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Abstract

Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on
flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain,
provides water level observations that can be assimilated into a hydrodynamic model to decrease
forecast uncertainty. With an increasing number of operational satellites with SAR capability, in-
formation on the relationship between satellite first visit and revisit time and forecast performance
is required to optimise the operational scheduling of satellite imagery. By using an Ensemble
Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model
LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007, Tewkesbury,
Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We
emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotem-
poral correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement
with previous research, estimation and correction for this bias leads to a clear improvement in
keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a
large influence on forecast statistics. Revisit interval is most influential for early observations. The
results are promising for the future of remote sensing-based water level observations for real-time
flood forecasting in complex scenarios.
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1. Introduction

Hydrodynamic simulation is a basic tool used by most real-time flood forecasting systems. Re-
mote sensing has proved useful for obtaining water level observations (WLOs) during flood events.
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In the UK, as in many other places, a difficulty for flood observation is that standard gauges are
typically sited only every ∼20 km, so give little information on the spatial variations in the flood
level, which may be particularly important in urban areas. Much more spatial information is con-
tained in the flood extents captured in satellite Synthetic Aperture Radar (SAR) images. SAR is
generally used for flood detection rather than visible-band sensors because of its all-weather day-
night capability. Distributed water levels may be estimated indirectly along the flood extents in
SAR images by intersecting the extents with a floodplain Digital Elevation Model (DEM) (Horritt
et al., 2003; Lane et al., 2003; Raclot, 2006; Schumann et al., 2007). Consequently, a number of
studies have focused on assimilating SAR-derived WLOs into hydrodynamic forecasting models
(e.g., Neal et al., 2009; Hostache et al., 2010; Matgen et al., 2010; Giustarini et al., 2011). Specif-
ically, Neal et al. (2009) analysed how dense a gauge network would need to be to match the
performance of SAR-derived WLOs in a data assimilation context.

In the future, an alternative will be direct space-borne WLOs at high resolution using NASA/CNES’s
Surface Water and Ocean Topography (SWOT) mission, which will use Ka-band radar interferom-
etry to measure surface water levels to 10 cm accuracy on rivers ∼100 m wide. However, as SWOT
is not scheduled for launch until 2020 and will not measure levels for floods less than 100 m wide,
the water levels from SAR flood boundaries should continue to be an important source of data for
assimilation into models, especially in the near future (Mason et al., 2012b).

Data assimilation is an iterative approach to the problem of estimating the state of a dynamical
system using both current and past observations of the system together with a model for the
system’s time evolution. Within Data Assimilation (DA), the ensemble Kalman Filter (EnKF)
is becoming a method of choice for large-scale data assimilation systems, along with variational
methods, in a number of Earth science disciplines. For hydrodynamic experiments, e.g., Andreadis
et al. (2007), Durand et al. (2008), and Biancamaria et al. (2011) succesfully assimilated virtual
observations of the proposed SWOT mission with simulations from the LISFLOOD-FP hydraulic
model (Bates & De Roo, 2000). Specifically, the studies by Andreadis et al. (2007) and Biancamaria
et al. (2011) were based on the square root implementation of the analysis scheme proposed by
Evensen (2004). In variational techniques, Lai & Monnier (2009) used 4D-var to assimilate spatially
distributed water levels into a shallow-water flood model. Alternatively, Matgen et al. (2010) and
Giustarini et al. (2011) evaluated the performance of assimilation schemes based on the Particle
Filter (PF), which does not require the Gaussian distribution of error assumed by the EnKF and
variational methods. These two studies used SAR-derived WLOs, the former with synthetic and
the latter with two real observations (ERS-2 and ENVISAT). However, their studies, both in a
19-km reach of the Alzette River, used the 1-D HEC-RAS hydrodynamic model within a single
transect and one upstream boundary condition. With their model setup, the problem had a state
vector length n = 144, and they used 64 particles to approach the PF problem. While Matgen et al.
(2010) comment that their methodology can be extended to rivers with more complex geometry
(which would need a 2-D model), they do not consider the issue of increase in dimensionality.
As an example, the problem in the present study includes a number of distributed boundary
conditions and affects rural and urban areas. To adequately represent the geometry, we consider
664 × 408 = 270902 pixels within a rectangular domain. Just considering flooded cells in the
model, the maximum extent of the flooded area is about 15200 pixels. The state vector length
is thus more than 100 times bigger that in these two studies. The feasibility of the ensemble
Kalman filter with ensemble sizes much smaller than the state dimension has been demonstrated
in operational numerical weather prediction (e.g., Houtekamer & Mitchell, 2005), and has some
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theoretical justification (e.g., Furrer & Bengtsson, 2007). Conversely, as, discussed by Snyder
et al. (2008), there are results showing that the standard particle filter must have an ensemble size
exponentially large in the variance of the observation log likelihood or the filter will suffer from
a “collapse”. Thus, despite current research to improve the PF efficiency for large dimensional
problems, it remains unclear whether it will be a viable alternative in a near future for these
operational flooding problems in areas with high human or economical risk.

Both EnKF and PF are Monte Carlo-based filters that require a number of ensembles of model
runs to represent the forecast uncertainty. 2-D hydrodynamic models for simulating floods are
expensive to run in ensemble mode with the result that, in operational cases, watershed scale
hydrodynamic modelling is currently prohibitive, and thus the hydrodynamic model must either
be restricted to a computationally feasible domain or use a lower resolution, which may not be
adequate. In order to increase forecast lead times, within a modelling cascade, a low resolution
hydrologic model can be used for obtaining the watershed response to rainfall, and this response
can be used as input flow boundary conditions for the hydrodynamic model.

For ensemble simulations, the spread of the hydrologic model responses represents the hydro-
logic forecast uncertainty. Also, the ensemble mean will differ from the true watershed response.
This difference will take the form of a time-correlated mean error, which will be considered a bias
if it remains stationary during the time span of the simulations. The evolution of this mean error
will be a function of the various errors inherent in the data (mostly rainfall) and the hydrologic
model. This mean error in the input to the hydrodynamic domain tends to offset the benefit of
the DA within the hydrodynamic model.

It has been shown that the persistence of DA improvement on hydrodynamic model simulations
is limited if DA is just used for updating the state vector (water stage), as the errors in upstream
boundary conditions can have a dominating effect on the flooded area within a short time after the
assimilation step. To tackle this problem, some studies have proposed to estimate and correct the
error in upstream inflows (Andreadis et al., 2007; Matgen et al., 2010), with different approaches.
In general, DA can be used to estimate uncertain model parameters. From a DA point of view,
input flow boundary conditions, as well as friction in land and channels, can be considered as
parameters to be estimated; their difference, as mentioned above, being that inflow errors have a
much higher variability in time than friction parameters can have.

Satellite-based SAR acquisitions have an undeniable cost to water authorities and risk man-
agement services. Although it is possible to obtain a sequence of SAR images of a flood using data
from several different uncoordinated satellites, the only satellite constellation currently available
to provide image sequences is the COSMO-SkyMed (CSK) constellation, which has sufficiently
high resolution (up to 1m) to image flooding in urban areas. COSMO-SkyMed is an Italian Space
Agency constellation with 4 satellites in sun-synchronous orbit with a 97.9◦ inclination. In a
decision-making scenario (an imminently forecasted flood), for the CSK constellation, two visit
parameters must be taken into account; the first visit time (the time of the first SAR image acqui-
sition) and the revisit time (the time between two consecutive acquisitions over the same target).
CSK offers 12 h and 24 h revisit times. Too late a first visit may miss important information for
forecasting purposes, while one that is too early may provide little information or be prematurely
scheduled without any further flood development, so incurring unnecessary costs.

We are interested in maximizing the capability of remotely-sensed WLOs to decrease the fore-
cast uncertainty. Here we evaluate the influence of the time of the first visit and revisit time on
the error characteristics of the flood event. We assume that the difference in time between the
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acquisition of the CSK image and the time at which its WLOs are available to the user (the in-
formation age) is negligible. In practice the event sequence is not currently near real-time for high
resolution SARs, though may become so in the near future. Operational considerations concerned
with acquiring high resolution satellite SAR images of a developing flood and extracting WLOs
in near real-time have been considered in Mason et al. (2012a,b). CSK is likely to be followed by
other constellations with lower information ages (e.g., Sentinel-1). The aim of this paper is to be
generic, so that the issue of information age should be an additional consideration for the particular
satellite concerned.

This study builds upon previous analyses of remotely-sensed WLO DA. Our main goal is to
evaluate the sensitivity of the forecasting and DA performance to a number of realistic hypothetical
visit scenarios using satellite-based SAR WLOs. For this, we use a real flood in an urban area
and real inflow measurements as base scenario, but employ a controlled identical twin experiment
for the study. Firstly, we obtain a family of three curves that show mean forecast statistics (Root
Mean Square Error) for the event as a function of visit times. Each curve represents a revisit
time (∆ta = 12 h, 24 h, and 48 h), and is built up by successively delaying the time of the first
visit but keeping a common last visit time (at a late stage within the flood event). Secondly, for
a selected revisit/DA time (∆ta = 24 h) we simulate a budget-limited scenario, by successively
delaying a fixed number of SAR overpasses As a DA technique, we use an Ensemble Transform
Kalman Filter (ETKF) and conduct parameter (inflow errors) estimation through augmentation of
the state vector. We expand the discussion by highlighting related issues, such as the importance
of inflow error estimation and the evolution of the correct spread, that should deserve further
consideration in operational environments with sequential DA.

The rest of this paper is organised as follows: In Section 2, we describe the experimental design,
the study domain, the hydrodynamic model, the generation of synthetic satellite observations, the
ensemble filter, the generation of inflow boundary condition errors, and the applied verification
methods. In Section 3, we present and discuss the results, describing the influence of updating the
inflow boundary conditions during the assimilation process, the evolution of the ensemble during
the sequential assimilation, and the sensitivity to first visit and revisit times. Conclusions are
provided in Section 4.

2. Methods

2.1. Experimental Design

We use an identical twin experiment with a hydrodynamic model grounded in a real flood
event. In this study, we assume that friction is known and constant (e.g., through prior model
calibration), but that inflows are poorly known and their errors are estimated and corrected by
the filter. For this, we choose pre-calibrated friction parameters for the floodplain and channels,
and a set of measured inflow/stage boundary conditions to simulate a “true” event. Then, we
obtain synthetic SAR-type WLOs from this “truth”, and for the same period we corrupt the inflow
boundary conditions to generate an ensemble of inflows with added errors. As we assume that
measured inflows are the truth, to generate the ensemble of inflows, we first impose a stationary
mean error as a multiplicative bias on this truth. Then, the biased inflow time series are further
corrupted by spatiotemporallly-correlated errors to generate the ensemble of inflows into the study
domain. This is described in Section 2.5. The inflow ensemble is used for generating an open-loop
simulation, without DA, and for all the simulations assimilating the synthetic WLOs under various
SAR visit scenarios.
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Within ensemble Kalman filters and several contexts, it has been shown that as the size of
the ensembles increases, correlations are estimated more accurately (e.g., Houtekamer & Mitchell,
2001). Note that ensemble Kalman filtering quantifies uncertainty only in the space spanned by
the ensemble. If computational resources restrict the number of ensemble members m to be much
smaller than the number of model variables n, this can be a severe limitation. Here, for our ∼
1.5×104 effective state vector length (pixels within the flooded area), we arbitrarily set the ensemble
size m = 210 as a relatively big one in comparison with that from typical operational applications
with high computational demand, as is this case. The size of m was chosen to keep reasonable
computing times given available computing resources. In this study, we do not conduct any test
of the forecast-error covariance sensitivity to the ensemble size, and we do not use localization.
Nevertheless, we investigate the ensemble reliability for the chosen size (see Section 3). We assume
that the system can be represented on a discrete grid and, for the purposes of this study only, that
the system model is “perfect”, i.e. it gives an exact description of the true behaviour of the system.

2.2. Study Domain and Hydrodynamic Model

This study focuses on the area of the lower Severn and Avon rivers in South West United
Kingdom, over a 30.6× 49.8 km2 (1524 km2) domain. The case study is 1-in-150-year flood event
that took place in July 2007 in the area. It resulted in substantial flooding of urban and rural
areas, with about 15̇00 homes in Tewkesbury being flooded (Mason et al., 2010; Schumann et al.,
2011). Tewkesbury lies at the confluence of the Severn, flowing from the Northwest, and the Avon,
flowing in from the Northeast. Fig. 1 depicts the domain for the current study. The peak of
the flood (> 550 m3s−1 at Saxons Lode Us) occurred on July 22, and the river did not return to
bank-full until July 31 (∼ 350 m3s−1 at Saxons Lode Us).

We set up time-varying boundary conditions from real measurements of seven input flows and
one downstream stage time series (see Fig. 1). The three boundary conditions with highest inflows
were Bewdley (peak inflow Qp = 300 m3s−1) in the Severn, Evesham (Qp = 465 m3s−1) in the
Avon, and Knightsford Bridge (Qp = 315 m3s−1) in the Teme. The Severn also had inflows from
Kidder Callows (Qp = 33 m3s−1) and Hardford Hill (Qp = 36 m3s−1), prior to its junction with
the Teme. The Avon also had a sharp, short duration, inflow from Hinton (Qp = 85 m3s−1), and
from Besford Bridge (Qp = 315 m3s−1), downstream. The supplementary material includes plots
for all hydrographs.

The simulation interval goes from 2007-07-19 13:00:00 UTC to 2007-08-01 19:15:00 UTC, and
all time series have a 15’ temporal resolution. The area is modelled by the flood inundation model
LISFLOOD-FP, a coupled 1D/2D hydraulic model based on a raster grid (Bates & De Roo, 2000).
It predicts water depth in each grid cell at each time step. After each assimilation step, the
model is re-initialized with the updated state vector (water stage). LISFLOOD-FP has several
formulations. Here, we apply the so-call “sub-grid” approach described by Neal et al. (2012). This
scheme uses a computationally efficient finite difference numerical scheme adapted from the reach
scale inundation model of Bates et al. (2010), and utilises gridded river network data, assuming a
rectangular channel geometry. This is a scheme that considers the diffusion and local inertial term
of the 1D shallow water equations as a means of increasing stable time steps. These 1D equations
are solved for each face of a 2D grid cell to provide a 2D solution that is decoupled in x and y. Neal
et al. (2012) analyse the scheme for an application in the River Niger Inland delta regarding the
simulation of water surface elevation, inundation and wave propagation. LISFLOOD-FP is here
applied to the domain with 75 m pixel resolution. Thus, the domain is 408× 664 = 270912 pixels,
but the maximum extent of the flooded area is about 15200 pixels. The source digital terrain model
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(DTM) was the NEXTMap British digital terrain model dataset (5×5 m resolution), derived from
airborne Interferometric Synthetic Aperture Radar (IFSAR), which was upscaled by explicitly
removing channel depth, later parametrized into the sub-grid geometry. To describe the channel
geometry, we used the power law relationship d = λwγ between the channel width (w) and depth
(d), where we used the parameters λ = 0.30, and γ = 0.78. For the main rivers, we estimated
mean channel widths from field campaigns, and calibrated λ and γ using within bank water level
dynamics measured by the available gauges, using the same method as Neal et al. (2012). Width
values were w = 20, 35, 50, and 60 m for the Teme, Avon, Severn upstream of its junction with
the Avon, and Severn downstream from this junction, respectively. For smaller tributaries we kept
the same λ and γ values, and assigned widths in 5–15 m on the basis of drainage areas obtained
from the DTM. These seemed reasonable when cross-checked with field observations. Simulations
are run with an initial time step of 20 s, which is internally adapted for every time step by the
model to optimize calculations. The 15 minute input time series are linearly interpolated in time
within the model to be adapted to the internal time step. The Manning friction parameters used
for the channels and floodplain are nch = 0.035 and nfp = 0.06, respectively.

2.3. Virtual Satellite Observations

Distributed water levels may be estimated indirectly along the flood extents in SAR images by
intersecting the extents with the floodplain topography. The WLOs are produced as a continuous
line along the boundary of a flood extent, and it is necessary to select a subset of level observations
at individual points along the boundary for assimilation, because errors in adjacent levels along
the flood extent will be strongly correlated (Mason et al., 2012b; Stephens et al., 2012). In theory,
this is a tractable problem as correlated errors could be included into the assimilation procedure
through a correct specification of the non-diagonal values in the observation error covariance matrix
R. However, in practice it is extremely difficult to correctly estimate these covariances, and if they
are not correctly specified the filter will deviate from the optimal; e.g., the updated state will
be excessively biased towards the observations if their error covariances are underestimated or
assumed zero (Stewart et al., 2008). It is more straightforward to filter out observations so that
just a subset with uncorrelated errors is assimilated. In the terminology of DA, this is commonly
known as “thinning”.

In our synthetic experiment, we obtained, every 12 h, the gridded stages of the “true” simulation
of the flood event. Note again that in real cases, satellite-based SAR samples only provide water
elevations along the flood edge. Then, we used the thinning procedure described by Mason et al.
(2012b), which itself is based on Ochotta et al. (2005). This uses a Moran’s I test to ensure that the
samples remaining after thinning have no spatial autocorrelation at the 5% significance level, so that
zero covariance can be assumed between observations. We assumed a standard deviation for the
thinned set of WLOs of 0.25 m, with zero mean bias. This is the mean error in the estimate of water
surface height at the final sampling points. These values are realistic as they were obtained from
WLOs extracted from real high resolution SAR images of flood extents observed over this domain,
and the absence of bias was validated with DEM-independent gauge-based WLOs (Mason et al.,
2012b). The standard deviation includes components due to uncertainties both in the position of
the SAR flood waterline and in the DEM. Height errors due to waterline position uncertainty were
reduced by selecting waterline samples in flooded areas on low DEM slopes. The base ∆t = 12 h
WLO dataset was used to create the various first-visit-time and revisit-time (∆ta = 12 h, 24 h,
and 48 h) scenarios.
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2.4. Ensemble Filter

Unknown parameters can be estimated as part of the data assimilation by using state space
augmentation (Friedland, 1969). As the model state is augmented with model parameters, correla-
tions develop between the parameters and the model variables. In data assimilation schemes using
such an approach, the analysis updates an augmented state vector,

x =

[
z
β

]
, (1)

where z is the ns-dimensional model state and β is a generic nβ-dimensional vector of parameters.
Thus x is the augmented n-dimensional state vector, with n = ns + nβ. Here, we follow this
approach with an ensemble representation, where our parameters are the inflow errors at the
assimilation time. Then, in our case, after each assimilation step, the updated z (an ensemble of
water stage grids) evolves by integrating each member of the ensemble forward in time with the
LISFLOOD-FP model, and, independently, the updated ensemble of inflow errors evolves in time
according to our error forecast model (described in Section 2.5.2).

The Kalman filter equations (Kalman, 1960) to update the state vector in a linear system are:

xa = xf + K(y −Hxf ), (2)

Pa = (I−KH) Pf , (3)

where the forecast (prior) and analysis (posterior) quantities are denoted by the superscripts f
and a, respectively; y ∈ <p is the vector of observations; H is the p × n observation matrix (or
“observation” or “forward” operator) mapping the state vector to the observation space; P is the
n×n state error covariance matrix; I is the n×n identity matrix; and K is the n× p Kalman gain
matrix:

K = PfHT
(
HPfHT + R

)−1
, (4)

where the superscript “T” denotes matrix transposition, and R is the p × p observation error
covariance matrix.

The Ensemble Kalman Filter (EnKF) was introduced by Evensen (1994). It makes it possible
to apply the Kalman filter to high-dimensional discrete systems, when the explicit storage and
manipulation of the system state error covariance is impossible or impractical. The EnKF methods
may be characterized by the application of the analysis equations given by the Kalman filter to an
ensemble of forecasts.

Let {xi} (i = 1, . . . ,m) be an m-member ensemble ∈ <n. The ensemble mean is the vector
defined by

x =
1

m

m∑
i=1

xi. (5)

The ensemble perturbation matrix for the augmented state is the n×m matrix defined by

X =
1√
m− 1

[x1 − x|x2 − x| . . . |xm − x] . (6)

The ensemble covariance matrix P is typically assumed to be carried by the ensemble by means of
the relation

P = XXT =
1

m− 1

m∑
i=1

(xi − x)(xi − x)T. (7)
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In addition to linear problems, the EnKF-based methods have been applied to nonlinear prob-
lems, as is our case. In general, the (possibly nonlinear) observation operator H maps state
variables x to observed variables y:

y = H(xt) + ε, (8)

where the superscript t denotes the true state, and ε results from a combination of instrument
error and representation error. The covariance 〈εεT〉 is the abovementioned R.

Within the EnKF methods, the Ensemble Square Root Filters (ESRF) is a family in which both
the ensemble mean and the ensemble perturbations are updated explicitly, so that the analysis
error covariance matches the theoretical value given by the Kalman filter (Tippett et al., 2003).
The ETKF is a specific formulation within the ESRF. The ensemble mean is updated by using
the analysis equation (2), and the ensemble perturbations are updated by an ensemble m × m
transform matrix T:

Xa = XfT, (9)

such that the analyzed covariance matrix obtained from Xa using (9) matches the theoretical value
(3):

XfT(XfT)T = (I−KH) Xf (Xf )T. (10)

The forecast ensemble perturbation matrix, for a linear H, is Yf = HXf . By defining the
matrix

D = Yf (Yf )T + R, (11)

and using (4), (10) can be rearranged as

TTT = I− (Yf )TD−1Yf , (12)

whose right-hand side may be rewritten using the Sherman-Morrison-Woodbury identity (Tip-
pett et al., 2003, equation (15)) as

I− (Yf )TD−1Yf =
(
I + (Yf )TR−1Yf

)−1
. (13)

Since
(
I + (Yf )TR−1Yf

)
is a symmetric positive definite matrix, whose eigenvectors are equiv-

alent to the eigenvectors of (Yf )TR−1Yf ,

TTT = C(I + Γ)−1CT, (14)

=
(
C(I + Γ)−1/2

)(
C(I + Γ)−1/2

)T
, (15)

where the columns in C contain the orthonormal eigenvectors of (Yf )TR−1Yf , and the diagonal
matrix Γ contains the corresponding eigenvalues. This provides the solution

T = C(I + Γ)−1/2, (16)

which is the “one-sided” solution given by Bishop et al. (2001). Clearly, any orthogonal matrix U
(i.e. UUT = I) can be attached to the right-hand side of (14) to provide an alternative solution.
Specifically, being C orthogonal, one solution is

T = C(I + Γ)−1/2CT, (17)
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which is called the “symmetric solution” by Ott et al. (2004) or the “spherical simplex” solution
by Wang et al. (2004), and is also equivalent to the Local Ensemble Transform Kalman Filter
(LETKF) solution given by Hunt et al. (2007) in the case without localization. The solution (17)
is unbiased (Livings et al., 2008; Sakov & Oke, 2008), and is the solution adopted in this study.

The state space of our model is a water stage grid. We simply use a linear mapping H from the
state space into the SAR-derived WLOs by locating the inundated, and with “running water”, grid
point closest to each individual observation. Thus, for each observation, the stage of this closest
grid point is mapped, with a weight equal to 1, while remaining grid points have a weight equal to
0. H is thus a sparse matrix containing 1s and 0s. The “running water” criterion refers to pixels
whose water depth is above a threshold (1 mm in this study) considered as surface depression
storage, below which water is not routed, and the pixel becames hydraulically disconnected from
the main flooded area.

2.5. Ensemble Generation

2.5.1. Perturbation to model inputs

The performance of most ensemble forecasts is influenced by the quality of the ensemble gen-
eration method, the forecast model, and also the analysis scheme. The perturbation of the forcing
data to generate an ensemble of forecasted model state vectors is a key feature in the EnKF family.
Here we assume that the model is free of structural errors and parameter uncertainty, so that
all model errors arise from forcing data, i.e. input flow boundary conditions. At gauged points,
errors in streamflows stem both from measurement errors in water level measurements and un-
certainties in the rating curves (stage-flow relationships). It is acknowledged that errors in flow
measurements are heteroscedastic (proportional to flow), and a number of approaches have been
proposed to generate the error ensemble for the inflow boundary conditions into hydrodynamic
models. On the other hand, errors attributed to missing lateral flow inputs through the domain
boundary, not accounted for in the point flow boundary conditions, are not necessarily related to
flow measurements.

For DA studies, several authors have perturbed the input forcing of a hydrologic model to
obtain an ensemble of inflows into the hydrodynamic domain. In this way, Andreadis et al. (2007)
used the VIC model with perturbed precipitation fields, and included a negative bias of 25% to the
VIC simulated flows. Similarly, Matgen et al. (2010) and Giustarini et al. (2011) used the CLM
hydrologic model, the former including a positive 25% bias to the CLM generated hydrographs,
and the latter without adding any bias. Biancamaria et al. (2011) used Empirical Orthogonal
Functions (EOF), following the methodology developed by Auclair et al. (2003), to perturb the most
statistically significant modes of precipitation and temperature fields as input to the ISBA model,
whose ensemble hydrograph output drove the hydrodynamic model LISFLOOD-FP. However, the
statistics of the final inflow perturbations into the hydrodynamic model are not evident in these
studies. For studies focused on DA within the hydrodynamic model it is useful to have a clear view
of final inflow perturbations, as it is the errors in the hydrodynamic model and their value relative
to the observation errors that determine the weight given to observations in the DA analysis.

In essence, from the point of view of the generation of the inflows for hydrodynamic models,
and domains with a number of tributaries and boundary conditions, we could pose two general
scenarios: a) input flows from real gauge observations, and b) input flows forecast by a hydrologic
model. In both cases, the error evolution at each inflow will have some degree of temporal au-
tocorrelation. On the other hand, scenario (a) should not show a significant correlation, if any,
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between the errors at the various gauge locations, as errors in stage measurements and uncer-
tainties in rating curves are normally independent between sites. In contrast, scenario (b) will
generally introduce a, normally high, spatial correlation between the errors at the various inflows.
The degree of this spatial correlation will be highly dependent on the perturbation of the forcing
—chiefly precipitation fields— onto the hydrologic model, and the hydrologic model structure and
parameters. For complex hydrodynamic domains, this distinction is key, as it will govern the de-
velopment of the correlations in the state vector, and the general DA behaviour. Existing spatial
correlation between boundary errors in different tributaries may well lead to one WLO (either from
remote sensing or a standard gauge) at the head of one tributary to influence the error estimation
at the others. This may be, especially for sparse observations (as is common for stage gauges),
a positive DA outcome in linked hydrologic-hydrodynamic models as, in general, it will make the
observations more influential in both correcting the hydrodynamic state and, possibly, correcting
the hydrologic model errors. However, for scenario (a), if spatial correlations between inflow errors
are erroneously assumed, or are developed as spurious in Monte Carlo-based methods (e.g., due to
limited ensemble size), the DA updates could lead to biased error estimates.

In the current study, we evaluate a flood scenario with available real inflow measurements at
the major tributaries. With this dataset, scenario (a) can be simulated by generating spatially-
independent time-autocorrelated (and heteroscedastic) random errors to perturb measured inflows,
and scenario (b) can be simulated by incorporating a spatiotemporal autocorrelation into the
heteroscedastic errors.

With the number of operational gauges actually declining in the world (Vörösmarty et al.,
2001), and considering that a linked hydrologic-hydrodynamic model should lead to increased
flood forecast lead times, we choose scenario (b) for the remainder of this study. This approach
has an advantage over selecting a specific hydrologic model in that it can be regarded as using a
“generic” hydrologic model whose influence in generating inflow boundary conditions is explicitly
modelled and known. This clarifies the analysis for our study.

Below, within Section 2.5.2, we detail how we simulate the inflow ensembles with random errors.
As an example of the difference between the scenarios (a) and (b) when used with the described
ETKF, Fig. 2 shows, for the study domain, the covariance between the inflow errors at Bewdley
and water stage in the domain, after 5 forecast/DA steps, for both scenarios, for a revisit time
∆ta = 24 h. In both simulations the state vector is augmented with the inflow errors, which are
updated every DA step. Clearly, for the case (b) where a spatial covariance is imposed between the
errors at the various inflows, a positive cross-covariance develops not only between the state variable
(stage) at the various tributaries, but also between inflow errors and stages at locations which are
quite separate. In both cases the covariance is propagated in the flow direction downstream (for a
sub-critical flow the covariance could also propagate upstream), while the covariance development
is counterbalanced by the effect of the temporal decorrelation in the errors.

In real cases, the temporal characteristics of the errors in an ensemble of hydrologic model
forecasts are not known. Here we simulate these errors by imposing a deterministic error, as a
multiplicative bias (20%) to all flow measurements, and then by adding spatiotemporally correlated
random errors to perturb the biased mean input flow to obtain the input inflow ensemble, which
drives the hydrodynamic model. The imposed bias is reasonable given knowledge of real world
discharge errors. It is noted that a bias is a particular case of error dynamics between the true
hydrograph and the mean of the hydrograph ensemble that could be generated by a hydrologic
model. In the real and general case, this mean error will not be stationary in time. Previous studies
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have indicated that the improvement in forecasting skills due to assimilation of observations may
have a short time span in hydrodynamic domains, as the inflow errors propagate downstream
counterbalancing the improvement. So, the inflow errors estimated at the assimilation time can
be used to correct boundary inflows until the next assimilation time, increasing the persistence
of error reductions between times of observations (e.g., Andreadis et al., 2007; Matgen et al.,
2010). In real cases, the assumptions one can make about the evolution of this error between
consecutive assimilation steps, as well as the available information, should lead the design of the
error forecast model used for correcting inflow errors. Thus, Andreadis et al. (2007) used an
first order autoregressive model (for a 3-month case study), and Matgen et al. (2010) assumed
stationarity of the estimated errors between assimilation steps (for a storm-flood study), so they
used the estimated error to constantly correct all the inflows until the next assimilation time.
Realistically, for storm-flood event durations (the focus of our interest), if no discharge data is
available, satellite revisit times will make it very difficult to operationally implement more complex
approaches than the latter. In any case, the deviations of the error forecast model from the real
error dynamics will diminish the improvement due to the estimation and on-line correction of the
inflow errors. In our synthetic case, we are imposing stationarity (bias) as “true” mean error
dynamics. Accordingly, our error forecast model should not assume stationarity of the mean error
between assimilation times, as the results would provide an overoptimistic correction of the inflow
bias with respect to what can be realistically expected. Thus, to emulate this problem, our error
forecast model is a decay toward 0 between consecutive assimilation times, as described below.

2.5.2. Simulation of heteroscedastic model errors

We now describe the procedure we follow to simulate spatiotemporally correlated heteroscedas-
tic inflow errors, i.e. scenario (b) described above. This provides us with a time-evolution of the
inflow errors, with which we augment the state vector (Section 2.4).

At a specific time, the covariance matrix Σ ∈ <n×n can be decomposed as Σ = D1/2ρD1/2,
where ρ is the n×n correlation matrix, and D1/2 is an n×n diagonal matrix containing the square
root of the diagonal values of Σ (i.e. the standard deviations of the n state variables). By using
this decomposition, it is possible to generate an n × m matrix A′ containing a pseudo-random
sample of size m from N (0,Σ), each sample in a column, through

A′ =
(
d1/21T

)
◦
(
ρ1/2A

)
, (18)

where d1/2 ∈ <n is a column vector containing the diagonal values of D1/2, 1 ∈ <m is a column
vector with all elements equal to 1, the symbol ◦ represents the Schur (element-wise) product,
and A is an n ×m matrix of pseudo-random numbers drawn from N (0, 1). Thus we can detach
the process of spatiotemporal correlation (carried on by ρ) from the process of variance scaling
(expressed by d), in order to generate the inflow errors. Heteroscedasticity may be embedded in
d. For this, we need to choose a model for the spatiotemporal correlation and a model for the
heteroscedasticity.

We are interested in simulating errors in a number n∂Ω of spatially sparse inflow boundary
conditions. A way of simulating an evolving multivariate time series of spatiotemporally correlated
errors is through

qk = αqk−1 +
√

1− α2wk, (19)

where qk ∈ <n∂Ω is the model error at time k, and α ∈ [0, 1] is a temporal autocorrelation coefficient
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(Evensen, 2003). wk ∈ <n∂Ω is a here white noise obtained by drawing samples fromN (0,ρ), where
ρ ∈ <n∂Ω×n∂Ω is a distance-dependent correlation matrix (described below in Section 2.5.4).

Let {qki} (i = 1, . . . ,m) be an m-member ensemble ∈ <n∂Ω of inflow errors at time k. The
ensemble matrix for the inflow errors is the n∂Ω ×m matrix defined by

Qk = [qk1|qk2| . . . |qkm] , (20)

where each member of the ensemble Qk has evolved individually according to (19). This ensures
that the diagonal of the covariance matrix of the ensemble Qk is made (approximately) of 1s as
long as this is also true for Qk−1. In this way, we use the stochastic process defined by (19) to
generate the spatiotemporally correlated errors in a normalized space, previous to the consideration
of heteroscedasticity (i.e. Qk is analogous to ρ1/2A in (18)). After assimilation steps, errors are
regenerated (k = 1). So Qk−1 ≡ Q0 refers to the errors updated by the assimilation process. With
this formulation, α being an scalar, we are assuming that the temporal autocorrelation dynamics
of the errors are similar for all inflows.

Then, we account for heteroscedasticity in a later step. Let sk be an arbitrary scalar, obtained
through a measurement or a forecast, at time k, which is taken as the expected value of the
scalar random variable of interest (E[Sk] = sk). The variance V [Sk] = σ2

k can be assumed to be
proportional in some form to sk. For flow errors, we propose a general model to this proportion as

σ2
k = σ2

0

(
sk
s0

)h
, (21)

where σ2
0 is a reference variance corresponding to a reference value s0, and h is a heteroscedasticity

factor. If h = 0, errors are homoscedastic as σ2
k becames independent of sk. If h = 1, σ2

k =
(
σ2

0
s0

)
sk,

where the term in parentheses matches the so-called “hyper-parameter” proposed by Moradkhani

et al. (2005). If h = 2, σk =
(
σ0
s0

)
sk, where the term in parentheses is by definition a coefficient

of variation (c.v.). In this study, we set h = 2, so heteroscedasticity is expressed by a common
coefficient of variation, and set c.v.= 0.15 for the hydrographs of our virtual hydrologic model.
This value is derived from historic observations for the rating curve calculation at Saxons Lode Us
(c.v.∼ 0.10), slightly increased to emulate the normally higher errors from hydrologic models. As
a comparison, Clark et al. (2008) used a c.v.= 0.10 for a white noise perturbing flow observations
to be assimilated into a hydrologic model.

Thus, analogous to (18), we obtain the heteroscedastic error ensemble (n∂Ω×m matrix) Q′k as

Q′k =
(
σk1

T
)
◦Qk, (22)

where σk ∈ <n∂Ω is the column vector of the standard deviations of the inflow errors, and 1 ∈ <m
is a column vector with all elements equal to 1. Q′k is the ensemble representation of the inflow
errors, with which we augment the ensemble representation of the state vector z at the time of
assimilation. This is analogous to the generic parameter augmentation denoted by β in equation
(1). It follows from (19) and (21) that the marginal distribution of the errors at each inflow is

q′k ∼ N
(
0, σ2

k

)
. (23)

Also, from (19) and (21), note that by using a constant time step between two arbitrary steps
i and j, the covariance at a specific location between q′i and q′j is

q′iq
′T
j = α|i−j|

√(
sisj
s2

0

)h
σ2

0. (24)
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After an assimilation step is conducted, the q′0 ensemble at each inflow is the result from an
updating together with the other variables in the state vector, and will generally deviate from both
the mean and the variance given by (23). However, in time, both the mean and the variance of the
newly simulated forecast errors will converge to these values, and this will occur faster for lower α
values.

2.5.3. Determination of α

The factor α should be related to the real time step used and a specific time decorrelation
length τ . The decay term in (24) can be also expressed as an exponential decay:

α|i−j| = e−
∆t
τ , (25)

which relates α and τ , and clarifies that, disregarding the heteroscedastic variance term in (24),
the covariance in time between q′i and q′j is damped by a ratio e−1 over a time period ∆tij = τ (see
Evensen, 2003). For a specific time step k of length ∆tk, then

αk = e−
∆tk
τ , (26)

which allows one to use (19) for any time step length by subtituting α by the corresponding αk,
and, instead of (24), the error covariance, at each inflow, between any two time steps (i, j) is more
generically expressed as

q′iq
′T
j =

√(
sisj
s2

0

)h
σ2

0

j∏
k=i+1

αk. (27)

2.5.4. Spatial correlation model for inflow errors

The spatial correlation matrix ρ, for generation of the white noise wk in (19), can be created
by any procedure which considers that correlation in inflow errors is dependent on the distance
between the locations of the point inflow boundary conditions. Here we chose the Gaussian-decay
correlation model

ρij = e
− 1

2

(
dij
θ

)2

, (28)

where the subscripts i and j refer to any two boundary conditions, ρij ∈ [0, 1] is the corresponding
spatial correlation and element in ρ, dij is the distance between the corresponding locations, and
θ is a spatial correlation coefficient.

2.5.5. Selection of τ and θ and inflow error estimation

As abovementioned (Section 2.5.1), the true dynamics of the mean error of measured or fore-
casted inflows are unknown in real cases. In this synthetic study we impose a deterministic station-
ary bias as a “true” mean error evolution, and we approach the DA problem as if we did not know
about this error evolution to evaluate how it influences the forecast, and how DA is able to partially
solve for it. To emulate errors from a “generic” hydrologic model, we first imposed a positive 20%
bias on measured inflows. Then we perturbed the biased inflows with spatiotemporally correlated
errors to generate the inflow ensemble. Generally, errors in precipitation inputs, and hydrologic
model parameters and structures can generate a wide range of possible spatiotemporal correlations
in the simulated hydrographs. Thus, two single values of τ and θ cannot embrace all possible
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situations. Here, our parameters for the error forecast model were τ = 3 days and θ = 62000 m
(e.g., the spatial correlation for the inflow errors between Bewdley and Evesham is 0.8). Despite
being arbitrary, we chose these values as we believe they are representative of a relatively normal
situation with a spatially distributed or semidistributed model, making use of continuous rainfall
field inputs, and having undergone a certain degree of calibration with previous events. Fig. S1,
in the supplementary material, shows a hypothetical example of the error forecast evolution, after
one assimilation step, for two values of τ . In this study, as we have imposed a stationary bias
in the true mean error, higher values of τ , will lead to better results, as they will exert a more
persistent correction of the bias. So, the intentional mismatch between the error forecast model
and the stationary bias serves to emulate the lack of knowledge of the mean error evolution in real
cases. On the other hand, for a real case, the error forecast model should try to approach the real
error dynamics; either by the parsimonious assumption of stationarity (e.g., Matgen et al., 2010),
or by more complex models.

2.6. Verification Methods

To assess the strength and weaknesses of the forecasts, we use standard verification methods.
The Root Mean Square Error (RMSE) is used as measurement of overall accuracy. The Brier Skill
Score (BSS) is used to evaluate the forecast relative to a standard, which is chosen to represent an
unskilled forecast. In our case, the unskilled forecast is the open loop simulation. The vectorized
form of the BSS is

BSS = 1− (fs − o)2

(fr − o)2
, (29)

where fs is the evaluated forecast state vector, fr, is the reference forecast (open loop) vector, o
is the actual outcome vector (here, the truth), and the overline denotes the average. The BSS
∈ (−∞, 1], where BSS= 0 indicates no skill when compared to the reference forecast, and BSS= 1
is a perfect score.

Finally, we use rank histograms for determining the reliability of ensemble forecasts and for
diagnosis of errors in its mean and spread. A flat rank histogram is usually taken as a sign of
reliability. A detailed interpretation of rank histograms for verifying ensemble forecasts is given by
Hamill (2001).

3. Results and Discussion

3.1. Updating Inflow Boundary Conditions

Our results indicate that the improvement in forecasting skill due to assimilation of observations
may have a short time span in hydrodynamic domains, as the inflow errors propagate downstream
counterbalancing the improvement. This is in agreement with previous studies (e.g., Andreadis
et al., 2007; Matgen et al., 2010; Giustarini et al., 2011). However, it is also important, in this
context, to evaluate how the inflows are corrected at the boundary conditions themselves, as this
is an indicator of the capability of the data assimilation scheme to obtain inflow time series that
can be used as surrogate observations to feed back into an inverse hydrodynamic-hydrologic DA
modelling cascade.

Fig. 3 compares the evolution of the inflow ensemble at the upstream boundary condition at
Bewdley and the forecasted flood stage at a dowstream location (Worcester) when inflow errors
are not estimated and corrected by the assimilation against the case when they are corrected.
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Simulations refer to a SAR assimilation revisit time ∆ta = 24 h. If inflows are not updated they
are similar to an open loop without DA, so the DA-bias line overlies the input bias one (Fig. 3a).
If inflow errors are also estimated and corrected according to the used error forecast model, each
sequential assimilation pushes the inflows used by the model toward the truth (Fig. 3b). In both
cases, the DA process does a good job in correcting the forecast toward the truth at Worcester. For
each ensemble, this is clarified by the upper plots at Worcester, which show the evolution of the
standard deviation (DA-SDev lines) and the mean bias (DA-bias lines) between the forecast and
the truth. However, if the biases in the inflow (here mostly influenced by Bewdley at the North)
are not corrected they have a control effect that, after any assimilation update, causes the forecast
to drift away from the truth, leading to an early overestimation of the flood stage. A similar effect
was shown by Matgen et al. (2010). The case with inflow updating keeps the forecast on track
very close to the truth. Curves at the other inflows and sampled forecast locations show similar
effects (see Figs. S2–S15; supplementary material). The speed at which the updated inflows drift
away from the truth when they are updated is related to the lack of match between the used error
forecast model (with τ = 3) and the imposed stationary bias. As described in Section 2.5, in
this case, higher τ values would result in a more persistent propagation of the errors estimated
at the assimilation time, giving an improved mean inflow error estimation and correction in time
with the forecast. In the remainder of this paper we use simulations with updating of the inflow
errors, as this leads to a clear forecast improvement. However, we keep τ = 3 to emulate the fact
that any error forecast model that could be chosen for real cases (e.g., a stationary bias model
as Matgen et al., 2010) will always fail to completely match the true (non-stationary) inflow
error evolution. Here we assumed that friction parameters are known. In real cases, if friction in
the channels and floodplain are considered to be uncertain, an attempt may be done to estimate
them simultaneously by additional augmentation of the state vector. Generally, with additional
parameters to be estimated, the filter would benefit from larger ensemble sizes. Estimation of
friction, however, is beyond the scope of this study.

3.2. Ensemble Properties

The use of a finite ensemble size to approximate the error covariance matrix introduces sampling
errors that are seen as spurious correlations. With each spurious update there is an associated
reduction of ensemble variance. This ensemble collapse problem is present in all EnKF applications
and can lead to filter divergence (Evensen, 2009). To the authors’ knowledge, there is no published
study that evaluates the problem of ensemble collapse for hydrologic or hydrodynamic studies
using sequential EnKF-based DA. Let us conduct a quick examination of the properties of the
ensemble, taking as an example a simulation with ∆ta = 24 h revisit time, starting on the 20th
of July, before the flood goes out of bank. Fig. 4 shows the evolution of the rank histograms
evaluated with the forecasted ensemble at each assimilation time. To build the histograms, at
least 5×m locations as evenly distributed as possible within the flooded area were taken at each
visit time. These locations were used to sample from the truth and the forecasted ensemble,
and the truth was ranked within the ensemble. In general, rank histograms in Fig. 4 appear
different from uniform and the density concentrates around values lower than the rank mean as
a result of the bias imposed on the simulated inflows. Clearly, the spread starts being too high,
resulting from the coefficient of variation (c.v.= 0.15) we gave to the inflow errors in relation
with the observation errors, representing the lower trust we have in the hydrologic model output.
After that, as the event evolves, the variance decreases and the spread becomes more adequate.
Nevertheless, the ensemble collapse is moderate, and the ensemble remains relatively stable along
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with the sequential assimilation steps. This indicates that the ensemble size is enough, in general
terms, for the case study. Here we use an ensemble size m = 210 for a state vector length of
the order O(104). This is relatively high as compared with some available studies oriented to
operational uses. For example, Houtekamer et al. (2009) used m = 64 for a Numerical Weather
Predictions (NWP) model with a state vector length of the order O(107). Note, however, that these
highly-dimensional operational NWP problems use methods, known as inflation and localization,
for minimizing the impact of the spurious updates (e.g., Houtekamer & Mitchell, 2001; Hamill
et al., 2001). Localization reduces the problems generated by reduced ensemble sizes by decreasing
the weight, through several approaches, given to observations far from the estimated state variable
(as the subspace in which the analysis is conducted is reduced). Inflation may be applied to either
the background covariance or the analysis covariance during each assimilation cycle, and several
multiplicative and additive inflation techniques have been proposed. For example, see the review in
Hunt et al. (2007). In our study, despite ensemble collapse being slight, an attempt could have been
made to further compensate it through inflation or localization. However, the spread is influenced
by the assimilation interval and the start time of the assimilation (first visit). Thus we kept the
same coefficient of variation as a general adequate value and did not apply any inflation/localization
in order to make comparison among several visit scenarios straightforward.

3.3. Sensitivity to First Visit and Revisit Times

In a, normally budget-limited, operational context the decision to task a satellite to acquire
SAR images needs to take into account the first visit and revisit times. Here we focus on these
parameters. There are now a number of sensors acquiring SAR data (RADARSAT, TerraSAR-X,
ALOS PALSAR, Cosmo-Skymed, etc.), controlled by a number of different space agencies. Issues
such as the difference in time between the acquisition of the SAR images and the time at which
they are available to the user (the information age) should be considered for any current or future
satellite mission. Note also that the assimilation strategy may well include satellite information
from different satellites, not pertaining to the same constellation. These operational issues, as well
as issues of data quality specific to each sensor are beyond the scope of this paper, which aims to
be relatively generic. Fig. 5 shows the RMSE of the ensemble mean with respect to the synthetic
truth, evaluated at specific locations. Each plot shows a family of three curves, which refer to the
revisit/DA times ∆ta = 12 h, 24 h, and 48 h. For each curve, each point represents the RMSE
for the assimilation scenario whose first visit is at the point time, and the RMSE is calculated
between the mean of the ensemble and the truth over the entire time window. For example, for all
∆ta = 24 h curves in all Fig. 5 plots, the first point results from the simulation referred to by Fig.
3b and Fig. 3d. Note that the later a first visit occurs the less visit/DA steps are conducted, and
all the statistics necessarily converge towards those from an open loop simulation. It is noted that
satellite-based SAR acquisitions provide reliable water elevation only at locations when the flow is
overbank. So, at the start of the rising limb, when flow is still within the river banks, it is highly
unlikey to get valuable remote sensing observations. The RMSE shown at the two inflow boundary
conditions, Bewdley and Evesham, indicates how state vector augmentation with boundary inflows
is able to estimate and correct the inflow error. The forecast stage at Worcester is mostly controlled
by the inflow at Bewdley, but also has some contributions from Kidder Callows and Hardford Hill.
Just after the junction between the Teme and the Severn, Kempsey also includes the inflow from
Knightsford Bridge. The forecast at Bredon depends on inflows from the Avon and its tributaries,
i.e. Evesham, Hinton and Besford Bridge inflows.
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Generally, for inflows and stage, the improvement due to the decrease of the revisit time is
most clear when assimilation starts at an early stage of the flood event. After the peak stage is
reached, from 22th July onwards, the curves have mostly converged. Also, for each ∆ta curve, the
increase in the RMSE at the forecasted stages is very sharp just before the peak stage is reached,
that is, when variation in stage is higher. This indicates that the early satellite overpasses on the
rising limb, provided WLOs can be extracted from them, are the most useful.

If the observations are too early in relation to the arrival of flow, they do not provide useful in-
formation. However, an early overpass may simultaneously have observations of very low usefulness
at downstream areas and much more valuable observations upstream if the flow is significant. For
example, the assimilation of the 20th July overpass WLOs has a negligible benefit for the forecast
at Mythe Bridge for the ∆ta = 12 h and 24 h revisit times. This is shown as the corresponding
simulations with 21th as first visit have very similar RMSE values. Later, the 21th overpass has a
very significant influence on the RMSE at Mythe Bridge, despite the flow being still very low at
that point at the overpass time. But this is because at that time, upstream flow is much higher
(e.g., around Bewdley). The benefit of assimilating upstream observations at that time is propa-
gated downstream and has time to be highly influential at Mythe Bridge. On the other hand, at
the same location, for the ∆ta = 48 h revisit time, a first visit at 20th July is very useful. But
again this is not because of the observations around Mythe Bridge at that time, but because the
benefit of observations being assimilated upstream has time to reach this point before the next
first visit time is evaluated for this curve (22th July). The revisit scenario curves have generally
converged after the 22th–23th July, which implies that the differences in the RMSE between the
starting points for the three curves result from the improvement owing to the increased observation
frequency during the rising limb. Interestingly, for the inflow at Evesham and the stage forecast at
Bredon, when the first visit time is between the 22th and the 30th July the curves with ∆ta = 48 h,
show better statistics than those with higher observation frequencies. While the differences are
not big, these are related to the dynamics of the inflow at Evesham, which includes a secondary
peak during the 26th–28th July. Minor modifications in the spread and the covariance create these
differences.

The improvement in the forecast with respect to the open loop is indicated by Fig. 6, which
shows the evolution of the Brier Skill Score (BSS) for the simulation with ∆ta = 24 h revisit time
starting from the 20th of July. Fig. 6 corresponds to the simulation represented by the first point
in the ∆ta = 24 h curves in Fig. 5, and also referred to by Fig. 3b and Fig. 3d). The BSS evolution
is calculated against the open loop for forecast times t+6 h, t+12 h, and t+24 h, where t refers to
revisit times. The BSS is calculated for the seven inflow boundary conditions (Fig. 6a), and for
the forecast stages at the ten reference gauge locations (Fig. 6b). Note that after each asimilation
step, the updated inflow boundary conditions evolve without using the hydrodynamic model, but
according to the corrections made by the assimilation and the error forecast model to the inflows
with imposed biases. Thus Fig. 6a mostly displays the inversion capability of the filter; but this
capability is also influenced by the model structure, which develops the covariances between the
inflows and the state vector (stage), used by the filter when SAR WLOs are assimilated.

For both inflows and forecasted stages, the BSS is very high throughout all the simulation.
As expected, the BSS is generally better for the t+6 h forecast time, as the inflow corrections
are partially lost for increasing forecast times, when the updated inflows drift back to the biased
inflows, as shown by Fig. 3b. Still, the BSS for inflows has a very mild and stable decreasing
trend along the simulations. This seems to match the decreasing trend in spread indicated by
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the rank histograms. For the forecast stage, disregarding the 20th July forecast when flows are
still very low and some observations are too early to be useful, the minimum values, given for the
25th and 26th July, are still very high (∼0.85–0.90). After that there is a recovery in the BSS.
At the start of the simulation the inflow-stage covariance (e.g., Fig. 2b) fades faster downstream
from the inflows than at a later time, and so this results in the updating for inflows being more
influenced by the early local observations. As the flood event evolves, so do the covariances, and
more SAR WLOs generally farther from the boundary conditions are affecting inflow updatings.
So, some nonlinearities, and perhaps the development of spurious correlations, are likely affecting
the updatings for the lower BSS values.

Finally, a budget-limited scenario is shown by Fig. 7, which considers 5 satellite overpasses with
∆ta = 24 h revisit time and successively delayed by one day. The RMSE is also calculated over the
entire window. The RMSE patterns are very similar to those in Fig. 5, with generally increasing
RMSE as the observations are delayed. This indicates that even considering a fixed number of
satellite overpasses, the benefit of the DA still propagates downstream after all observations are
completed. This is a similar effect to that shown by Biancamaria et al. (2011), which evaluated a
number of synthetic SWOT orbit scenarios with partial coverage on an Artic river, and indicated
that those orbits that observed the upstream part of the river compared positively against those
observing the downstream area, the reason being that the corrections propagate downstream. Still,
the simulations with early observations have a higher RMSE than those with the same first visit
time and ∆ta = 24 h in Fig. 5, as the cessation of observations moves the forecast back towards the
open loop. The effect that observations that are too early do not provided very useful information
is now well shown by the RMSE evolution at Mythe Bridge, where substitution of the 20th July
overpass by the 25th July one (i.e. 1-day delay of the 5 visits) reduces the RMSE. One extra 1-day
delay misses the rising limb and results in the largest increase in RMSE among the simulations.

As a summary, at the early stages of the flood event, the forecast within highly variable flood
dynamics benefits from increased observation frequencies (∆ta = 12 h revisit time). After the flood
peak, as the event proceeds with smoother flood dynamics, the sensitivity to the revisit time is
drastically reduced so it becames adequate to decrease the observation frequency. This provides a
longer time coverage of the event for the same cost.

Here we chose to use the ETKF, which has received a strong attention in recent theoretical and
practical studies (e.g., Bishop et al., 2001; Hunt et al., 2007; Livings et al., 2008; Sakov & Oke,
2008). Very likely, results from SAR-based WLO assimilation are filter-dependent. A comparative
study could shed light on the complexity of the implementation of the various available filters for
data assimilation versus the efficiency for assimilating SAR-based WLOs in inundation problems.

4. Conclusions

This study focuses on the problem of scheduling satellite-based SAR acquisitions for sequential
assimilation of SAR-derived WLOs into operational flood modelling. In particular, the interest is
on areas of human or economic risk, thus involving urban areas which require detailed 2D flood
modelling. For this study, we have used an ETKF and the 2D hydrodynamic model LISFLOOD-
FP with a synthetic analysis based on a real flooding case around the Severn-Avon river junction
in Southwest UK. We have touched on a number of related issues. Firstly, we have provided a
clarification of the correlations originating from generic hydrologic-hydrodynamic modelling cas-
cades. Secondly, our results indicate that the spread, in the case study, is relatively stable. Thus,
localization and/or inflation techniques do not seem to be required for this study. However, this is
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case-dependent. These techniques could be required in other scenarios for sequential ETKF-based
DA in hydrodynamic modelling, if the best performance of the filter is wanted. In agreement with
previous studies, we have shown that estimation/correction of the inflow errors leads to improved
forecasts. Regarding the satellite visit parameters, for a standard budget-limited scenario, the
operational scheduling of satellite SAR acquisitions should try to capture the early stages of the
rising limb, possibly with the highest available observation frequency. After the flood peak, it
becames convenient to spread out the observations in time. This enables the forecast to be kept
on track for a longer time and same cost for the less variable flood dynamics that occur during the
falling limb period. This result should equally apply to airborne observations and data collection
for offline model evaluation.

This study has assumed an error-free model and no parametric uncertainty. Errors in model
parameters should be considered in future work. For example, friction parameters may even be
variable over an event and are certainly non-stationary between events.

Acknowledgements

This work was supported by NERC through the DEMON (Developing Enhanced impact MOd-
els for integration with Next generation NWP and climate outputs) project, included in the NERC
SRM (Storm Risk Mitigation) programme (NE/I005242/1). The authors thank three anonymous
reviewers, which were a great help in improving this manuscript.

References

Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., & Alsdorf, D. E. (2007). Prospects for river discharge and depth
estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys. Res. Lett.,
34 , L10403–.

Auclair, F., Marsaleix, P., & Mey, P. D. (2003). Space-time structure and dynamics of the forecast error in a coastal
circulation model of the gulf of lions. Dyn. Atmos. Oceans, 36 , 309–346.

Bates, P. D., & De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. J. Hydrol.,
236 , 54–77.

Bates, P. D., Horrit, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations
for efficient two dimensional flood inundation modelling. J. Hydrol., 387 , 33–45.

Biancamaria, S., Durand, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodŕıguez, E., Alsdorf,
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Figure 1: Study domain. OSGB 1936 British National Grid projection; coordinates in meters. Grey labels indicate
major rivers (thick black lines). The red polygon surrounds the Tewkesbury urban area. Orange labels/dots refer
to inflow boundary conditions, some of them on smaller tributaries (thin black lines). The orange line to the South
indicates a time-varying stage boundary condition. Green labels/dots show locations with available stage observations
for the event, from which we just use their locations as a reference in the current study. The background is the 75 m
resolution DEM used for the model, based on upscaling the NEXTMAP British digital terrain model.
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a b

Figure 2: Spatial covariance developed after 5 daily (∆ta = 24 h) SAR assimilation steps between errors at the inflow
boundary condition at Bewdley (red circle), at the North of the Severn river, and water stage in the domain, for (a)
no spatial covariance in the time-correlated inflow errors (representing measurement-driven hydrodynamic model),
and (b) Gaussian-decay spatial covariance present (representing hydrologic model-driven hydrodynamic model). See
details in Section 2.5. τ = 3 days for both, and θ = 62000 m for (b).
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a b

c d

Figure 3: Evolution of the inflow at Bewdley (a), and corresponding forecast at Worcester (c), without attempting
to estimate/correct the errors in the inflow boundary conditions. Inflow (b) and forecast (d) are as (a) and (c),
respectively, but estimating and correcting the inflow errors by augmentation of the state vector. For each ensemble
at Worcester, upper summary plots show the standard deviation of the ensemble (DA-SDev), and the bias between
the mean of the ensemble and the truth (DA-bias). For the inflow at Bewdley, the input bias is also shown. Vertical
lines indicate satellite overpass/DA times (∆ta = 24 h).
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Figure 4: Evolution of the rank histogram evaluated for the forecast ensemble at each assimilation time for the
∆ta = 24 h revisit time simulation. The subplot at the lower-right corner is included as a reference indicating the
corresponding assimilation times in relation with the various true inflow boundary conditions.

25



Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

10

15

20

25

30

35

40

bewdley_q :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [
m

3  s
−1

]

50

100

150

200

250

300

350

F
lo

w
 [

m
3  s

−1
]

●

●

●

●

●

●

●

●

●

●
● ●

12h

24h

48h

a

Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

15

20

25

30

35

evesham_q :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [
m

3  s
−1

]

0

100

200

300

400

500

F
lo

w
 [

m
3  s

−1
]

●

●

●

●

●

●
● ●

● ● ● ●

12h

24h

48h

b

Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

0.05

0.10

0.15

worcester_h :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [m
]

12

13

14

15

16

17

18

S
ta

ge
 [m

]

●

●

●

●

●

●

●

●

●

●
●

●

12h

24h

48h

c

Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

0.04

0.06

0.08

0.10

0.12

0.14

bredon_h :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [m
]

8

9

10

11

12

13

14

S
ta

ge
 [m

]

●

●

●

●

●

●
●

● ●
●

●
●

12h

24h

48h

d

Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

kempsey_h :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [m
]

10

11

12

13

14

15

16

S
ta

ge
 [m

]

●

●

●

●

●

●

●

●

●

●
●

●

12h

24h

48h

e

Jul 20 Jul 22 Jul 24 Jul 26 Jul 28 Jul 30 Aug 01

0.05

0.10

0.15

mythe_bridge_h :: first visit and revisit time

Time of the first visit/DA

R
M

S
E

 [m
]

7

8

9

10

11

12

13

14
S

ta
ge

 [m
]

●
●

●

●
●

●
● ● ●

● ● ●

12h
24h

48h

f

Figure 5: RMSE for inflows at the two boundary conditions with the highest inflow (Bewdley at the Severn, and
Evesham at the Avon), and forecasted stage at four gauges: Worcester, at the river Severn; Kempsey, just after the
junction between the Teme and the Severn; Bredon, in the Avon; and Mythe Bridge, in the Severn by Tewkesbury.
True inflow/stage at the corresponding location is shown as a reference. Curves are calculated for revisit times
∆ta = 12 h, 24 h, and 48 h. Each point in each curve denotes the first visit time and the corresponding RMSE over
the entire window.
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Figure 6: Brier Skill Scores (BSS) for the ∆ta = 24 h revisit time, starting the 20th of July, simulation evaluated
against the open loop. At each ta, the BSS is shown for forecast times t+6 h, t+12 h, and t+24 h. BSS is calculated
at (a) the 7 inflow boundary conditions, and (b) at the forecasted stages at the 10 reference gauge locations. True
stage at Saxons Lode US gauge is shown in both subplots as a reference.
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Figure 7: As Figure 5 for ∆ta = 24 h revisit time, but for five SAR overpasses successively delayed by one hour.
Each blue point denotes the first visit time, and the corresponding RMSE over the entire window. As an example,
for the first and last first visit time, all visits/DA times are shown as grey points.
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