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Abstract

In this paper we consider the structure of dynamically emgivnetworks modelling in-
formation and activity moving across a large set of verticd&e adopt thecommunicability
concept that generalizes that of centrality which is defiimedtatic networks. We define the
primary network structure within the whole as comprisinghaf most influential vertices (both
as senders and receivers of dynamically sequenced agtiwe present a methodology based
on successive vertex knock-outs, up to a very small fraabiothe whole primary network,
that can characterize the nature of the primary network awybeither relatively robust and
lattice-like (with redundancies built in) or relativelyaefyile and tree-like (with sensitivities and
few redundancies). We apply these ideas to the analysisobfieyg networks derived from
fMRI scans of resting human brains. We show that the estimaif performance parameters
via the structure tests of the corresponding primary neksvis subject to less variability than
that observed across a very large population of such scamscethe differences within the
population are significantK eywor ds. networks, communicability, brain science, fMRI data,

robustness, bimodality.

1 Introduction

There is an increasing interest in evolving graphs: netwaovkere edges appear and disappear
over time (Grindrod and Higham, 2010; Crofts and Higham,12®strada, 2011). Such networks
model a range of phenomena where information is commumidaten vertex to vertex. The
time ordering of the graphs (changing with the discrete apgece and disappearance of edges)
induces an asymmetry; sinceAfcommunicates witlB, and then lateB communicates witlc,

the information fromA can reaclC but not vice versa. For this reason some generalizations of
Katz centrality (Katz, 1953) have been developed so as tttifgiehe role of individual vertices
within evolving networks as influential sources of inforiator efficient sinks for information
(Grindrod et al., 2011; Estrada et al., 2012; Grindrod anghieim, 2012). These ideas and meth-
ods have been applied to large scale networks form a rangsb€ations including social media,
and peer to peer telecommunications and emails.

1



When evolving networks are very large (in terms of the nundferertices) there is usually
some need to summarize those networks. Here we introducggaef dividing the network into
a primary network containing all of the influential verticassd a consequent secondary network
containing the less important vertices. We shall discugsthis differs from existing coarse grain-
ing approaches (Mucha et al., 2010; Gfeller and Rios, 20088 2Itzkovitz et al., 2005), which
provide a different type of (mesoscopic) summary.

Having identified a large primary network we have a need toattarize and summarize its
structure: is it relatively lattice-like and robust to iftsy or is it relatively tree-like and fragile?
We introduce a methodology to test for this by making sudeedshock-outs of vertices within
the primary network and examining the losses in overalltionality. By knocking-out very small
fractions (typically 1% of the whole) we can remain withiretlinear regime and avoid second
order, collaborative, loss-effects. Thus we can classéiworks, from within a possibly large
population of similar examples, with respect to perfornganteasures representing the relative
size of the total functional loss due to a given number of knmats, and the variability of those
incremental losses.

To illustrate these ideas we consider their applicatioiMBIf scans of (resting) human brains
and comparing the performance of the primary networks fromoat 1000 such brains. We will
show that the variation in the performance measures olgéovan individual brain (due to anal-
ysisng different random knock-out sequences) is far lems the variation observed across a large
population of brains. This leads to the inevitable condndhat such individual brains are sig-
nificantly different, and in particular that they can be tigkely robust or relatively fragile when
subject to successive knock-outs of rather small scale oaegs.

We present both the framework to make this analysis traetailprimary networks of 10or
more vertices. The discussion of the application is red¢dyigelf-contained so as to make the paper
accessible for analysts who can adapt and extend this natgydto any other types of data sets
whereinformation or activity of some kind is observed passing dynamically around a vegela
population of entities.

2 Weighted evolving networ ks and communicability

An undirected weighted graph defined over a setwérticesV = {vi|i = 1,...,n}, is such that for
each possible edge, betwegrandyv; say, we have a real non-negative weight The weighted
adjacency matri@, with its (i, j)-th term given bya;j, is symmetric and non-negative, and is
equivalent to a pairwisgmilarity matrix that might be used in clustering objects (here represented
by the vertices). We shall always assume that the diagormakta A are all zero (so there are no
self-connections).

Now consider an evolving weighted network given oleconsecutive discrete time steps as a
sequence of such undirected weighted graphs represensecbiosesponding sequence of weighted
adjacency matricegAr, Ao, ..., A }. A dynamic path fromv; to v; is a sequence of successive ad-
joining edges, specified from the sequence of the adjaceatya®s, linkingy; to vertexvj through
intermediate vertices, such that each edge occurs at theetsamstep or a later one than that of the
previous edge. The time ordering of the sequence allows defioe the communicability matrix,



Q ,(Grindrod et al., 2011) as the ordered product of resofzent
) K
Q=(I—nA) L(l—nA)t .. (1 -nA)" |'| I —nA)~

where 0< n < 1/max{p(Ax)} is a constant discount factor (ensuring convergence). Elechent
of Q provides a sum over all possible vertex to vertex dynamibgaif the products of the edge
weights, discounted for length.This is a generalizatioKatz centrality (which applies for a static
network, effectively recovered here whkn= 1).

It is evident thatQ is generally not symmetric, because of the time orderindnefsequence.
Thei-th row sum ofQ represents all of the paths emanating frgirand is a measure of's power
as asource or initiator of dynamic pathways; aneth column sum of) represents all of the paths
coming intov;, and is a measure of thegs power as aink or destination for dynamic pathways.
Intuitively if many dynamic paths go through some vertgxthen the upstream and downstream
contributions of those paths are counted within the cooedmg column and row sums ).
Hence those vertices lying on th&in highways of dynamic propagation (highly weighted paths)
will have relatively large corresponding row and column sum

We will write the n-vector of the row sums ds, and then-vector of the column sums as
given by

b=(by,....bn)  =Q1L, r=(ry,...r))" =Q"1.

The particular case we have in mind here is wheierather large. In that case we might seek
to avoid calculating directly, but instead we are able to directly calculatendr by multiplying
Qby1=(1,1,..,1)7 from the left or the right, respectively. In practice we staut from the
estimates = 1 andb = 1, and update those via successive linear solves equivalemtltiplica-
tion by the respectively, forward and backward orderedhlvesnts. We might also wish to avoid
calculating or holding théys in memory. For example, if we can wrifg = XkaT whereXy is
n x mwith m << n, then we may work with ths rather than théys.

2.1 Nested primary networks

Consider the distribution of the values containetd ia (by, ...,b,) T, and respectively = (ry,...,rn)".
This may be bimodal or multimodal within some applicaticars] thus there may be natubakak-
points within these distributions. In any case let us suppose thradch distribution we may set a
suitable threshold valyg*, and respectivelp*, above which we consider vertex spechiiwalues
anr-values to be significant; and below which we consider thebetaegligible.

For any given pair of non-negative valug8*, p*), we shall define the associatpdmary
network as that consisting of all edges at all time steps connectihgpairs of vertices within the
setV*:

V*(B*,p*) ={vi| b > B*orri > p*} C V.

As either3* or p* increased/* becomes smaller, approaching 0 once k@th> maxb; and
p* > maxri. Thus we may generate nested primary networks defined agbathp* increase.



In practice in considering the primary network, the subgrapluced by the evolving network
in restrictingV to V*, we are excluding those edges which, even if they have avelatlarge
weight in some or other time steps, merely connect vertltatsare not significant as either sources
or sinks of the dynamic paths within the full evolving netwagystem.

For the reduced, primary network, defined on the vertic®s jrwe can calculate the associated
communicability,Q*, and thus the associated andr*. These are the descriptors of that primary
network onV*. Only those edges connecting those vertice®irare admissible. This is done
simplest by setting all rows and columns in #ygs to zero whenever the corresponding vengex
isinV\V*.

The resulting values withib* andr*, for the primary network, will be highly correlated with
their precursors for the full network, andr. This follows by construction because the counts of
pathways made withib andr will be dominated by paths within the primary network.

The identification of primary (sub)networks serves verytidet purpose from the concept of
coarse graining (Mucha etlal., 2010). Here the aim is to iflethte main subnetwork(s) that gives
rise to the majority of pathways, as counted by the commilita(a dynamic form of centrality).

If individual edges possess a high weighting yet lead noe/hed merely play a role in relatively
few pathways then they will be disregarded here if at leastafiits end points has both a relatively
low source and sink communicability. In contrast methodsazfrse graining seek a macroscopic
representation of the whole network by replacing subcoraptmof the network’s vertices with
single “meta" vertices; and then inducing some aggregatdhiings for connections between
those meta subcomponents. Both are simplifications of cexmgtworks, but they achieve rather
different things.

2.2 Associated secondary networks

Consider a given primary network containing all edges, ehed the time steps, connecting pairs
of vertices withinV*(3*, p*). The associated secondary network consists of all of thesdg
each time step, that are not included within the primary netwSuch edges must connect at least
one vertex which has both sub-threshold row and column summsvihe full communicability
matrix, and thus is not iN*(8*, p*).

2.3 Probing the structure of primary networks

Given a (large) evolving primary network with more than 100®oxels, we wish to investigate
the nature of its structure through sampling rather thamestive analysis. We propose to do so
by making a number of sequentiailock-outs. In practice this means removing voxels, one at a
time, from the network and then recalculating a measureeptimary network’s functionality at
every successive iteration.

We proceed as follows. Communicability matrices, suc@ andQ*, summarise the function-
ality observed in an evolving networks and are nonnegaiiieedefine the norm of such matrices
as the sum of their elements

IQ=1"Q1=1"b=1Tr.



Now consider a generated sequence of communicability cesfQ;|j = 0,...,M}, whereQp =

Q*, that for the original primary network, and then successleenents are generated by randomly
selecting a voxel that is “live” within the previous netwodnd deleting it. At each iteration we
may recalculate the communicability. Heygemains fixed. Thus as voxels, and hence edges, and
consequently some paths, are deleted, we obtain a seq{@pEsuch that the corresponding se-
quence of normg||Q;||} is monotonically decreasing. We shall only knock-buvoxels, which is
ideally less than 1% of all voxels M*; so that there is a low probability of deleting voxels that ar
highly connected together. We desire that the degradagimains firmly within the linear regime
(with small numbers of independent knock-outs). We shadleobke the step-by-step degradation
of the evolving network, as measured by the monotonic réoigin { || Q|| }. For some values of

j we will annihilate a vertex that plays little role in many patvith the result thatQ;_1|| — || Q;|

is relatively small. For other values we may annihilate desewith a large communicability score
and hencg{Q;_1|| — ||Q;| will be relatively large.

Suppose the evolving primary network is very lattice-Iiith a high Watts-Strogatz clustering
coefficient, say. Then there is a large amount of redundamcuch a primary network, and
since the lattice is relatively homogeneous almost evargam knock-out will produce a similar
reduction in functionalty, and the overall progress willddese to linear. For example, imagine a
network on a grid, like the roads of Manhattan. If we knock@uatost any intersection the traffic
can drive two further blocks around it and little functidigas lost. On the other hand, suppose the
primary networks is very tree-like, with few cycles of anndgh. Then, when some vertices with
high centrality are knocked-out, we would expect to seegelaeduction in functionality. Think
of the UK railway network, for example. If we knock-out Bimgham New Street the network
looses a large amount of functionality, yet if we knock-owrntey on Thames virtually nobody
will notice.

The random degradation process is also suggestive of gadg slecline or damage of an
ageing network. This analogy is particularly useful in ddesng human brains of course, where
early onset cognitive decline is a major issue of interestfatt it is clear that we ought to see
a range of different experiences of cognitive degradatispldyed within ageing populations.
Some older people lose cognitive functionality in occaalphut large, steps (presumably having
occasional critical, un-replaceable, catastrophic Es$ence being somewhaagile. Yet some
people’s loss is long term, and relatively smooth and slosegpmably exploiting some network
redundancies, and hence displaying a functional robustoegeing). Thus the proposed approach
is a useful way to (destructively) test the network, as welpsoviding an experimental analogue
to random degradation through ageing. It may form a basia fature clinical analysis of fMRI
scans.

The nature of the degradation arising from a random sequirc®eck-outs of these networks
may be characterized by two performance measures: theisiadgolute terms) and the nature
(variability) of the sequential reductions in functiortglias measured by tHg Q|| }.

Let M be the number of voxels removed. Then we calculate the gyanti

HQMH)

1- 20

( Qo

which is the fractional loss of functionality (as a resultMfvoxel knockouts). If this is small
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then thenM insults have had little impact on the primary network, whiohst consequently be
relatively large. If this is large then thd insults have removed a more significant amount of
functionality and the primary network must consequentlydiatively small.

Next consider the successive fractional losses,

{ 1Qj—ll - 1IQjll
Qo[ — [ Qull

and suppose that they are sorted into descending order.\Wdemay plot the cumulative fraction
of total loss against the cumulative fraction of the totab&kouts (ordered by descending size
of loss), see Fid.]1. This curve lies within the unit squamnecting(0,0) to (1,1), above the
diagonal with a negative second derivative. We shall catetthe area under this (ROC-like) curve.
It is equal to one half if and only if all of the fractional lessare equal (all knock-outs produce
the same loss). It is equal to exactly one if and only if allla# fractional losses are zero, except
for one which is unity (a single knock-out accounts for altlod loss). Heuristically, we may say
that if this is area is small, and close to a half, then thewmglprimary network appears to be
lattice-like, with many redundancies, and is thus robusthe area is larger, then the evolving
primary network has less redundancy and robustness andrestnee-like, and hence is relatively
fragile. We shall consider this pair of performance measusttted as a point in the plane, as a
summary of the primary network’s structure.

] :1,...,M},

1] #

0.4 '

Communicability
Cumulative loss
My

2

a 02 o4 0.6 8 1

Successive knock-outs Ordered knock-outs

Figure 1: The effect of sequential vertex knocks from thenary networks:||Qj||/||Qol| versus
knock-outj (left); and the cumulative distribution of loss versus thenclative distribution of

knock-outs, sorted in descending order of size (right).

Now if we do this calculation many times we will obtain distirresults due to the random
selection of successive knockouts. Thus, by resamplingribek-out sequence many times over,
we calculate an estimate for the means for both measuresthtergestimates for the correspond-
ing ranges sampled on either side, see [Hig. 2. Hence, we wcoghpare a collection of distinct
evolving primary networks, each of which is representedXpeet point locations, via two per-
formance measures, together with their correspondingesa@chieved with a given number or
samples). It will be clear when the variability across thiembion of individual primary networks
is significantly larger than the sampling error ranges orpthiat estimates.
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Figure 2: Three primary networks plotted as estimates aondstded ranges, with respect to both
performance measures.

3 Primary networksfor fMRI brain scan data

We consider data from an fMRI scan of a human brain, whichaiostarounch = 2.5 x 10°
voxels (small three dimensional volumes within which atgican be measured), which we shall
treat as vertices. Hera; represents a one-sided covariance of the measured asiditansient
blood oxygen level which is related to energy usage) witlurelsv; andvj, over 10 successive
time frames (from the scan). We step the 10-frame windowutdinaa full set of 110 time frames,
producing an evolving weighted network ower= 11 discrete time steps, as a sequence of such
undirected weighted adjacency matrices.

The calculation of tha by n communicability matrixQ represents an immediate challenge. We
get around this by noting that each weighted adjacency xaii can be represented by the (outer)
productX X", wherej-th row of the matrixX, contains the activities of voxglover all snapshots
contained in time stelg plus a small correction that takes care of the diagonal @hesn Therefore,
we do not need to store any massive adjacency matrix and wesealaylor expansion to compute
(1 — nA)~Ix. In this way we control the precision of the approximatiomnl dine computational
cost. Finally, in order to estimate a suitable valuerfowe may compute the largest eigenvalue
of Ay via the Power method (c.f. (Golub and Loan, 1996)), agaihaevit holding those matrices.
Typically we set 0< n < 0.25/ max{p(Ax) } in order to ensure the convergence of the resolvents.

Now we can visualize the roles played by the distinct voxethiw dynamic pathways (those
including edges from two or more timesteps). For examplegitake thesource-sink difference,

b —r, we can eliminate the counts of all vertex-to-vertex paltas take place within any single
timestep (since such paths are reversible, and oppositeggaontribute to both counts). Then



we may see those regions of the brain, voxel by voxel, for tvhidominates : that is, they have
more downstream paths than upstream paths, coloured red in[Figingilarly, those voxels for
whichr dominated: that is, they havenore upstream paths than downstream paths, which are
coloured green in Fid. 3.

Clearly these dynamics paths (representing successiveschievents carrying over at least
two time-steps) yield a highly structured field. Moreovéwe randomly permute all of the time-
steps (permute th&,’s) and then repeat the whole operation, the resulting rdiffeesp —r, be-
come much smaller. Such a permutation can be carried througfiow this field observed within
the unpermuted data is highly statistically significanttl@odynamical information extracted con-
fidently reflects some sorts of processes that are actudllyg@lace and is not simply an artifact
of the observations or the method. The structures in[Figettelves are intersting too. They
have relatively short wavelength and display clear stgghroughout the cortex.

Scientists working in the fMRI brain scan field may have nexgcountered striping like this
either because they are in the habit of defining static nétsyavhere the communicability (cen-
trality) matrix is symmetric and hende= r, or else of analyzing the data at lower resolutions. A
common reaction is to declare that thigrierely noise, presumably because it shows evidence of
dynamic structure within regions that they typically wigh“parcellate”, and is amnconvenient
phenomenon. In fact these patterns are very far from beiagadmoise indeed, and they have
a very distinctive scale. Our permutation tests also shawtthe patterning is not the result of
temporal noise: these patterns represent dynamical floms $mall scale volumes behaving as
relative sources and relative sinks for inter-brain comication.

The resulting distributions fds = (by, ..., b,)"T andr = (ry,...,ry)" are shown in Figd.14. From
these we select threshold valuesdfandp* so as to retain the upper modes within the primary
network. This means that approximately half the verticeg% 10°) are retained withiiv*.

Using this approach, we have analysed 967 separate fMREsedrich are part of the data
available from the 1000 Connectome Prcﬁ]ed[he multimodal structure in these distributions is
similar in all cases: so it is straightforward to select arfaiy network containing about half of the
voxels.

Next we recalculate the measures associated with the prinegwork’s communicability ma-
trix, Q*. In Fig.[B we show the values obtainedhi versus those iib; and the values obtained
in r* versus those im. Since the primary network is dominant within the full commuability
matrix, by construction, these are very closely correlated

To visualize the resulting primary network on the reducdaéeerticesV*, consider the field
given by the source communicability, the row sultis, This is shown in Fid.16. Notice that the left
and right hemispheres have now become mostly separateh whth primary network and there
are some voids within the brain mass. The most extreme pebitivalues are towards the outside
layers of the cortex.

Next we apply the method given in section]2.3 to consider @emble of 967 fMRI brains
scans. These are all scans of resting brains, from a numidebofatories, and each has been
downloaded from the connectime database and then norméiimgpped onto a standard voxelated
representation). We also restricted each normalized s£di@ time frames, and thué = 11

LFor more information visihttp: //fcon_1000.projects.nitrc.org//orhttp://www.nitrc.org/.
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Figure 3: A 3D map of a brain obtained from the source minuk saoresp —r.

timesteps.
For each brain we procceeded independently as follows:

(a) we identified the primary network using suitable thrédlparametergf*, p*);
(b) we calculated Q*|| and its related measures (and tests);
(c) we degraded the primary network with= 1000 successive voxel knock-outs;

(d) we repeated step (c) independently 100 times to estimagas and ranges for the two perfor-
mance measures.

This process involved making around 100000 separate comeahility calculations for orig-
inal and degraded primary networks; each of which, con@dlgtat least, was made based on
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Figure 4: Histograms of the bimodal distributionsoéndr. We have also computed and plotted
the corresponding thresholds (red dashed line).
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Figure 5: Scatter plot d* vs.b andr* vs.r.

over 11 (evolving) weighted graphs containing more thanQD@vertices. Such communica-
bility calculations were all made using the code given_iroy@hov et al., 2013), and exploiting
the virtual machine implementation enabling cloud-basechmuting, that is also described in
(Stoyanov et all, 2013).

In Fig.[7 we show a scatter plot of the resutls for all 967 sdhem a number of investigat-
ing laboratories (see key). The variation across that @jou is far greater than the variations
observed for individual brains when the degradations asamgled. To see this, consider Hif. 8,
where for each of the brains from five of the laboratories westie full range of variation in the
performance measures achieved over 100 independent rnsimpled degradations. In all cases
differences between some of the individuals’ brains is tgrethan the corresponding individual
degradation sampling errors.
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4 Conclusions

For any vast evolving network the primary network represé¢hose vertices (and their connect-
ing evolving edges) which dominate the distribution of @pible dynamic pathways between all
pairs of vertices. Coarse graining approaches (Mucha,&0; Tozzini, 2005; Gfeller and Rios,
2007, 2008; Itzkovitz et al., 2005) summarize vast (statidymamic) networks by introducing an
intermediate, mesoscopic level representing compondrteavhole network, as single meso-
scopic vertices connected appropriately so as to représemhicroscope edges between vertices
within each component. In many applications this is entiegpropriate. Here we have introduced
the idea that if we wish to stay at the high resolution (micapsc scale), we might reduce the size
of the network by retaining only those vertices and edgesivmight carry the major components
of any flow of information, or coherent behaviour. This isated to generalized Katz centrality
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Figure 7: Scatter plot showing performance measures uretgadation for 967 brains, indexed
by investigating laboratory

(extended to evolving networks) rather than time dependegitee or frequency of edges. In some
applications there may be a natural divide between primadysgcondary networks, and we have
illustrated this construction with one such applicatiorheTimportance of this is that too often,
very high resolution data, such as fMRI blood oxygen levedges, available from modern pow-
erful scanners, are reduced to analysis interaction bet®@@ or so parcels of vertices (defined in
some way) so as to make analysis tractable. The fine resoligtibus lost. In fact the dynamical
element of the scans is also often lost, with single statiwokks being extracted from the time
dependent behaviour. Thus the concept of some verticesmaasi sources and some as sinks for
communication is simply unavailable in many of the publhealyses.

The probing of the structure of primary networks via simedbafsampled) degradation, opens
up a number of possibilities for future work and exploitatidn any application it is essentially
to show that the variation of performance measures due tplgagof knockouts is less than that
observeed across large populations of similar network&gasave shown in the application here.
Here we have suggested just two conceptually independeys afameasuring the performance
and structure of primary networks (through simulated degtian): one measuring the size of
impact and the other measuring the fragility/robustnegb®hetwork to insults. There may be
other, more illuminating measures to be defined, and thirigsfar from complete. Nevertheless,
it cannot be argued that what we have seen is an artifact odateor the analytics: it is lost
when one permutes the time-steps (breaking the dynamlwos)sdurce-sink structure observed
is far from random (and is in fact observable within all bsiget individuals are distinct - like
fingerprints).

The emergence of the high resolution data in many fields ddmtrat the analytics respect
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Figure 8: Individual brain perfromance measures with exg@anges

that, and we should not necessarily aggregate the activitylarger sets of mesoscopic voxels
a-priori. To do so would lose and distort the structures presentesl I@nce we upscale (coarse
grain) they are lost. Similarly the time resolution of vaatalsets form many fields will become
finer in the future and the analysis presented here coulé sath such developments. It is fortu-
nate indeed that this data deluge coincides with the avbijabf cloud-based, parallel, low cost,
computing facilities for all.
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