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Abstract

Variational data assimilation is commonly used in environmental fore-
casting to estimate the current state of the system from a model forecast
and observational data. The assimilation problem can be written simply
in the form of a nonlinear least squares optimization problem. However
the practical solution of the problem in large systems requires many care-
ful choices to be made in the implementation. In this article we present
the theory of variational data assimilation and then discuss in detail how
it is implemented in practice. Current solutions and open questions are
discussed.
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1 Introduction

Data assimilation is the process of combining a numerical model forecast with
observational data in order to estimate the current state of a dynamical system.
It has been an essential part of numerical weather prediction (NWP) since its
beginnings in the 1940s, when it was recognized that errors in the initial model
state could rapidly lead to large errors in the forecast. Farly data assimilation
schemes were based on a simple interpolation between the observations and
the model state, with later schemes also taking account of the statistics of
the errors in the data. Such schemes included smoothing splines, successive
correction, optimal interpolation and analysis correction [68], [71]. The possible
use of methods based on variational calculus was proposed by Sasaki [86], [87]
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in the late 1950s and 1960s, but at the time a practical implementation was
not possible. A real breakthrough in the application of variational schemes to
NWP came in the late 1980s with a series of papers demonstrating how the
problem could be solved using techniques from the theory of optimal control, in
particular the use of adjoint equations to calculate the gradient of an objective
function, or cost function [63], [90]. This led to a series of papers in which the
feasability of variational data assimilation was studied on a series of simplified
atmospheric models [91], [81], [18], [77] (these experiments usually only included
the large-scale atmospheric dynamics and not the subgrid-scale processes of full
weather prediction models).

Despite the encouraging results of these experiments variational data assim-
ilation remained impractical for operational use due to the high computational
cost. The introduction of the incremental method of variational assimilation in
1994 [19], together with increasing computing power, opened up the possibility
of an affordable implementation for operational weather prediction. Over the
following decade many weather forecasting centres began to develop variational
data assimilation for operational use [82], [70], [83], [31], [32], [48]. At the same
time variational data assimilation began to be applied to other applications,
such as ocean forecasting [99], [95] and atmospheric chemistry [28].

A common feature of many of these applications is that the size of the state
variable being estimated is extremely large. Current numerical weather predic-
tion models may require the initialization of the order of 10® variables in order
to make a forecast. As computing power increases the spatial resolution of the
models tends to increase and hence so does the number of variables being repre-
sented. Furthermore the real-time nature of environmental forecasting requires
that the data assimilation problem be solved quickly. These two factors im-
ply that when implementing variational data assimilation schemes in practice
compromises must be made. Hence it is important to design the algorithms
carefully to ensure that as accurate a solution as possible is obtained within
the time available. Ideally such design should also include knowledge of the
physics of the problem, so that the final solution is physically realistic. In the
remainder of this article we will discuss some of the different choices that arise
in the implementation of variational data assimilation for very large systems
and the practical approaches that have been developed. First we briefly present
the mathematical theory of variational data assimilation.

2 Theory of variational data assimilation
We consider a discrete nonlinear dynamical system given by the equation

Xit1 = Mi(xi), (1)

where x; € R" is the state vector at time t; and M is the nonlinear model oper-
ator that propagates the state at time ¢; to time ¢;41 for« =0,1,...,N — 1. We
assume that we have imperfect observations y; € RP at times ¢;,71 = 0,..., N



that are related to the model state through the equation
yi = Hi(xi) +n;, (2)

where H; : RP" — R™ is known as the observation operator and maps the state
vector to observation space. The observation errors 1, are usually assumed to be
unbiased, serially uncorrelated, Gaussian errors with known covariance matrices
R,;. For the numerical weather prediction problem the vector x; would contain
several meteorological variables, such as pressure, temperature and the three-
dimensional wind, at each grid point of the model domain. The observation
operator H; may just be a simple interpolation in space, if the state variable
is observed directly. However, it could be a much more complicated nonlinear
function of the state. For example, for a satellite radiance measurement the
observation operator can include a complex radiative transfer model.

We assume that at the initial time ¢, we have an a priori estimate of the
state, usually referred to as a background field, that we denote x®. This back-
ground field is assumed to have unbiased, Gaussian errors with known covariance
matrix B. In practice the background field is usually a short-term forecast of
the state from a previous assimilation cycle. The problem of four-dimensional
variational data assimilation (4D-Var) is then to find the initial state that min-
imizes the weighted least squares distance to this background while minimizing
the weighted least squares distance of the model trajectory to the observations
over the time interval [to,ty] !. Mathematically we can formulate this as an
optimization problem:

Find the state x§ at time ¢y that minimizes the function

N
T (o) = 5 (00— TB ™ (xg —x") 5 3 (Hlxi) —y0) TRy (i) — 1) (3)
1=0

subject to the states x; satisfying the nonlinear dynamical system (1). In the
case where N = 0 there is no model evolution and the scheme is referred to
as three-dimensional variational data assimilation (3D-Var). The solution x§
is commonly referred to as the analysis. In environmental data assimilation
the function J(xq) is usually called the cost function, but the terms objective
function and penalty function are often used in other fields.

The minimization problem given by equation (3) can be interpreted in a
statistical or deterministic sense. From Bayes’ theorem it can be shown that x§
gives the maximimum likelihood estimate of the state under the assumptions
given [68]. Alternatively the term measuring the fit to the background state can
be thought of as a form of Tikhonov regularization in fitting the observations
[52], [21]. Each of these interpretations is able to provide different insights into
the practical formulation of the problem.

The cost function can be minimized using iterative numerical methods, such
as conjugate gradient or quasi-Newton methods. The use of these methods in

1The scheme is referred to as four-dimensional since we usually fit three spatial dimensions
in time, with time being the fourth dimension.



data assimilation is discussed in more detail in section 3.4. On each iteration
of such methods the value of the cost function and its gradient at the current
iterate must be calculated. The gradient of (3) with respect to the initial state
xg can be found by first solving the discrete adjoint equations

X =M A — HR™ (Hi(xi) — i) (4)

where A; are the adjoint variables, with Ay4+1 = 0, and H; and M; are the
Jacobians of the nonlinear operators H; and M; with respect to the state vari-
able x;. In the data assimilation literature these Jacobians are referred to as
the tangent linear operator and the tangent linear model (TLM). The gradient
of the cost function with respect to the initial state is then given by

VJ(X()) = —)\0 + B_l(XO — Xb), (5)

where the operators H! and M7 are the adjoints of the observation operator
and the nonlinear model. We note that these adjoints are usually taken with
respect to the Euclidean inner product and therefore the adjoint is equivalent
to the matrix transpose of the Jacobians. Other inner products are only neces-
sary where a physical interpretation of the adjoint variables is required. Each
iteration of a numerical optimization method therefore requires one run of the
forward model (1) to calculate the value of the cost function and one run of the
adjoint model (4) to calculate the gradient. This makes 4D-Var very expensive
from a computational point of view.

2.1 Incremental variational data assimilation

The possibility of implementing variational data assimilation in an operational
setting came with the proposal of incremental variational data assimilation [19].
In this formulation the solution to the nonlinear miminimization problem (3) is
approximated by a sequence of minimizations of linear quadratic cost functions.
We define ng) to be the k'™ estimate to the solution and linearize the cost
function (3) around the model trajectory forecast from this estimate. The next
estimate is then defined by

xg T = x(f? + ox, (6)

where the perturbation 6xék) € R™ is a solution of the linearised cost function

. 1
j(k)(§xék)) = 5(6x(()k) - [xb - Xo(k)})TB_l(éx(()k) — [xb — xo(k)])
1 N
+ 3 S Eox - ai) TR (Hx(Y — di). (7)
1=0

Here dl(-k) =Yy —Hi(xl(-k)), where xl(-k) is the nonlinear trajectory calculated from

the current estimate at the initial time using the nonlinear model equation (1).
The perturbation dx; satisfies the linear dynamical equation

5Xi+1 = Mi(SXi. (8)



The linearized observation operator H; and the tangent linear model operator
M, are evaluated at the current estimate of the nonlinear trajectory, usually
called the linearization state. The minimization (7) is referred to as the inner
loop, while the update of the nonlinear model trajectory xgk) is the outer loop.
On each iteration of the inner loop the TLM is integrated to calculate the
evolution of the perturbation, in order to calculate the cost function (7), and
the adjoint model is integrated to provide the gradient. A major advantage of
the incremental approach is that the inner loop minimization problem may be
solved in a smaller dimensional space than the outer loop step, for example at a
lower spatial resolution. In this way the TLM and adjoint model need only be
run at the lower resolution on each inner loop iteration, while the linearization
trajectory from the nonlinear model is still calculated at the higher resolution
on each outer loop. The computational savings made by implementing the inner
loop in this way made incremental 4D-Var feasible for operational weather and
ocean forecasting.

The incremental method was later shown to be equivalent to an inexact
Gauss-Newton method applied to the original nonlinear cost function (3) [58].
The outer loop iterations can be shown to be locally convergent under certain
conditions, provided that the inner loop minimization is solved to sufficient ac-
curacy [57], [34]. In practice, however, very few outer loop steps are performed.
For example, the Met Office perform only one, while the European Centre for
Medium-range Weather Forecasts (ECMWF) perform three [83], [29]. As for
the fully nonlinear problem the incremental method can be run as 3D-Var (no
model evolution) or 4D-Var (including the model evolution). An alternative
formulation that is often implemented is known as 3D-FGAT (First Guess at
Appropriate Time). This includes the nonlinear model evolution in the calcu-
lation of the vectors d;, but no evolution is included for the perturbation and
the TLM operator M; in equation (8) is replaced by the identity. This ensures
that the observations are compared with the nonlinear trajectory at the correct
time, but approximates the perturbation in such a way that no TLM or adjoint
model is needed. In this way some of the benefit of 4D-Var can be achieved
without too much extra compuational cost [73], [56].

Having presented the basic theory of variational data assimilation we now
examine some of the issues that arise in its practical implementation. For the
very large systems found in environmental modelling it is not always possible
to apply the theory in an intuitive way. Many choices must be made in order
to set up and solve the assimilation problem efficiently and compromises must
often be made. It is the attention to detail in these choices that can determine
the success or otherwise of the data assimilation scheme.



3 Practical implementation

3.1 Model development

The development of a 4D-Var scheme for the large models used in operational
weather and ocean forecasting is often a huge undertaking. In most cases the
nonlinear model code already exists and has been developed over many years.
These models are very large pieces of software, with maybe close to one million
lines of code. In order to develop an incremental 4D-Var scheme the code for
the TLM and adjoint model must first be written. The development of a TLM
code and adjoint model code from the source code of a nonlinear model is a
fairly automatic procedure. The correct code for the TLM can be found from
a linearization of each statement of the nonlinear model source code, based on
treating the nonlinear model as a series of arithmetic operations and applying
the chain rule. The adjoint model is then found by a line-by-line transpose of
the TLM source code in reverse order. This method is known as automatic
differentiation. We do not go into details of its application here, but refer the
reader to several good introductions in the literature [18], [8], [85], [33]. The au-
tomatic nature of this procedure has led to many software tools being developed
that will produce a TLM and adjoint model code from a nonlinear mode source
code. These automatic differentiation tools, or automatic adjoint compilers, are
now available commercially for many different programming languages. 2

In practice the TLM and adjoint models of many large environmental models
have been developed by hand, rather than using the automatic compilers. There
are several reasons for this. The first is that in many cases of operational weather
and ocean forecasting the complexity of the already exisiting nonlinear model
codes was such that simple application of the automatic compilers was not
possible. In many cases, particularly for large codes developed by many people,
it is necessary to tidy the nonlinear model codes to make them suitable for use
with the automatic compilers. Many centres felt that the effort to do this would
have been greater than coding the TLM and adjoint model by hand.

The second reason for developing the TLM and adjoint codes by hand arises
from the nature of the incremental approach to variational data assimilation.
Since the TLM and adjoint are run at a lower resolution in the inner loop,
the TLM is already an approximate linearization of the nonlinear model used
in the outer loop. It is therefore justifiable to make further simplifications in
the TLM, in order to reduce the computational cost. As long as the adjoint
model is derived from the approximate TLM, then the inner loop minimization
will contain the correct gradient information for convergence. In coding the
models by hand it is easier to make such simplifications based on physical ar-
guments. For example, many meteorological models contain parametrizations
of sub-grid-scale processes (known as the physics in the meteorological litera-
ture), which include such things as clouds, precipitation and surface drag. The
schemes used to represent these processes can be highly complex and often in-

2The term automatic differentiation refers to the approach itself, not just to the automatic
tools.



clude non-differentiable functions, such as on-off switches. While it is possible
for automatic differentiation to deal with such functions it is usually felt that
this level of compexity is not necessary in the TLM and adjoint model. Hence
a series of simpler parametrizations have been developed solely for use in incre-
mental 4D-Var, that capture the main behaviour of the more complex schemes
[100], [51], [82], [74].

An alternative approach, devised by the Met Office, is to start from the
premise that the linear model must evolve finite and not infinitesimal perturba-
tions and so there is no need for the linear model to be tangent to any nonlinear
model. In this approach the linear model is designed with this in mind. In
particular, the resolved dynamics is approximated by a discretization of the
linearized continuous equations, with various simplifications in the equations
and the discretization. Then simplified parametrizations can be used to repre-
sent sub-grid-scale processes [72], [60]. The adjoint model is derived from this
approximate linear model by the process of automatic differentiation, ensuring
that it provides the exact gradient of the discrete linear cost function.

An essential part of the development of the linear and adjoint models is
their testing, as any small mistakes could lead to lack of convergence of the
minimization algorithms. Robust tests exist to check the coding of a TLM and
adjoint model. The test for the TLM is based on comparing the evolution of
a perturbation in the TLM with the evolution of the same perturbation in the
nonlinear model. A Taylor series expansion of the nonlinear model operator
shows that the evolutions should be closer together as the perturbation size is
reduced [81], [65]. Where an inexact TLM is used then this test is not able to
differentiate between small coding errors and the desired inexactness. In this
case other more subjective tests must be performed [60]. The adjoint model
code can be tested by a verification of the adjoint identity

(M;6x;) (M6x;) " = 0] (M (M6%;)), (9)

which should hold to machine precision [77]. For large codes each of these tests
should be available for each subroutine as well as at higher levels. A further
test, also based on a Taylor expansion, is used to verify that the gradient of the
cost function has been correctly coded [77].

3.2 Background error covariances

The background error covariance matrix B plays a very important role in varia-
tional data assimilation. The calculation of these covariances for the assimilation
system is a hugely complex task and very dependent on the specific system being
modelled. Here we are only able to give an outline of the main steps involved.
For further details in the context of atmospheric data assimilation the reader is
referred to the comprehensive two-part review article of Bannister [4], [5].

The analysis increment, defined to be the difference between the analysis and
background fields, can be shown to lie in the subspace spanned by the columns of
the matrix B [4]. As a consequence the relationships between different entries of



this matrix determine the relationships between increments to different physical
variables or between increments at different spatial points. Thus this matrix is
fundamental in allowing information to be inferred about unobserved variables
or unobserved regions. However, it is usually impossible to represent this matrix
in matrix form. If the state vector is of size n then the matrix B is of size n x n
and when n is of order 10® this matrix is impossible to calculate or store. Instead
the action of this matrix is usually represented by a variable transform.

We consider the variable transform in the context of incremental variational
data assimilation, since that is how it is usually implemented. We define a new
variable 0z; € R™ and a transformation matrix U; € R™*", such that

(5Xi :Uiézi, Z:O,,N (10)
In terms of this new variable the incremental cost function (7) can be written

T 62l7) = (028 — [2° — 20 TUIB U (028" — [2° — 20™))

+

= N

N
S U - d) TR (U0 —dY). (11
1=0

If the variables dz are chosen in such a way that they are uncorrelated then
they have identity covariance matrix by definition and so UYB~1Uj can be re-
placed with the identity in the cost function (11). In this case the cost function
no longer contains the original background error covariance matrix; instead it
is implicitly defined through the variable transform, with B = UgUZ. Fur-
thermore, this variable transform is expected to lead to a better conditioned
problem. To understand this we note that the Hessian of the transformed prob-
lem is given by

N
I+ UMt to) "HI Ry THM(t, t) Uy, (12)
1=0
where
M(ti, to) = Mi_lMi_Q [N MQ (13)

is the tangent linear model solution operator from time ¢g to time t;. Usually the
number of observations is less than the number of state variables being estimated
and so the Hessian (12) is equal to the identity plus a low rank matrix. Hence
it has a minimum eigenvalue equal to one and the condition number (in the
two-norm) is equal to the largest eigenvalue.

Of course this theory all relies on being able to choose appropriate variables
0z that are truly uncorrelated and it is here that a knowledge of the physical
problem is necessary. In presenting how the transform is designed in practice
it is easier to think about it in terms of the inverse transform, from model
variables to uncorrelated variables. A common approach in numerical weather
prediction is to split the inverse transform into two parts. The first part, known
as the parameter transform, transforms to physical variables that are assumed



to be uncorrelated between themselves, but still contain spatial correlations.
The spatial transform then removes spatial correlations between the physical
variables. We now consider each of these transforms in turn.

3.2.1 Parameter transform

In designing a suitable transform of parameters it is necessary to have an un-
derstanding of the particular system being modelled, in order to decide which
variables are likely to be uncorrelated. For atmospheric models the transform is
based on the concept of balanced variables. Balance relationships are diagnos-
tic relationships that exist between certain atmospheric variables. For example,
in mid-latitudes and at large horizontal length scales the horizontal wind is
approximately in balance with the gradient of the pressure field, through the
relationship of geostrophic balance. This relationship can be used in the param-
eter transform by assuming that the balanced part of the flow is uncorrelated
with the unbalanced part [5]. This can be justified by an eigenanalysis of the
linearized equation set, which shows that the balanced flow can be associated
with one eigenvector and the unbalanced flow with the remaining eigenvectors.
Hence under linear evolution these will evolve independently.

The variable that best represents the balanced flow in the atmosphere is
potential vorticity (PV) [46] and so it would be natural to use this variable
as the basis for the parameter transform. However the transform from PV to
the original model variables requires the solution of a three-dimensional elliptic
equation as part of the application of the operators U;. For certain dynamical
regimes the PV is well-approximated by the vorticity, which only requires the
solution of a two-dimensional equation. Hence early work in this area proposed
a transform based on this variable [80] and this is still the basis of the parameter
transform in many operational weather forecasting systems [5]. It is recognized
that this approximation is not valid in all parts of the atmosphere and it has
been demonstrated on simple systems that significant correlations can remain
between the transformed variables [53]. For this reason attempts are being made
to implement a transformation based on PV in large-scale systems [20], [6].

A similar approach may be followed in other applications, for example in
ocean forecasting, though here there has been less work on the design of appro-
priate transforms than in the meteorological context. In many cases it may be
assumed that model variables such as salinity and temperature are uncorrelated
and only the spatial transform is needed [99], but work on defining balance
relationships has allowed multi-variate covariances to be introduced [97].

3.2.2 Spatial transform

Once the parameter transform has been performed it is assumed that the result-
ing variables are uncorrelated between themselves. At this point it is necessary
to specify the autocovariance information for each parameter through the spa-
tial transform. In atmospheric models it is common to use a Fourier transform
in the horizontal and assume that the errors in each wavenumber are uncor-



related. For the vertical correlations a transformation to the eigenvectors of a
vertical error covariance matrix is used, with the assumption that the errors
associated with each eigenvector are uncorrelated. A scaling transformation is
also needed to ensure that the variance of the transformed variables is equal to
one. It is often assumed that the correlations are homogeneous (independent of
horizontal position) and isotropic (independent of orientation), which simplifies
the transformation matrices that must be defined.

In ocean models the complex boundaries near the coast prohibit the simple
use of a Fourier transform in the horizontal and so other methods must be used
to represent spatial correlations. For example, the application of a correlation
operator can be shown to be equivalent to the integration of an appropriately-
constructed diffusion equation [96]. This can be used to design correlation
models for use in data assimilation systems with irregular boundary conditions
[99], [98].

The use of transforms for spatial covariances requires the specification of
correlation lengthscales and variances for each of the transformed variables.
Since the background field is usually a short-term forecast, these statistics must
represent the structure of errors in the forecasting system being used and so be
diagnosed from that. An early method for obtaining these statistical parameters
used the difference between the observations and the background field (known as
the innovations) [45]. However, a disadvantage of this method is that it relies on
having a sufficient number of observations and is therefore biased towards data-
dense areas. The most popular method in atmospheric data assimilation is that
known as the ‘NMC method’ [80]%. In this method the difference between two
different forecasts valid at the same time (for example, a 24-hour and a 48-hour
forecast) is taken as a proxy for forecast errors and statistics are taken over a
sample of many such forcasts. This method is far from perfect and usually some
post-processing of the statistics is necessary to make them realistic (e.g. [49]).
A key assumption in this method is that the error covariance matrix represents
a statistical average over time. The computational expense of calculating these
statistics means that the matrix is kept constant from day to day, perhaps with
different statistics being used with a change of season. More recently there has
been interest in developing methods for estimating these statistics that vary
from day to day, since it is expected that the actual background errors will
depend on the underlying flow. Such flow-dependent statistics arise naturally
in ensemble methods of data assimilation, such as the ensemble Kalman filter.
Methods are currently being designed to obtain some flow-dependent informa-
tion in variational assimilation, by combining information from ensembles of
forecasts with the statistically-averaged error covariance matrix, for example
[13].

380 called because it was first introduced in the National Meteorological Center of the
USA, now the National Center for Environmental Prediction.
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3.3 Observation errors

As well as representing the errors in the background field it is important to
treat properly the errors in the observations within a variational data assimi-
lation system. Observational data received into operational weather and ocean
forecasting centres can contain errors from a variety of sources, including limita-
tions in the measuring instrument, biases in the measurements and errors simply
due to human error in recording the measurement. The theory of variational
data assimilation assumes that all observational errors are random, unbiased
errors with a Gaussian distribution and known covariance. It is therefore im-
portant that as many of these sources of error as possible are accounted for in
the data assimilation system.

A first essential step in an operational data assimilation system is to per-
form a quality control check on the data themselves. This may consist of several
stages. First a check for obvious errors is made, so that if, for example, a ship
observation is reported over a land point it will be rejected from the assimilation.
Then a so-called ‘background check’ may be made to see how close the observa-
tion is to the forecast background field. If the difference from the background is
too large when compared with its expected error variance then the observation
may be rejected and not used in the assimilation [1]. Once this check has been
performed the next step is to identify observations that may have gross errors.
This can be done either outside or within the assimilation process. Outside the
assimilation each observation can be checked against nearby observations and
any observations that largely disagree with others can be rejected [83]. Alterna-
tively this check can be included in the assimilation process using the variational
quality control method [50], [1]. In this method the observation errors are as-
sumed to be a weighted combination of a standard Gaussian distribution and a
flat probability distribution function, with the weights determined by the prob-
ability of gross error of the observation. In this way observations that have a
high probability of gross error are given very little weight in the analysis. These
probabilities are updated during the iteration procedure by comparison with
the current estimate of the state, to allow observations to be given more or less
weight as the assimilation progresses.

A second important aspect of observation errors is the treatment of system-
atic errors, or biases, in the observations. This is particularly important for
satellite radiance data, where biases may occur from changes in the measuring
instrument over time or from errors in the radiative transfer model needed as
part of the observation operator [42]. Since the assimilation scheme assumes
that the observations are unbiased, any biases in the observations can introduce
biases into the analyses. As with the quality control these biases may be treated
offline or within the assimilation scheme. For each satellite channel a bias model
is assumed in such a way that we can define a new observation operator for the
biased measurement

H(x,8) = H(x) + b(B,x), (14)
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with

NP
b(8,x) = > _ B;p;(x), (15)
§=0
where p; are predictors for j = 0,..., N, and 3, are scalar coefficients [25]. A

few predictor states are chosen that may be related to the state at the observa-
tion positions. The coefficients 3 can then be estimated in an offline regression
using a few weeks of data [42] or a variational procedure can be used to estimate
these coefficients. This can also be included directly in the assimilation proce-
dure by including (14) in the cost function in place of the standard observation
operator and including a background estimate Bb of B with covariance Bg. The
4D-Var assimilation problem is then to minimize

Tplox0,8) = 5 (0~ x")TB ™ (x0 — x) + (8~ 8)7B5' (3~ 8")
N
> (Hi(xi) + b(B,xi) — yi) "Ry (Hi(xi) + b(B,xi) — y:) (16)

=0

| =

+

subject to the dynamical equations, to estimate the state xg and the coefficients
3 simulteneously [25]. Alternatively, a variational procedure can be used to
estimate these coefficients offline at regular intervals, using the previous value
as the background for the new estimate [2].

Finally we consider the specification of the observation error covariance ma-
trix, which represents the covariance of the random components of the obser-
vation error. It is important to note that this error is defined by the difference
between the actual measurement and the model representation of the true state
x!, i.e. the error €/ at time ¢; is given by

€ =y; — Hi(x). (17)

This means that the error includes different components arising from the accu-
racy of the measuring instrument (instrument error), errors in the observation
operator H; and errors due to the difference in spatial resolution between the
measurement and the model state (known as representativity error). The in-
strument error is the easiest to treat, since the variances of this error can usually
be obtained from the instrument manufacturer and it is normally safe to assume
that these errors are uncorrelated. However, this may not always be the case.
For example, measurements derived by preprocessing satellite data may include
spatial correlations [12]. Errors in the observation operator may include such
things as errors in the radiative transfer models used to model satellite data,
which can lead to error correlations between different satellite channels [11],
[88].

Although it is recognized that observation error correlations exist, partic-
ularly with respect to satellite data, the correlations are not usually very well
treated in current operational forecasting systems. Often the correlations are
ignored and it is assumed that the observation error covariance matrix is diago-
nal. To balance this assumption either the error variances are inflated [44] or the
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data are thinned so that many fewer of them are used [24]. The reasons for this
are the difficulty in calculating what the error correlations should be and the
difficulty in then representing these correlations within an assimilation scheme
in a way that the inverse correlation matrix can easily be applied. To estimate
the correlations in satellite data the methods that have mainly been used are
a comparison with independent measurements from radiosondes, based on the
method of [45], and the use of diagnostics calculated from the data assimilation
system itself, based on [26]. Various ways of then representing these correlations
within the data assimilation system have been proposed, including the use of
a circulant matrix [43], an eigenvalue decomposition [27] and a Markov matrix
[88]. However there is so far little use of these methods in operational practice.

3.4 Optimization methods

The minimization of the inner loop cost function (7) requires the use of a suit-
able optimization algorithm. For the large problems of environmental modelling
there are two particularly important constraints. The first is that because of the
number of variables in the system it is not possible to obtain second derivative
information. The Hessian or second derivative matrix would contain of the order
10'6 elements, which is impossible to calculate or to store. Hence only methods
that require first derivative information can be used. The second constraint is
that often these problems must be solved within a real-time forecasting system
and hence the computer time that can be used to solve the problem is very lim-
ited. Hence the methods much use as few function evaluations as possible. This
means that usually the problem is not allowed to run to full convergence and
the use of any line search algorithms is prohibitively expensive. Traditionally
the algorithms that have most been used within data assimilation systems are
quasi-Newton algorithms and conjugate gradient or related Lanczos algorithms.
The mathematical details of these algorithms are well explained elsewhere (e.g.
[78]) and so here we limit discussion to their implementation in data assimilation
systems.

An essential aspect of the minimization procedure for variational data as-
similation is an appropriate preconditioning. Experimental evidence indicates
that that the Hessian of the inner loop cost function (7) is badly conditioned
and that this arises from the ill-conditioning of the background error covari-
ance matrix [69]. This has been further confirmed by theoretical results that
bound the condition number of the Hessian of the cost function in terms of
the condition number of this covariance matrix [39], [40]. The first level of
preconditioning that is applied is therefore to transform the problem to new
variables, as described in section 3.2. The transformed problem (11) can be
shown in general to be better conditioned both in theory and in practice [69],
[31], [39], [40]. However, even after this transformation the problem is not very
well-conditioned and can have a condition number of order 10% — 10* [29], [41].
Experiments in the ECMWF system showed that the ill-conditioning that re-
mains is related to the inclusion of dense, accurate surface observations over
Europe [93] and this has also been shown to be true for the system of the Met
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Office [41]. This can be explained by theoretical bounds obtained by [39], [41]
that show that the condition number of the transformed problem increases as
the spacing between observations decreases and as observations become more
accurate. Hence ideally a second level of preconditioning is required after the
variable transformation has been performed.

In order to implement a further preconditioning some knowledge of the Hes-
sian (12) of the transformed cost function is required. One way that this can be
obtained is by using a Lanczos algorithm to perform the inner loop minimiza-
tion. The Lanczos method produces estimates of the leading eigenvectors and
eigenvalues of the Hessian of the function being minimized. If the first m eigen-
values \; and eigenvectors u;,j = 1,..., m have sufficiently converged then the
Hessian (12) can be approximated by the expression

I+ (A - Duju]. (18)
j=1

This expression can then be used for the preconditioning of subsequent mini-
mizations, under the assumption that the Hessian does not change greatly be-
tween one minimization and another [29], [94]. This method, known as spectral
preconditioning, is used in the operational forecast system of ECMWF, where
three outer loops are performed for each assimilation. During the first inner
loop minimization the Lanczos vectors are stored and these are then used to
precondition the mininimization of the second and third inner loop cost func-
tions [29]. It has been shown that this preconditioner belongs to a larger class
of limited memory preconditioners [94]. The authors of [94] propose an alterna-
tive preconditioner from the same class, based on the Ritz pairs of the Hessian.
They found that this can provide an improvement over spectral preconditioning
when the estimates of the Hessian eigenpairs are inaccurate. A similar result
was also found in the Regional Ocean Modelling System (ROMS), in which both
of these preconditioners are implemented [76]. One drawback of both of these
methods is that, in order to generate the required information, the first mini-
mization must be performed before any preconditioning can be applied. So far
little attention has been paid to preconditioning of this first minimization.
With any minimization method it is important to specify appropriate stop-
ping criteria and this is also the case in variational data assimilation. It has
been proved that the inner-loop steps of the Gauss-Newton method need to be
solved to sufficient accuracy in order to ensure convergence of the outer loops
[34]. The theory has been used to show how it is natural to use an inner-loop
stopping criterion based on the relative change in the norm of the gradient [59].
The tolerance used to stop the iterations must therefore be chosen carefully. If
it is too high then there is no guarantee that the outer loop steps will converge.
However the convergence should not be pushed below the level of noise on the
observations, as then small spatial scales are adjusted to fit the observational
noise [55]. In many practical forecasting problems such care is not always taken
and other criteria are introduced. There are two main reasons for this. One
is that in a time-critical forecasting system it may considered more important
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to solve each minimization problem using approximately the same amount of
wall-clock time rather than to the same accuracy. The second reason is that the
preconditioning techniques decribed in this section require a minimum number
of iterations to be performed on the first inner-loop minimization in order to
acquire sufficiently accurate information about the Hessian. Hence criteria that
have been introduced include stopping the iterations when the value of the cost
function is close to its expected minimum value [70] or using a fixed number of
iterations, particularly for the first minimization [93].

3.5 Reduced order approaches

As was mentioned in section 2.1 a major advantage of the incremental approach
is that the inner loop problem may be solved in a smaller dimensional space than
the outer loop update of the linearization trajectory. Within environmental
prediction lower spatial resolution systems have often been used in the inner
loop step, with the full resolution nonlinear model being used in the outer loop.
Further simplifications may also be made to the linear dynamical model used
in the inner loop, such as using simplified parametrizations of sub-grid scale
processes as described in section 3.1. While a change in resolution is certainly the
simplest way to achieve a more computationally tractable inner loop problem,
it does not necessarily provide the most accurate low order representation of the
system. In order to improve on this other reduced order approaches have been
investigated in the context of incremental 4D-Var. These essentially fall into
two categories, methods based on principal component analysis and methods
based on near-optimal reduction of dynamical systems.

Principal component analysis, which is often referred to as principal orthog-
onal decomposition (POD) or the method of empirical orthogonal functions
(EOFs), aims to represent the solution of the assimilation problem as a linear
combination of basis vectors. The basis vectors are chosen to represent the
leading directions of variability in the model and are calculated using a series of
model states, or ‘snapshots’, from an integration of the nonlinear model. Such
a method was used in an ocean model assimilation by [84]. From the sample
of model states the authors generate the matrix X = (Xy,...,X;), where X;
is the difference between the model state at time ¢; and the mean state. The
covariance matrix X7 X is then diagonalised to find a set of orthonormal eigen-
vectors v; (EOFs) and associated eigenvalues A;,i = 1,...,l. The solution dxg
to the inner loop minimization problem (7) is then defined by an expansion of
the leading r eigenvectors

T
0xXg = Zinz‘ =Vw (19)
i=0
where V = (vy,...,v,) is the matrix of the leading r eigenvectors and w =
(wy,...,w,)T are the weights to be determined. In this case the matrix V acts

as a variable transformation in a similar way to the parameter transform (10)
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and so the background term can be written in the form

To(w) = %WTB;lw, (20)
where the covariance matrix B, is taken to be the diagonal matrix of eigen-
values. This method has been applied to assimilation in ocean models in an
idealized setting [84] and using real data [47]. It is noted that the assumption
behind this method is that the variability of the system can be well described by
a low dimensional space. Although the approach reduces the size of the space
in which the minimization is performed, the tangent linear model (8) must still
be integrated at full resolution on each iteration.

An alternative approach, based on POD, was put forward by [17]. In that
work the solution to the full nonlinear 4D-Var problem is expressed as a per-
turbation from the sample mean that is expanded in terms of basis functions
®;. These basis functions are derived in a similar way to the EOFs, but by
then projecting the perturbation fields X onto the eigenvectors v;. In this work
the authors solve the nonlinear 4D-Var cost function (3) in the reduced space.
As well as expressing the background term in terms of coeflicients of the basis
functions they also derive a Galerkin projection of the dynamical model onto
the basis functions for use in the observation term. Thus this formulation has
the advantage that the dynamical model and its adjoint are also expressed in
the reduced space. Again this method relies on the snapshots being able to
capture a low-dimensional subspace that adequately describes the full system.

A disadvantage with both the EOF and POD methods is that they do not
use any information about the data assimilation problem itself within the re-
duction procedure. There have been two approaches proposed to improve on
this. The first is an adaption of the POD method, called dual-weighted POD.
In this method the snapshot perturbations X are weighted according the sen-
sitivity of the cost function at the time of the snapshot, where the weights are
calculated using the adjoint model [22]. The other approach, put forward in
the series of papers [62], [61], [9], is to use near-optimal model order reduction
methods for linear dynamical systems to derive a reduced order model and ob-
servation operator. The inner loop problem of incremental 4D-Var (7) is subject
to the dynamical system described by the evolution equation (8) and the output
equation

di = Hl(SXz (21)

Model reduction seeks linear restriction operators SI" and prolongation opera-
tors T; that map the perturbation dx; € R™ to §x; € R" with r << n. These
operators are chosen such that the output of the projected system

6% = SIM,T0%; (22)

approximates well the full dynamical system. The inner loop problem can then
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be defined in the reduced space as the minimization of

A 1
min j(k)[55<(()k)] 5(&5@ — ST [xb — xo®PT
x  (STBS;)1(9%" — ST[x" — x™)))
N
£ TR - aP) TR TR - at),
1=0

subject to the reduced dynamical model (22). The linearization state is then
updated with the perturbation

ox) = ;6% (24)

The authors of these papers use the method of balanced truncation to demon-
strate this method in the case where the operators M and H are time-invariant.
In idealised models they show how this method improves the solution with re-
spect to using low resolution models and how it is important to use information
about the assimilation problem in the reduction procedure, including informa-
tion about the background and observation error covariance matrices. However,
whereas reduction methods based on POD can be implemented in large systems,
the method of balanced truncation cannot. Efforts are being made to design
near-optimal reduction methods for large systems based on Krylov methods
[16], but these methods have not yet been tried out in data assimilation for
large systems.

3.6 Issues for nested models

For very high resolution weather and ocean forecasting operational centres often
use models covering only the domain of interest that are nested in a larger
model, often of lower resolution, which we refer to here as the parent model. In
most of the systems the nesting is a one-way nesting, whereby lateral boundary
conditions for the nested model are provided by the parent model, but there is
no feedback from the high resolution nested model to the parent model. This
presents particular challenges for the application of variational data assimilation.
For problems specific to high resolution weather forecasting we refer the reader
to the review articles [79] and [23]. Here we consider only more general problems
arising from using a high resolution nested grid, in particular treatment of the
lateral boundary conditions and of the difference in representation of spatial
scales between the parent and nested models.

With respect to the lateral boundary conditions, a decision must be made as
to whether to estimate them as part of the assimilation procedure or to assume
that they do not change. Both approaches have been used in practice. In the
operational weather forecasting system of the Met Office the lateral boundary
conditions are not updated, but are fixed by the parent model. Hence the
increment éx on the boundary is set to zero. This has advantages for the
practical implementation of the scheme. In particular it allows a simple sine
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transform to be used in the definition of the spatial background error covariances
described in section 3.2, which then enforces zero boundary increments [69].
However, observational information close to the boundaries can be difficult to
use, since the nested model cannot use observations lying outside the domain
and the analysis inside the domain may not be consistent with the boundary
conditions provided [3], [36]. This can lead to features being artificially cut-off
close to the boundaries.

The alternative approach is to estimate the boundary variables within the
assimilation procedure [37], [54], [38]. In this way observations inside the nested
domain can update the boundary values and so it is possible to ensure that
the analysis is consistent throughout the domain. However in this case it is
no longer possible to apply a sine transform to impose the spatial background
error covariances. In order to be able to apply a spectral transformation an
extension zone is created around the domain to obtain fields that are horizontally
periodic. A Fourier transform can then be applied. One difficulty in analysing
the boundaries in this way is that the lateral boundary conditions are only
updated during the assimilation period. During the subsequent forecast no
updates are available and the values from the parent model must be used, so
there is some inconsistency between the boundary conditions of the analysis and
those of the forecast.

The second challenge we consider is the difference in the spatial scales that
can be represented in the nested and parent models. In particular, since the
nested model often covers only a small domain, the assimilation scheme is not
able to analyse adequately scales of the size of the domain and larger. In ap-
plications such as weather prediction it is important to capture these larger
scales, since the physical system is inherently multiscale, with strong feedbacks
between large and small scales. Hence attempts have been made to improve
the large-scale information in nested model data assimilation by providing in-
formation on these scales from a parent model analysis. For example, the Met
Office experimented with a system that combined large scale increments from
a parent model analysis with the small scale increments from the nested model
analysis [3]. In this method the large scales of the nested model analysis are
forced to be equal to those of the parent model. An alternative, proposed by
[36], is to use the large scales of the parent analysis over the nested model do-
main as a weak constraint on the variational problem. This is done by adding
an extra term to the inner loop cost function (7) that measures the distance
between the large scales of the global analysis and those forecast by the nested
model. This means that the analysis is constrained by large scales from the
parent model, through this additional term, and by large scales from the nested
model, through the background term. In theory this should introduce another
term including the cross-correlation between these two sources of information.
However, in their demonstration of the method in a 3D-Var scheme of the AL-
ADIN model at Météo-France the authors of [36] concluded that this correlation
could be neglected, though at the cost of some inaccuracy.

A more theoretical study of this problem was carried out by [7]. They used
a spectral analysis to show how information from waves longer than the domain
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size is projected onto different scales in the nested model domain, corresponding
to the lowest wave numbers that can be represented on this domain. They
demonstrated that by giving more weight to these scales in the background term
of the cost function it was possible to retain more of the large scale information
from a parent model background. In this method only the large spatial scales
from the parent model are used as a constraint in the assimilation, as in [3], but
they are not imposed exactly and may be altered by the assimilation process.
The authors of [7] demonstrated benefit from this in an idealised system, but
the method has not been tested in a realistic model.

3.7 Weak constraint variational assimilation

The formulation of variational data assimilation presented in section 2 assumes
that the discrete dynamical model (1) is an exact representation of the physical
system being observed. In practice we know that the models contain errors,
caused by limitations in our knowledge of the physical equations and limitations
in the numerical modelling, such as the need for sub-grid scale parametrizations.
In theory it is possible to account for and estimate such errors in variational
data assimilation, though implementation in practice is more complicated. We
assume an additive error to the model equations, so that the true dynamical
system can be written

Xi41 = Mi(x;) +n;, (25)

where 7, is the unknown model error at time ¢;. Then we can define a weak
constraint 4D-Var problem, in which the model equations do not have to be
exactly satisfied over the assimilation window. We define a cost function of the
form

1 _
J(X0,Mg,---sNMN_1) = §(X0 - Xb)TB 1(X0 - Xb)

N N-1
b D)y TR (i) i) b >l Q7 (26)
=0 =0

N =

subject to (25), where Q; is the covariance matrix associated with the model
errors 1;. The weak constraint problem is then to minimize (26) with respect
to the initial state xo and all the model errors n,.

An alternative formulation of the weak constraint problem (26) is to write it
in terms of the model state x; at each time ¢; rather than in terms of the model
errors. This leads to the cost function

J(x0,X1,...,XN) = %(xo—xb)TBfl(xo—xb)
L
t 3 Z(Hi(xi) —yi) "R (Hai(xi) — yi)
5=
+ o5 2 (i Mi(x:))"Q;  (xi1 — My(x:)), (27)
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which is minimized subject to (25). Although (27) is mathematically equivalent
to (26), in practice their implementations may be different. In [92] both formu-
lations were presented in the incremental version of 4D-Var as possibilities for
inclusion in the ECMWF system.

The inclusion of the model errors at each observation time increases the size
of the argument of 7 by a factor of N +1, the number of observation times. One
way to reduce this cost is by assuming a relationship in time between the model
errors 7),. Theoretical work by [35] used an augmented state approach to solve
for the state and the model error, with a dynamical equation used to explain the
evolution of the error. They introduced a general form for the error evolution,
including both a systematic and random component of the error. Various op-
tions for the systematic evolution were proposed, including a contant bias error
and simple dynamical evolutions, and the methods were illustrated on simple
systems. In the context of a regional atmospheric model [101] demonstrated a
weak-constraint 4D-Var system under the assumption that the model error was
serially correlated and obeyed a first order Markov process.

Since this early work there have been several idealised studies with weak-
constraint 4D-Var, but the move towards operational implementations in large-
scale systems has been slow. One of the biggest challenges remains the spec-
ification of the model error covariance matrix Q; for real systems. An initial
idea was to take this matrix to be a scalar multiple of the background error
covariance matrix B. However, in experiments with the ECMWF atmospheric
forecasting system using formulation (26), [93] showed that this choice implies
that corrections to the model error lie in the same space as those to the back-
ground. This leads to estimates of model error that are very similar to the
increments to the initial conditions. An alternative method, proposed in the
same paper, is to estimate the statistics of Q; from an ensemble of differences
between model tendency fields using the NMC method, in a similar way that
differences between the model fields themselves are used in the the estimation
of the background error covariances (as explained in section 3.2). [93] interprets
differences between these tendencies as a proxy for the uncertainty in the model
forcing. The statistics from this sample are then fit to the same statistical model
as is used for the matrix B. The use of a covariance matrix estimated in this
way was shown to give an improvement in weak-constraint 4D-Var experiments
that assumed a constant error over the assimilation window.

The work of [66] illustrated the implementation of weak-constraint 4D-Var
using such a matrix, again in the ECMWF system, to estimate a constant bias
error in the stratosphere, where the model is known to have biases. A similar
scheme has been introduced into the operational assimilation system of ECMWF
[30]. In this implementation the deviation of the error from its mean value is
minimized, so that the last term of (26) becomes

S -m)TQ ) (28)

where 7] is the estimate of the model bias from the previous analysis cycle. In
this way the assimilation ensures that the estimated error does not vary too

20



quickly from one analysis cycle to the next.

Despite these initial successes much more work is needed. One particular
difficulty is that it is not clear how to differentiate between model bias and
observation bias, since the assimilation only measures the difference between
the model and the observations. [93] showed a case study of observation bias
being interpreted as a model error by weak-constraint 4D-Var. This problem
was discussed further by [64] in the context of ocean data assimilation. They
suggested that to estimate both model and observation bias it is necessary to
include information on the spatial and temporal structure of these biases in the
covariance matrices.

In order to then move away from the assumption of a constant bias and treat
time-varying systematic and random model errors, more sophisticated methods
for describing the evolution of errors must be developed. This evolution is
likely to be dependent on the specific model being used, yet general methods
for representing this are also needed. At the same time efficient and accurate
representations of the covariances of these model errors must be found. The use
of the weak-constraint formulation of 4D-Var holds much promise to counteract
the inadequacies of models, but many challenges remain open to be able to
implement this in very large environmental models

4 Summary and future perspectives

Variational data assimilation is now a well-established method for combining
observational data with very large environmental models. However, as has been
illustrated in this article, its successful implementation requires careful and ju-
dicious choices in each aspect of the assimilation scheme. In some cases these
choices are determined by the physical system being modelled or the observa-
tional data available, such as the specification of the error covariances in the
system. In other cases the choices may be determined by the size of the problem
and the need to solve it in an efficient manner, often for real-time forecasting, or
by features of the numerical model itself, such as lateral boundary conditions.
In each instance the choices to be made will inevitably be a compromise between
the ideal solution and what is practically feasible in a given system. We have
presented some of the solutions that have been found that have allowed varia-
tional data assimilation to be implemented in large environmental forecasting
systems. Nevertheless much research continues to improve on these solutions so
as to find better estimates of the state and so produce better forecasts.

One particularly active area in numerical weather prediction is the desire
to use more information from ensembles of forecasts to provide time-varying
covariances for the background errors, combining the advantages of ensemble
methods with the advantages of 4D-Var. ECMWEF have implemented a system
in which an ensemble of 4D-Var assimilations are run and the statistics from
this ensemble are used to update the variances of the background errors [10].
Extensions to this method to calculate also the covariance information are be-
ing sought. An alternative approach is to use information from ensembles of
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forecasts to calculate covariance information throughout the whole assimilation
window. This method was proposed by [67] and tested in a global weather pre-
diction model by [14], [15]. An advantage of this method is that the tangent
linear and adjoint models are not required in the 4D-Var, since all the evolution
information comes through the ensemble of nonlinear model forecasts. Hence
this makes development of the system much easier.

Besides the many great challenges that we have discussed in this article,
new challenges are arising for the future evolution of variational data assim-
ilation systems. The advent of massively parallel computers means that the
algorithms used currently to solve the assimilation problem may no longer be
efficient on future computer architectures. Hence work is needed to develop
new algorithms to solve the problem, particularly with respect to efficient min-
imization and preconditioning methods. This may be easier as systems move
to a weak-constraint form of 4D-Var but, as discussed above, that introduces
its own difficulties [30]. Another challenge comes from the move towards more
integrated Earth-system models, with different environmental models coupled
to each other. For example, for seasonal to decadal prediction it is now common
to use coupled atmosphere-ocean models, but the initialization of these models
with data assimilation is still in its infancy. Particular problems arise from the
very different time scales in the atmosphere and ocean system and from the
model biases in atmosphere and ocean models. Some work has been done to
implement 4D-Var in such systems in order to estimate the ocean state and cou-
pling parameters [89], [75], but the estimation of the complete state in coupled
atmosphere-ocean models remains an open problem for the coming years.
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