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Abstract

In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to
the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise
arbitrarily shaped cross section and a single, slowly varying ‘bulge’, symmetric in the longitudinal
direction.

Extending the work in [4], we first employ a WKBJ-type ansatz to identify the possible quasi-
mode solutions which propagate only in the thicker region, and hence find a finite cut-on region
of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to
identify a turning point between the cut-on and cut-off regions. We note that the expansions
are nonuniform in an interior layer centred on this point, and we use the method of matched
asymptotic expansions to connect the cut-on and cut-off regions within this layer.

The behaviour of the expansions within the interior layer then motivates the construction of
a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the
waveguide around the longitudinal centre, z = 0, to extract trapped mode wavenumbers, which
are compared with those found using a numerical scheme and seen to be extremely accurate,
even to relatively large values of the small parameter.

Keywords: trapped modes; quasi-modes; slowly varying waveguide; perturbation
methods; WKBJ; turning point

1 Introduction

By trapped modes, we are referring to acoustic modes wherein we find a localised region of finite
oscillatory energy, and which decay elsewhere. The existence of trapped modes in various types of
topographically slowly varying waveguides has been demonstrated previously, in the cases of elastic
plates and rods (e.g., [8,10]), two-dimensional acoustic waveguides (e.g., [4,11]) and in weakly curved
quantum waveguides (e.g., [5]). Additionally, there has been previous research into the calculation of
quasi-modes—perturbed modes of a slowly varying waveguide—in both two- and three-dimensional
acoustic waveguides with a slow curvature (e.g., [2,6]), and in two-dimensional elastic plates (e.g., [7]),
amongst others.

In particular, in [4], an asymptotic scheme is developed to approximate the trapped mode solutions
of the time-harmonic wave equation in a two-dimensional waveguide with a slowly varying symmetric
bulge around the longitudinal centre x = 0. This slowness is incorporated into the scheme as a large
longitudinal length scale, L, ~ 1/¢, where € < 1 is taken as the small parameter used to construct
an asymptotic approximation to the solution. By expanding both the amplitude and phase in powers
of €, the cut-on and cut-off regions are determined by the relative magnitudes of the wavenumber,
k, and the eigenvalues of the one-dimensional duct cross section at each . A turning point between
the two regions is identified, and the solution behaviour around this motivates the construction of a
uniformly valid approximation, which is used to calculate the trapped mode eigensolutions.

In this paper, we extend this work to create an asymptotic approximation to the trapped mode
solutions within a three-dimensional waveguide with a smooth and simply connected, but otherwise



arbitrarily shaped cross section with a slow, symmetric variation centred on the plane z = 0. In
Section 2, the slowly varying nature of the waveguide boundary is introduced in terms of the small
parameter, 0 < ¢ < 1, and the geometry is non-dimensionalised and mapped onto a stretched
coordinate system, such that this parameter is incorporated into the differential operator.

In Section 3, we first determine the possible oscillatory or evanescent quasi-mode solutions (see,
e.g., [2-4,6]) that may be present within the waveguide by expanding the solution using a WKBJ-
type ansatz of the form ¢ = Aexp(P), wherein the amplitude and phase terms are expanded as
A=Ag+eA +...and P =¢'P_; +€P; +..., respectively. A hierarchy of equations in the A4; and
P; terms is obtained, which we solve iteratively to obtain a leading order quasi-mode approximation
to ¢. It will be seen that the behaviour of the solution depends upon the relative sizes of the
wavenumber, k, and the transverse eigenvalues of the waveguide cross section, which we denote A(x).

In Section 4, the existence of a turning point is discussed, around which the solution is either
oscillatory or evanescent. Motivated by the quasi-mode solutions found in Section 3, we find this
to be a point x,, for which A(z.) = k. Taking established results in domain perturbation theory
(e.g., [9,12]), we are able to assert that a positive turning point will be found in a region for which
the cross-sectional area is decreasing, such that we expect a solution to be oscillatory only in the
bulge, up until the turning point, and decaying toward infinity.

An interior layer is then introduced around the turning point, wherein an interior solution is
found and asymptotically matched with the oscillatory and evanescent solutions on either side of the
region. We find that the interior solution takes the form of an Airy function in the z-direction, which
motivates the uniformly valid expansion introduced in Section 6. Using this expansion, we are able to
extract trapped mode wavenumbers by considering the symmetry of the waveguide about the x = 0
plane. As such, we find that to leading order, the wavenumbers of the trapped modes which are either
symmetric or antisymmetric in the z-direction are those for which ¢,(0,y,2) = 0 or ¢(0,y,2) = 0,
respectively. We find there to be a sequence of trapped mode wavenumbers in each case, of the form
Enps n,p € N, for the Laplacian eigenvalues A, () of the waveguide cross section at z.

Lastly, in Section 8, both the asymptotic scheme and a spectral collocation method are applied to
calculate the trapped mode wavenumbers of two example problems, to demonstrate the accuracy of
the former. The first test case considered is that of an azimuthally constant ‘cylindrical” waveguide
with a slow variation. Due to this azimuthal invariance, the problem in this particular geometry may
be reduced to a sequence of two-dimensional problems, so that wavenumbers may be quickly extracted
via the spectral method, and we see an excellent agreement between these and those obtained using
the asymptotic scheme. Further benefits of the asymptotic method are shown in the second example
problem, wherein no such reduction is possible and a three-dimensional spectral collocation or similar
numerical method proves to be prohibitively expensive. In such a case, we see that the asymptotic
scheme can still be used to efficiently approximate the trapped mode wavenumbers to a high degree
of accuracy.

2 Formulation

We are interested in time harmonic solutions to the wave equation, and hence omit the common factor
exp(—iwt) throughout. The problem is then equivalent to that of finding trapped mode solutions to
the Helmholtz equation within a three-dimensional waveguide of arbitrary cross section and smooth
boundary. Using standard cartesian coordinates with z oriented along the waveguide, we take the
duct to be infinite in the z-direction and symmetric about the plane x = 0. We will take the cross
section at x to be a simply connected domain D(z) € R?, with smooth boundary dD(z). We seek
eigensolutions of

_ - - - , 2 EDx,
Buw + By + boe + K25 =0 {(y) (@)
—00 < x < 00,
$—0 as x— +oo. (2.1)

We will consider individually both the sound soft and sound hard waveguide, i.e., that with either a
Dirichlet or Neumann condition on the waveguide boundary, respectively, given by

é(x,y,2) =0 for (y,z) € 0D(x), (2.2a)
Vo(z,y,2) a(r,y,z) =0 for (y,z) € dD(x), (2.2b)



with 7 (x, y, z) denoting the outward normal vector to D(z) at (z,y, z). If we define a non-dimensionalisation
constant L, ., which characterises the length scale of the waveguide in the y- and z-directions, by

Ly, = lim { maX|P1—P2|}

t—+o0 | py,pp€dD

and similarly take L, to characterise the length scale of the waveguide in the x-direction, we therefore
take the waveguide to be slowly varying in the sense that L,./L, = €, where 0 < ¢ < 1. We thus
non-dimensionalise by introducing ¢(z,v, z) = ¢(£,7,(), where £ = x/L,, n = y/L,, and { = z/L,.
on the stretched domain D(¢) = D(z)/L,.. Transforming (2.1) into these stretched coordinates, we
have the non-dimensional system

(n,¢) € D(§),

e + duy + doc + k¢ =0 { oo < £ < 50,
$»—0 as {— too, (2.3)

where k = kL, is the non-dimensionalised wavenumber. The boundary conditions (2.2a) and (2.2b)
are then equivalent to

¢(&;m,¢) =0 for (n,¢) € ID(E), (2.5a)
Ved(&n,¢) - n(&n,¢) =0 for (§n,¢) € D(S), (2.5b)

respectively, where
VE = (62(957 (97-,, 6()

is a skewed del operator and

n(f, , C) = diag (eilLyZa Ly, Lyz)"—l(xa Y, Z)

is the transformed normal vector.

3 WKBJ ansatz

We first seek quasi-mode solutions valid within the waveguide by expanding ¢ using a WKBJ-type
ansatz (as in, e.g., [3]), of the form

?(&,n,¢) = A(&,n, Q) exp{P(§,n, ()} (3.1)
where
A(§a m, C) = Z 6]4"4_7’ (f, m, C))
§=0
P(&n,¢) =€ 'Py(&m.0) + > € Pi(€m. Q).
j=1

We note that there is no Py term, since we observe that the O(1) phase contribution can be subsumed
into the leading order amplitude term. We also require the phase terms P; to be either strictly real or
strictly imaginary, since we are seeking modes which are either oscillatory or evanescent in different
regions within the waveguide. By substituting the above ansatz into (2.3) and equating powers of
€, we extract a hierarchy of equations in A; and Pj, from which we can determine the leading order
terms of an asymptotic expansion for ¢. At leading order, O(e~?2), we obtain

Ay (P?,, + P ) =0, (3.2)

which, since we have specified that either P_; € R or P_; € iR and we require a non-zero leading
order amplitude for a non-trivial solution, implies that P_1(£,n,() = f(£), where f is a function to
be determined. We find that the O(e~!) terms are trivially satisfied and hence we turn to the O(1)
terms, at which point we consider separately the case of the sound soft boundary, as in (2.5a), and
the sound hard boundary, as in (2.5b).



3.1 Sound soft boundary
Note that to satisfy (2.5a), it is sufficient to choose

A(&n,¢) =0 for (n,¢) € 9D(E)

such that A; = 0 on the boundary 0D(§) for all j € Ny. Henceforth we will denote V = V¢ = (9, 0¢)
to represent the two-dimensional del operator in 7 and ¢ only, unless otherwise specified. Then,
considering the O(1) terms in the asymptotic expansion, we have that

(V2+A*) 4 =0 (3.3)

on the domain D(€), with boundary condition Ay = 0 on dD(£), where we write A\2(£) = k2 + f'2(€)
for notational convenience. We consider a Dirichlet eigenvalue problem over an arbitrarily shaped
domain, Q(¢),

(V24 M)E=0 in Q
E=0 on 900 (3.4)
with eigensolutions A, (), E, () for all € {Q(¢) : £ € R} and n € N, where E,, are normalised

such that
/ E?dS =1.
Q

We may then write the solutions of (3.3) as Ao, = ay(§)E,, with associated eigenvalues A, (§). Now,
briefly disregarding the subscript n notation for convenience, at O(€) we have

(V2 +22) Ay + AgV2P1 + 2V A - VP + Aof" + 240 f' =0, (3.5)
which we multiply by Ag and integrate over D({) to obtain the solvability condition

0

// {AO (V2+N?) Ay + AZV2P +V(A4]) - VP + = o

(Agf’)} ds = 0.

We apply equation (3.3) and use Green’s identities, to yield

044 04Ag 5 } // 5
A —A + A5 (VP -7 dC + (A ds =0,
.72:)(5){ 05, o, (VP - f) o o€ (A5f)

where 71, € R? denotes the outward unit normal to dD(€). Then since the A4; terms vanish on 9D,

we retain only the condition
0
(A(Z) f ) dsS =0.
/ /D<£) o€

By the Reynolds transport theorem, and because the Dirichlet condition requires Ay to vanish on the
boundary, the derivative may be taken outside of the integral and the solvability condition reduces

to
d 2 / _
i ( / E dS) aE (a®(©)f'(€) =0,

so that we have simply
A
“O = Fore

for some constant A. Therefore, reapplying the subscript notation, we find the leading order quasi-
mode solutions to be

(3.6)

n = Eyexp{e ' fu} +O(e) (3.7)

A,
|f/ |1/2

/\/ngg for |k| > |An(€)]
/mdg for [k| < [An()],

where

fal§) = (3.8)

for constants A,,.



3.2 Sound hard boundary

In the case of the sound hard waveguide, the boundary condition (2.5b) applied to the WKBJ ansatz
tells us that, at leading order, we require

{Aong +Aock}l - n=0 (3.9)

on 9D(). The O(1) terms then provide the two-dimensional equation (3.3) as before, albeit now
with the boundary condition upon A, given by

vAO (57 , C) : njk)(f? 7, C) =0 for (57 7, C) € aD(E) (310)

where V = V,¢, as specified above, and nj;, € R? denotes the (7, ()-direction components of the
outward normal, n, to the boundary 0D().
Similarly to the sound soft waveguide, we consider a general eigenvalue problem over a domain

Q(é),
(v2+X2)E:o in Q,

VE-n=0 on 09, (3.11)

where n is the outward normal to the domain, and write its eigenvalues and normalised eigenfunctions
as S\n, E,, respectively, for n € N. Now given that the leading order amplitude in the sound hard
duct satisfies (3.3) and (3.10), it admits the eigensolutions Ay = Ag., = @y (£)E,, with eigenvalues
An, for n € N. We again briefly omit the subscript notation and hence the solvability condition from
the O(e) terms can be written as

// {flo (V2 + P) Ay + ARVPP +V(AY) VP + 9 (Agf')} ds =0, (3.12)
D(e) 9¢

which, through an application of Green’s identities and (3.3), is equivalent to
onAl c NGk — A1VAO s Nk + onpl c Nk dC + 9 AOf ds = 0, (313)
aD(€) Dp(e) 98

where 71, denotes the outward unit normal to D(£). The O(e) terms of the Neumann boundary
condition require that

{Aof’i + (Al,,, + AOPL,,) j+ (Al,c + AOPLC) k:} n=0

which can be written as s ~
Aof/ni + {VAl + onp1} Ny = 0, (314)

on 0D(&), where njj is as before, and similarly n; denotes the component of the normal vector acting
in the &-direction. Thus, applying both this and condition (3.10) to the solvability condition yields

e 9 /oo~
- Az dC+// 2 (A2f) ds =o. 3.15
ﬁD(g) O il D(¢) 35( 0 ) (3.15)

We denote by v the rate of change of the waveguide boundary with respect to £ and see from Appendix
A that (3.15) is equivalent to

o~ O /g~
A2 f'v-n; dC+// — (A2f") dS =o.
?gD(ﬁ) 0 I D(¢) 85( 0 )

We may thus apply the Reynolds transport theorem to obtain, as in the Dirichlet case,

i £ ~2 2 _
dg (fa (5)//}3(5)13 dS> o,




so that, as before,

A
7P

for constant A. Hence, reintroducing the subscript notation, we have the sound hard quasi-mode
solutions

a(g) =

¢n:

|fjél|7;/2 E,, exp {eflfn} + O(e) (3.16)

R :|:Z/ \VE2 = X2(8)dE  for
fn(§) =

/ \/ —k2dé  for
for constants A,,.

These solutions thus imply that the presence of oscillations in the &-direction depend upon the
relative magnitudes of the wavenumber, k, and the eigenvalues, A, (§), of the Laplacian over the
domain D(&). In the case presented here, in which we have a waveguide symmetric about the plane
& = 0, we require, for a trapped mode solution, a region of oscillatory energy up to a particular point,
0 < |¢] < |&«]|, and decay for |£] > |&,|. In fact, we may restrict our attention to just the £ > 0 half of
the waveguide, since it is symmetric, and we see from (3.17) that we hence require a turning point
&« > 0 satisfying A\, (&) = k and X, (&) > 0 for such a solution to exist.

where

An(©)|
MG

(3.17)

4 Turning point

We briefly discuss a result in domain perturbation theory for a necessary condition for a suitable
turning point to exist in the Dirichlet waveguide. Given an arbitrary, piecewise smooth domain
Q(z) € R? and a domain Q°(z) C R?, with a small (i.e., O(d) for 0 < § < 1), but not necessarily
localised, perturbation from Q(z), it follows from the work of [9], [12] that the perturbed Dirichlet
eigenvalues can be expressed as a uniform asymptotic expansion in §. In particular, if we denote by
A; a particular Dirichlet eigenvalue on Q(z), and by )\g the associated perturbed eigenvalue on Q°(z),
then we can expand
AJ =X+ 0M1+6 X+

We then find that for the leading order variation, sgn(\;1) = —sgn(f), wherein f is the normal
distance between the boundaries 9Q and 99°. We may say, then, that a decrease in the size of the
domain coincides with an increase in the magnitude of the eigenvalues of the Dirichlet Laplacian
on it. In terms of our sound soft waveguide, a necessary condition for the existence of a turning
point &, > 0, with the properties described above, is for the size of the waveguide cross section to be
decreasing at &..

In the example waveguide geometry that we will return to in Section 8.1, for instance, we consider
a rotationally symmetric waveguide with a circular cross section of radius h(&). It is straightforward
to solve the eigenproblem over the cross section analytically and show that the eigenvalues are given
by Amn(§) = Bmn/h(§), where B, denotes the nth root of the Bessel J,, function. Hence we see
directly in this case that the magnitude of the eigenvalues are inversely proportional to the radius of
the cross section, as expected.

Unfortunately, no such result holds in general for the Neumann boundary and thus we have no
simple sufficient condition on the waveguide geometry for a trapped mode solution to exist within the
sound hard duct. However, we may be able to make an assertion about the behaviour of the eigen-
values of the Neumann Laplacian over its cross section, particularly for certain ‘simple’ geometries.
Returning to the example of the waveguide of circular cross section, as mentioned above, we find that
the Neumann eigenvalues over the circle of radius h(§) are given similarly by A\, (&) = 5,.,./h(£),
where /3],,, denotes the nth root of the derivative of the Bessel J,,, function.



5 Asymptotic matching

Given the quasi-mode solutions (3.7), with (3.8), and the existence of a turning point, & > 0, we
now discuss the behaviour of the solution near this turning point, and show that the asymptotic
expansions exhibit nonuniformity within a small layer around it. To do so, we consider the related
reflection-transmission problem formed by the half-waveguide D(£) in £ € [0,00) and the constant
duct D(&) = D(0) for € € (—o0,0].

5.1 Region of nonuniformity

We consider for clarity just the sound-soft waveguide, but note that the analysis shown also holds
for the sound-hard duct. Given that the bulge maximum is at £ = 0 and the waveguide tapers with
increasing &, we can write the general quasi-mode solutions in the cut-on and cut-off regions as

IFE exp {ie_l/gwkz — /\2(£)d§} +REeXp{—i6_1/§\/k‘2 — \2(8) d§}

" (= ()" Ot o B2,
(5.1a)
3
TFE exp {—61/ \JAZ(E) — k2 dé}
¢a = +O0(e) for k<), (5.1b)

(2(g) — k)"

respectively, where the oscillatory solution is comprised of an incident and reflected component. We
expect there to be a layer of nonuniformity between these two regions within which these expansions
break down around a turning point £, where A(£,) = k, and consider the behaviour of the quasi-mode
solutions as £ — £,. Taking the Taylor series of A?(£) near £ = &,, we have that

Writing A = 2\ (£,)A (&), so that |2 — A2(€)] ~ |A(€ — &.)], we can consider (5.1b), for example, to

see that . c
[ @ -ragea [ -9 ag=Tar e - o,

from which it is evident that the quasi-mode expansions break down in the region where (¢ — &) =
O(e?/3).

5.2 Interior layer

Having found the region within which the WKBJ expansion breaks down, we place an interior layer of
width O(€%/3) in this region by considering a solution in terms of the stretched variable y = e=2/3(¢ —
&.), which is O(1) in the region of interest. We suppose that ¢ = X (x)E, where E,, + Ecc + A\?E = 0,
and hence reformulate the original equation

Edee + by + dcc + K p =0
such that it becomes
e 3X"E +2¢ 23X By + XFEee b + XEyy + XEee + kK*XE = 0.
3 33 nn ¢¢

Then by taking the Taylor expansions of E and its derivatives near &, we have

X (Enn + ECC + )‘2(5)‘40)

§=&x
0
+ €2/3 {X”E‘&_g* + anfg (Eny + Ecc) ’ + Xx)\2(§*)E§|£_€*} - 0(64/3) =0

=4



The O(1) terms vanish and we are left with
0
2/3 " _ Y 2 2 4/3\ _
= 62/3 {XNE|§:§ —2/\/(6*))\(5*)XXE‘§:§ }+O(e4/3) =0,

— EP{X"B|_ - AXXE|_ }+O0() =0,

Hence, at leading order, we require
X" — AxX =0, (5.2)

whose solution is given by
X(x) = FAi(AY3y) + GBi(A'Y3y), (5.3)

where Ai and Bi are the Airy functions of the first and second kind, and F' and G are constants.
Given (5.2), we see that A = 2X (&)A(&) > 0, where A(§) is an eigenvalue for the domain D(£),
corresponds to a cut-on region & < &,, in the thicker part of the waveguide.

5.3 Matching coefficients

Given the tapering geometry of the waveguide, we seek solutions which are oscillatory for £ < &, and
decay in £ > £,. Following this assumption, we rewrite the expansion (5.1a)—(5.1b) as

€ £
IFE exp {iel/ \ k2 = A2(€) dé} + RE exp {iel/ \ k2 = A2(€) dg‘}
£ £

%o £O() for €<,
Gl
(5.4a)
5 _ —_
TEexp {—el [\ -w dg}
$a = : +0(e)  for £>&. (5.4D)
(A2(6) - k2)"/*
Then in the oscillatory region, we have that, as & — &,
B exp (3AVAP) ¢ REexp (3AY3()7)
Po ~ /6 AL/A(—y)1/4 )
whereas the Airy function in (5.3) has the asymptotic expansion (see [1]) as x — —o0
FEAI(AY3y) ~ FEexp{—i2AY2(—x)*/2 —iZ} + FEexp {iZAV2(—x)*/? +iT}
2/mAL/1Z(—y)1/4
and we hence require the constants F', R and I to satisfy
2ﬁ€iﬂ/4
= A
R=eml (5.5)

in order to match these outer and inner expansions. Similarly, if we look at expansion (5.4b) as
& — &F, we see that
TFE exp {—%AUQXB/Q}

L/6AL/4y1/4 )

Ga ~

which matches with the interior expansion for y — oo

N FFEexp {—%A1/2X3/2}

L A1/3
FEA(A"X) 9 /T AL/12,1/1



provided that
1/6A1/6 )
T = GQTF = e im/AL, (5.6)
™

We therefore have the exterior expansions

s
2IE e~/ cos <el/ \ k2 — A2(€) d€ — Z)
3

¢o,eac = (]4;2 _ /\2(5))1/4 + O(E) for § < 5*, (57&)
£
IEexp {—61/ VA2(E) — k2dE — ZZ}
Pd,ex = : +0(e) for &> ¢&,, (5.7b)

(A2(§) — k)"
and the interior expansion

2IE/me' ™4 Ai(e 2/3AV/3(¢ — ¢,
o = VT AN TR TEZE) o e e = o), (58)

giving us a one-term composite expansion, valid in the region of oscillatory behaviour 0 < ¢ <

& +O(62/3)7
& T
—aim — s ¢ . 2
2IF e/ cos (e 1/5 k2= A2(6)dE — 4> 2IE e /4 cos <6_13A1/2(§* — £ - Z)

¢o,comp =

(k2 = 22(€)"* AE(E — g/

21Efe“f/4 Ai(e2BA3 (¢ — ¢, ) .
cl/6A1/6

and a composite expansion valid in &, — O(e%/3) < € < oo,

&
IECXP{—e / VA2 deﬁ—Z} IEexp{ zA“Q(f—&*)g’”—iZ}

bd,comp = (A2(6) — /4;2)1/4 A4 —€)1/4
2[E 271'/4A 72/3A1/3
Ve 11/(%1/6 €=&) | o). (5.10)

6 Uniform expansion

Having observed the appearance of an Airy function of the first kind in the interior layer connecting
the oscillatory and evanescent quasi-mode solutions, and indeed motivated by its use in constructing
a uniformly valid expansion for the two-dimensional waveguide in [4], we now seek a uniformly valid
expression for ¢ by expanding in terms of Airy functions. We introduce the new ansatz

6. Q) = B(&m, ) Ai (72/9(9)) + C(&,m O AT (2/9(9)) (6.1)
where
B(,n,¢) = Z IBB(En,¢),  C&m¢) = Z G0 €, Q). g(&) = /3;(9),
j=0 j=1 =0

and we restrict g(£) to be real. The Ai’ function is included to form an orthogonal basis, but we
note that only the Ai function appears to leading order in the interior layer expansion (5.3), and
so omit an O(1) Ai’ coefficient. We also note here that the presence of an interior layer of width
O(€?/3) suggests that our ansatz should be expressed in powers of €2/3. Inserting this ansatz into the
governing equation (2.3) yields a new hierarchy of equations in powers of ¢, each in coefficients of the
linearly independent functions Ai and Ai’. As with the quasi-mode expansions, we will consider first
the sound soft waveguide, with a Dirichlet condition on its surface, followed by the sound hard duct
with a Neumann condition.



6.1 Sound soft boundary

In the sound soft case, the boundary condition (2.5a) under this ansatz resolves simply to the re-
quirement that

Bj(&,n,¢) = Cj(§n,¢) =0 for (n,¢) € ID(E) and j € N. (6.2)
So looking first at the O(1) coefficients of Ai, we have
(VZ+ %) By =0 (6.3)

where we now define \2(&) = k2 + gi2(£)go(€). We denote the eigensolutions of (6.3) over D(€),
with boundary condition By(§,n,¢) = 0 for (n,{) € 9D(&), by Bo., = Bn(€)E,, with associated
eigenvalues A\, (§), where E,, and ), are the eigensolutions of (3.4) for n € N.

For the sake of notational convenience, we take it as understood for the time being that we are
dealing with an arbitrary nth eigensolution and omit the n-subscript notation. Since the eigenvalue
A(§) is now known from (6.3), we have an expression for go(§), taking care to note the separation
between cases where A(£) < k. As in the notation above, if we assume there to be a turning point
&« > 0 such that A(§,) = k and X (&) > 0, then we may write

:. 2/3
(; / mdg) for €< 6.
9o = go(§) = ; : 2/3
(2 /*mdgj for € > 6.

We then find an expression identical to (6.3) in C; from the O(¢%/?) coefficients of Ai’, such that
Cy = v(€)E with eigenvalue \. Now the O(¢?/3) coefficients of Ai are

(V2 +X%) By + (a1 + 2909091) Bo = 0,

which we multiply through by By and integrate over D(&) to yield the solvability condition

(6.4)

// : Bo (V4 X?) By + (96791 + 2909091) B3 dS =0
D(§

= / ByV?By — BiV*BydS + (95791 + 2909091) B // E?dS =o0. (6.5)
D(¢) D(¢)

The Dirichlet boundary condition causes the first integral to disappear upon an application of Green’s
Theorem, which along with the orthonormality of E leaves just

9091 + 29091 = 0
for some constant G. Turning to the O(¢*/3) coefficients of Ai’, we have that
(V2 +A?) C2 + Bogg + 2Bogy = 0, (6.7)

which we once again integrate with By and, given that Cs vanishes on the boundary, find

/ /D o 1B (V7 0) Cart BYGE + 2BoBocat } 4 =0,

o
— — (B24}) dS = 0.
//D(g) 85( 090)

Since By vanishes on the boundary 9D(&), we may take the derivative outside of the integral, such
that
4 529’// E?dS | =0
g \" ") Jbe ’
= =Blgy| 7"/ (6.8)
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for constant B. Hence, to leading order, we have the uniformly valid asymptotic expansions
bn = Bulghn| V2 E, Ai (52/390m) O, (6.9)

for constants B,,, where in a slight amendment to the notation in (6.4), to highlight the dependence

of &, upon k,
€u (k) 2/3
—(24 VERIGES for €< €.(k)
¢ 2/3
(;’/E (k)\/A%(E) — k2 dg) for £ > &.(k).

6.2 Sound hard boundary

In the case of the sound hard boundary, we return to (6.1) under boundary condition (2.5b). Expand-
ing this boundary condition in powers of € and collecting coefficients of Ai and Ai’, we once again
extract a hierarchy of equations that must be satisfied. Firstly, taking the O(1) coefficients of the Ai
terms, we have the condition

Join = gon (&3 k) = (6.10)

VBy-nj=0

on dD(§). Thus at leading order, we have the PDE (6.3) with a Neumann boundary condition on
0D(£). Analogously to the sound soft case, we will denote the eigensolutions of such as BO;n =
Bn(€)E,, with cigenvalues A, (€), as in (3.11). Once again, we also extract a similar PDE for Cy
from the O(€%/?) coefficients of Ai’ with a Neumann boundary condition on D, and thus we find the
eigensolutions of C to be C’lm = (& )En, with eigenvalues An. We shall briefly remove the subscript
notation for clarity. Then the Neumann solvability condition is found to be identical to (6.6), and so
we turn to the O(e*/?) coefficients of Ai’, wherein we find the next solvability condition

J[ B0 (74 3) o g (Biin) as =0
0

— BoVCy - vy — CoV By -y, dC + // = (B3a) as =o.
aD() ey €

Returning to the hierarchy of equations extracted from the boundary condition, we find that the
O(e*/3) coefficients of Ai’ yield the condition

VCy - njx, = Bogyni (6.11)
on dD(§), such that the solvability condition becomes

0 /= ~ n;
— (B2 dS—% B2jy——dC = 0.
//D@) 35( ° 0) one il

Hence using the property given in Appendix A, the Reynolds transport theorem and the orthonor-
mality of F/, we have that

1 (B©m(©) =0

and so may fix 5(£) up to constant multiple, as

Be) = Blao| 2,
as in (6.8) in the sound soft case. Thus, reintroducing the subscript notation, we have the uniformly
valid solution for the sound hard duct

G = Buldhal 2B Ai (G0, ) + O(¥%) (6.12)

& (k) - 2
) 2/3
(;’/E (k)\/md§> for &> &, (k).

11
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gO;n = gO;n(&; k) = (613)



7 Trapped modes

Given the leading order uniform expansions (6.9) and (6.12), valid for £ € [0, 00), we notice that by
considering a reflection of this semi-infinite duct through the (7, {)-plane, we may extract leading order
trapped mode solutions by considering those solutions which are either antisymmetric or symmetric
about £ = 0. We hence choose appropriate wavenumbers, k, for which either ¢(0,7,{) = 0 or
¢¢(0,m,¢) = 0, respectively. Taking just the Dirichlet expansion, for example, this is equivalent to
requiring either

Antisymmetric:  Ai (6_2/3g0m(0; k)) =0, (7.1a)
Symmetric:  Ai’ (e_z/ggom(o;k)) =0, (7.1b)

such that the trapped mode wavenumbers k are solutions of either

Antisymmetric: €23 go.,,(0; knp) = 2p (7.2a)
Symmetric: e *3go,, (05 k) = ), (7.2b)

where we take z, and z;, to be the zeros of Ai and Ai’ respectively, ordered such that 0 > z; > 2 .. .,

and similarly for z,,.

8 Numerical verification

We note that the full numerical solution of (2.1) is, in an arbitrarily shaped waveguide, far from
straightforward and in general, computationally expensive. In the case of a waveguide with circular
cross section, however, we may use the azimuthal periodicity of the solution to reduce the problem
to a two-dimensional one, to which we may apply a spectral collocation method (see [13,14]) to
demonstrate the accuracy of the asymptotic scheme.

8.1 Waveguide with circular cross section

We consider first the case of the rotationally symmetric, cylindrical waveguide with a slow, uniform
bulge around z = 0. It is natural to describe this geometry in cylindrical coordinates and we are thus
seeking trapped mode solutions of

0<r<h(0),
Erpee +12brr + 10 + oo + k170 =0 0<6<2n,
—00 < € < 00,
¢ —0 as & — £oo, (8.1)

where we will consider the example waveguide profile h(£,0) = h(§) = 14 (h; —1) sech €, such that we
are considering a duct with unit radius as £ approaches +o0o and bulges to a maximum radius of h; at
& = 0. We will present the numerics for the sound soft duct, so that we also require ¢(&, h(£),0) = 0,
although note that it is a straightforward adjustment to instead consider the sound hard case, wherein
dr(&,R(£),0) = 0. In this case, the waveguide cross section at any & is merely a circle of radius h(€)
and, as such, we are able to derive the transverse eigenvalues A(¢) and uniform solution analytically.
Following the methods of Section 6, we obtain the uniformly valid, leading order eigensolutions

Avmn 905 (E)M* cos(mB) Ty, (FAmn (€)) Al (€273 g, (€))
h(E) k2 — A2,,,(6)]"*

¢mn(§7r79) ~ (82)

with associated eigenvalues Ay, (§) = Bimn/h(€), where B,,, denotes the nth root of the Bessel J,,
function. We note here that, in fact, the Dirichlet Laplacian on the circular cross section has, for
all except the zeroth azimuthal mode, double eigenvalues, with either a cosine or sine eigenfunction.
In this unforced problem we choose, without loss of generality, the cosine solution to preserve the
zeroth azimuthal mode. Given the waveguide topography under consideration, it is clear that, for
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all positive &, h'(§) < 0, and hence A/, (§) > 0. Thus, as discussed in Section 4, we may reasonably
anticipate the existence of one or more turning points per wavenumber, and hence associated trapped
mode solutions.

We notice that the separability and behaviour of (8.2) in the 6-direction permits the rewriting of
(8.1) as

0 <r<h(f),

Er2pee + 120 +1ér + (K212 —m?) ¢ =0
dec ¢ ¢ ( )d) —00 < € < o0,

¢—0 as &— £oo, (8.3)

such that the #-derivative has been removed and hence the three-dimensional problem has been
reduced to m two-dimensional problems. In general this modification will not be possible and, to
apply a full three-dimensional spectral collocation method with M, N and P interpolation points in
the spatial directions will require the construction and calculation of the eigenvalues of an (M x N X P)-
by-(M x N x P) differentiation matrix—not a computationally cheap exercise.

4 T T T T T T T T |

35k

25

15 L L L L L L L L
1 1.1 12 13 14 L5 1.6 1.7 1.8 1.9 2

by

Figure 1: Trapped mode wavenumbers for the first azimuthal and radial modes in the sound soft
waveguide with profile h(§) = 1 4 (h; — 1)sech & and a slow parameter ¢ = 0.1. Solid and dashed
lines represent antisymmetric and symmetric trapped modes, respectively, and crosses denote spectral
approximations.

In order to apply the spectral method, we map the domain Q = {(£,7) : —00 < £ < 00, 0 <r < h(&)}
onto a semi-infinite rectangular domain Q' = {(£,7) : —0o < £ < 00, —1 < p < 1} via the transform-
ation p = 2r/h(§) — 1, such that it follows from (8.3) that the function ¥(§, p) = ¢(&, r) satisfies

€ (p+ 1) B (Ve + 2pepe + ppee + VopPf) +
4p+1) gy + 4 (p+ 1)ty + (0 4+ 17 122 — dm?) 4 = 0

for p e [-1,1), £ € (—00,0), where

(p+1)H (p+1) (20 — hh")
pe = _T7 pee = 2

and with boundary conditions ¥ — 0 as £ — +oo and ¥(£,1) = 0. We may simplify the problem
further by noting that we are seeking either symmetric or antisymmetric modes, and may consider
only the half plane ¢ € [0,00), with the respective boundary conditions ¢ (0, p) = 0 or ¥(0,p) = 0

13



and ¥ — 0 as & — co. We then apply a Chebyshev interpolant in the p-direction and a Laguerre
interpolant in the ¢-direction to discretise (8.4) and approximate the solution.

Taking € = 0.1 as our small parameter, Figure 1 depicts the comparisons between the asymptotic
scheme and spectral approximation for the first azimuthal and radial modes, i.e., for m = n = 1,
using a spectral grid of 60-by-15 points in the {—, p-directions, respectively. This is sufficient to give
the ‘tenth’ longitudinal wavenumber, k{;5, to 8d.p. of accuracy. It can be seen that the leading order
asymptotic approximation is in excellent agreement with the numerical scheme. Indeed, turning to
Table 1, we see that if we fix hy = 1.5 as a sample bulge radius, the first wavenumber carries the
greatest error at =~ 0.136%, and in fact the average error over the first ten calculated wavenumbers
is just ~ 0.027%.

krinp Asymptotic Spectral Rel. error
k311 2.579452576  2.582965631  0.1360%
kit 2.639524568  2.638546418 0.0371%
112 2.691204857  2.692021554  0.0303%
k1o 2.743867464  2.743506731 0.0132%
113 2.792622563  2.793105341 0.0173%
ks 2.841074058  2.840910293 0.0058%
114 2.886647825  2.887005486 0.0124%
Y4 2.931540143  2.931467017  0.0025%
ks 2.974076448  2.974364182 0.0097%
ks 3.015787193  3.015760316 0.0009%

Table 1: Relative error between the asymptotic and numerical calculations of the wavenumbers of the
first ten symmetric and antisymmetric longitudinal modes for the duct profile h(§) = 14 (h1—1) sech &,
with h; = 1.5 and small parameter € = 0.1.

It is also interesting to note that, whilst we have exploited the ‘small’ parameter € in order to
construct an asymptotic scheme, we now find that the accuracy of the approximation remains fairly
high with much larger e. Table 2 shows the relative error for the first symmetric and antisymmetric
trapped mode wavenumbers for the m = n = 1 modes with varying e, wherein we see that even with
a value of € = 1, the relative error for the first symmetric trapped mode is only ~ 1.156%.

Symmetric Antisymmetric
€ Asymptotic Spectral Rel. error | Asymptotic Spectral Rel. error
0.001 | 2.5547226 2.554759281  0.0014% 2.555346426  2.555336403  0.0004%
0.2008 | 2.604205704  2.611047438 0.2620% 2.720389611 2.718692029  0.0624%
0.4006 | 2.652040945  2.665238773 0.4952% 2.867699109  2.865803923 0.0661%
0.6004 | 2.69830863 2.717850757  0.7190% 2.999704018  2.999052109 0.0217%
0.8002 | 2.743081633  2.769085764 0.9391% 3.118231954  3.119676788  0.0463%
1 2.786426339  2.818998892 1.1555% 3.224699631 3.228506471 0.1179%

Table 2: Relative error between the asymptotic and spectral calculations of the first symmetric
and antisymmetric mode wavenumbers for varying ‘small’ parameter e. The duct profile is again
h(§) =1+ (h1 — 1)sech&, with hy = 1.5.

8.2 Elliptical waveguide

The method presented here can be applied to any waveguide geometry featuring a smooth cross
section and slow, axially symmetric perturbation, and is of the most interest in any case where it
is extremely difficult or computationally expensive to numerically solve the full three-dimensional
problem. We demonstrate this by considering a waveguide which is elliptical at large |¢| and has
a localised, one-sided bulge around £ = 0. Once more in cylindrical coordinates, we consider the
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problem described by (8.1), with the waveguide profile given instead by
2+ 2(hy — 1)sech & exp {—lﬁsin (£ - %)2}

\/0082(9) + 4sin?(0)

, (8.4)

and a bulge height h; = 1.5, as shown in Figures 2(a) and 2(b). We map this geometry onto a

r
2

3n

(a) Waveguide with wall profile given by (8.4). (b) Waveguide cross section at & = 0.
Figure 2: Elliptical waveguide with an axially symmetric bulge around & = 0.

circular cross section cylinder of unit radius in order to apply a spectral collocation method, using
the transformation p = r/h(&,0). Thus (8.1) becomes

€2 p*h? (Vee + 20pepe + Vppee + Vopi) + P2 pp + pibpt
VopP + 200pP0 + Vppoo + e + p*hPk*Y =0,

where, similarly to the previous case,

~ (p+1)he D) (202 — hhee )
pe = T, pee = 3 7
pp = — L Do oy — (01 (21— hao)
h ’ h2

and such that p € [0,1), 6 € [0,27] and £ € (—o0,00). It is of note here that, following the methods
of [13], we map p onto the interval [0,1), as opposed to the ‘full’ Chebyshev interval [—1,1), and
later discard the negative Chebyshev interpolation points. This ensures a much more even spacing
of Chebyshev points in the p-direction and thus far greater accuracy for a marginal computational
cost. We note, however, that even with such a modification, a full spectral collocation method with
M, N and P interpolation points in the &-, r- and 6-directions, respectively, involves calculating the
eigenvalues of an (M x N x P)-by-(M x N x P) matrix. For the purposes of this verification, we apply
this method with an interpolation grid of (18 x 18 x 20) points, such that the problem is discretised
into a 6480-by-6480 matrix.

Comparing the results of this numerical scheme with our leading order asymptotic results, we
see from Table 3 that for the first eight wavenumbers, they are once again in excellent agreement.
Furthermore, once the wavenumbers have been found, the full leading order solution is immediately
obtained from substitution into (6.9) - (6.10). Figure 3 shows the cross section of the first four leading
order antisymmetric trapped mode solutions (k,, for n = 1...4) inside this particular waveguide
geometry, taken slightly away from the bulge centre, at £ = 0.2.
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kg{;s) Asymptotic Spectral Rel. error

1 1.785610713 1.781332958  0.2401%

4 1.803862094  1.798011732 0.3254%

s 1.81886783 1.814169297  0.2590%
ki 1.833185541 1.828951766  0.2315%
kis 1.845360806 1.842142284 0.1747%

Ta 1.856266363 1.853653319  0.1410%

4 1.865307241 1.863482336  0.0979%

& 1.872942432 1.87174977  0.0637%

Table 3: Relative error between the asymptotic and spectral collocation calculations of the first eight
wavenumbers for the duct described in profile by (8.4), with small parameter e = 0.1 and hy = 1.5.

k5, = 24785 k%, = 2.9470

kS, = 3.2871

Figure 3: Cross sections of the first four (in the azimuthal / radial directions) antisymmetric trapped
mode solutions at £ = 0.2, in the sound-soft waveguide given in profile by (8.4), with a bulge height
of hl =1.5.

9 Conclusions

In this paper, we have presented an extension of the asymptotic scheme derived in [4] for calculating
the trapped mode solutions inside a two-dimensional sound soft or sound hard waveguide, and shown
that it is applicable and numerically accurate in the case of a three-dimensional duct. In doing so,
we have replaced a computationally expensive and cumbersome numerical solution with a method
involving only the solution of a nonlinear algebraic expression.

We also note that, despite the construction of the scheme hinging on the slowly varying nature
of the waveguide geometry (i.e., a variation over a length scale 1/e for small €), the leading order
approximations obtained are still accurate in some cases to a relative error of ~ 1% when the ‘slow’
parameter is as large as O(1).

Furthermore, we have introduced no restrictions on the overall size or shape of the perturbation,
other than the smoothness of the cross section and symmetry around =z = 0, such that the method
presented here may be applied to a variety of waveguide geometries in which we have an axially
symmetric perturbation. We propose to extend this work to encompass other waveguide geometries
with relaxed conditions, wherein the cross section need not be smooth, and to consider the case of
trapped modes in an elastic plate.
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A

Appendix

Given a smooth surface S = (x,y, z), parameterised by

T =z, y = n(z,7), z=¢(x,7),

it is clear that the rate of change of the cross section with x is given by v = (7, (). We also have
that the surface normal is given by the cross product

oS 08 . .
n = Dz X ({97’7 = (na:C'Y - leCac)Z —GyJt+ 777143,
and hence
VN = Gl — NeCy = =Ny
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