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Abstract: We consider time-harmonic scattering by penetrable conlgggts, a Helmholtz transmis-
sion problem. Standard numerical schemes based on piecewise payapproximation spaces become
impractical at high frequencies due to the requirement that the nuridegcees of freedom in any ap-
proximation must grow at least linearly with respect to frequency inro@eepresent the oscillatory
solution. High frequency asymptotic methods on the other hand arearigent and may be insuffi-
ciently accurate at low to medium frequencies. Here, we design a hylomiérical-asymptotic boundary
element approximation space that combines the best features of lpptiaapes. Specifically, we com-
pute the classical geometrical optics solution using a beam tracing algoatiththen we approximate
the remaining diffracted field using an approximation space enriched ait#fuily chosen oscillatory
basis functions. We demonstrate via numerical simulations that this apppeamits the accurate and
efficient representation of the boundary solution and the far field pattern

Keywords Helmholtz transmission problem, high frequency scattering, numeagyahptotic approxi-
mation, boundary integral equation method

1 Introduction

The scattering and absorption of time-harmonic electraratig and acoustic waves by penetrable (i.e. partially
transparent) scatterers arises in numerous applicatiomaihnematical and physical interest, for example the
scattering of light waves by atmospheric particles suctcasiystals and aerosols (see, e.g., Baran (2012)).
When both the penetrable scatterer and the exterior mediuymnopfagation are homogeneous, a natural ap-
proach is to reformulate the problem as a system of integratons that hold on the boundary of the scatterer.
This replaces a problem on an unbounded domain with one omiredied domain of reduced dimension. The
study of boundary integral equation (BIE) formulations $och problems, and their numerical solution (the
Boundary Element Method (BEM), often called the Method Ofrivemts in the electromagnetic community),
has a long history. Single smooth penetrable scatterers begn studied by, e.g., Kress & Roach (1978),
Kleinman & Martin (1988), Zinn (1989), Ré&m & Sayas (2006), Domguez et al. (2008), Hsiao & Xu (2011),
Kleefeld (2012), whilst Costabel & Stephan (1985) considdrvoth smooth and polygonal scatterers, and Tor-
res & Welland (1993), Rdm & Sayas (2008), Laliena et al. (2009), von PetersdorfB@)%nd Hiptmair &
Jerez-Hanckes (2012) have considered Lipschitz domdiadatter two describing formulations for multiple
penetrable scatterers.

All of the numerical approaches listed above suffer howésan the well known limitation (common to
all conventional numerical methods for wave scatteringuéitions implemented using piecewise polynomial
approximation spaces) that a fixed number of degrees ofdread required per wavelength in order to rep-
resent the oscillatory solution. This can lead to prohibittomputational expense when the scatterer is large
relative to the wavelength, as is often the case in apptioatiln this “high frequency” regime one can alterna-
tively appeal to asymptotic approximation techniques sagkbeometrical Optics (GO), Physical Optics (PO,
sometimes called the “Kirchoff approximation”) and the @Gwdrical Theory of Diffraction (GTD). However,
although such approximations have a low (in fact, oftendeggry-independent) computational cost, the price
one pays is that they are only accurate for “sufficiently hifyjaquencies. The question of how high the fre-
guency needs to be for “sufficient accuracy” depends on thepkar scattering problem being considered, and
moreover is usually not known a priori. In many applicatidimsparticular for the example of light scattering
by atmospheric particles mentioned above) there is a signifiand important range of frequencies for which _I_
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neither conventional numerical methods nor asymptotidiodz give satisfactory results.

Thehybrid numerical-asymptotitHNA) approach is a general methodology for scattering lgmols which
aims to fuse conventional numerical methods with high feemy asymptotics to create algorithms that are
controllably accurate and computationally feasible oherwhole frequency range. The key idea is to enrich
the BEM approximation space with oscillatory functionspsén using partial knowledge of the high frequency
asymptotic behaviour of the solution. More explicitly, cseeks to approximate the unknown solutioof the
relevant BIE using an ansatz of the form

v(x, k) = vo(x, k) + z Vm(X,K) exp(ikm(x)), xeT, (1.1)

wherek (the wavenumber) is proportional to the frequency of theagaand™ is the boundary of the scatterer.
In this representationjy is a known (generally oscillatory) function (derived frohethigh frequency asymp-
totics), the phaseg,, are chosen a priori (again, using the high frequency asyiiopj@nd the amplitudes,,
m=1,...,M, are approximated numerically using piecewise polynanighe expectation is thatvf and @,
m=1,...,M, are chosen wisely, then,(-,k), m=1,...,M, will be much less oscillatory thaw(-,k) and so
can be more efficiently approximated by piecewise polyntsrianv itself.

For a number of important classes of scattering problemsité approach has been shown to provide a
dramatic reduction in the number of degrees of freedom redut high frequencies compared to conventional
methods. However, to date the HNA approach appears to haveapplied exclusively to problems of scatter-
ing by impenetrablescatterers, i.e. where perfectly-conducting, sound{gftchlet), sound-hard (Neumann)
or impedance (Robin) boundary conditions are imposed orbthumdaryl". Moreover, until very recently
(Chandler-Wilde et al., 2012b), its successful applicatias restricted to convex impenetrable scatterers, for
which multiple re-reflections and questions of partialilimation need not be considered. For a comprehensive
historical and technical review of the HNA approach in theMB&etting the reader is referred to Chandler-Wilde
etal. (2012a).

The purpose of the current paper is to begin the challengisig @f generalising the HNA methodology to
the case of so-called “transmission problems”denetrablescatterers, where the scatterer is a region in which
the wave speed differs from that of the background propagatiedium. Specifically, we consider the two-
dimensional case where the scattering region is boundedbynaex polygon. We also consider the possibility
that the interior medium may be absorbing. For an illustratf a typical solution see Figure 1. Our aim is to
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FiG. 1: Real part of the total field for scattering of a plane wayalpenetrable equilateral triangle. Details of
the parameter values used in these examples are givgn in

| show how effective HNA approximation spaces can be consduior this problem, and moreover to demon- |
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strate, by comparison with an “exact” reference solutiaan{puted using a conventional BEM with a large
number of degrees of freedom), that these HNA approximagiaces can approximate the highly oscillatory
solution of the transmission problem accurately and efiityjeeven at high frequencies. The development of
an HNA BEM based on these approximation spaces will be redagparately (Groth et al., 2013).

The main difficulty in the generalisation of the HNA methaalgy to the penetrable case is that the high
frequency asymptotic behaviour is significantly more cdogtéd than in the impenetrable case. In particular,
the boundary of the scatterer represents the interfacesleetiwo media with different wave speeds, and hence
two different wavenumbers, and we expect to need to modiatisatz (1.1) to include terms oscillating at both
wavenumbers. In addition to the phenomena of reflection #frdation that occur in the impenetrable case, in
the penetrable case we observe a new phenomeefaction which occurs when a wave propagating in the
exterior medium is transmitted into the scatterer and versa. One key difficulty this presents is that a wave
propagating inside the scatterer can undergo multiplea@t infinitely many) internal reflections/diffractions
(this is described in more detail §8). We therefore expect that, in order fap, m= 1,2, ..., to be non-
oscillatory, we would need to consider infinitely many diéfet phasegy,. (This is in contrast to the case of
scattering by sound-soft convex polygons considered im@lea-Wilde & Langdon (2007) and Hewett et al.
(2012), where the high frequency behaviour can be compleggbtured using just two phase functions, i.e.
M = 2 in (1.1), corresponding to waves travelling clockwise amticlockwise around the boundary.) This
complicates the development of an ansatz of the form (1rifhi® transmission problem, because to create a
viable numerical algorithm we have to choose only a finite benof these phases. Depending on the refractive
index (the ratio of the interior to exterior wavenumberg)geach reflection/diffraction the amplitude of the
reflected wave decreases, and hence, as we will sg4, itmuncating a series of re-reflections/re-diffractions
after a few terms (i.e. including only a small number of plsdse often sufficient to achieve an excellent
approximation of the true solution.

Moreover, the higher the absorption of the interior medithme,faster the decay of the amplitude of waves
passing through the scatterer, and, as a result, our HNAogjppation spaces are more accurate at higher
absorptions, as we will see . Indeed, for high absorption in the scatterer, a transarigsroblem can
be approximated by an appropriate exterior problem witheidgmce boundary condition (see, e.g., Antoine
& Barucq (2005) or Haddar et al. (2005) for details). The affeeness of the HNA approach for scattering
by convex polygons with impedance boundary conditions veasahstrated in Chandler-Wilde et al. (2012c),
where it was shown that an approximation space could be mtstl for which the number of degrees of
freedom required to achieve a prescribed level of accui@ahé best approximation grew only logarithmically
with respect to frequency (compared to at least linear drdart conventional approximation spaces). Thus the
HNA approach has been shown to work well for the transmiggioblem in the high absorption limit, with our
current paper focusing on extending those ideas to genesalgtions and frequencies.

Another key difficulty is that the high frequency asymptdtieory for penetrable scatterers is not nearly
as well understood as for the impenetrable case. In paatictilere is no known closed-form analytical (or
even asymptotic) solution to the canonical problem of difion by a penetrable wedge, despite many attempts
to derive one (see, e.g., Meister et al. (1994), Rawlins §1.9Budaev & Bogy (1999), Antipov & Silvestrov
(2007)). This means that we do not have a fully-developed @&FPenetrable scatterers from which to infer the
correct choice of phasef;, in our HNA ansatz (1.1). Our approach in this paper choosasefunctions based
on heuristic generalisations of the asymptotic theory (B@@TD) for the impenetrable case, and confirms the
validity of these choices via a series of numerical examptesontrast to classical asymptotics, we do not seek
a complete representation of the high frequency behavidhiessolution, rather we just seek information about
the phase; this enables the construction of our hybrid nigadesisymptotic approximation space, with the non-
oscillatory amplitudesv, in (1.1)) being approximated by standard piecewise polyiatsmon appropriately
graded meshes.

Problems of the type considered in this paper have beenestwdiely in the electromagnetics commu-
nity, where the state of the art in computational methodsiiggied in high frequency asymptotics appears to be
the so-called physical-geometric optics hybrid (PGOH)hudtdetailed in Bi et al. (2011) (building on earlier
work in Yang & Liou (1995, 1996, 1997)). The PGOH approachssemtially a generalised PO (or Kirchoff)
approximation, being based on the classical boundary rategpresentation formula for the solution of the
scattering problem (cf. (2.6)-(2.7) below), with the (uokim) Cauchy data being replaced by its GO approxi- _I_
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mation. This corresponds to using only the terin the ansatz (1.1) (or more accurately the tegain the
generalised ansatz (3.1)—(3.2) which we introducg8in Our approach is considerably more ambitious, in that
our HNA approximation space (through the inclusion of theeoterms in (1.1) (corresponding¥g in (3.1)))
also captures diffraction effects directly in the approaiion of the boundary solution. A result is that, whereas
the PGOH approach is limited to high frequency (and canrfet abntrollable accuracy for fixed frequency),
our approximation space is effective across the frequepegteum (seg4).

An outline of the paper is as follows. We begingi2 by stating precisely the scattering problem to be solved
and detailing its reformulation as a boundary integral équa In §3 we describe our HNA approximation.
The first step is to compute the GO approximation, i.e. thditeporder termvg in (1.1), and we describe
our approach (a beam tracing algorithm) for doing this fooavex polygonal scatterer of arbitrary absorption
in §3.1. A key ingredient of the algorithm is the solution of trenonical problem of scattering of an incident
plane wave by a planar interface between two absorbing noédifferent wavenumbers. This classical problem
has been studied by a number of authors (see, e.g., Dupettalis(1994), Chang et al. (2005), Yang & Liou
(2009)) but there does not seem to be a definitive refereritabtifor our purposes. Indeed, we believe that
Chang et al. (2005) and Yang & Liou (2009) contain fundamartars in certain formulae, and Dupertuis et al.
(1994) does not provide a complete prescription of how toenaitious important sign choices. We therefore
provide a complete derivation of the solution to this probie the appendix.

In §3.2 we discuss how ideas from the GTD can be used to undergianokcillatory behaviour of the
diffracted field in the penetrable scatterer, and we usekiinisvliedge to inform our choice of the phasgg
in (1.1). We present two different levels of approximatiéirst just considering the effect of diffraction from
corners of the polygon onto adjacent sides (“ApproximaSmace 1", described i§8.2.2), and then including
the higher order effect (in the sense of high frequency asgtieg) of diffraction from corners onto non-adjacent
sides (“Approximation Space 2", describedsiBL.2.3). We put these approximation spaces to the teft,iby
performing a least squares fit to a reference solution obthirsing a standard BEM. The results of this fit
for different levels of absorption and a range of wavenumiserggest that, compared to GO, a significant
improvement in accuracy can be achieved with a very modesabeu of degrees of freedom. Moreover, for a
fixed number of degrees of freedom the relative error in ogt Bpproximation does not grow significantly as
frequency increases.

2 Problem statement

We consider the two-dimensional problem of scattering afhe-tharmonic incident plane wave
U (x) := dlad' (2.1)

by a penetrable convex polygon. Héee> 0 is the wavenumber in the medium surrounding the polygea,
(x1,%2) € R?, andd' € R? is a unit direction vector. Le®, denote the interior of the polygon, 16 := R?\ Q,
denote the exterior unbounded domain, and’let ;UL U... ML, denote the boundary of the polygon where
ns is the number of sides arfg, j = 1,...,ns, are the sides of the polygon, which we label in an anticlaskw
direction. The corners of the polygon are similarly lab@lRy,...,Pn, with [, j = 1,...,ns, being the side
between the cornefd; andPj1 (with the conventiorPn ;1 = P1). The boundary value problem (BVP) we
wish to solve is: given the incident field, determine the total field; in Q; andu, in Q, such that, withky
denoting the wavenumber inside the polygon arténoting the outward unit normal fo,

Aup+Kup =0, inQy, (2.2)
Aup+Kup =0, in Qy, (2.3)
. dul . (7U2

and thescattered field &:= u; — uU' satisfies th&Sommerfeld radiation conditiothat

S
‘;—l:(x) —ikguS(x) = o(r~?), asr :=|x| — . (2.5)



High frequency scattering by penetrable convex polygons 50f 26

We shall assume throughout tHat> 0 and thatk, € C, with Re[kz] > 0 and Imlkz] > 0; when Imky] > 0

the scatterer is partially absorbing. The unique solvighdf this BVP is well known (see, e.g., Laliena et al.
(2009, Proposition 2.1 and Corollary 3.4), which followsrfr results in Costabel & Stephan (1985) and Torres
& Welland (1993), and also the related result Marmolejogdieal. (2012, Corollary 8.5)).

Now we state a BIE formulation for (2.2)-(2.5). Note thattlis paper, we only actually solve this BIE
(using a standardp-BEM) in order to compute reference solutions for our exagh§4. The main reason for
including this here is as a motivation for why we want to uistend the approximation properties of the bound-
ary solution (as mentioned K1, we will describe a BEM based on the HNA approximation sgaoposed in
this paper in Groth et al. (2013)). Uf andu, satisfy the BVP, then a form of Green’s representation #a@or
holds, namely (cf., e.g., Chandler-Wilde et al. (2012a,6rbms 2.20 and 2.21))

w9 = 4o+ [ (w23 - oney) TN ey, xe o 26)
W(x) = /r <¢2(X7y)(;l:12((y)) uz<y>a(§f](();’)y)>ds(y), X € Qp, (2.7)

where®;(x,y) := (i /4) k,-|x—y|), i =1,2, are the fundamental solutions of the Helmholtz equati@r®y

and (2.3), respectively, W|tH‘(,l) denoting the Hankel function of the first kind of orderHenceforth we shall
denoteu; anduy on ™ simply byu sinceu; = u; onl™ and, similarly,du; /dn andduy/dn onl™ will be denoted
simply bydu/an.

Using the standard jump relations for layer potentials @tfandler-Wilde et al. (2012a, p.115)) it follows
that the unknown boundary data= (u,du/dn) satisfies the following BIE:

Av=f, (2.8)

aA_(!+D2-D1 S-S i d
- Ho —H; |+D]—-D,)’ “\ ad/on J°

Herel is the identity operator an§;, Dj, D’j, Hj, for j = 1,2, are, respectively, the single-layer, double-layer,
adjoint double-layer and hypersingular integral opesattafined forp € L2(I") by

IPj(x,y)
an(y)

wwy)ds(y» i) i= 5o [ 2 gry)asty).

where

Sjp(x) / @i (x,y)p(y)ds(y), Djp(x) := @(y)ds(y),

Djo(x) :=
-

Our BIE (2.8) is similar to that in Colton & Kress (1983.8) (where only smooth scatterers are considered),

and also to that proposed in Torres & Welland (1993) (allwgieih indirect method, in which the unknowns are
non-physical “densities”, rather than the boundary daelfit. By the well-known mapping properties of the
integral operators (cf., e.g., Chandler-Wilde et al. (20Itheorems 2.17 and 2.18)),

ATHSTY2() s HSH2(1) — HSPY2(0) s HSY2(r)

is a bounded operator for all1/2 < s< 1/2. In particularA: HY(I") x L2(") — HY(I") x L?(I") is bounded.
But alsoA: L2(I") x L?(I") — L?(I") x L?(I") is bounded because the differertde— H; is bounded (in fact,
compact) fromL?(I") to L2(I) (see, e.g., Torres & Welland (1993, Lemma 6.2(vi))).

Whereas for the general transmission BVP we would only hasettre trace oti was inHY2(I") and
du/on in H-Y2(I"), here the extra smoothness of the solution follows from theathness of the incident
plane wave (this is analogous to the case of a bounded inmableescatterer, see Chandler-Wilde et al. (2012a,
Theorem 2.12)). Specifically, it follows from (2.1) thiat H(I") x L?(I"). The invertibility of Afrom H(I") x
L2(I") — H(r) x L2(r) follows from a modification of the argument in Torres & Wekha(L993, Proof of
Theorem 7.2) and hence the solutioof (2.8) is inH(I") x L?(I"), and hence in.?(I") x L?(I"). This is the
setting in which we work in this paper.

_I_
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We remark that other BIE formulations of the transmissiavbpgm are also possible - see, e.g., Costabel &
Stephan (1985), Rém & Sayas (2008), Laliena et al. (2009), Hsiao & Xu (2011).r&tver, the approximation
results we derive in the following sections are equally vate for any direct BIE formulation, not just the
particular one (2.8) described above.

3 Hybrid numerical-asymptotic approximation space

Our proposed high frequency HNA approximation space forutllenownv = (u,du/dn) in the BIE (2.8) is
constructed in two stages. First we decompose

V(X) = Vgo(X) + V4 (X), xerl, (3.1)

wherevge = (Ugo, dUgo/dn) is the GO approximation te, with the remaindevy = (ug,dug/dn) being inter-
preted as the diffracted field. The GO approximatiggrepresents the leading-order behaviour at high frequen-
cies, and takes into account the basic GO phenomena of refieatd refraction by the edges of the polygon. It
can be computed analytically using a beam-tracing algorithhich we describe in more detail§8.1. Itisvge
which we take as our known leading order behaviguin (1.1). Second, we aim to approximate the remaining
diffracted fieldvy using an ansatz of the form

M1 M;
Va(X) ~ Y vam(X, k1) explikerm(x)) + 5 Vam(X,kz) explikathom(X)), 3.2)
m=1 m=1

which generalises the standard HNA ansatz (1.1) to the cheeatwo different wavenumbers are present. As
will be discussed i§3.2, the phasegj m, j = 1,2, will be chosen based on heuristic high frequency asyrastot
and the amplitudeg; m, j = 1,2, will be approximated numerically by piecewise polynolsi@n appropriately
graded meshes. The efficacy of our proposed approximateceswill be demonstrated i4.

3.1 Geometrical optics approximatioryy

In the GO approximation, a ray from the incident field strikia point on a smooth portion of the boundary
I gives rise to aeflectedray propagating back into the exterior dom&m and arefractedray, propagating
into the interior of the polygo2,. Since we assume th&, is convex, the reflected ray propagates away
to infinity without re-intersecting the boundaFy. The refracted (otransmitted ray, on the other hand, does
re-intersectl”, and if this intersection occurs on a smooth portio dhen further reflection/refraction occurs,
with a refracted ray propagating out of the polygon into tReegor domain and an internally-reflected ray
propagating back into the polygon. This internally-refekttay can, in turn, be re-reflected/refracted, and this
process continues indefinitely, giving an infinite numbeintérnally-reflected rays, potentially all propagating
in different directions.

The directions of the reflected/refracted rays and the dnggs/phases of the fields propagating along
them are governed by the well-known laws of reflection anchrtion for a plane wave incident on an infinite
transmission interface (i.e. the Fresnel formulae and'Shealw). However, although these laws are completely
classical in the case when both propagation media are neoraibg (see, e.g., Born & Wolf (1997)), the
generalisation to the case where one or more of the mediabalang seems to have generated a certain
amount of confusion in the literature. As explainedin for completeness and to correct some mistakes in
earlier works we provide a full derivation of the reflecti@ifaction laws in the general case of transmission
between two absorbing media in Appendix A.

A number of numerical algorithms have been presented foipotimg the GO approximation for the trans-
mission problem using the Fresnel formulae and Snell's lsee( e.g., Yang & Liou (1995), where the 2D
problem of this paper is considered, and also Bi et al. (2@h#l)Macke et al. (1996), where a 3D analogue is
studied). Many such algorithms (in particular, Yang & Lidi905) and Macke et al. (1996)) adopt a ray-based
approach in which the incident wave is discretised into gdarumber of rays, each of which are traced indi-
vidually as they reflect/refract within the scatterer, witle algorithm stopping after a certain (user-specified)
number of internal reflections. This approach is generdhanit can be applied to smooth scatterers as well as _I_
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to polygons/polyhedra. For polygons/polyhedra, howether fact that the boundary is composed of straight
sides/faces means that the GO approximation consists diegtion of beamsof rays propagating in the same
direction and with the same amplitude. Each beam can be tihafigs a plane wave with an associated propa-
gation direction and amplitude, restricted to a certairsstibfR2. As a result, one does not need to discretise
the incident wave into a large number of rays; rather, onel medy compute the propagation direction and
amplitude of the plane wave associated with each beam, aoddréhe position of the “limiting rays” which
form the edges of the beam. Once the algorithm has been r@fona given geometry and incident direction,
the GO approximationge is then readily computed at any observation point on the taryn and for any fre-
quency, by simply summing over the contributions from edde beams illuminating that observation point.
This is the approach we adopt in this paper. We note that dasimpproach was proposed in Groth (2011,
Chapter 5), and for the 3D problem in Bi et al. (2011).

%5 n %4 on
le I2 le
P
I3 Is I3 Is
Iy I In
(a) Primary beams frorfy (b) Primary beams fron, (c) Primary beams fromg
B B B
I2 le I2 l'e I2 le
Is
I3 [s I3 I3 Iy
In In In
(d) Secondary beams arising frome) Secondary beams arising from(f) Secondary beams arising from
transmitted beam in (a) transmitted beam in (b) transmitted beam in (c)

FiG. 2: Beam tracing in a hexagon. (a)-(c) show the primary reftt@nd transmitted beams arising from
the incidence ofl' onto sided ;-3 respectively. (d)-(f) show the secondary beams arisinm ftiee internal

reflection and transmission to the exterior of the primaaps$mitted beams in (a)-(c) respectively. Note that in
each of (d) and (f) the rays associated with one of the trattestiibeams point along the side - this corresponds

to total internal reflection (seg\.2.4).

As an illustration of the beam-tracing procedure, consillerconfiguration in Figure 2 where a penetrable
hexagon is illuminated by a plane wawéx) = €19 % incident from the top left. In this case the incident wave
strikes three of the sides of the hexagon, generating theamb of reflected rays, which propagate away to
infinity, and three beams of transmitted waves, which prapainto the scatterer, as shown in Figure 2(a)—
(c). Each of these transmitted beams has associated wifilana wave of the fornag*1(Pd+iE&)X \where the
amplitudea, the propagation and decay direction vectbessR? ande € R?, and the constani® > 0 andE > 0
are determined by the reflection/refraction laws preseintedppendix A. Each beam is bounded by a pair
of limiting rays, which pass through the endpoints of theesifithe polygon which generated the beam. Our
algorithm takes these limiting rays to be parallel to theppgation directiord, as illustrated in Figure 2 (but _I_
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see the discussion in Remark 3.1 below). The algorithm ttzexks these limiting rays as they propagate across
the interior of the scatterer, determines the points at wthiey re-intersect the boundary, and generates new
transmitted and internally-reflected beams as appropridtie associated plane wave directions and amplitudes
again computed using the reflection/refraction laws in Agjbe A. If the two re-intersection points of the
limiting rays with the boundary lie on different sides of thelygon then multiple internally-reflected beams
will be produced. Figure 2(d)—(f) shows the two such intdyageflected beams arising from the re-reflection of
each of the three beams shown in Figure 2(a)—(c). The atgoigbntinues this process of internal re-reflection
until a (user-specified) stopping criterion is achieved.olm experiments we stop tracking a beam when the
amplitude of the next re-reflected wave divided by the amgét of the original incident wave falls below
machine precision. In our experiments this generally ceafter at most 50 orders of internal reflection (but
often much sooner). We emphasise that the computationtalofdise beam-tracing algorithm is completely
independent of the wavenumber.

REMARK 3.1 For a beam with associated plane wae1(Pd+iE€)x  oyr algorithm takes the limiting rays
bounding the beam to be parallel to the propagation dinedatio This is also the choice made in Bi et al.
(2011), and it certainly seems a natural choice when theephaave has no decay (i.e. wh&n= 0). But in
the general case (in particular in an absorbing medium)nbtsimmediately obvious how to define the “ray
direction”, and hence where the “edges” of the beam shoeldMhat we are really asking, of course, is where
the shadow boundaries between transmitted and diffracé@dsilie in the related canonical diffraction problem
of diffraction by an infinite absorbing transmission wedgeg;3.2.1 below). Given the lack of an exact (or
even asymptotic) solution for this infinite wedge problera déscussed i§1), we cannot currently make any
further comment about this. But it is interesting to note fbathe related (but simpler) problem of diffraction
of a general plane wave in a homogeneous absorbing mediunsbyral soft knife edge, for which an exact
solution is available in terms of a Fresnel integral, theedtrlocation of the shadow boundary (defined to be the
Stokes lineacross which the incident field switches on/offniat parallel to the real propagation vector of the
plane wave beam. Rather, it is shifted somewhat in the direcf the imaginary propagation vector (Bertoni
et al., 1978). It would be interesting to see whether an guals adjustment in our beam-tracing algorithm
improved the accuracy of the GO approximation, but we leavtaér investigation of this for future work.

3.2 Approximating the diffracted component v

We now consider the approximation of the diffracted commbrg by an HNA ansatz of the form (3.2). It
is perhaps helpful to briefly review the approach taken in etewt al. (2012) for the analogous impenetrable
problem of scattering by a sound soft convex polygon. In tsise the HNA ansatz (1.1) (which involves
only one wavenumber) contains just two terms in the summatigth phasesp®(x(s)) = +s, wheres is

arc length measured anti-clockwise around the boundargsé&lgorrespond respectively to diffracted waves
travelling anticlockwise and clockwise around the bougdHris proved rigorously in Hewett et al. (2012) that
this simple ansatz, when combined with piecewise polynbagiproximation of the associated non-oscillatory
amplitudes/*, completely captures the oscillatory behaviour of the lataum solution. The remarkable success
of the HNA methodology in this case is due to two factors. thirshe high frequency asymptotic behaviour
of the solution to the canonical problem of diffraction byiafinite sound soft wedge is known - in fact there
is an exact closed-form solution available (see, e.g., Bawet al. (1969§6.2)). This allows one to pick out
the phases required to capture the primary diffracted wa8esondly, the only multiple scattering effects in
this case are the multiply-diffracted waves propagatirayiad the boundary of the polygon. But each of these
waves has one of the same two phagésalready included in the approximation space, so their dmrtion
can be picked up in the amplitudes.

By contrast (as discussed i), no exact (or even asymptotic) solution has yet been efior the analo-
gous canonical problem of diffraction by a penetrable wedgethermore, for the penetrable case the multiply-
scattered field is extremely complicated, featuring mlgtieflections/refractions of the incident and diffracted
fields, with potentially infinitely many different phasesdonsider in the approximation @f. Our approach in
this paper is to first determine some qualitative infornratibout the high frequency behaviour of the solution
of the canonical wedge problem, and then to apply heuristjaraents, motivated by the basic principles of
GTD for the impenetrable case, to design HNA approximatjmaces incorporating just a small number of the
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most important phases. For a detailed exposition of the Gi¥Ihe impenetrable case, we refer the reader to,
e.g., Keller (1962), James (1986), or Borovikov & Kinber $49.

3.2.1 Diffraction by a penetrable wedge

The canonical problem under consideration is the diffoactf a time-harmonic plane wave propagating in a
medium of wavenumbek; by an infinite wedge of a second medium of wavenunibeg ki, with the total
field and its normal derivative being continuous across therface between the two media. For simplicity of
exposition, we restrict attention to the cdgek, > 0, and in particular to the case<QOk; < ky (although the
case O< ko < k; can be dealt with similarly). Using the well-known corresdence (see, e.g., Borovikov &
Kinber (1994, p. 351)) between the singularities of sohsiof the time-dependent wave equation and the high
frequency asymptotic behaviour of solutions of the Helrtthefjuation, one can obtain qualitative information
about the high frequency behaviour of the frequency domaitige problem by considering the analogous time
domain problem of diffraction of an incident plane pulse imadium of wave speed; by a wedge of wave
speed,, with 0 < ¢; < ¢;. Here one can determine the position of the leading wavefrassociated with each
of the components of the scattered field by appealing to Higgeinciple.

(@t<0  Btso

FiG. 3: Wavefront diagrams for time-domain diffraction by a pgable wedge, in the case whege< ¢; and
a > cos 1(cy/c1). The incident wavefront is assumed not to be in contact wighiedge fot < 0 and to arrive
at the pointO at timet = 0. The dotted lines in (b) indicate shadow boundaries, aadhitk dashed arrow
represents a ray path associated with the lateral wave®dnt

An illustration of the resulting wavefront diagrams for goarticular scattering configuration is shown in
Figure 3. Here we have assumed that the incident wavefromtig contact with the wedge before it reaches
the diffracting corner (see Figure 3(a)). After it reachesdorner, the wavefront structure shown in Figure 3(b)
emerges. The incident wavefront now has two componenréiatting the wedge &t andX in Figure 3(b)),
and there exist two planar reflected wavefroMNZ @nd XY) and two planar transmitted wavefrontdly and
XR). The diffracted wavefronts in the exterior and interiae aegments of the circles centereaif radiusc;t
(PZYW) andcyt (QRSTUV) respectively (at timé > 0). In addition, Huygen'’s principle predicts the existence
of so-calledateral wavegsometimes known dsead wavesr bow wavel with associated planar wavefronts
(PT andW 9. These waves can be associated with diffracted rays padipagalong the exterior surface of the _I_
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wedge at speed;, which shed new rays propagating into the interior mediuntypAcal ray path is shown as a
thick dashed arrow in Figure 3(b). Similar waves also appetire scattering of the field due to a point source
by a planar interface (cf. Brekhovskikh (1960, Chapter INQ dones (1964)). We note that Figure 3 shows only
the simplest possible case, and more complicated wavefomfilgurations are possible. For example, for small
enough wedge anglesthe transmitted and lateral waves generated by one face ef¢ldge can be internally
reflected by the other face, generating additional wavéstof sufficient and necessary condition for there to
be no such internal reflection of the lateral waves is that cos 1(cp/cy ).

In the original frequency domain wedge problem, we expeesthucture of the field far from the corner to
be analogous to that described above. That is, in the ext@d@xpect: an incident plane wave; two reflected
plane wave beams, one bounded by the radial lines extefi@igndOZ, and another bounded by the radial
lines extendingdX and OY; a diffracted wave with phase functioff%, wherer represents radial distance
from the cornelO. In the interior we expect: two transmitted plane wave beamffracted wave with phase
function é<'; lateral waves with the phase functiod§'& and é2'*, wherel, |’ are the direction vectors shown
in Figure 3(b).

3.2.2 Approximation Space 1 - including diffraction fromjackent corners

We now use the qualitative analysis of the wedge diffracporblem presented i§3.2.1 to develop an HNA
ansatz of the form (3.2) for the diffracted componenin the decomposition (3.1) of the solution to (2.8). In
principle, in order to completely capture the oscillatoehbviour we would have to include phases correspond-
ing to: (i) the diffracted and lateral waves emanating framhecorner of the polygon, as described®2.1;
(i) the (infinitely many) multiple internal re-reflectiord these waves. However, f# we present convincing
numerical evidence that an accurate and efficient apprdiamtn vyq can be achieved with only a small number
of carefully chosen phase functions. In fact we shall shawults for two choices of approximation space for
the numerical approximation of;. Both incorporate phases relating to the diffracted waveareting from
each of the corners of the polygon. Phases associated witlatéral waves and the multiple re-reflections of
the diffracted and lateral waves are not included, but we game ideas about how these could be included in
future work in§3.2.4.

Ouir first approximation space (referred to as “Approximatpace 1" irk4) is defined as follows. On each
side of the polygon we include phases corresponding toediféd waves emanating from the corners adjacent
to that side. That is, on each side of the polygon the phagsgifuns in the approximation space are

{eikls, efikj_S’ eikzs7 e*iI(ZS}7 (33)

wheresis arc length measured anticlockwise around the bounddugy phase functions (3.3) describe waves of
both wavenumbers, propagating in both directions (closkveind anticlockwise) around the boundary. This is
the obvious generalisation of the approximation space urskl@wett et al. (2012) for the sound soft case, and
leads to the following HNA ansatz for the total solutos- (u,du/dn):

V(X) = Vgo(X) + Vi (X)€% v (x)e ks v (x) kS vy (x)e e xer. (3.4)

Herev;, v5, vi, v, are amplitude functions which will be approximated by pigise polynomials supported

on overlapping graded meshes, designed to capture thetedpsiogularities at the corners of the polygon.
More precisely, on a typical sidg of the polygony; andvj are approximated on a common geometric mesh
graded towards the cornB, andv, andv, are approximated on a common geometric mesh graded towards
the cornelP; 1, as illustrated in Figure 4.

To describe in more detail the meshes we use, we considelaieeaf a geometric mesh on the interval
[0,L], L > O, refined towards 0. The meshes for approximatifigvs, v;, v, on each side of the polygon
are constructed from this basic building block by straigiwfard coordinate transformations. Giveg: 1 (the
number of layers in the mesh) we 84(0,L) denote the set of meshpoirts };! , defined by

X0:=0, x:=o0"'L, i=12,...,n,
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Vireikls, V;reikzs
VI e—lkls’ VE e—|kzs
P

Pji1 < i

Fic. 4: lllustration of overlapping geometrically graded meshused to approximate the amplitudes
Vi, vJ, v, v, associated with the phase functions (3.3) on a typical Gide

]
1
]
1

where 0< 0 < 1 is a grading parameter. A smaller grading parameter reptes more severe grading - in all
of our experiments we take = 0.15, as in Hewett et al. (2012). Given a vectoe (No)", we letR, 5(O,L)
denote the space of piecewise polynomials on the ¢, L) with the degree vecta, i.e.,

Pon(0,L):={p:[0,L] =+ C: Plix_1.x) IS @ polynomial of degree less than or equalfd, i = 1,...,n}.

For reasons of efficiency and conditioning it is common tarelase the order of the approximating polynomials
towards the singularity. Specifically, in all of our expeeints we use a “linear slope” degree vegiawith

| i <n_
(p),._{p |=p|, 1<i<n-g,
p7 I:n7

where the integep > 0 is the highest polynomial degree on the mesh.

For simplicity we assume the same number of layer# each of the graded meshes on the polygon. We
adopt an hp’ refinement approach (as in Hewett et al. (2012)) in whichrtbhenber of degrees of freedom is
increased by increasing the polynomial degpewhile simultaneously refining the meshes. Specificallglin
our experiments we take= p+ 1. On each graded mesh we have at nipgen)(n —n+2) +2n—1= (p?+
3p)/2 degrees of freedom defining the piecewise polynomialsceSive have four amplitudes to approximate
on each side, each of which has an associated graded medbtgheumber of degrees of freedom in the
approximation space is at mosis2p? + 3p).

3.2.3 Approximation Space 2 - including also diffractioarfr non-adjacent corners

Our second approximation space (referred to as “Approxona&pace 2" irg4) is constructed by supplement-
ing Approximation Space 1 with the phases correspondingfi@acted waves emanating from non-adjacent
corners. That is, on a given sidigof the polygon the phase functions in the approximation sgae

{eikj_S7 efile7 eisz’ e*iKZS’ eierl’ e eikzrns_z}, (35)

wherer;, i =1,...,ns— 2 are the radial distances from the corners non-adjacehgtsitle in question (there
arens — 2 such corners since the polygon is convex), and the ansdizi$3upplemented by a sum

wi (X)) g o (x)ekems 20 x e (3.6)

where the amplitudes;,i = 1,...,ns— 2, are approximated numerically by piecewise polynomials.

We expect the amplitudes; to have a (possibly infinite) number of discontinuities, tanpensate for the
discontinuities inherent in the GO approximation (whereoutoff the plane wave beams sharply across the
beam boundaries). In principle one should therefore apprabe eachw; on a mesh refined towards each
of these discontinuities. However, for simplicity we takéoi account only those discontinuities arising from
the lowest order GO terms, i.e. the primary transmitted wavr the configuration illustrated in Figure 3(b)
the discontinuities in question are across the shadow lariegd(indicated by the dotted lines) extendDB
andOuU.

To approximate an amplitudg we therefore proceed as follows. We start with a single etgridng on
the whole sidd. Then if (during the beam-tracing algorithm for computihg GO term) the corner associated _I_
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with the radial distancg produced any beam boundaries associated with primarynites beams, we check
whether these beam boundaries intersect the [§iddf they do, we put new mesh points at the intersection
points; see Figure 5 for an illustration of this proceduriec8 there are at most two such beam boundaries, the
sidef; gets subdivided into at most three elements. On each of teestting elements we approximatgby

a single polynomial of degrep, wherep is the same as for the Approximation Space 1 amplitudes.yDarr

out this procedure for eadh=1,...,ns— 2 adds at most@®s— 2)(p+ 1) degrees of freedom on the sifig
extending the same procedure to all the other sides resuéismost 8s(ns — 2)(p+ 1) degrees of freedom
being added in total when we go from Approximation Space lgprAximation Space 2.

2 2

I M I M

Ps Py Pz Py

Shadow boundary K

'3 Shadow boundary/‘

(@) (b)

FIG. 5. Shadow boundaries in an equilateral triangle. Detdngithe mesh orf3 associated with the ap-
proximation of the amplitude of the diffracted term arisiingm the non-adjacent corn®. Mesh points are
introduced at the locations of the shadow boundaries asteacwith the primary transmitted waves from sides
I andrs, as illustrated in (a) and (b) respectively. The resultiresmon3 has three elements.

3.2.4 Including other phase functions

We expect that even more accurate approximations could taéneld by including the effects of higher order
terms in the asymptotic approximation. Firstly, one couldiide phases associated with the lateral waves
associated with each corner of the polygon. Secondly, onkldoclude phases associated with the (multiple)
internal reflection of (i) the diffracted waves and (ii) ttegdral waves. The phases for (i) could be computed
using an image method (i.e. introducing “image corners”moa-physical image domain outside the scatterer).
The phases for (ii) could be determined using a simple medifin of the beam-tracing algorithm described
in §3.1. We do not consider these generalisations any furttrer he

4 Numerical examples

In the previous section, two approximation spaces (“Appration Space 1", defined i§8.2.2, and “Approx-

imation Space 2", defined i§3.2.3) were proposed for the approximationvgf(note that we use the same
approximation space for each componentQf In this section we demonstrate via various numerical gam

that using these to approximatewvith just a small number of degrees of freedom, either viaathsatz (3.4),

or else supplementing that further with (3.6), provideggaiicant improvement over GO. More precisely, our

results below demonstrate that, for all absorptions ancemambers tested, the best fit from Approximation _I_
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Space 2 to botmanddu/dn onT is at least 50% more accurate (and in many cases much bettettiis) than
the approximation achieved using GO alone, using fewer gt¥hdegrees of freedom. We show further (in
Table 2 below) that for a fixed number of degrees of freedormelagive error in our best approximation from
Approximation Space 2 to botly anddug/dn does not grow significantly as frequency increases.

For each example considered below, we first obtain a refersalutionvyes ~ v by solving (2.8) using a
conventionahp-BEM with a sufficient number of degrees of freedom to enshia¢ the relative error

HV—Vref||L2(r)/||V|||_2(r)

is of the order of 10%. Henceforth, for ease of presentation we shall denote éfitssence solutionyes simply
asv. Next, we compute an approximation \g,, following the procedure described §3.1. Finally, a least
squares approach is employed to find the best fit from each pfokpmation Spaces 1 and 2¥g = v —vgo in
the L2 norm. This is carried out by discretising thé norm to be minimised using a large number of equally
spaced quadrature points on each side, and solving thdingsdilscrete least squares problem. We denote the
approximation tos achieved via this procedure using Approximation SpgbgV; = (U;,W;), j = 1,2.
Throughout this section, we consider scattering by an atpril triangle with side lengthr2 We consider
four different incident angles, as shown in Figure 6, and eresaler four different levels of absorption, governed
by the imaginary part of the refractive index. Specificalg real part of the refractive index is taken to be 1.31
throughout, which is approximately that of ice, the scattgproperties of which are of great interest in aspects
of meteorology and physics (see, e.g., Baran (2012)), adioned in§1 (note though that the techniques
presented are applicable to convex polygons of any shaparancefractive index). So, for any given exterior
wavenumbek;, the interior wavenumber i = ki(1.31+ &i), with the value ofé determining the level of
absorption . The total field (computed using our referendetisn) for angle 4k; = 10, and foré = 0 (no
absorption) and = 0.05 is shown in Figure 1.

Angle 4

Angle 3
u i

Ps

P
I3 1

FIG. 6: Incident directions used in numerical experiments l@gg—4 are equally spaced).
In Figure 7(a) we plot the real part off = u— ugo (computed from the reference solutiok), — ugo and

U, — ugo (the approximations tag using Approximation Spaces 1 and 2 respectively)kioe 20, & = 0.025,
and incident angle 4. On the two sides that are illuminatethbyncident wavelf; and/l?), the best fit is fairly |
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accurate for each approximation space. Howevefzpthe side in shadow, Approximation Space 2 provides a
much better fit. This is not surprising, since this space ialsloides the effect ofg of the diffracted wave from

P>, which, for this incident direction, is relatively strorrgban the effects of; andl of the diffracted waves
from P3 andP; respectively. Figure 7(b) shows the differencesU; andu — U, to better illustrate the quality

of the two fits.

0.3

0.2 ,

s/(2n)

(a) Real part ofiy, U — ugo andU; — ugo on the boundary.
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(b) Real part of the difference between the reference swiwtnd the best approximatiods andU,.

FiIG. 7: Scattering by the triangle in Figure 6 with= 20, = 0.025, and incident angle 4. Hesaepresents
arc length measured anti-clockwise frémn

In Figure 8, we show the accuracy of the approximation tsing GO and each approximation space, for |
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a range of values df;, for ¢ = 0.05, and for angles 1, 2, 3 and 4. Here and throughout thisoseate take

p = 4 for both Approximation Spaces 1 and 2, as detaile§Bi2.2 and;3.2.3, giving a total number of degrees
of freedom of 168 for Approximation Space 1, and 193 for Apration Space 2. All norms in Figure 8
(and in Tables 1 and 2) are approximations| tq||_2<r) computed using a large number of evaluation points.
For small values ok;, Approximation Space 2 provides a noticeably better fit tAaproximation Space 1,
and in each case both approximation spaces achieve a sagmifinprovement over GO for all values kf,
with the error in the approximation using Approximation 8pd being less than half that of GO alone, and
the approximation obtained using Approximation Space Adéietter still. Ask; increases, the difference
between Approximation Spaces 1 and 2 becomes less notgeafiécting the faster decay of diffracted waves
propagating within the scatterer at higher frequencies. aRgles 3 and 4, and for larger valuekgfthe errors

in our approximation are close to the accuracy of our referesolution, indicating that, in these cases, we are
capturing the oscillatory behaviour of the diffracted fieldremely well using the phase functions (3.5).
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FiG. 8: Relative errors in approximations for fixed absorptos 0.05i, varying incident angle.

Next, in Table 1 we consider varying absorption for incidemgle 4 and for a range &f. Foré > 0.0125,
the relative errors achieved by Approximation Space 2 ae fean 1% for all values df; tested, and Ap-
proximation Space 1 performs only slightly worse, particlyl for largerk;. Even for zero absorption, the error
achieved with Approximation Space 2 is of the order of 2%—8%ilst the error with GO alone is of the order of
10% even for reasonably large. As the absorptio§ decreases, the importance of including the extra diffrac-
tion term in Approximation Space 2 becomes apparent. Thessdts are very promising, in that they show that _I_
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ke £ [|u—ugol| llu-Uy| llu—Uy|| 198 (50)goll | 1199wy 1|94 —Wy)|
[[ull [[ull [[ull E EET [E

5] 0.05 [ 1.88x10 1 [ 166x102 [ 257x10°2 [ 156x10 1 [ 1.62x10 72| 1.97x103
10| 0.05 | 1.37x101 | 1.083x102 | 1.35x10°% | 7.76x 102 | 1.03x 102 | 1.26x 103
20| 0.05 | 1.00x101 | 841x104 | 3.72x10* | 5.60x 102 | 1.53x 103 | 1.35x 103
40 | 0.05 | 7.25x10°2 | 2.23x10% | 220x 104 | 4.04x 102 | 1.04x 102 | 1.04x 1073
80| 0.05 |519x102 | 258x104 | 258x104 | 2.88x102 | 7.69x 104 | 7.69x 104
160 | 0.05 | 369x102 | 231x104 | 2.31x10% | 205x 102 | 6.49x10* | 6.49x 1074
5] 0.025 | 219x10 1 [ 3.03x10 2 | 553x10 2 | 1.55x10 1 | 294x 102 | 4.14x 103
10 | 0.025 | 1.54x 101 | 4.09x 102 | 4.49x 102 | 9.87x 102 | 441x102 | 3.73x 103
20| 0.025 | 1.10x 101 | 1.15x 102 | 200x 103 | 6.35x 102 | 1.12x 102 | 2.22x 1073
40 | 0.025 | 8.09x102 | 7.01x10% | 3.37x10% | 458x102 | 1.19x 103 | 1.04x 1073
80 | 0.025 | 585x102 | 342x 104 | 341x10* | 3.30x102 | 7.69x 104 | 7.69x 104
160 | 0.025 | 419%x 102 | 2.80x 104 | 280x 104 | 235x 102 | 6.44x10* | 6.44x 1074
51 0.0125] 248x 101 | 405x10 2 | 802x10 2 [ 1.90x10 1 | 3.94x10 2 | 5.96x 10 3
10 | 0.0125| 1.84x 101 | 7.88x 102 | 9.46x 103 | 1.35x 101 | 8.07x102 | 7.69%x 1073
20 | 0.0125| 1.28x 101 | 453x 102 | 9.42x 103 | 8.05x 102 | 441x10°2 | 849x 103
40 | 0.0125| 9.13x 102 | 1.05x 102 | 266x 1073 | 5.03x 102 | 1.01x 102 | 256x 1073
80 | 0.0125| 6.69x102 | 1.87x103 | 1.79x 103 | 3.61x 102 | 1.04x 103 | 9.07x 104
160 | 0.0125| 4.84x 102 | 7.52x 104 | 7.52x 104 | 260x 102 | 6.68x 10* | 6.68x 1074
5 0 257x10 1 [ 530x10 2| 1.16x10 2 | 230x10 1 | 517x10 2 | 857x 103
10 0 215x 101 | 1.43x101 | 1.95x102 | 1.99x 101 | 1.49x 101 | 1.60x 102
20 0 1.79x 101 | 1.48x 101 | 282x102 | 1.65x101 | 1.47x 101 | 2.25x 102
40 0 150x1071 | 1.34x 101 | 3.07x102 | 1.39x 101 | 1.31x 101 | 2.37x 1072
80 0 1.25x10°1 | 1.17x10°1 | 317x102 | 1.17x 101 | 1.13x 101 | 2.30x 102
160 0 1.04x 101 | 1.00x101 | 281x102 | 9.80x 102 | 9.58x 102 | 2.07x 102

Table 1: Relative errors in approximationwénddu/dn, using GO and each approximation space, for a range
of values ofky, for incident angle 4 and for varying absorptién

by including the phases associated with the “leading ord#éffacted waves in our approximation space (i.e.
Approximation Space 2), we can obtain an accuracy that faldeifor many applications. By including further
phase functions corresponding to higher order internatetéins of these diffracted waves and also the lateral
waves (as mentioned §8.2.4) we conjecture that it might be possible to achievea éwgher accuracy in our
approximation, although of course that would be at the espef requiring more degrees of freedom.

In order to compare the relative accuracy of our best apprations from Approximation Spaces 1 and 2
to the diffracted component ask; increases, in Table 2 we show the approximation errorsivel&i ug and
dug/dn for incident angle 4 and for the four values &f These results demonstrate that for a fixed number
of degrees of freedom the relative error in our best appration from Approximation Space 2 does not grow
significantly as frequency increases. The same is alsodrugpproximation Space 1 faf > 0.0125, but when
& = 0 Approximation Space 1 does not give good results at higeguencies, highlighting the need to include
the effect of diffraction from non-adjacent corners (asiduded in Approximation Space 2) in this case. This
suggests that the phase functions in the two approximafianes are correctly capturing the most significant
oscillations of the diffracted component of the scattereldifi

Finally we look at how the accuracy of our approximationshe solution on the boundary affects the
approximation of the far field pattern. For many applicagissuch as light scattering by atmospheric particles, it
may be the scattering pattern far from the scatterer thasirof primary interest. In the 2D case, an asymptotic
expansion of the representation (2.6), taking into accthenasymptotic behaviour of the Hankel functions for
large argument (see, e.g., Olver et al. (2010)), gives thesssion for the scattered fiald:= u; — u' far from

_I_
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5] 0.05 [ 885x102 | 137x107 [ 141x10 1] 1.71x10°¢
10| 0.05 | 7.52x102 | 9.88x10°3 | 1.32x 101 | 1.62x 102
20| 0.05 |840x103 | 371x103 | 273x102 | 2.41x 102
40| 0.05 | 3.08x10°% | 3.04x10°2 | 256x 1072 | 2.56x 1072
80| 0.05 |498x103 |497x103 | 267x102 | 2.67x 102
160 | 0.05 | 6.24x10°3 | 6.24x 103 | 3.16x 102 | 3.16x 1072
5| 0025 | 1.39x10 T | 253x10 2 | 1.90x 10 1 | 2.67x 10 ¢
10| 0.025 | 2.65x 1071 | 291x 102 | 420x 101 | 3.78x 1072
20| 0.025 | 1.04x101 | 1.81x102 | 1.76x 101 | 3.50x 102
40 | 0.025 | 8.66x 103 | 416x 103 | 260x 102 | 2.26x 1072
80| 0.025 | 584x103 | 583x103 | 2.33x102 | 2.33x 102
160 | 0.025 | 6.69x 103 | 6.69x 103 | 273x 102 | 2.73x 102
51 0.0125] 1.65x10 T | 324x10 7 | 210x 101 | 3.14x10°?
10 | 0.0125| 4.28x 1071 | 514%x 102 | 6.00x 101 | 5.72x 102
20 | 0.0125| 354x 101 | 6.27x102 | 548x 101 | 8.78x 102
40 | 0.0125| 1.15x 101 | 3.25x102 | 201x 101 | 5.65x 1072
80 | 0.0125| 279x 102 | 2.68x 102 | 2.87x 102 | 2.52x 102
160 | 0.0125| 1.55x 1072 | 1.55x 1072 | 257x 102 | 257x 1072
5 0 2.06x10 1 | 451x10 2 | 225x10 1 [ 3.72x 1072
10 0 6.55x 1071 | 9.09x 102 | 7.49x 101 | 8.07x 102
20 0 8.26x101 | 1.58x101 | 891x101 | 1.37x 101
40 0 898x 101 | 205x10°1 | 945x10°1 | 1.71x 1071
80 0 9.38x 101 | 253x10°1 | 967x101 | 1.97x 101
160 0 959x 101 | 252x10°1 | 9.78x 101 | 1.89x 101

Table 2: Relative errors in approximation af andduq/dn, using each approximation space, for a range of
values ofky, for incident angle 4 and for varying absorptién

the scatterer as

dn/4 gkr
~————F
2v/2mvkr

whereX := x/|x| € St, the unit circle, and the far field patteFnis given by

u3(x)

(X), asr:=|x|— oo,

F(X)=— /r e &y (ik()‘( -n(y))u(y) + zl;(y)) ds(y), xesh 4.1)
We plot the far field patterk (X(t)), t € [0,27] for incident angle 4, absorptioh = 0.05 and fork; =5 and
ki = 160 in Figure 9, wheré = 0 corresponds to the direction from whichis incident,X(t) is a point at
angular distancé round the unit circle, and we have computedy inserting our reference solutiomsand
du/dninto (4.1).

In Table 3 we compare the value Bf computed using the reference solutions with that compuséugu
GO (Fyo), Approximation Space 1H;) and Approximation Space F{). Here, the norms represent approxi-
mations tof| - || 2(s1) computed using a large number of evaluation points. Evethworst incident angle,
namely angle 1, we still obtain approximations that are witloughly 1% of the reference far field pattern
using Approximation Space 2 (and in most cases the sameeigdriApproximation Space 1), representing a
significant improvement over GO, particularly for lowerwas ofk;. For the other angles, the results are even
better (note that the tailing off of the error lsgets large may be due to the fact that our reference solugion i
only accurate to order 10). As mentioned ir§1, the approach of mapping the GO solution on the boundary to
the far-field using an integral equation representationtisetimes called the physical-geometric optics hybrid _I_
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FiG. 9: Far-field pattern/F (X(t))|, for ky = 5 andk; = 160,& = 0.05, incident angle 4.

method (see Bi et al. (2011)). Our results demonstrate thapiossible to achieve a significant improvement
on this approach using a small amount of additional comjmutat

F-F F—F F—F
__ka | Angle | B T I

5 1 592x10 1 [ 1.67x102 [ 2.43x10°
10 1 2.38x 101 | 1.00x10°1 | 7.02x 1073
20 1 1.30x 101 | 271x102 | 2.78x 102
40 1 9.02x 102 | 1.09x 1072 | 1.09x 102
80 1 6.33x10°2 | 7.14x 103 | 7.14x 1073
160 1 446x 1072 | 1.23x10°2 | 1.23x 1072
5 2 1.90x10 1 [ 752x10° | 7.01x10°°
10 2 2.04x 101 | 329x102 | 6.21x 1073
20 2 1.26x 101 | 3.90x 103 | 2.33x10°3
40 2 9.07x102 | 1.18x10°3 | 1.17x 103
80 2 6.44x 1072 | 3.87x10% | 3.83x 104
160 2 456x10°2 | 477x10°% | 477x 104
5 3 044x 102 ] 788x10° | 541x10°3
10 3 9.65x 102 | 1.44x 102 | 6.40%x 103
20 3 6.54x 102 | 1.90x 103 | 1.69x 1073
40 3 475x10°2 | 7.14x10% | 7.13x 104
80 3 341x 1072 | 246x10°% | 244x 104
160| 3 242x 102 | 226x104 | 2.26x10°*
5 4 593x 102 | 272x10 3 | 452x10°°
10 4 3.67x102 | 898x 102 | 9.08x 104
20 4 254%x 102 | 7.16x 104 | 2.74x 104
40 4 1.85x102 | 1.17x10% | 1.14x 104
80 4 1.31x102 | 1.04x10* | 1.04x 104
160 4 90.35x10°° | 1.04x10% | 1.04x 104

Table 3: Far-field errors for variodg, with absorptioré = 0.05, various incident angles.

In summary, our numerical examples demonstrate that HNAcpation spaces of the form (3.2) can
provide efficient approximations for problems of scattgroy penetrable scatterers. The two specific approx-
imation spaces we considered are perhaps the simplestséxierto the penetrable case of the spaces used
for impenetrable scatterers (see Chandler-Wilde et allZ8)). Regardless, we have shown that they pro-
vide an accuracy sufficient for many applications, acrosnge of absorptions and frequencies, significantly
outperforming GO in each case with only a small number of elegjiof freedom, fixed independently of the _I_
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wavenumber. We anticipate that the addition of further pHfaactions corresponding to lateral waves and the
reflections of diffracted waves would allow for higher aamy to be achieved, although at the expense of a
higher complexity in the algorithm and slightly higher camgtional cost. The justification of this claim is left
to future work.

A Reflection/refraction at a planar interface

In this appendix we present a full derivation of the laws dieetion and refraction at a planar interface between
two propagation media of arbitrary absorption.

A.1 Plane wave propagation in an absorbing medium

We consider time-harmonic scalar waves modelled by the Heltmequation
Au+k?u=0, (A1)
with a complex wavenumbée We shall write

k=ko(u+i¢),

wherekg > 0 is a reference real wavenumber, andg i€ is the refractive index of the medium. We shall assume
throughout thapt > 0 andé > 0; the cas€ = 0 corresponds to a non-absorbing medium, and the £as@
corresponds to an absorbing medium. We consider solutiof#s b) of the form

u(x) = AdkVx xeR2?, (A.2)

which represents a plane wave with complex amplitAdend complex propagation vectdr. It is convenient
to splitV into real and imaginary components, writing

V =Dd+iEe,
whered ande are real unit vectors anid, E are real scalars, after which (A.2) becomes
u(x) = Aexp{iko(Dd +iEe) - x}. (A.3)

Note that the vectord ande are normal to the planes of constant phase and constantadeptifu, respectively.
Without loss of generality we may assume tthag > 0. If d = e, then the wave is calldidbmogeneoy®stherwise
itis inhomogeneousdn order to find the relationship betweére, D, E and the componenis, ¢ of the refractive
index, we substitute (A.3) into the Helmholtz equation (Avthich, after equating the real and imaginary parts,
gives

D2-E?2 = u?>-¢&2 (A.4)
(Dd)-(Ee) = us. (A.5)

We note from (A.4)—(A.5) that we cannot halze= 0; otherwise (A.5) would imply thaf = 0 (sinceu > 0
by assumption), and (A.4) would then give the contradictide® = y2. Without loss of generality we may
assume thad > 0 (we can multiply botld ande by minus one if necessary). Now,§f> 0 thenué > 0 and
(A.5) implies thatd - e > 0 andDE > 0, so thatt > 0 too. On the other hand, § = 0, then (A.5) reduces
to (Dd) - (Ee) = 0. Since the real componebd is non-zero, this implies that eith&e =0 (i.e. E =0 and
D = u) ord ande are perpendicular. In the latter case there are an infinitéyfaof pairs (D, E) which satisfy
(A.4). Without loss of generality we can, in this case, assuhatE > 0 (we can multiplye by minus one if
necessary).

To summarise, we have shown that if (A.3) is a solution of jAhtnd, e, D andE must satisfy (A.4)—(A.5)
and without loss of generality we may assume fhat 0, E > 0, andd - e > 0. Under these assumptions, the
wave (A.2) propagates in the directionafwhile decaying in the directiog in fact, we note thab andE are
interpreted by some authors as the real and imaginary plats ‘@pparent refractive index” (cf. Chang et al.

(2005); Yang & Liou (1995)). _I_
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A.2 Aninterface between two media with arbitrary absorption

We now consider the canonical problem of the reflectiordicdfon of an incident plane wave of the general
form (A.3) propagating in a medium with refractive index+i¢é; at a planar interface with a second medium
with refractive indexu, +i&,. We assume that in the first medium the field takes the formu' + u", where
u' is the incident plane wave anfi is a reflected plane wave, and that in the second medium thigdieds the
form u = uf, whereut is a transmitted plane wave. We also assume that both thefigtau and its normal
derivative are continuous across the interface, whichigsghat, on the interface,
u+u =u and d—uiJrﬁ—ur—a—d
N on  on on’
wheren is a vector normal to the interface. We write the wamesi” andu' in the general form (A.3) as:
u' = Al exp{iko(Did' +iE€) - x},
u" = A" exp{iko(Did" +iEi€) - x}, (A7)
ut = Alexp(iko(Dd! +iE;€) - x},

where we have assumed a priori the same “apparent refracthe&” for the reflected wave as for the incident
wave. Given the parameterd, d', €, D; and E; describing the incident wave, we wish to determine the
parameter&’, A', d", &, d!, &, D; andE; determining the reflected and transmitted waves.

The geometry of the problem is illustrated in Figure 10. Téwd and imaginary components of the direction
vectors have been drawn on separate diagrams for clarttig,dhould be kept in mind that the complex incident
direction vector isd' + i€ and that the reflected and transmitted direction vectorsdareie’ andd! + i,
respectively.

(A.6)

N N
l l g
1 r : 1
)g( d ! \X< d %e' | %
6' : er (pl : q)r
p1+iés (['oo p1+iés : (['oo
1 t i t
Ho+i& :E H2+i&2 ;
1 Gi\\\ 1 q)‘-
1 % l )& ¢
1 dt 1
(a) Real components of direction vectors. (b) Imaginary components of direction vectors.

FIG. 10: Refraction and reflection of light at the interfdge

A.2.1 The reflection law

We shall assume that the real and imaginary components afitiident and reflected direction vectors satisfy
the specular reflection law*angle of reflection equals angle of incidence”), which danstated in vector
notation as

d" =d" —2(d"-n)n,

e =€ —2(¢ -n)n, (A8)
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or, in the notation of Figure 10, simply as

eizel'7 (pi:(pr.

A.2.2 Snell's law and the Fresnel formulae

Snell's law relates the tangential components of the indidad transmitted direction vectors. The Fresnel
formulae relate the amplitudes of the reflected and tramsdhivaves to that of the incident wave. To derive
these relationships we first substitute the represen&{d17) into the boundary conditions (A.6). Eliminating
d" and€’ using the law of reflection (A.8) gives, for amye I,

(A + A exp{—2iko(Did" - n+ Ei€ - n)n-x}) exp{iko(Did' +iE€) -x} = A'exp{iko(Did" +iE€) -x}, (A.9)
and

V (A — A" exp{—2iko(Did' -n+Ei€ -n)n-x}) exp{iko(Did' +iEi€) - x} = VA expfiko(Did" +iE€) - X},

(A.10)

wherevi = Did' - n+iE;€ - n andvt = D;d' - n+iE:€ - n.
To derive Snell’s law we writ& € [, as
X=X+4t, (A.12)

whereX is an arbitrary reference point én, s€ R andt is the unit tangent vector fQ, defined as$ = (nz, —n1),
wheren = (ng,ny). Substituting (A.11) into (A.9) and rearranging gives

A" = exp(ikos(Did' +iE;i€ — Dd! —iE€e) -t} exp{iko(Did' +iEi€ — Dy —iEe) - X}
x (A + A exp{—2iko(Did"-n+iEi€ -n)n- X}). (A-12)

Since this must hold for akl € I, i.e. for alls € R, the argument of the first exponential factor on the righieha
side must be equal to zero, i.e.

Did -t +iE€ -t—Dyd' -t —iEe -t =0. (A.13)

Comparing real and imaginary components of (A.13) therdgi¢he vector form onell’'s Law

Did -t =Dd' -t,

. A.l4
Eie -t=Eé-t, (A-19)

which can also be written in more classical form in terms efrbtation of Figure 10 as
D;sind' = D;siné", Eising' = E;sing'.

To derive the Fresnel formulae, we note that, given the enticimplitudeA’, equations (A.9) and (A.10)
are simultaneous equationsAhandA! which can be solved to give the reflection and transmissieffictents

R_:ﬂzvi—vt
A vty

exp(2iko(Did'-n+iE€ -n)n- X}, (A.15)

R Y ike(Did +iEd - Dyt iE)-X (A.16)
'_Ai_Vi—i—Vt p{ i i€ — LU — I ' }7 '
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respectively, where, as abovéjs an arbitrary reference point én. If the origin of our coordinate system lies
on . then we may tak& = 0, giving

_Vi—M\ T 2V
VitV VitV

along with the classical relationshiptIR=T.

A.2.3 CalculatingD; andE;

We recall fromgA.1 thatD; andE; must satisfy the equations

Df-E? = W-&, (A.17)
DiEd € = wé. (A.18)

Equation (A.18) can be written in terms of tangential andmadrcomponents as
DeE[(d'-t)(€h- 1) +(d"-n)(€ )] = p22. (A.19)

After rearranging (A.19), squaring, and writing the norroamponents in terms of the tangential components
(using the fact thatd" - t)? + (d' - n)2 = (€' - t)2+ (€' -n)? = 1), Snell's law implies that

(Df —D?)(EZ — B?) = (1262 — DiE)?,

whereD; := Did -t andE; := E;€ -t. Finally, using (A.17) to eliminat&;, we arrive at a quadratic equation
satisfied byD?,

D¢ + DZ[&Z — 3 — E? — D7) + D? (13 — &2) — (12&2)2 + 21p6,DiE = 0, (A.20)

and the quadratic formula yields the solutions of (A.20) as

1 xo ~ = ~ =
D¢ =3 (u%— §F+D7+E2+ /(13— &2 — B+ EP)2+ 4(BE - uzéz>2> : (A.21)
Similar equations have been derived in Chang et al. (200%)Yang & Liou (1995); however, the correct sign
to choose in (A.21) is not discussed in these references.|aifa that the positive square root should be taken
in (A.21) for consistency with Snell’s law. To justify thissgsement, we note that Snell’'s law trivially implies
the inequalities

DZ > B7, (A22)
EZ > E2. (A.23)
We can rearrange (A.21) to give
2 g2 1 2 2
Df —Df = é(aj: a’+b?), (A.24)
=y 1
E?—E?= S(-ak a2+b?), (A.25)

wherea:= pZ — &2 — D2+ E? andb := 2(DiE — 12&,). Thenifa < 0, it is clear from (A.24) that we must take

the positive square root in order to satisfy (A.22)alf 0, it is clear from (A.25) that we must take the positive
square root in order to satisfy (A.23). af= 0, then we must take the positive square root in order tofgatis
both (A.22) and (A.23), unless of courBe= 0 too, in which case the sign choice is immaterial.
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Having justitifed the choice of the positive square rootAiX(1), we can state the formulae fof andE;:

1 ~ ~ = = ~ ~
Dy = \/2 <u22622+D?+EF+ \/(u%fé§fD?+Ei2>2+4(DiEi uzfz)2>,
Ec = /D¢ + & — K3,

where the non-negative square root is taken in both equgation

(A.26)

A.2.4 Normal components of transmitted direction vectors

Snell's law provides a formula for the tangential compogaitthe transmitted direction vectatsande'. The
fact thatd! andé' are unit vectors allows us to write

dt = (dt-t)t+ (d'-n)n = (d - t)t £ y/1— (dt -t)2n, (A.27)
d= (& -tt+(é-nn=(d-t)t+,/1— (& t)2n, (A.28)

so that the normal components are specified up to sign. Thetoaaake a sign choice in (A.27) and (A.28)
is alluded to in Dupertuis et al. (1994, p. 1163), but a cleasgription of which sign to take is not provided
there. We now provide such a presciption based on physicaiderations. We note that a similar justification
has been given in Pincherle (1947), but that this work do¢smpear to be widely known.

We consider firstl!. The physically correct sign choice in (A.27) is made by édasng the energy flow
across the interface. The time-averaged intensity of a-liarenonic wave associated with a solutiorof
the Helmholtz equation (A.1) is given bYy) = Clm[u0u], whereC is a positive constant depending on the
frequency (cf. e.g. (Hewett, 201§B.4.2)). Wheru is a plane wave of the form (A.3) this givéls = C|A|?koDd,
so that the energy flow is purely in the real propagation timaa. In the context of the interface problem there
are three cases to consider:

e When bothjd' -t| < 1 and|d! - t| < 1 (so thatd' - n # 0 andd' - n # 0) we stipulate that the time-averaged
intensities(l;) and(l;) associated with the incident and transmitted waves shaetisfg

sgr((1;)-n) = sgr((1))-),

to ensure that the transmission process preserves théi@iretenergy flow relative to the boundary. By
the above discussion this means that we require

sgn(d'-n) = sgnd -n),

so that (A.27) becomes, after applying Snell’s law,

2
gt = %(di 1)t +sgn(d' -n)\/l— (g) (di-t)2n. (A.29)

t

This formula implies that the transmitted wave is alwayagating into the second medium, except for
the case of total internal reflection which is discussedveelo

e When|d'-t| = 1, we have thatl' - n = 0 and there is no sign choice to be made. This case corresponds
the phenomenon dabtal internal reflection(TIR). The energy flow in the second medium in this case is
parallel to the interface. |
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e When|d'-t| =1 (i.e.d'-n = 0), we taked' to point into the second medium. We note thagiit= 0 then
v; =0, and sR= —1 andT = 0 (i.e. the solution is identically zero).

We now turn toe'. It turns out that, having specified the sign choice in (A,2f sign choice in (A.28)
follows immediately. Indeed, provided th&td' - n + 0, € - n is now completely determined by (A.19), with

1 . .
¢ n=gegp (H&-DEW nE-y),  Ed-nzo
Thus
E 1 i i
¢ =g (@ 0t+ g g (- DEM -)E-O)n,  Ed-nzo. (A-30)

This equation predicts that the vec@®rsometimes points back into the first (incident) medium. Euse-
what counterintuitive behaviour was noted in Pincherle4{)9 however, some subsequent authors (in partic-
ular, Chang et al. (2005)), seemingly unaware of Pincheuark, artifically forcee' to point into the second
medium, despite the fact that this may lead to a violatiorheftielmholtz equation. We remark that a similar,
artificial modification to the laws of reflection/refractismmade in Bi et al. (2011) and Yang & Liou (2009),
where the transmitted wave is spuriously forced to be homeges, when in practice it could be inhomoge-
neous as outlined above.

WhenE; = 0 ord'-n = 0 the formula (A.30) cannot be applied. The former case idyedealt with: since
E; and€ appear in a product in the formula (A.3), the choicegofs irrelevant wherE; = 0, and we may
arbitrarily assigre! = d!, for example. The latter cas- n = 0 corresponds to TIR, and in this case we argue
that the transmitted wave should decay (not grow) with iasieg distance from the interface, so that we require

sgné -n) = sgr(d' - n), giving

: 2
d= %(ei 1)t +sgr(d' -n)\/l () (é-t)2n, d'-n=0. (A.31)
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