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Abstract

The observation error covariance matrix used in data assimilation contains contributions from
instrument errors, representativity errors and errors introduced by the approximated observation
operator. Forward model errors arise when the observation operator does not correctly model the
observations or when observations can resolve spatial scales that the model cannot. Previous work
to estimate the observation error matrix for particular observing instruments has shown that it
contains significant correlations. In particular correlations for humidity data are more significant
than those for temperature. However it is not known what proportion of these correlations can be
attributed to the representativity errors. In this paper we calculate errors of representativity for
temperature and humidity using data from the Met Office high resolution UK variable resolution
model. Our results show that errors of representativity are correlated and more significant for
specific humidity than temperature. We also find that representativity error varies with height.
This suggests that they may improve the analysis if explicitly included in a data assimilation
scheme.

1 Introduction

In data assimilation model states are combined with observations, making use of their associated
error statistics. These are included in the assimilation scheme in the background and observation
error covariance matrices. The observation error covariance matrix can be split into three compo-
nents. One contains information on the instrument error, one describes the error in the observation
operator, the other contains information on the representativity error, which has been linked to the
forward interpolation error [Lorenc, 1986]. The instrument error is determined for specific instru-
ments under a set of test conditions by the instrument manufacturer or from in-orbit calibration
data. It may also contain errors introduced by the pre-processing of the data, which can often be
much greater than pure instrument noise. Alternatively they can be included as part of the forward
model error. The representativity error is the error that arises when the observations resolve spatial
scales that the model cannot [Daley, 1993].

Previous work has shown that observation error statistics are correlated for certain observation
types [Stewart et al., 2009, 2012b, Bormann et al., 2002, Bormann and Bauer, 2010, Bormann et al.,
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2010] and it has been suggested that part of the correlation comes from representativity error rather
than the instrument error or errors in the observation operator [Stewart, 2010, Weston, 2011]. Until
recently it has been assumed that it is too expensive to include correlated observation error matrices
in assimilation schemes and that it is only feasible to use a diagonal observation error covariance
matrix. The effect of correlated error is reduced by using techniques such as observation thinning
[Lahoz et al., 2010] or superobbing [Daley, 1991], and variance inflation [Hilton et al., 2009, Whitaker
et al., 2008]. Calculations are also simplified by assuming that the observations errors are the same
at each model level [Dee and Da Silva, 1999]. Efforts are being made to find methods of reducing the
cost of using correlated observation error matrices [Stewart et al., 2012a, Stewart, 2010, Healy and
White, 2005, Fisher, 2005]. Once these methods are in place it will be important to have accurate
estimates of the covariance matrices, as these are required to obtain the optimal estimate from
any data assimilation system [Houtekamer and Mitchell, 2005, Stewart et al., 2008]. It is therefore
important to understand how to estimate representativity error.

Despite the difficulties in calculating correlated error, there have been some attempts. The
Hollingsworth and Lönnberg method [Hollingsworth and Lönnberg, 1986] has been used to calculate
the statistics of the innovations. A method proposed by Desroziers et al. [2005] makes use of infor-
mation from the first guess and analysis departures and yields an approximation to the observation
error covariance matrix. Once the innovation statistics or the observation error covariances have
been calculated, the background and/or instrument error terms can be subtracted to leave an ap-
proximation of forward model error for specific observing instruments. Other methods [Daley, 1993,
Liu and Rabier, 2002] assume that observations can be written as a projection of a high resolution
model state on to observation space with the representativity error being the difference between
this high resolution projection and the model representation of the observation. Many of these
approaches yield a static approximation of representativity error, but Janjic and Cohn [2006] show
that it is state dependent and correlated in time.

Work has been carried out by Stewart [2010], Stewart et al. [2009, 2012b] and Bormann and
Bauer [2010] to calculate estimates of the full observation error covariance matrix. They show that
the observation error covariance matrices for observing instruments such as IASI, AMSU-A, HIRS
and MHS contain significant correlations. In particular the correlations for the humidity channels
are more significant than those for temperature. The calculated matrices contain contributions from
both the representativity error and the instrument error. Due to the complex nature of observation
error statistics it is not known what portion of the error is representativity error. As humidity fields
contain smaller scale features than temperature fields, it is possible that it is the representativity
error that contributes to the more significant error correlations.

In this paper we investigate whether the significant correlations are representativity error. We
calculate the representativity error for temperature and humidity data over the UK using a method
described by Daley [1993] and Liu and Rabier [2002]. We investigate whether representativity error is
more significant for humidity than temperature, and whether one approximation of representativity
error is suitable for all pressure levels.

In section 2 we describe the method used for calculating representativity error. We then describe
the model and available data in section 3. Our experimental design is given in section 4 and we
present our results in section 5. Finally we give conclusions in section 6.
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2 Representativity Error

2.1 Representativity Error

Forward model error,
ǫ
R = y−H(xm), (1)

is the difference between the noise free observation vector, y, of length p and the mapping of the
exact model state vector, xm, of length N into observation space using the possibly non-linear
observation operator H. The noise free observation vector is a theoretical construct that represents
an observation measured by a perfect observing instrument, i.e. with no instrument error. It is
related to the actual measurement via the equation

yo = y + ǫ
I, (2)

where yo is the observation vector and ǫ
I is the instrument error.

The covariance of the forward model error E[ǫRǫR
T
] = RH is included in the observation error

covariance matrix R = RH +RI, where RI = E[ǫIǫI
T
] is the instrument error covariance matrix.

To calculate the representativity errors in this paper we use a method defined by Daley [1993] and Liu
and Rabier [2002]. In this method it is assumed that the observations can be written as the mapping
of a high resolution state into observation space, and that the model state xm is a truncation of
this high resolution state. This method also allows us to correctly specify the observation operator
so our forward model errors consist only of errors of representativity.

2.2 Representativity error on a 1D domain

We restrict our calculations to the 1D domain of length L = 2aπ, where a is a constant that
determines the length of the domain, and assume that the observation operator H is linear. It
is assumed that the high resolution state x(r) at position r can be expressed as a Fourier series
truncated at wave number K. At N points on the physical domain, −aπ ≤ r ≤ aπ, the function
values x(rj), j = 1 . . . N , can be expressed in matrix form as

x = Fx̂ (3)

where x̂ is a vector of length M = 2K+1 of spectral coefficients and F is a Fourier transform matrix
of dimension N×M . In this work a number of Fourier matrices are used to calculate representativity
error. A Fourier matrix F of size m× n has elements

Fj,k = exp(2ikjπ
m

), (4)

where j = 1 . . . m and k = 1 . . . n.
The model representation of the actual state is a wave number limited filter of the high resolution

state, x̂m = Tx̂ where T is a truncation matrix that truncates the full spectral vector x̂ to the
analysed spectral vector x̂m. The model representation of the actual state can be expressed as

xm = Fmx̂m, (5)

where x̂m is a vector of length Mm = 2Km+1 of spectral coefficients and Fm is a Fourier transform
matrix of dimension Nm × Mm with elements defined as in Eq. (4) but with no terms with wave
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number higher than Km. The variables to be analysed are the Fourier spectral coefficients from
−Km to Km, Km < K.

We define the observations by

y(ro) =

∫ aπ

−aπ

x(r)w(r − ro)dr. (6)

Here the observations are defined as if they have been measured at point ro by a remote sensing
instrument. The choice of the weighting function w(r) determines the type of observing instrument.
Writing Eq. (6) in spectral space allows us to write the p error free observations as

y = FpWx̂, (7)

where Fp is a p×M Fourier transform matrix and W is a M ×M diagonal matrix with elements
ŵk, the spectral coefficients of the weighting function w(r). FpW is an exact observation operator
in spectral space. The measurement vector yo is given by,

yo = FpWx̂+ ǫ
I, (8)

where ǫ
I is the instrument error.

The model representation of the observations is given by,

ym = Fm
p WmTx̂, (9)

where Fm
p is the Fourier matrix with elements defined as in Eq. (4). Wm is a Mm ×Mm diagonal

matrix with elements ŵk, the spectral coefficients of the weighting function w(r). This method
assumes that the low resolution model is a truncation of the high resolution model. This allows
representativity error to be considered in the perfect model case.

To obtain an equation for representativity error we assume the observation operator is linear
and substitute the definitions of observations, Eq. (7), and model representation of the observation,
Eq. (9), into Eq. (1) to give,

ǫ
R = FpWx̂− Fm

p WmTx̂. (10)

The expectation operation, denoted E[., .], is applied to give the representativity error covariance
matrix E[ǫRǫR

∗

] = RH,

RH = (FpW − Fm
p WmT)Ŝ(FpW − Fm

p WmT)∗, (11)

where Ŝ = E[x̂x̂∗] is the spectral covariance matrix for the high resolution state and ∗ denotes
the complex conjugate transpose. The spectral covariance of the high resolution state, Ŝ, contains
information on how different wave numbers are related. It can be calculated using

Ŝ = F−1SF, (12)

where F is a Fourier transform matrix and S = E[xx∗] is the covariance matrix of the high resolution
state in physical space.

We now have an equation that can be used to calculate the representativity error covariance
matrix. We must now define the weighting matrices to be used and describe how the spectral
covariance of the high resolution state can be calculated.
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3 The Model and Data

In this study we calculate representativity error for both temperature and specific humidity over the
UK. The calculation of representativity error by the method of Liu and Rabier [2002] assumes that
the actual state can be taken from a high resolution model. As our actual state we take data from
the Met Office UKV model. The UKV model is a variable resolution model that covers the UK; at
its highest resolution the domain has 1.5km grid boxes. The model data used is at this resolution.
The boundary data for the model is interpolated to the 1.5km grid from the 4km resolution regional
model.

In this work we calculate representativity error using the assumption that the model state is a
truncation of high resolution data. For the majority of our experiments we chose a truncation factor
that gives a model grid spacing equivalent to the grid spacing that is used in the Met Office NAE
model. The Met Office NAE model has a grid spacing of 12km (in mid-latitudes) and covers Europe
and the North Atlantic.

3.1 The data available

We use temperature and humidity data over the UK available for two cases. The first case, Case 1,
consists of data from 7 August 2007 at times 0830UTC, 0900UTC and 0930UTC on an area over
the southern UK that covers −3.04oW to 3.71oE and 49.18oN to 53.36oN. In this case there are
partly clear skies with convection occurring over the south east [Eden, 2007]. The second set of
data, Case 2, is from 6 September 2008 at 1400UTC, 1430UTC and 1500UTC and covers −5.00oW
to 1.20oE and 52.5oN to 56.00oN. In this case a deep depression is tracking slowly east-northeast
across England [Eden, 2008]. The data is available on a 300 × 300 grid of latitude and longitude
lines at each of 43 pressure levels.

3.2 Creating samples from the data

There are some limitations to the data. Data near the boundary is contaminated by the boundary
conditions taken from the coarser model. We remove this data at each pressure level by reducing
the grid to a 256 × 256 mesh centered on the main grid. We need to sample the data to calculate
the covariance matrices for the actual state. The data we have is available on a 3D gridded domain.
We are interested in calculating representativity error for individual pressure levels so for each
experiment the data available id 2D; however, we are calculating representativity error on a 1D
domain. To convert our data to 1D we take the individual latitude rows of the data from the
749hPa pressure level. We use this level as it is outside the boundary layer, but should still include
the small scale features that are relevant when calculating representativity error. For both cases
of temperature and specific humidity we have 768 samples to calculate the covariance matrices.
A covariance calculated with this number of samples is dominated by sampling error and hence
this is not a sufficient number of samples to calculate an accurate representation of the required
covariances. A further problem is that the samples are not periodic, but the Liu and Rabier [2002]
method assumes a periodic domain with a circulant covariance matrix S. To overcome this we
detrend and process the data.
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Table 1 – Variances for the true state

Temperature log(Specific Humidity)
(K2) ((kg/kg)2)

Case 1 0.6638 0.0812
Case 2 0.1934 0.0178

3.3 Data processing

To create surrogate samples from each available sample the data must be detrended. Detrending
gives data on a homogeneous field; this is required by our chosen method for calculating representa-
tivity error. Data is detrended by removing a best fit line using an appropriate polynomial of order
no greater than 3 [Bendat and Piersol, 2011]. It is justifiable to detrend the data as only trends
with large length scales are removed. All scales that contribute to the representativity error still
remain. We detrend the 256 latitude samples at each available time, and remove a linear trend from
the temperature data, and a cubic trend from the humidity data. This detrended data is now used
to create new samples from each existing sample.

The method of Fourier randomization is used to generate surrogate samples from the same
statistical disribution [Theiler et al., 1992, Small and Tse, 2002]. Fourier randomization consists of
perturbing the phase of a set of data to create a new sample with a different phase, but where each
wave number retains the same power. Here we calculate circulant samples, which corresponds to
shifting the phase of the data. This also gives the data the required periodicity. A circulant sample
is created by shifting each element of the sample one position and taking the final element and
making it the first entry in the sample. Each element can be shifted to each position, which means
a sample with n elements can be used to create n circulant samples. Therefore creating surrogate
samples increases the number of available samples we have for calculating the covariance of the high
resolution data. We have available 256 samples at three different times. Creating circulant samples
gives us 65536 samples at each time, and a total of 196608 samples to estimate each of the covariance
matrices, which is a sufficient number of samples.

4 Experiments

4.1 The covariance of the high resolution data

We calculate the sample covariance matrix, S, of the high resolution data using,

S =
1

n− 1

n
∑

i=1

(xi − x̄)(xi − x̄)∗, (13)

where xi is the i
th sample vector and x̄ is a mean vector of the samples. We use this method and the

model data to calculate the covariance matrix of the actual state, S. We use the circulant samples
calculated from the UKV model data to calculate the covariance matrices for the temperature and
humidity fields for both cases. We give the variances in Table 1 and plot a row of each of the
correlation matrices in Figure 1.

From Table 1 we see that the variances for Case 2 are smaller than those for Case 1. When
considering the correlations plotted in Figure 1, we see that the temperature fields have larger
correlations than humidity. For Case 1 the temperature correlations are very high; this is expected
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Figure 1 – Correlation structure for the true temperature and specific humidity fields. Temperature:
Case 1 dotted line, Case 2 dot-dash line. Specific Humidity: Case 1 dashed line, Case 2 solid line

as, after detrending, this field is fairly constant. We also note that the correlations for Case 2 are
smaller than the correlations for Case 1. This is due to the synoptic situation, since in Case 1 the
field is more homogeneous with small scale features over the domain; but, in Case 2 the features are
large scale and less homogeneous.

4.2 The observations

To calculate the representativity error we require pseudo-observations. We expect representativity
error to depend on observation type. To calculate these observation types we use Eq. (7), which
requires a weighting matrix. We choose the weighting matrices in Eq. (11) to correspond to different
types of observing instruments. The elements of the weighting matrix are the spectral coefficients of
the weighting function w(r) that is used to define observations using Eq. (6). Pseudo-observations
are created from the high resolution data using three weighting functions. The weighting functions
used here are the same as those used in Liu and Rabier [2002]. Two of the weighting functions
represent remotely-sensed observations. One follows a top-hat (uniform) function with a width of
5km. The other weighting function is calculated using a Gaussian curve with a width of 20km. We
also consider in-situ measurements. For these direct observations the weighting function w(r) in Eq.
(6) becomes a Dirac delta-function. In this case the diagonal elements ŵ of the weighting matrix
are all unity.

Now we have the appropriate weighting matrices and the covariance matrices for the high res-
olution data at the 749hPa pressure level. This allows us to calculate representativity errors for
temperature and log specific humidity. In the next section we present the results of our experi-
ments.

5 Results

We now carry out a number of experiments to enable us to understand the nature of representativity
error. The results for experiments carried out with data from Case 1 are given in Table 2, and for
Case 2 in Table 3.

5.1 Temperature and humidity representativity errors

We first consider how the errors of representativity differ between the temperature and log humidity
fields. We consider the representativity error for the case where the model has 32 points; this is
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Table 2 – Representativity error (RE) variances for Case 1. The values given in brackets are a comparison
of the representativity error variance to the high resolution data variance.

Experiment Truncation Number of Observation Temperature Humidity
Number Observations type RE RE

(p) variance ((K)2) variance ((kg/kg)2)

1.1 32 32 Direct 4.81 × 10−3 (0.7%) 1.51 × 10−3 (1.9%)
1.2 32 32 Uniform 2.71 × 10−3 (0.4%) 1.08 × 10−3 (1.3%)
1.3 32 32 Gaussian 8.99 × 10−4 (0.1%) 3.80 × 10−4 (0.5%)
1.4 32 16 Direct 4.81 × 10−3 (0.7%) 1.51 × 10−3 (1.9%)
1.5 64 64 Direct 2.13 × 10−3 (0.3%) 4.04 × 10−4 (0.5%)

Table 3 – Representativity error (RE) variances for Case 2. The values given in brackets are a comparison
of the representativity error variance to the high resolution data variance.

Experiment Truncation Number of Observation Temperature Humidity
Number Observations type RE RE

(p) variance ((K)2) variance ((kg/kg)2)

2.1 32 32 Direct 2.21 × 10−3 (1.1%) 7.14 × 10−4 (4.0%)
2.2 32 32 Uniform 1.30 × 10−3 (0.7%) 4.84 × 10−4 (2.7%)
2.3 32 32 Gaussian 3.96 × 10−4 (0.2%) 1.60 × 10−4 (0.9%)
2.4 32 16 Direct 2.21 × 10−3 (1.1%) 7.14 × 10−4 (4.0%)
2.5 64 64 Direct 1.12 × 10−3 (0.6%) 2.50 × 10−4 (1.4%)

a truncation of a factor of eight from the high resolution model, which has 256 points. We start
by assuming that we have direct observations. The values of the representativity error variance are
given in Table 2 Experiment 1.1. We plot in Figures 2(a) and 2(b) (solid lines) the middle row of the
representativity error correlation matrices for temperature and log specific humidity from Case 1
respectively.

When we compare the variance of representativity error against the variance of the actual states
we see that representativity error is more significant for humidity than it is for temperature. We find
that the representativity error variance for temperature is 0.7% of the high resolution temperature
variance, whereas the humidity representativity error variance is 1.9% of the high resolution humidity
field variance. When comparing the variance from this experiment to the same experiment carried
out with Case 2 data (Table 3, Experiment 2.1), we see that the representativity error variances
are smaller for Case 2. This is expected as there is less variance in the true fields in Case 2.
These experiments show however, that the representativity error is more significant in this case,
with representativity error for temperature being 1.1% of the high resolution temperature variance
and humidity representativity error being 4.0% of the high resolution variance. For Case 1 from
Figures 2(a) and 2(b) (solid line) we see that the correlation structure is similar for both temperature
and specific humidity. The covariances rapidly decrease in magnitude as the separation distance
increases. The correlations for specific humidity are slightly larger, and decay less rapidly than the
correlations for temperature.
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Figure 2 – Representativity error correlations between observation center points for Case 1 with trun-
cation to 32 points (12km resolution) with every model grid point observed using direct (solid line) and
Gaussian-weighted (dashed line) observations. a) Temperature b) log(Specific humidity)

5.2 Changing the observation type

We now consider what happens where the observations are defined with a uniform weighting ma-
trix. The variance of the representativity error is given in Table 2 Experiment 1.2. We see again, as
expected, that the representativity error is more significant for humidity than it is for temperature.
We see that the assumption of uniformly weighted observations has decreased the representativity
error for both fields. This is as expected as the uniform observations do not capture all the small
scales that the direct observations can. The correlations are larger than those when direct observa-
tions are used (result not shown). This is because two consecutive observations have some overlap in
physical space. We see from Table 3 that Experiment 2.2 supports these results as the RE variance
is smaller than those seen in Experiment 2.1.

We now consider what happens where the observations are defined using a Gaussian-weighting
matrix. The results are given in Table 2 Experiment 1.3 and Table 3 Experiment 2.3. We plot
the middle row of the representativity error correlation matrices for temperature and log specific
humidity from Case 1 in Figures 2(a) and 2(b) (dashed lines). We find that the error variance
is smaller than when either direct or uniform observations are assumed. Our Gaussian weighted
observations capture fewer small scale features than the direct and uniform observations and hence
the representativity error variance is smaller as the model captures a larger proportion of the scales
captured by the observations. From the Figures we see that the correlations for the representativ-
ity error calculated with these Gaussian-weighted observations are larger than the representativity
error correlations present when direct observations are used. This is due to the overlapping of the
weighting functions in physical space of nearby observations.

By comparing the experiments with different weighting functions we see that the larger the
weighting function length scale used to define the observation the lower the representativity error
variance. Observations defined using weighting functions with larger length-scales capture fewer
spatial scales. Therefore the difference between a larger length-scale observation and the model
representation of the observation is smaller than a small length-scale observation and the model
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representation of the observation. Hence observations defined using weighting functions with larger
length scales result in smaller errors of representativity.

5.3 Number of observations

We now consider what happens when we calculate the representativity error where fewer direct
observations are available. Experiments 1.4 in Table 2 and 2.4 in Table 3 show the error variance
where only half the model grid points have associated direct observations. We see that having fewer
observations available does not alter the variance of the representativity error. This is expected as
representativity error applies individually to each observation and is independent of other obser-
vations. Experiments with uniform and Gaussian observations also support this conclusion. The
Liu and Rabier [2002] method makes use of the Fourier transform; this leads to regularly spaced
observations over the domain. The method used here leads to a class of correlation structures
for representativity error that are dependent only on the distance between observations and not the
number of observations available. We show this in Appendix A. Although the results in Appendix A
are specific to the Liu and Rabier [2002] method, in general we expect that the representativity er-
ror should not be dependent on the number of available observations, only on the distance between
them.

5.4 Number of model grid points

We now consider the results when the model has a larger number of 64 grid points. This is a
higher truncation, so the model should be able to resolve more small scale features, and hence we
expect the errors of representativity to decrease. We give the results for experiments with direct
observations in Table 2 Experiment 1.5 and Table 3 Experiment 2.5. From these results we see that
the representativity error variances have decreased. For direct observations the representativity
error has been approximately halved. Experiments with uniform and Gaussian weighings are not
shown but produce results that also support this conclusion.

5.5 Representativity errors at different model levels

So far we have only considered the representativity error at the 749hPa model level height. We now
calculate a representativity error for each pressure level of the model. This will allow us to consider
the variation of representativity error with height. From this we can determine if one realisation of
representativity error would be suitable at every pressure level, or if it is more appropriate to use
the correct representativity error for each level.

Before calculating the representativity error for each model level, we must first calculate the
covariance matrices for the high resolution data for temperature and specific humidity for each
pressure level. We use the same data, but at the correct pressure level, and the same preprocessing
techniques described in section 3.

We consider the case where we have truncated to 32 grid points and have 32 direct observa-
tions available. We plot the standard deviation of representativity error for Case 1 in Figure 3(a)
(temperature) and 3(b) (specific humidity) and for Case 2 in Figure 4(a) (temperature) and 4(b)
(specific humidity).

From the figures we see that representativity error for temperature is more constant with height
than specific humidity. The exception to this is in the boundary layer, where the temperature
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Figure 3 – Representativity error standard deviation with model level height. Case 1 with 32 direct
observations (every model grid point observed). a) Temperature b) log(Specific humidity)
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Figure 4 – Representativity error standard deviation with model level height. Case 2 with 32 direct
observations (every model grid point observed). a) Temperature b) log(Specific humidity)
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representativity error is large. For specific humidity in Case 1 we see a large increase in the repre-
sentativity error standard deviation between 749hPa and 610hPa. For Case 2 the largest peak in
representativity error is seen at 300hPa. These levels are where cloud is seen and hence it is at these
levels where the small scale humidity features exist; this results in the larger representativity error
variances.

The results show that representativity error is not constant with height and in some cases it
may be beneficial to have a representativity error matrix that varies with height. They also support
our conclusions that representativity error is strongly case dependent. Experiments (results not
shown) with uniform and Gaussian weighting functions and truncation to 64 points also show that
representativity error varies with height.

6 Conclusions

In this study we wished to investigate whether significant correlations in the observation error matrix
[Stewart et al., 2009, Stewart, 2010, Stewart et al., 2012b] could be attributed to representativity
error, and whether representativity error is more significant for humidity than temperature. We
calculated and compared representativity errors for temperature and specific humidity. Experiments
using data from the Met Office UKV model showed that representativity error was more significant
for humidity than temperature. This was determined by comparing how large the representativity
error variance was in comparison to the variances of the high resolution states. This suggests that
correlations found in previous approximations of the observation error covariance matrix, R, such
as those in [Stewart, 2010] and [Weston, 2011], are likely to be representativity error, at least in
part. We calculated representativity error using data from two different cases and showed that
representativity error is sensitive to the synoptic situation, which supports claims by Janjic and
Cohn [2006]. We also found that as the number of model grid points is reduced the representativity
error increases. This is because at lower resolution, the model is not able to resolve as many
scales. We also found that using direct observations gave a higher representativity error than
when uniform or Gaussian-weighted observations were used. This is because the direct observations
contain more information on smaller scales than the uniform or Gaussian-weighted observations.
Experiments showed that altering the number of observations used to calculate representativity
error had no effect on the representativity error variance. We showed that this method leads to a
class of correlation structures that depend only on the distance between observations and not the
number of observations. We believe that in general the number of observations should not affect the
representativity error correlation structure and that the structure is dependent only on the distance
between the available observations. Finally we considered how the representativity error standard
deviation varied at different pressure levels. We found that representativity does vary at different
pressure levels and this means that assumptions such as those in Dee and Da Silva [1999], where
errors at different model levels are fixed, may not be suitable when representativity error is taken
into account. As it becomes more efficient to use correlated observation errors in data assimilation
systems good approximations of the observation error covariance matrix will be required. Using
the method of Liu and Rabier [2002] we have calculated representativity errors for specific fields
and have shown that errors of representativity are correlated. However further work is required to
determine whether the inclusion of these errors in an assimilation scheme improves the analysis.
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A Representativity error variance

Here we show why the representativity error variance does not alter when calculated with differ-
ent numbers of observations. We do this by considering the calculation of the elements of the
representativity error matrix.

Representativity error is calculated using Eq. (11). The matrices are:

• F with j = 1 . . . p and k = 1 . . .M . Elements defined as in Eq. (4).

• Fm with j = 1 . . . p and k = 1 . . .Mm. Elements defined as in Eq. (4).

• W with j = 1 . . .M and k = 1 . . .M . Elements ŵj when j = k, 0 otherwise.

• Wm with j = 1 . . .Mm and k = 1 . . .Mm. Elements ŵj when j = k, 0 otherwise.

• Ŝ with j = 1 . . .M and k = 1 . . .M . Elements ŝj when j = k, 0 otherwise.

• T with j = 1 . . .Mm and k = 1 . . .M . Elements 1 when j = k and k ≤ M , 0 otherwise.

First we calculate the elements of A = FW and B = FWT. As many of the elements are zero
we find that Aj,k = Fj,kWj,j and Bj,k = Fm

j,kW
m
j,j when k ≤ Mm, and 0 otherwise.

Next we calculate elements of C = A−B.

Cj,k =

{

exp(2ikjπ
p

)ŵj Mm < k ≤ M

0 Otherwise
(14)

Now we calculate RH = CŜC∗. Elements of E = CŜ are Ej,k = Cj,kŜk,k. Finally we calculate
RH = EC∗, where ∗ is the complex conjugate transpose and .̄ is the complex conjugate,

RH
j,k =

M
∑

l=0

Ej,lC
∗

l,k, (15)

=

M
∑

l=1

Cj,lŜl,lC̄k,l, (16)

=

M
∑

l=1

exp(2ijlπ
p

)ŵlŝlŵl exp(
−2iklπ

p
). (17)

We now show that the variance does not change when p changes, this is the case when j = k;
that is,

13



RH
j,j =

M
∑

l=1

exp(2ijlπ
p

)ŵlŝlŵl exp(
−2ijlπ

p
), (18)

=

M
∑

l=1

ŵlŝlŵl. (19)

This does not depend on p and hence we do not expect the variance to change when we use different
numbers of observations to calculate representativity error.

We now show that the correlation structure depends only on the distance between observations
and not the number of observations.

Our model has Nm grid points separated by a spacing ∆x and we have p observations. The
distance between consecutive observations is Nm∆x

p
. Suppose we have two observations separated

by a distance d and assume that these are observation j and observation k. Then we have

d =
(jk)(Nm∆x)

p
, (20)

and hence
jk

p
=

d

Nm∆x
(21)

Substituting this into Eq. (17) we obtain

RH
j,k =

M
∑

l=1

ŵlŝlŵl exp(
2ilπ(j−k)

p
), (22)

=

M
∑

l=1

ŵlŝlŵl exp(
2ilπd
Nm∆x

). (23)

Hence the correlations depend only on the distance between the observations and not the number
of observations.
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