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Abstract. We investigate the error dynamics of the analysis error for cycled data

assimilation systems. In particular, for large-scale nonlinear dynamical systems

M which are Lipschitz continuous with respect to their initial states, we provide

deterministic estimates for the development of the analysis error ‖ek‖ := ‖x(a)
k

− x
(t)
k
‖

between the analysis x(a) and the true state x(t) over time.

Large-scale dynamical systems are adequately described by an infinite-dimensional

setting. Here, we investigate observations y arising from a linear observation operator

H, such that the observation equation Hx = y is ill-posed, i.e. its solution is either

non-unique or non-stable or both. In this case we need to stabilise H−1 by replacing

it by a bounded reconstruction operator Rα = (αI + H∗H)−1H∗, where α > 0 is

a regularization parameter. In the case of typical assimilation methods such as three

dimensional variational data assimilation, α reflects the relationship between the size of

the observation error covariance matrix and the size of the background error covariance

matrix.

Observation error of size δ > 0 leads to an analysis error in every analysis step.

These errors can accumulate, if they are not (a) controlled in the reconstruction and (b)

damped by the dynamical system M under consideration. We call a data assimilation

method stable, if the analysis error is bounded in time by some constant C. For

nonlinear systems we employ Lipschitz constants K(1) and K(2) on the lower and

higher modes of M to control the damping behaviour of the dynamics. The key task

of this work is to provide estimates for the analysis error ‖ek‖, depending on the size δ

of the observation error, the reconstruction error operator I −RαH and the Lipschitz

constants K(1) and K(2). We show that systems can be stabilised by choosing α

sufficiently small, but the bound C will then depend on the data error δ in the form

c‖Rα‖δ with some constant c. Since ‖Rα‖ → ∞ for α → 0, the constant might be

large. Numerical examples for this behaviour in the nonlinear case are provided using

a (low-dimensional) Lorenz ‘63 system.
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1. Introduction

Combining observational data with a dynamical system presents many challenges to

different areas of science. Usually, both observations and model are uncertain, which

leads to formulating the problem in a statistical framework [1][2][3]. However, this

problem can also considered in a deterministic setting [1][2]. In many areas of climate

and forecasting science, the dimension of the system dictates the method which is used to

combine observations and dynamics. Data assimilation algorithms need to be applicable

within situations where the dimension of the state space, typically in numerical weather

prediction, ranges between orders of O(107 − 108) and observational data is of order of

O(106). Since these algorithms deal with such high dimension, it is natural to extend

analysis into infinite dimension to capture the key features of large-scale systems. Using

an infinite dimensional approach, we are able to work within a framework that is best

suited to analyse directly, challenges that exist in high dimensional data assimilation

algorithms. In this work we restrict ourselves to analysing three dimensional variational

data assimilation (3DVar) type methods in a large-scale or infinite dimensional setting.

This work is primarily interested in an estimate for the analysis error. We use the

term analysis in this context to be the best estimate to the state of the system given

by the data assimilation algorithm. Throughout this work, x
(a)
k will denote the analysis

at a particular time tk for k ∈ N0 which is obtained by the various data assimilation

algorithms that we consider. The analysis error is defined as the difference between the

analysis and the true state of the system such that

ek := x
(a)
k − x

(t)
k , (1)

where x
(t)
k represents to true state of the system also at time tk for k ∈ N0. We will call

a data assimilation scheme stable, if ‖ek‖X remains bounded by some constant C > 0

for k → ∞ with some appropriate norm ‖ · ‖X relating to the state space X.

In this work we will consider estimates for analysis error using weighted norms.

This approach was also used in previous work [4] where the authors expressed their

analysis as a cycled Tikhonov regularization. In that work, only linear and constant

dynamical systems were analysed, here we now move a significant step ahead and

investigate nonlinear model dynamics. For this work we concentrate on analysing the

situation where the covariance operators are static in time and apply our theory to

3DVar-type methods with a linear observation operator H. We will show that using

weighted norms enables us to directly analyse the evolution of the analysis error and

demonstrate conditions whereby the analysis error remains stable for all time.

Note that the case of climatic or static covariances is a template for any cycled

assimilation scheme where a reset of the background covariance matrix is carried out

either regularly or where the covariance matrix is set up of climatic and dynamic

components. The case of completely evolving covariances by the Kalman filter is more

complicated and is treated in future work. We also note that the work of [5] considers this

aspect of evolving covariances for the Navier-Stokes equations. However their analysis

is restricted to the case of static covariances, where they derive similar asymptotic
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behaviour of the analysis error to our work. Their work assumes that the observation

operator and model dynamics commute, whereby here we study general linear ill-posed

observation operators.

The paper will be split into five sections. First, we introduce our notation and

the data assimilation algorithm we consider. Then, in Section 3 we work out estimates

for the analysis error for a weighed norm state space and study the how the analysis

error evolves. We demonstrate the theory using a simple numerical example in Section

4 using the Lorenz ‘63 system. Finally, we bring this work to a conclusion in Section 5.

2. Cycled data assimilation algorithms

We consider a dynamical system that we define as a nonlinear dynamical flow and a

linear measurement equation. We set up our work in the framework of Hilbert spaces.

Let M(t)
k : X → X be a true nonlinear model operator which maps a state x

(t)
k ∈ X onto

the state x
(t)
k+1 for k ∈ N0 where X represents an infinite Hilbert space. The mapping is

a discrete-time evolution where

x
(t)
k+1 = M(t)

k

(

x
(t)
k

)

, (2)

for x
(t)
k ∈ X for k ∈ N0. Here we have used the notation M(t)

k and x
(t)
k whereby

we remark that t here refers to the true nonlinear system operator and true state

respectively. Furthermore, we assume that we have a modelled nonlinear model operator

Mk : X → X such that,

Mk

(

x
(t)
k

)

= M(t)
k

(

x
(t)
k

)

+ ζk, (3)

where ζk is some additive noise which we call model error for k ∈ N0. To keep this work

as general as possible we consider all forms of noise either deterministic or stochastic.

Although in this work, we require that the noise ζk be bounded by some constant υ > 0

for all time tk for k ∈ N0, using an appropriate norm associated to the state space X.

This assumption is necessary to keep our analysis deterministic, we postpone stochastic

derivations of our theory to future work. Readers interested in stochastical derivations

in this field are pointed towards [6].

Furthermore we denote a constant true linear observation operator H(t), such that

H(t) : X → Y maps elements in the Hilbert space X into a Hilbert space Y. The norms

on X and Y are induced by their inner products 〈·, ·〉X and 〈·, ·〉Y respectively. In this

work we will drop the the indices X and Y, since it is usually clear which inner product

is used. Here we state that the true observations (measurements) y
(t)
k ∈ Y are located

at discrete times, tk, linearly such that

y
(t)
k = H(t)x

(t)
k , (4)

for k ∈ N0 where x
(t)
k represents the true state of the system and similarly H(t) is the true

observation operator. We assume that the modelled observation operator H : X → Y
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is equal to the true observation operator and that the given observations yk ∈ Y are

also taken at discrete times, tk, linearly such that

y
(t)
k = H(t)x

(t)
k = Hx

(t)
k = yk − ηk, (5)

where ηk is some additive noise which we call the observation error for k ∈ N0. Similarly

to the model error, we require that the noise ηk, either deterministic or stochastic is

bounded by some constant δ > 0 for all time tk for k ∈ N0, again using an appropriate

norm associated to the observation space Y. In reality, the true or modelled observation

operator might not be time-invariant or linear, however we make these assumptions for

this work and postpone the time-variant and nonlinear case to future work.

The data assimilation task can be interpreted as seeking an analysis x
(a)
k at every

assimilation step tk, k ∈ N0 to solve the equation of the first kind

Hx
(a)
k = yk (6)

given some prior or background knowledge x
(b)
k . Since we know that the observations

have errors we cannot expect to solve (6) exactly in each step and in general it would not

make sense to fit exactly to noisy observations. It is well-known that with a compact

linear operator H, (6) is ill-posed in the classical sense, whereby H−1 : Y → X is

not continuous. For many modern remote sensing techniques used for example for

atmospheric applications such as radiance measurements by polar satellites [7][8], for

GPS/GNSS tomography [9] or even for full radar including nonlinear effects [10], this

is the adequate mathematical framework to analyse the measurements.

A technique in inverse problems to resolve this issue, is to use regularization

methods, such that we replace the unbounded operator H−1 with a family of

bounded operators Rα. Arguably the most famous regularization method is Tikhonov

regularization where the eigenvalues of the operator H∗H are shifted by a regularization

parameter α, where H∗ denotes the adjoint to the operator H.

Typically we have a first guess or background, x
(b)
k , for k ∈ N0 which is an a

priori estimate calculated from earlier analysis, subject to the nonlinear discrete-time

evolution,

x
(b)
k+1 = Mk

(

x
(a)
k

)

, (7)

for k ∈ N0. For example, in numerical weather prediction, this background state

operationally comes from a previous short-term forecast [11][12]. Using this a priori

knowledge we can formulate the following Tikhonov functional

J (T ik)
(

x
(a)
k

)

:= α
∥

∥

∥
x

(a)
k − x

(b)
k

∥

∥

∥

2

X

+
∥

∥

∥
yk − Hx

(a)
k

∥

∥

∥

2

Y

, (8)

subject to (7) for k ∈ N0. For a linear operator H, the minimum is given by the solution

to the normal equations, which can be reformulated into the update formula

x
(a)
k = x

(b)
k + Rα

(

yk − Hx
(b)
k

)

(9)

where

Rα := (αI + H∗H)−1H∗, (10)
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is called the Tikhonov inverse, with regularization parameter α > 0. In other disciplines,

the operator Rα is known as the Kalman gain matrix, see [13][14][15], for an appropriate

definition of H∗. Using (7) we can write (9) purely in terms of the analysis field x
(a)
k ,

x
(a)
k+1 = Mk

(

x
(a)
k

)

+ Rα

(

yk+1 − HMk

(

x
(a)
k

))

(11)

for k ∈ N0.

In the finite dimensional setting, such that X = R
n and Y = R

m, where typically

in numerical weather prediction m ≪ n, the norms on X and Y can be defined using

invertible covariance matrices B ∈ R
n×n and R ∈ R

m×m. These covariance matrices,

B and R, statistically model the errors in the background state and the observations

respectively. In the infinite dimensional setting, we call these weights, covariance

operators, such that B : X → X and R : Y → Y. For the purpose of this work

we will assume that the operators B and R are positive definite, with bounded inverses.

For convenience we will divide both covariances operators through by weightings w(b)

and w(o) to obtain operators C and D. Therefore, B := w(b)C and R := w(o)D where

w(b) and w(o) are the background and observation weightings with covariance operators,

C : X → X and D : Y → Y respectively. By setting up the covariances in this way we

will directly see how inflating these weights will correspond to how much we trust the

background or the observations. We align this interpretation with variance inflation,

which is popular in the data assimilation community.

With the choice of regularization parameter α = w(o)/w(b), we can connect the

popular data assimilation technique, 3DVar with cycled Tikhonov regularization. The

3DVar functional takes the following form

J (3D)
(

x
(a)
k

)

:=
〈

B−1
(

x
(a)
k − x

(b)
k

)

,x
(a)
k − x

(b)
k

〉

L2

+
〈

R−1
(

yk − Hx
(a)
k

)

,yk − Hx
(a)
k

〉

L2
, (12)

with respect to an L2 inner product, subject to (7) for k ∈ N0. For a linear operator H,

the minimum of the 3DVar functional is given by the solution to the normal equations,

which can be reformulated into the update formula

x
(a)
k = x

(b)
k + K

(

yk − Hx
(b)
k

)

, (13)

where

K = BH ′(HBH ′ + R)−1 (14)

is again the Kalman gain in an equivalent form, where H ′ denotes the adjoint operator

with respect to the L2 inner product. Here (14) does not change over time since we

concentrate our analysis on 3DVar-type methods. It is important to distinguish this

type of algorithm from other algorithms which evolve the covariances over time, such

as the Kalman filter. Of course the Kalman filter will change (14) in each assimilation

step. With the appropriate definition of the adjoint H∗ such that,

H∗ := CH ′D−1, (15)
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the Tikhonov inverse, Rα is equivalent to the Kalman gain, K. In the next section

we will analyse the asymptotic behaviour of this algorithm in a nonlinear framework,

formulating the problem using weighted norms.

3. Error evolution of data assimilation systems

Here we study the error evolution of the cycled data assimilation systems which we

introduced in Section 2 for weighted norms. In previous work [4], the authors connected

3DVar with cycled Tikhonov regularization using weighted norms, where
〈

x
(b)
k , H∗yk

〉

B−1
:=
〈

x
(b)
k , B−1H∗yk

〉

L2
, (16)

〈

Hx
(b)
k ,yk

〉

R−1
:=
〈

Hx
(b)
k , R−1yk

〉

L2
, (17)

such that the index L2 indicates a standard L2 inner product. In this section we extend

the work of [4] to nonlinear systems with respect to weighted norms. Since the algorithm

we consider uses static covariances we are able to define the metric associated to the

state and measurement space according to the errors in the background and observation

respectively. By including the covariance information in the norms we are able to directly

work with the forward nonlinear map Mk and the linear observation operator, H. We

write (9) at time tk+1 in terms of the analysis field using (7), to give

x
(a)
k+1 = Mk

(

x
(a)
k

)

+ (αI + H∗H)−1 H∗
(

yk+1 − HMk

(

x
(a)
k

))

(18)

=
(

I − (αI + H∗H)−1 H∗H
)

Mk

(

x
(a)
k

)

+ Rαyk+1 (19)

=
(

I + α−1H∗H
)−1 Mk

(

x
(a)
k

)

+ Rα

(

y
(t)
k+1 + ηk+1

)

(20)

=
(

I + α−1H∗H
)−1 Mk

(

x
(a)
k

)

+ Rα

(

HM(t)
k

(

x
(t)
k

)

+ ηk+1

)

, (21)

using (4) and (2). Now we subtract the true state from both sides and define

ek+1 := x
(a)
k+1 − x

(t)
k+1, to obtain

x
(a)
k+1 − x

(t)
k+1 =

(

I + α−1H∗H
)−1 Mk

(

x
(a)
k

)

+
(

(αI + H∗H)−1 H∗H − I
)

M(t)
k

(

x
(t)
k

)

+ Rαηk+1 (22)

ek+1 =
(

I + α−1H∗H
)−1
(

Mk

(

x
(a)
k

)

−M(t)
k

(

x
(t)
k

))

+ Rαηk+1 (23)

=
(

I + α−1H∗H
)−1
(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+
(

I + α−1H∗H
)−1
(

Mk

(

x
(t)
k

)

−M(t)
k

(

x
(t)
k

))

+ Rαηk+1 (24)

=
(

I + α−1H∗H
)−1
(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+
(

I + α−1H∗H
)−1

ζk + Rαηk+1 (25)

= N
(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+ Nζk + Rαηk+1, (26)
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where N := (I + α−1H∗H)−1 = I − RαH. In this work (26) will form the basis for our

analysis and asymptotic behaviour. This form explicitly represents how various terms in

the algorithm behave in each assimilation step. Here, N represents the reconstruction

error operator which affects the analysis error, ek propagated forward in time through

the modelled nonlinear model operator Mk for k ∈ N0. Throughout this work, we will

refer to the operator N as the regularized reconstruction error operator. Furthermore,

the regularized reconstruction error operator N also has an impact on the model error

term, ζk for k ∈ N0. Therefore, controlling this reconstruction error is necessary in each

step to keep the data assimilation scheme stable.

As a first attempt to examine the error behaviour, we take the norm on both sides,

use the triangle inequality and the sub-multiplicative property as follows,

‖ek+1‖ ≤ ‖N‖ ·
∥

∥

∥Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

)∥

∥

∥+ ‖N‖ υ + ‖Rα‖ δ, (27)

where constants υ and δ bound the noise on the model error and observations

respectively. For the Hilbert space (X, ‖ · ‖B−1) this bound can be seen as a nonlinear

extension to [4].

We now need some assumptions on the nonlinear map Mk. It is natural to assume

that the map is Lipschitz continuous, which does not restrict the generality of this work.

However, we will require that the map has a global Lipschitz constant for all time.

Assumption 3.1. The nonlinear mapping Mk : X → X is Lipschitz continuous with

a global Lipschitz constant such that given any a,b ∈ X,

‖Mk (a) −Mk (b)‖ ≤ Kk · ‖a − b‖ (28)

where Kk ≤ K, the global Lipschitz constant for all time tk, for k ∈ N0. If the system is

time-invariant then of course, Kk = K for all time. However it is not necessary for the

nonlinear system to be time-invariant. In this work we will refer to K without subscript

as the global Lipschitz constant.

Now, applying Assumption 3.1 we obtain,

‖ek+1‖ ≤ K ‖N‖ · ‖ek‖ + ‖N‖ υ + ‖Rα‖ δ (29)

where K is the global Lipschitz constant. Since everything other than the analysis error

is independent of time, we can explicitly define Λ := K‖N‖ and formulate the following

result.

Theorem 3.2. If the model error ζk, k ∈ N0, is bounded by υ > 0, the observation error

ηk, k ∈ N0, is bounded by δ > 0 and the model operator, M is Lipschitz continuous,

then the analysis error ek+1 := x
(a)
k+1 − x

(t)
k+1, for k ∈ N0 is estimated by

‖ek+1‖ ≤ Λk+1 ‖e0‖ +

(

k
∑

l=0

Λl

)

(σ + τ) , (30)

where Λ := K‖N‖, with global Lipschitz constant K and σ := ‖N‖υ and τ := ‖Rα‖δ,
where N := I − RαH and Rα := (αI + H∗H)−1H∗. If Λ < 1 then,

‖ek+1‖ ≤ Λk+1‖e0‖ +
1 − Λk+1

1 − Λ
(σ + τ) , (31)
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such that

lim sup
k→∞

‖ek+1‖ ≤ ‖N‖ υ + ‖Rα‖ δ

1 − Λ
. (32)

Proof. We use induction as follows. For the base case we set k = 0, and from (29) we

obtain

‖e1‖ ≤ Λ‖e0‖ + ‖N‖ υ + ‖Rα‖ δ, (33)

which is equivalent to (30) substituting for σ and τ . Now we continue with the inductive

step,

‖ek+1‖ ≤ Λ ‖ek‖ + σ + τ (34)

≤ Λ

(

Λk ‖e0‖ +

(

k−1
∑

l=0

Λl

)

(σ + τ)

)

+ σ + τ (35)

≤ Λk+1 ‖e0‖ +

(

k
∑

l=0

Λl

)

(σ + τ) (36)

which is equal to (30), hence completing the proof by induction. Assuming Λ < 1 and

using the geometric series we obtain (31), which completes the proof.

We have described error estimates for the analysis error of cycled data assimilation

scheme in Theorem 3.2. For the Hilbert space (X, ‖ · ‖B−1), the sufficient condition

to keep the analysis error bounded is that Λ = K‖N‖ < 1. Here the regularized

reconstruction error has to be strong enough, so that multiplied with the global Lipschitz

constant K, Λ is kept less than one. Now we explore how we can make ‖N‖ small enough

to ensure Λ < 1. We first consider the finite dimensional case.

Lemma 3.3. For a finite dimensional state space X = R
n, an injective operator H and

a parameter 0 < ρ < 1, by choosing the regularization parameter α > 0 we can always

achieve ‖N‖ ≤ ρ < 1.

Proof. By construction G := H∗H is self-adjoint and therefore has a complete

orthonormal basis ϕ(1), . . . , ϕ(n) of eigenvectors with eigenvalues λ(1), . . . , λ(n). We

choose α and ρ such that

α

(

1

ρ
− 1

)

= min
j=1,...,n

∣

∣λ(j)

∣

∣ > 0. (37)

Now,

‖N‖ =
∥

∥(I + α−1G)−1
∥

∥ = sup
j∈{1,...,n}

∣

∣

∣

∣

∣

1

1 +
λ(j)

α

∣

∣

∣

∣

∣

≤ α

α + α
(

1
ρ
− 1
) = ρ < 1, (38)

which completes the proof.
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In this finite dimensional setting, it is clear that from Lemma 3.3 that given any

global Lipschitz constant K > 0, i.e. any model dynamics, we can always choose an

α > 0, sufficiently small so that Λ ≤ Kρ < 1. This is an interesting conclusion to draw,

since the regularization parameter controls how much we trust the background term

in (8). Of course reducing α means that we solve the problem in (6) more accurately

which implies that solving the problem accurately keeps the data assimilation scheme

stable for all time. However, from the theory of Tikhonov regularization, we know that

α must be kept large enough to shift the spectrum of H∗H to combat ill-posedness in

the observation operator. Representing the problem in an infinite dimension allows us

to directly represent this effect of ill-posedness into the problem. We will see that for an

ill-posed observation operator, significant damping must be present on higher spectral

modes for us to control the behaviour of the analysis error over time. Firstly we explore

the less interesting situation of well-posed observation operators H to highlight the

difficulty in treating ill-posed operators in an infinite dimension.

Lemma 3.4. For an infinite dimensional state space X, an injective well-posed operator

H and a parameter 0 < ρ < 1, by choosing the regularization parameter α > 0

sufficiently small we can always achieve Λ ≤ ρ < 1.

Proof. As the operator H is well-posed, G := H∗H has a complete orthonormal basis

ϕ(1), . . . , ϕ(∞) of eigenvectors with eigenvalues λ(1), . . . , λ(∞) > 0. If K > 1 we choose ρ

such that ρ < 1/K, otherwise we choose any ρ < 1. Then we choose an α such that

α

(

1

ρ
− 1

)

= min
j=1,...,∞

∣

∣λ(j)

∣

∣ > 0. (39)

Then,

Λ = K ‖N‖ = K
∥

∥(I + α−1G)−1
∥

∥ = K sup
j∈{1,...,∞}

∣

∣

∣

∣

∣

1

1 +
λ(j)

α

∣

∣

∣

∣

∣

≤ Kα

α + α
(

1
ρ
− 1
) = Kρ < 1, (40)

which completes the proof.

From Lemma 3.4, for a well-posed observation operator H we can control the error

behaviour using α. The estimates in (40) are based on lower bounds for the spectrum

of H∗H. In the large-scale or infinite-dimensional case, our interest is with compact

observation operators H, where the spectrum decays to zero in the infinite dimensional

setting. Here, to achieve a stable cycled scheme with an ill-posed observation operator,

we now show that the Lipschitz constant has to be contractive with respect to higher

spectral modes of H. We remark,

Remark 3.5. For the Hilbert space (X, ‖ · ‖B−1) and a compact observation operator

H, (29) implies that the model operator Mk must be strictly damping, i.e. the global

Lipschitz constant K < 1. This is apparent since for an infinite dimensional state space

space the norm of the regularized reconstruction error, ‖N‖ = 1.
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Further details of the spectrum and norm estimates of the regularized reconstruction

error operator can be found in the literature [16],[4]. However, we will see that by

splitting the state space X we are able to use the regularized reconstruction error

operator N to control the Lipschitz constant K over lower spectral modes. In considering

lower and higher spectral modes separately we are able to obtain a stable cycled scheme

for a wider class of systems. As we have mentioned, the infinite dimensional setting

here highlights the practical problem in keeping the analysis error bounded for all time.

We will see that damping with respect to the observation operator H is required in the

nonlinear map Mk.

We begin defining orthogonal projection operators, P1 and P2 such that,

P1 : X → span{ϕi, i ≤ n} (41)

P2 : X → span{ϕi, i > n} (42)

with respect to the singular system (µn,ϕn,gn) of H, with n ∈ N. We abbreviate

X1 := span{ϕ1, . . . ,ϕn}, X2 := span{ϕn+1,ϕn+2, . . .}. (43)

More details on the singular system of a compact linear operator can be found in [17].

Returning to (26) we have,

ek+1 = N(P1 + P2)
(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+ Nζk + Rαηk+1 (44)

= N |X1P1

(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+ Nζk

+ N |X2P2

(

Mk

(

x
(a)
k

)

−Mk

(

x
(t)
k

))

+ Rαηk+1. (45)

Now defining

M(1)
k (·) := P1 ◦Mk(·), M(2)

k (·) := P2 ◦Mk(·), (46)

we have

ek+1 = N |X1

(

M(1)
k

(

x
(a)
k

)

−M(1)
k

(

x
(t)
k

))

+ Nζk

+ N |X2

(

M(2)
k

(

x
(a)
k

)

−M(2)
k

(

x
(t)
k

))

+ Rαηk+1. (47)

Using the triangle inequality with the sub-multiplicative property we can obtain a

bound on this error as follows,

‖ek+1‖ =
∥

∥

∥N |X1

(

M(1)
k

(

x
(a)
k

)

−M(1)
k

(

x
(t)
k

))

+ Nζk

+N |X2

(

M(2)
k

(

x
(a)
k

)

−M(2)
k

(

x
(t)
k

))

+ Rαηk+1

∥

∥

∥
(48)

≤ ‖N |X1‖ ·
∥

∥

∥
M(1)

k

(

x
(a)
k

)

−M(1)
k

(

x
(t)
k

)∥

∥

∥

+ ‖N |X2‖ ·
∥

∥

∥M(2)
k

(

x
(a)
k

)

−M(2)
k

(

x
(t)
k

)∥

∥

∥

+ ‖Nζk‖ +
∥

∥Rαηk+1

∥

∥ (49)

≤ K
(1)
k · ‖N |X1‖ ·

∥

∥

∥x
(a)
k − x

(t)
k

∥

∥

∥

+ K
(2)
k · ‖N |X2‖ ·

∥

∥

∥x
(a)
k − x

(t)
k

∥

∥

∥
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+ ‖Nζk‖ +
∥

∥Rαηk+1

∥

∥ (50)

≤
(

Λ
(1)
k + Λ

(2)
k

)

‖ek‖ + ‖N‖ υ + ‖Rα‖ δ, (51)

where we have assumed Lipschitz continuity,
∥

∥

∥
M(j)

k (x
(a)
k ) −M(j)

k (x
(t)
k )
∥

∥

∥
≤ K

(j)
k

∥

∥

∥
x

(a)
k − x

(t)
k

∥

∥

∥
(52)

for j = 1, 2, defining Λ
(1)
k := K

(1)
k · ‖N |X1‖ and Λ

(2)
k := K

(2)
k · ‖N |X2‖ with restrictions

according to the singular system of H. Again, we now assume that the modelled

nonlinear operator Mk is globally Lipschitz continuous in accordance with Assumption

3.1, where K
(1)
k ≤ K(1) and K

(2)
k ≤ K(2) for all time tk. Similar to Theorem 3.2 we can

form the following result.

Theorem 3.6. For the Hilbert space (X, ‖ · ‖B−1), if the model error ζk, k ∈ N0, is

bounded by υ > 0, the observation error ηk, k ∈ N0, is bounded by δ > 0 and the model

operator, Mk is Lipschitz continuous, then the analysis error ek+1 := x
(a)
k+1 − x

(t)
k+1, for

k ∈ N0 is estimated by

‖ek+1‖ ≤ Λk+1 ‖e0‖ +

(

k
∑

l=0

Λl

)

(σ + τ), (53)

where Λ := Λ(1)+Λ(2), for Λ(1) := K(1)·‖N |X1‖ and Λ(2) := K(2)·‖N |X2‖ with restrictions

according to the singular system of H. Furthermore σ := ‖N‖υ and τ := ‖Rα‖δ where

N := I − RαH and Rα := (αI + H∗H)−1H∗. If Λ < 1 then,

‖ek+1‖ ≤ Λk+1 ‖e0‖ +
1 − Λk+1

1 − Λ
(σ + τ), (54)

such that

lim sup
k→∞

‖ek‖ ≤ ‖N‖ υ + ‖Rα‖ δ

1 − Λ
. (55)

Proof. The proof is the same as that of Theorem 3.2 for a different constant Λ :=

Λ(1) + Λ(2), with restrictions according to the singular system of H.

Remark 3.7. Since H is compact, for an infinite dimensional state space X, we have

that ‖N‖ = 1 and by using the arithmetic-geometric mean inequality we are able to

bound the Tikhonov inverse by

‖Rα‖ ≤ 1

2
√

α
. (56)

Therefore from (55) we have,

lim sup
k→∞

‖ek‖ ≤
υ + δ

2
√

α

1 − Λ
. (57)

We now present two results which are obtained directly from spectral theory and

can also be seen in [4] in the linear setting. These results will demonstrate how we

require that the nonlinear map Mk be dissipative with respect to higher spectral modes

of the observation operator H.
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Lemma 3.8. For the Hilbert space (X, ‖·‖B−1), on the subspace X1 and for a parameter

0 < ρ < 1, by choosing the regularization parameter α > 0 sufficiently small, we can

always achieve ‖N |X1‖ ≤ ρ < 1.

Proof. As the space X1 is spanned by a finite number of spectral modes of the operator

H we use Lemma 3.3 to complete the proof.

Lemma 3.9. For the Hilbert space (X, ‖ · ‖B−1), the norm of the operator N |X2 is given

by

‖N |X2‖ = 1. (58)

Proof. Since H is compact, the singular values µn → 0 for n → ∞. This means that

‖N |X2‖ = sup
i=n+1,...,∞

∣

∣

∣

∣

α

α + µ2
n

∣

∣

∣

∣

= 1 (59)

for all α > 0, which completes the proof.

As we have seen from Theorem 3.6, the sufficient condition for stability of the cycled

data assimilation scheme requires that Λ < 1. Applying our norm estimates in (49) and

(50) with both Lemma 3.8 and Lemma 3.9, we obtain,

Λ = K(1) · ‖N |X1‖ + K(2) · ‖N |X2‖ (60)

≤ K(1) · ρ + K(2). (61)

Here we directly see how the nonlinear growth in X1 can be controlled by the

regularization parameter α > 0. Furthermore, it is seen that the nonlinear system Mk

has to be damping in X2 for all time. Therefore only if Mk is a sufficiently damping

on higher spectral modes of H will we be able to stabilise the cycled data assimilation

scheme. We call this type of system dissipative with respect to H as summed up in the

following definition.

Definition 3.10. A nonlinear system Mk, k ∈ N, is dissipative with respect to H, if it

is Lipschitz continuous and damping with respect to higher spectral modes of H in the

sense that M(2)
k defined by (46) satisfies
∥

∥

∥M(2)
k (a) −M(2)

k (b)
∥

∥

∥ ≤ K
(2)
k · ‖a − b‖ (62)

∀ a,b ∈ X, where K
(2)
k ≤ K(2) < 1 uniformly for k ∈ N0.

Under this assumption that Mk is dissipative with respect to H, we can choose the

regularization parameter α > 0 small enough such that,

ρ <
1 − K(2)

K(1)
, (63)

to achieve a stable cycled scheme. We summarise in the following theorem.
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Theorem 3.11. For the Hilbert space (X, ‖ · ‖B−1), assume the system Mk is Lipschitz

continuous and dissipative with respect to higher spectral modes of H. Then, for

regularization parameter, α > 0 sufficiently small i.e. there exists an ᾱ, such that for

α < ᾱ, we have Λ := K(1)‖N |X1‖ + K(2)‖N |X2‖ < 1. Under the conditions of Theorem

3.6 the analysis error is bounded over time by

lim sup
k→∞

‖ek‖ ≤ ‖N‖ υ + ‖Rα‖ δ

1 − Λ
≤

υ + δ
2
√

α

1 − Λ
. (64)

Proof. If Mk is Lipschitz continuous and dissipative with respect to H, we first show

that we can achieve Λ < 1. From (61), the Lipschitz constants K(1) and K(2) determine

our ability to achieve Λ < 1. Using Lemma 3.9 we have ‖N |X2‖ = 1 therefore

under the assumption that Mk is dissipative, then for the subspace X2, we have that

K(2) < 1. Now from Lemma 3.8 the norm ‖N |X1‖ can be made arbitrarily small such

that ‖N |X1‖ ≤ ρ < 1 where ρ is some positive constant chosen such (63) holds. Then

we obtain Λ < 1 from (61). The bound for the analysis error is then given by Theorem

3.6, which also provides the estimate in (64). The inequality completes the proof in

accordance with Remark 3.7.

As we have seen, the analysis error can be kept stable for all time with respect

to the weighted norms defined in (17). These results depend on the weighted norm

‖ · ‖B−1 which is constant for all time. However, in practice other more advanced

data assimilation schemes are used, where the covariances evolves in time. Notably

the Kalman filter evolves the covariance in each assimilation step, though usually some

additive climatological component of B or multiplicative variance inflation takes care of

model errors, in which case the above analysis should carry over to more general cycled

assimilation schemes.

Working in the infinite dimension demonstrates how the ill-posedness in the

observation operator can lead to an unstable data assimilation scheme. However, using

the regularization parameter, we were able to keep the analysis error bounded for all

time. This of course has repercussions which we will explore further in Section 4 and

Section 5.

4. Numerical examples

This work has focused on the analysis of the error evolution of data assimilation

algorithms. To complement the theoretical results, here we present some simple

numerics to demonstrate the behaviour of the analysis error in (26). Our interest lies

with the choice of the regularization parameter α, as discussed in Section 3. Here we

consider the famous Lorenz ‘63 system [18], which presents chaotic behaviour under the

classical parameters. Lorenz derived these equations from a Fourier truncation of the

flow equations that govern thermal convection. Despite their limited practical use, these

equations present an excellent foundation to demonstrate the behaviour of the analysis
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error. The Lorenz ‘63 equations are as follows,
dx

dt
= − σ(x − y), (65)

dy

dt
= ρx − y − xz, (66)

dz

dt
= xy − βz, (67)

where typically σ, ρ and β are known as the Prandtl number, the Rayleigh number and

a non-dimensional wave number respectively. Throughout these experiments we will

use the classical parameters, σ = 10, ρ = 28 and β = 8/3. We discretize the system

using a fourth order Runge-Kutta approximation with a step-size h = 0.01. For these

experiments we will omit model error from the model equations to concentrate on the

behaviour of the analysis error compared with the error in the observations in each

assimilation step. Since the same regularized reconstruction error operator is applied

to the analysis error and the model error, there is limited inconsistency in assuming

accurate model dynamics.

It is natural to set up the noise in these experiments to be Gaussian, since the 3DVar

functional can be viewed as a maximum a posteriori probability Bayesian estimator of

the state of the system under Gaussian statistics. However, as we have discussed in

previous sections, we consider the 3DVar scheme purely as an algorithm and require for

our analysis that the noise be bounded for time. Therefore we shall choose normally

distributed noise and note that for a finite sample the noise is bounded and therefore is

consistent with the theory developed in Section 3.

We set up a twin experiment, whereby we begin with an initial condition,
(

x
(t)
0 , y

(t)
0 , z

(t)
0

)

= (−5.8696,−6.7824, 22.3356),

which were obtained using an initial reference point, (0.001, 0.001, 2.001) that was

spun-up 1000 time-steps to obtain the initial condition (x
(t)
0 , y

(t)
0 , z

(t)
0 ), which lies on

the attractor. We produce a run of the system until time t = 100 with a step-size

h = 0.01, which we call a truth run. Now using this truth we create observations at

every tenth time-step adding random normally distributed noise with zero mean and

standard deviation σ(o) =
√

2/40. The background state is calculated in the same way

at initial time t0 with zero mean and standard deviation σ(b) = 1/400 such that,
(

x
(b)
0 , y

(b)
0 , z

(b)
0

)

= (−5.8674,−6.7860, 22.3338).

Now, ignoring the model error term in (26), we calculate the analysis error ek for

k = 1, . . . , 1000. Assimilating only at every tenth time-step, we allow for the nonlinear

model dynamics to play a role before we apply the data assimilation scheme. We

calculate a sampled background error covariance between the background state and

true state over the whole trajectory such that,

B =







117.6325 117.6374 −2.3513

117.6374 152.6906 −2.0838

−2.3513 −2.0838 110.8491






. (68)
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We set the background weight equal to the background variance such that w(b) = σ2
(b)

and divide B through by w(b) to obtain the background error covariance matrix C. We

simulate the consequence of an ill-posed observation operator H with a random 3 × 3

matrix with its last singular value µ3 = 10−8 such that,

H =







0.4267 0.5220 0.5059

0.8384 −0.7453 1.6690

0.4105 1.6187 0.0610






. (69)

Therefore, H is severely ill-conditioned with a condition number, κ = 2.1051 × 108.

Varying the regularization parameter α we can study the averaged error, i.e.

the integrated normalised total analysis error calculated by the sum of ‖ek‖L2 from

k = 1, . . . , 1000, renormalised with division by 1000. In Figure 1 we plot the error

integral against the regularization parameter. Here we observe that α needs to be chosen

small enough to keep the analysis error bounded, although if it is chosen too small it will

lead to a large analysis error bound. We select the largest regularization parameter from

the error integral plot in Figure 1, which corresponds to 3DVar for α = w(o)/w(b) with

weights according to the variances of the observations and background state respectively.

With this value of α = 200, in Figure 2(a) we observe that the analysis error, ‖e(a)
k ‖L2

fluctuates around the value of 20. The analysis is not able to track the truth and

this can seen in Figure 2(b), where we plot the truth and analysis in state space from

assimilation time t200 until t220. We observe over this time interval that the analysis

does not stay on the same wing of the attractor as the truth. This is evident across the

whole time interval, which we confirm in Figure 2(c) and Figure 2(d) where the truth

and analysis are plotted in state space from assimilation time t774 until t805 and t858 until

t895 respectively. In Figure 2(c) the analysis and truth are close together at assimilation

time t774, however over time the analysis fails to follow the truth onto the same wing of

the attractor. This is also reflected in Figure 2(d) where the analysis spends most time

on the wrong wing of the attractor to the truth.

Now we inflate the background weighting w(b), i.e. background variance inflation,

from 1/4002 to 1/402 therefore choosing a smaller regularization parameter α = 2,

which corresponds to the parameter α where the error integral is smallest in Figure

1. Subsequently repeating with the same data, we observe in Figure 3(a) that the

analysis error fluctuates around a much smaller value compared with Figure 2(a). This

is reflected in Figure 3(b) where the analysis is now able to follow the trajectory of the

truth better and remains for the assimilation time (t200 until t220) on the same wing of

the attractor to the truth.

In Figure 4(a) we reduce the regularization parameter even further so that α =

10−10 and we see that the analysis error becomes large again. From regularization

theory we know that for a very small α the Tikhonov inverse can become very large

in norm, which will affect the observation error in each assimilation step and this is

confirmed in Figure 1. For this choice of α we also plot the trajectories of the analysis

and the truth in Figure 4(b). Here we observe that the analysis attempts to track the
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truth, however the consequence of an ill-posed observation operator, leading to a large

Tikhonov inverse (in norm), is forcing the analysis off the attractor. Since the scheme

trusts the observations much more than the background, the analysis is forced towards

the observations, hence the analysis error is smaller for all time in Figure 4(a) compared

with Figure 2(a).

Here the numerical results support the theory developed that by choosing α small

enough, we can reduce the analysis error of the cycled data assimilation scheme for

all time. However if it is chosen too small the analysis error will be amplified for an

ill-posed observation operator.

In order to demonstrate the bounds developed in Section 3, we repeat the

experiment using the same random 3 × 3 matrix for the observation operator H. We

increase µ3 from 10−8 to 10−3, which is necessary since we want to achieve ‖N‖ < 1/K.

If µ3 is chosen too small, i.e. H is very ill-conditioned, then we would need to choose

α sufficiently small to obtain ‖N‖ < 1/K. Theoretically this is possible, however

numerically, with such a small α, the matrix N then becomes close to singular. Therefore

we choose µ3 = 10−3 so that we have a different observation operator,

H =







0.4275 0.5218 0.5055

0.8381 −0.7453 1.6692

0.4102 1.6188 0.0612






, (70)

with condition number, κ = 2.1051×103. We use the same initial condition, background

state and error covariance matrix as before.

Since we are interested in our bounds on the analysis error in (29) we need

to compute the global Lipschitz constant for this experiment. Using the truth and

background runs we can calculate a Lipschitz constant from (28) every 10 time-steps.

Choosing the largest value over all time we obtain a global Lipschitz constant K = 1.9837

for this experiment. This of course is only an estimate to the actual Lipschitz constant,

however it will be sufficient for these experiments. Therefore we choose a regularization

parameter, α = 10−6 which is small enough so that ‖N‖ < 1/K, leading to Λ ≈ 0.9918.

We calculate a bound on the observational noise with respect to the L2 norm so that

δ = 0.1571.

In Figure 5 we plot the nonlinear analysis error from (26) and the bound on the

analysis error in (29). Since we bound the analysis error by a linear update equation

we observe the linear growth in our bound. For this choice of regularization parameter,

we observe large fluctuations in the nonlinear analysis error arising from a Tikhonov

inverse that is large in norm, which was discussed in the first experiment. Also in Figure

5 we plot the asymptotic limit of the analysis error from (64). From these numerical

experiments we see that the numerical bound is not a very tight bound on the actual

analysis error. This is of course expected since our approach is to use norm estimates,

therefore we obtain a sufficient condition for a stable cycled scheme. Future work could

address this aspect and seek a necessary condition for a stable cycled data assimilation

scheme.
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The theory in Section 3 was for weighted norms with respect to the error

covariances. As previously discussed, we consider 3DVar-type methods which involves

a static covariance matrix for all time. Therefore the inverse background covariance

matrix C−1 is acting as a scaling on the analysis error. We calculate the analysis error

‖ek‖C−1 and plot its evolution over time for regularization parameters, α = 200, 2 and

10−10. The figures are identical to Figure 2(a), Figure 3(a) and Figure 4(a) with a

rescaled vertical axis. For α = 200 the analysis error fluctuate around 0.005, then for

α = 2 the analysis error reduces to 10−5. With a further inflation such that α = 10−10

the analysis error increases and fluctuates around 0.002.

We have repeated these experiments for a variety of observation operators H,

different initial conditions and observation error drawn from different distributions. We

obtain similar results, however we omit these experiment to keep this paper concise.
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Figure 1. L2 norm of the analysis error, ‖ek‖L2 integrated for all assimilation time

tk for k = 1, . . . , 1000, varying the regularization parameter, α.

5. Conclusions

In Section 3, we saw under weighted norms how the choice of the regularization

parameter α was crucial in keeping the data assimilation scheme in a stable range,

that is the analysis error remains bounded over time. Also in Section 4 we observed

numerically that α has to be sufficiently small to keep the analysis error controlled over

time. However, care must be taken in treating the regularization parameter, due to

other instabilities arising from reducing the regularization. Moreover, in reducing α the

inverse problem in (6) becomes computationally harder to solve. As we explore compact

operators in a high dimensional setting we see that significant regularization is needed

to shift the eigenvalues of the operator H∗H away from zero. If this is not done then

the conditioning of the problem will have serious numerical implications. Therefore

reducing α (which can be seen as inflating the weight w(b)) can affect the ability with

which we are able to calculate the Tikhonov inverse, when the observation operator is
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Figure 2. (a): L2 norm of the analysis error, ‖ek‖L2 as the scheme is cycled for index

k with regularization parameter, α = 200, which corresponds to 3DVar. Trajectories.

Solid line: Truth, x(t) for time-steps (b): 2000, . . . , 2200, (c): 7740, . . . , 8050 and (d):

8580, . . . , 8950. Diamond: Truth, (b): x
(t)
200, (c): x

(t)
774 and (d): x

(t)
858. Circle: Truth,

x
(t)
k

at assimilation time tk for (b): k = 201, . . . , 220, (c): k = 775, . . . , 805 and

(d): k = 859, . . . , 895. Square: Analysis, (b): x
(a)
200, (c): x

(a)
774 and (d): x

(a)
858. Star:

Analysis, x
(a)
k

at assimilation time tk for (b): k = 201, . . . , 220, (c): k = 775, . . . , 805

and (d): k = 859, . . . , 895. Dotted line: Analysis x
(a)
k

at assimilation time tk for (b):

k = 200, . . . , 220.

ill-conditioned. Of course the Tikhonov inverse is required in each assimilation step to

solve (6).

Another difficulty in reducing the regularization parameter is evident from the

bound we obtain on the analysis error. As we have seen, variance inflation enables us to

control the nonlinear growth in both the analysis error and the model error. However

the additional term, Rα involving the observation error is also affected by regularization

parameter. As we know from regularization theory, (56) can become relatively large.

This was directly seen in Section 4 where reducing the regularization too much meant

the error in the observations became dominant in the analysis error. Therefore reducing
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Figure 3. (a): L2 norm of the analysis error, ‖ek‖L2 as the scheme is cycled for the

index k with regularization parameter, α = 2, an inflation in the background variance

of 100%. (b): Trajectories. Solid line: Truth, x(t) for time-steps 2000, . . . , 2200.

Diamond: Truth, x
(t)
200. Circle: Truth, x

(t)
k

at assimilation time tk for k = 201, . . . , 220.

Square: Analysis, x
(a)
200. Star: Analysis, x

(a)
k

at assimilation time tk for k =

201, . . . , 220.
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Figure 4. (a):L2 norm of the analysis error, ‖ek‖L2 as the scheme is cycled for the

index k with regularization parameter, α = 10−10, an inflation in the background

variance of 2 × 1012%. (b): Trajectories. Solid line: Truth, x(t) for time-steps

2000, . . . , 2200. Diamond: Truth, x
(t)
200. Circle: Truth, x

(t)
k

at assimilation time tk

for k = 201, . . . , 220. Square: Analysis, x
(a)
200. Star: Analysis, x

(a)
k

at assimilation

time tk for k = 201, . . . , 220. Dotted line: Analysis x
(a)
k

at assimilation time tk for

k = 200, . . . , 220.
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Figure 5. L2 norm of the analysis error, ‖ek‖L2 as the scheme is cycled for the index k

with regularization parameter, α = 10−6. Solid line: Nonlinear analysis error. Dashed

line: Linear bound. Dotted line: Asymptotic limit.

the regularization parameter will reduce the analysis error growth from the previous

step (and the model error), although this could amplify the error in the observations.

This of course depends on how ill-posed the problem is, as we have seen if the problem

is very ill-posed, i.e. many singular values of the observation operator H lie very close

to zero then the regularization parameter, α will need to be balanced between stability

in the inverse problem (α large) and stability in the cycled data assimilation scheme (α

small).

We showed in Section 3 that it is possible to keep the analysis error bounded

for all time with an ill-posed observation operator in an infinite dimensional setting.

This was due to the model dynamics being dissipative with respect to higher spectral

modes of the observation operator. In the case of time-invariant model dynamics

the constant K(2) must be shown to be damping with respect to the subspace X2.

This is analogous to the previous work in [4] where the authors were able to force a

contraction for linear time-invariant model dynamics. For nonlinear model dynamics,

the property exploited in the linear setting does not hold, therefore it is necessary to

show this dissipative property for the model dynamics under consideration. The work

of [5] was able to show this property for the incompressible two-dimensional Navier-

Stokes equations where the model dynamics and the observation operator commute. In

the case of time-variant model dynamics then it must be shown that for all time tk,

the constants K
(2)
k ≤ K(2) < 1, therefore obeying the global property in Assumption

3.1, and are damping. This of course is a particular situation, however it is required

for this theory to hold and must be shown for the model dynamics considered. An

extension which would relax this assumption, would be for the subspace X2 to be also

dependent on time. Then in each assimilation step, X2 could be chosen so that there is

a contraction in the model dynamics with respect to the observation operator. In this

case the regularization parameter would need to be chosen also in each assimilation step

to allow for an expansion in the lower spectral modes in X1. This approach is consider
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in future work.
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