations or the method. The structures in Fig. 3 themselves are intersting too. They
have relatively short wavelength and display clear striping throughout the cortex.

Scientists working in the fMRI brain scan field may have neverencountered striping like this
either because they are in the habit of defining static networks, where the communicability (cen-
trality) matrix is symmetric and henceb = r, or else of analyzing the data at lower resolutions. A
common reaction is to declare that this ismerely noise, presumably because it shows evidence of
dynamic structure within regions that they typically wish to “parcellate”, and is aninconvenient
phenomenon. In fact these patterns are very far from being spatial noise indeed, and they have
a very distinctive scale. Our permutation tests also show that the patterning is not the result of
temporal noise: these patterns represent dynamical flows form small scale volumes behaving as
relative sources and relative sinks for inter-brain communication.

The resulting distributions forb = (b1, ...,bn)
T andr = (r1, ...,rn)

T are shown in Fig. 4. From
these we select threshold values ofβ ∗ andρ∗ so as to retain the upper modes within the primary
network. This means that approximately half the vertices (1.25×105) are retained withinV ∗.

Using this approach, we have analysed 967 separate fMRI scans, which are part of the data
available from the 1000 Connectome Project1. The multimodal structure in these distributions is
similar in all cases: so it is straightforward to select a primary network containing about half of the
voxels.

Next we recalculate the measures associated with the primary network’s communicability ma-
trix, Q∗. In Fig. 5 we show the values obtained inb∗ versus those inb; and the values obtained
in r∗ versus those inr. Since the primary network is dominant within the full communicability
matrix, by construction, these are very closely correlated.

To visualize the resulting primary network on the reduced set of vertices,V ∗, consider the field
given by the source communicability, the row sums,b∗. This is shown in Fig. 6. Notice that the left
and right hemispheres have now become mostly separated within the primary network and there
are some voids within the brain mass. The most extreme positiveb∗-values are towards the outside
layers of the cortex.

Next we apply the method given in section 2.3 to consider an ensemble of 967 fMRI brains
scans. These are all scans of resting brains, from a number oflaboratories, and each has been
downloaded from the connectime database and then normalized (mapped onto a standard voxelated
representation). We also restricted each normalized scan to 110 time frames, and thusK = 11

1For more information visithttp://fcon_1000.projects.nitrc.org/ or http://www.nitrc.org/.
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Figure 3: A 3D map of a brain obtained from the source minus sink scores,b− r.

timesteps.
For each brain we procceeded independently as follows:

(a) we identified the primary network using suitable threshold parameters(β ∗,ρ∗);

(b) we calculated‖Q∗‖ and its related measures (and tests);

(c) we degraded the primary network withM = 1000 successive voxel knock-outs;

(d) we repeated step (c) independently 100 times to estimatemeans and ranges for the two perfor-
mance measures.

This process involved making around 100000 separate communicability calculations for orig-
inal and degraded primary networks; each of which, conceptually at least, was made based on

9



0 0.2 0.4 0.6 0.8 1 1.2

x 10
−5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) Bimodal distribution ofb.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(b) Bimodal distribution ofr.

Figure 4: Histograms of the bimodal distributions ofb andr. We have also computed and plotted
the corresponding thresholds (red dashed line).

(a) b∗ vs. b (b) r∗ vs. r

Figure 5: Scatter plot ofb∗ vs. b andr∗ vs. r.

over 11 (evolving) weighted graphs containing more than 100000 vertices. Such communica-
bility calculations were all made using the code given in (Stoyanov et al., 2013), and exploiting
the virtual machine implementation enabling cloud-based computing, that is also described in
(Stoyanov et al., 2013).

In Fig. 7 we show a scatter plot of the resutls for all 967 brains from a number of investigat-
ing laboratories (see key). The variation across that population is far greater than the variations
observed for individual brains when the degradations are resampled. To see this, consider Fig. 8,
where for each of the brains from five of the laboratories we show the full range of variation in the
performance measures achieved over 100 independent randomly sampled degradations. In all cases
differences between some of the individuals’ brains is greater than the corresponding individual
degradation sampling errors.
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Figure 6: A 3D map of theb∗ measures for the primary network within the brain.

4 Conclusions

For any vast evolving network the primary network represents those vertices (and their connect-
ing evolving edges) which dominate the distribution of all possible dynamic pathways between all
pairs of vertices. Coarse graining approaches (Mucha et al., 2010; Tozzini, 2005; Gfeller and Rios,
2007, 2008; Itzkovitz et al., 2005) summarize vast (static or dynamic) networks by introducing an
intermediate, mesoscopic level representing components of the whole network, as single meso-
scopic vertices connected appropriately so as to representthe microscope edges between vertices
within each component. In many applications this is entirely appropriate. Here we have introduced
the idea that if we wish to stay at the high resolution (microscopic scale), we might reduce the size
of the network by retaining only those vertices and edges which might carry the major components
of any flow of information, or coherent behaviour. This is related to generalized Katz centrality
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Figure 7: Scatter plot showing performance measures under degradation for 967 brains, indexed
by investigating laboratory

(extended to evolving networks) rather than time dependentdegree or frequency of edges. In some
applications there may be a natural divide between primary and secondary networks, and we have
illustrated this construction with one such application. The importance of this is that too often,
very high resolution data, such as fMRI blood oxygen level images, available from modern pow-
erful scanners, are reduced to analysis interaction between 500 or so parcels of vertices (defined in
some way) so as to make analysis tractable. The fine resolution is thus lost. In fact the dynamical
element of the scans is also often lost, with single static networks being extracted from the time
dependent behaviour. Thus the concept of some vertices acting as sources and some as sinks for
communication is simply unavailable in many of the published analyses.

The probing of the structure of primary networks via simulated (sampled) degradation, opens
up a number of possibilities for future work and exploitation. In any application it is essentially
to show that the variation of performance measures due to sampling of knockouts is less than that
observeed across large populations of similar networks, aswe have shown in the application here.
Here we have suggested just two conceptually independent ways of measuring the performance
and structure of primary networks (through simulated degradation): one measuring the size of
impact and the other measuring the fragility/robustness ofthe network to insults. There may be
other, more illuminating measures to be defined, and this issue is far from complete. Nevertheless,
it cannot be argued that what we have seen is an artifact or thedata or the analytics: it is lost
when one permutes the time-steps (breaking the dynamics); the source-sink structure observed
is far from random (and is in fact observable within all brains; yet individuals are distinct - like
fingerprints).

The emergence of the high resolution data in many fields demands that the analytics respect
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Figure 8: Individual brain perfromance measures with extreme ranges

that, and we should not necessarily aggregate the activity into larger sets of mesoscopic voxels
a-priori. To do so would lose and distort the structures presented here. Once we upscale (coarse
grain) they are lost. Similarly the time resolution of vast data sets form many fields will become
finer in the future and the analysis presented here could scale with such developments. It is fortu-
nate indeed that this data deluge coincides with the availability of cloud-based, parallel, low cost,
computing facilities for all.
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