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THE STOKES CONJECTURE FOR WAVES WITH VORTICITY

EUGEN VARVARUCA AND GEORG S. WEISS

Abstract. We study stagnation points of two-dimensional steady gravity

free-surface water waves with vorticity.

We obtain for example that, in the case where the free surface is an injective

curve, the asymptotics at any stagnation point is given either by the “Stokes

corner flow” where the free surface has a corner of 120◦, or the free surface ends

in a horizontal cusp, or the free surface is horizontally flat at the stagnation

point. The cusp case is a new feature in the case with vorticity, and it is not

possible in the absence of vorticity.

In a second main result we exclude horizontally flat singularities in the

case that the vorticity is 0 on the free surface. Here the vorticity may have

infinitely many sign changes accumulating at the free surface, which makes

this case particularly difficult and explains why it has been almost untouched

by research so far.

Our results are based on calculations in the original variables and do not

rely on structural assumptions needed in previous results such as isolated sin-

gularities, symmetry and monotonicity.
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1. Introduction

The classical hydrodynamical problem of traveling two-dimensional gravity water

waves with vorticity can be described mathematically as a free-boundary problem
1
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for a semilinear elliptic equation: given an open connected set Ω in the (x, y) plane

and a function γ of one variable, find a non-negative function ψ in Ω such that

∆ψ = −γ(ψ) in Ω ∩ {ψ > 0}, (1.1a)

|∇ψ(x, y)|2 = −y on Ω ∩ ∂{ψ > 0}. (1.1b)

The present paper is an investigation by geometric methods of the singularities of

the free boundary ∂{ψ > 0}.
Let us briefly describe, following [4], the connection between problem (1.1) and

the nonlinear governing equations of fluid motion. Consider a wave of permanent

form moving with constant speed on the free surface of an incompressible inviscid

fluid, acted on by gravity. With respect to a frame of reference moving with the

speed of the wave, the flow is steady and occupies a fixed region D in the plane.

The boundary ∂D of the fluid region contains a part ∂aD which is free and in

contact with an air region. Under the assumption that the fluid region D is simply

connected, the incompressibility condition shows that the flow can be described by

a stream function ψ : D → R, so that the relative fluid velocity is (ψy,−ψx). The

Euler equations imply that the vorticity ω := −∆ψ satisfies

ωxψy = ωyψx in D. (1.2)

It is easy to see that (1.2) is satisfied whenever

ω = γ(ψ) in D (1.3)

for some (smooth) function γ of variable ψ, which will be referred to as a vortic-

ity function. (Conversely, under additional assumptions, see [4], (1.2) implies the

existence of such a function γ.) The kinematic boundary condition that the same

particles always form the free surface ∂aD is equivalent to

ψ is locally constant on ∂aD.

Also, in the presence of (1.3), Bernoulli’s Theorem and the fact that on the fluid-

air interface ∂aD the pressure in the fluid equals the constant atmospheric pressure

imply that
1

2
|∇ψ|2 + gy is locally constant on ∂aD,

where g > 0 is the gravitational constant. We therefore obtain, after some normal-

ization, and at least in the case when ∂aD is connected, that the following equations

and boundary conditions are satisfied:

−∆ψ = γ(ψ) in D, (1.4a)

ψ = 0 on ∂aD, (1.4b)

|∇ψ|2 + 2gy = 0 on ∂aD, (1.4c)

Equations (1.4) are usually supplemented by suitable boundary conditions on the

rest of the boundary of D, or some conditions on the flow at infinity if the fluid
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domain is unbounded. Classical types of waves which have received most attention

in the literature are periodic and solitary waves of finite depth (in which the fluid

domain D has a fixed flat bottom y = −d, at which ψ is constant), and periodic

waves of infinite depth (in which the fluid domain extends to y = −∞ and the

condition limy→−∞∇ψ(x, y) = (0,−c) holds, where c is the speed of the wave).

Conversely, for any vorticity function γ, any solution of (1.4) gives rise to a traveling

free-surface gravity water wave, irrespective of whether D is simply connected or

∂aD is connected. Problem (1.1) is a local version of problem (1.4), under the

additional assumption that ψ > 0 in the fluid region, and where ψ has been extended

by the value 0 to the air region. In (1.1), the domain Ω is a neighborhood of a

point of interest on the fluid-air interface, the fluid region D is identified with the

set {(x, y) : ψ(x, y) > 0} (in short {ψ > 0}) and the fluid-air interface ∂aD with

∂{ψ > 0}, while the gravitational constant g has been normalized by scaling. Note

that problem (1.1) is also relevant for the description of more general steady flow

configurations (for example, the fluid domain could have a non-flat bottom, and

there could be some further external forcing acting at the boundary of the fluid

region which is not in contact with the air region).

The theory of traveling water waves with vorticity has a long history, whose

highlights include the pioneering paper of Gerstner [10], the first rigorous proof

of existence of periodic waves of small amplitude by Dubreil-Jacotin [6], and the

foundation [4] of Constantin and Strauss, which proved existence of smooth waves of

large amplitude for the periodic finite-depth problem. The paper [4] has generated

substantial interest and follow-up work on steady water waves with vorticity, see

[20] for a survey of recent results.

In this paper we investigate the shape of the free boundary ∂{ψ > 0} at stag-

nation points, which are points where the relative fluid velocity (ψy,−ψx) is the

zero vector. The Bernoulli condition (1.1b) shows that such points are on the real

axis, while the rest of the free boundary is in the lower half-plane. Stokes [19]

conjectured that, in the irrotational case γ ≡ 0, at any stagnation point the free

surface has a (symmetric) corner of 120◦, and formal asymptotics suggest that the

same result might be true also in the general case of waves with vorticity γ 6≡ 0.



4 E. VARVARUCA AND G.S. WEISS

ψ > 0

ψ = 0

Figure 1. Stokes corner
In the irrotational case, the Stokes conjecture was first proved, under isolatedness,

symmetry, and monotonicity assumptions, by Amick, Fraenkel and Toland [3] and

Plotnikov [15] (see also [21] for a simplification of the proof in [3]), while a geometric

proof has recently been given in [23] without any such structural assumptions.

In the case γ 6≡ 0, the only rigorous results available on waves with stagnation

points are very recent and require in an essential way symmetry and monotonicity

of the free surface: In [22] it was proved that, at stagnation points, a symmetric

monotone free boundary has either a corner of 120◦ or a horizontal tangent. More-

over, it was also shown there that, if γ ≥ 0 close to the free surface, then the free

surface necessarily has a corner of 120◦. (On the other hand, if γ(0) < 0, there exist

very simple examples where the free surface is the real axis, a line of stagnation

points). The existence of waves, with non-zero vorticity, having stagnation points

has been obtained in the setting of periodic waves of finite depth over a flat horizon-

tal bottom, in the following cases in the paper [17] submitted simultaneously with

the present paper: for any nonpositive vorticity function γ and any period of the

wave, and under certain restrictions on the size of γ and the wave period (roughly

speaking, the vorticity has to be sufficiently small and the period sufficiently large)

if γ is positive somewhere. The extreme waves constructed in [17] are obtained as

weak limits of large-amplitude smooth waves whose existence was proved by Con-

stantin and Strauss [4], and they are symmetric and monotone. It was shown in

[17] that the free surface of any symmetric monotone wave with stagnation points

which is a limit of smooth waves cannot have a horizontal tangent at the stagnation

points (in particular, the free surface cannot be horizontally flat), irrespective of
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the vorticity function γ, and therefore, as a a consequence of [22], the free surface

of such a wave necessarily has corners of 120◦ at stagnation points.

The present paper is the first study of stagnation points of steady two-dimensional

gravity water waves with vorticity in the absence of structural assumptions of iso-

latedness of stagnation points, symmetry and monotonicity of the free boundary,

which have been essential assumptions in all previous works. We obtain for example

that, in the case when the free surface is an injective curve, the asymptotics at any

stagnation point is given either by the “Stokes corner flow” where the free surface

has a corner of 120◦, or the free surface ends in a horizontal cusp,

ψ = 0

ψ = 0

Figure 2. Cusp
or the free surface is horizontally flat at the stagnation point.
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ψ > 0

ψ = 0

Figure 3. Horizontally flat stagnation point
The cusp case is a new feature in the case with vorticity, and it is not possible

without the presence of vorticity [23]. It is interesting to point out that Gerstner

[10] constructed an explicit example of a steady wave with vorticity whose free

surface has a vertical cusp at a stagnation point. However, this vertical cusp is due

to the fact that in his example the vorticity is infinite at the free surface, while in

the present paper we only consider the case of vorticities which are smooth up to

the free surface. We conjecture the cusps in our paper —the existence of which is

still open— to be due to the break-down of the Rayleigh-Taylor condition in the

presence of vorticity.

The second half of our paper is devoted to excluding horizontally flat singularities

in the case that the vorticity is non-negative at the free surface. (Horizontally

flat singularities are possible if the vorticity is negative at the free surface.) Of

particular difficulty is the case when the vorticity is 0 at the free surface, and may

have infinitely many sign changes accumulating there.

Let us briefly state our main result and give a plan of the paper:

Main Result. Let ψ be a suitable weak solution of (1.1) (compare to Definition

3.2) satisfying

|∇ψ(x, y)|2 ≤ C max(−y, 0) locally in Ω,

let the free boundary ∂{ψ > 0} be a continuous injective curve σ = (σ1, σ2) such that

σ(0) = (x0, 0), and assume that the vorticity function satisfies either |γ(z)| ≤ Cz,

or γ(z) ≥ 0, for all z in a right neighborhood of 0.

(i) If the Lebesgue density of the set {ψ > 0} at (x0, 0) is positive, then the free

boundary is in a neighborhood of (x0, 0) the union of two C1-graphs of functions
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η1 : (x0 − δ, x0] → R and η2 : [x0, x0 + δ) → R which are both continuously

differentiable up to x0 and satisfy η′1(x0) = 1/
√

3 and η′2(x0) = −1/
√

3.

(ii) Else σ1(t) 6= x0 in (−t1, t1) \ {0}, σ1 − x0 does not change its sign at t = 0,

and

lim
t→0

σ2(t)

σ1(t)− x0
= 0.

If we assume in addition that either {ψ > 0} is a subgraph of a function in the

y-direction or that {ψ > 0} is a Lipschitz set, then the set of stagnation points is

locally in Ω a finite set, and at each stagnation point x0 the statement in (i) holds.

Plan of the paper:

The flow of the paper follows [23] with new aspects and difficulties which we are

going to point out:

After gathering some notation in section 2, in section 3 we introduce suitable

weak solutions and prove a monotonicity formula. Consequences of the monotonic-

ity formula (section 4) make a blow-up analysis of singularities possible. The general

case (without the injective curve assumption) is stated in Theorem 4.5. Different

from the zero vorticity case handled in [23], there appears a new case in which the

Lebesgue density of the set {ψ > 0} is 0. Assuming the free surface to be an injec-

tive curve in a neighborhood of the singularity we obtain in Theorem 4.6 a more

precise description: In the new case the free surface forms cusps pointing in the x-

or −x-direction. As in [23] we are able to show that Stokes corner singularities are

isolated points (section 5).

Starting with section 6, the focus of our analysis is on points at which the set

{ψ > 0} has full Lebesgue density. In the case γ(0) = 0, an extension of the

frequency formula (Theorem 6.7) introduced by the authors in [23] leads here to a

Bessel differential inequality (see the proof of Theorem 6.12) which shows that the

right-hand side of the frequency formula is integrable. This part is substantially

different from [23]. It is then possible (sections 7-9) to do a blow-up analysis in

order to exclude horizontally flat singularities (Theorem 10.1). All our results are

based on calculations in the original variables.

2. Notation

We denote by χA the characteristic function of a set A. For any real number

a, the notation a+ stands for max(a, 0). We denote by x · y the Euclidean inner

product in Rn × Rn, by |x| the Euclidean norm in Rn and by Br(x
0) := {x ∈

Rn : |x − x0| < r} the ball of center x0 and radius r. We will use the notation

Br for Br(0), and denote by ωn the n-dimensional volume of B1. Also, Ln shall

denote the n-dimensional Lebesgue measure and Hs the s-dimensional Hausdorff

measure. By ν we will always refer to the outer normal on a given surface. We will

use functions of bounded variation BV (U), i.e. functions f ∈ L1(U) for which the
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distributional derivative is a vector-valued Radon measure. Here |∇f | denotes the

total variation measure (cf. [12]). Note that for a smooth open set E ⊂ Rn, |∇χE |
coincides with the surface measure on ∂E.

3. Notion of solution and monotonicity formula

In some sections of the paper we work with a n-dimensional generalization of the

problem described in the Introduction. Let Ω be a bounded domain in Rn which

has a non-empty intersection with the hyperplane {xn = 0}, in which to consider

the combined problem for fluid and air. We study solutions u, in a sense to be

specified, of the problem

∆u = −f(u) in Ω ∩ {u > 0}, (3.1)

|∇u|2 = xn on Ω ∩ ∂{u > 0}.

Note that, compared to the Introduction, we have switched notation from ψ to u

and from γ to f , and we have “reflected” the problem at the hyperplane {xn = 0}.
The nonlinearity f is assumed to be a continuous function with primitive F (z) =∫ z

0
f(t) dt. Since our results are completely local, we do not specify boundary

conditions on ∂Ω. In view of the second equation in (3.1), it is natural to assume

throughout the rest of the paper that u ≡ 0 in Ω ∩ {xn ≤ 0}.
We begin by introducing our notion of a variational solution of problem (3.1).

Definition 3.1 (Variational Solution). We define u ∈W 1,2
loc (Ω) to be a variational

solution of (3.1) if u ∈ C0(Ω) ∩ C2(Ω ∩ {u > 0}), u ≥ 0 in Ω and u ≡ 0 in

Ω ∩ {xn ≤ 0}, and the first variation with respect to domain variations of the

functional

J(v) :=

∫
Ω

(
|∇v|2 − 2F (v) + xnχ{v>0}

)
dx

vanishes at v = u, i.e.

0 = − d

dε
J(u(x+ εφ(x)))|ε=0

=

∫
Ω

(
(|∇u|2 − 2F (u))div φ− 2∇uDφ∇u+ xnχ{u>0}div φ+ χ{u>0}φn

)
dx

for any φ ∈ C1
0 (Ω; Rn).

Note for future reference that for each open set D ⊂⊂ Ω there is CD < +∞ such

that ∆u+CD is a nonnegative Radon measure in D, the support of the singular part

of which (with respect to the Lebesgue measure) is contained in the set ∂{u > 0}:
by Sard’s theorem {u = δ} ∩D is for almost every δ a smooth surface. It follows
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that for every non-negative ζ ∈ C∞0 (D)

−
∫
D

(∇max(u− δ, 0) · ∇ζ − CDζ) dx

=

∫
D

ζ(χ{u>δ}∆u+ CD) dx−
∫
D∩∂{u>δ}

ζ∇u · ν dHn−1 ≥ 0,

provided that |f(u)| ≤ CD in D. Letting δ → 0 and using that u is continuous and

nonnegative in Ω, we obtain

−
∫
D

(∇u · ∇ζ − CDζ) dx ≤ 0.

Thus ∆u+CD is a nonnegative distribution in D, and the stated property follows.

Since we want to focus in the present paper on the analysis of stagnation points,

we will assume that everything is smooth away from xn = 0, however this assump-

tion may be weakened considerably by using in {xn > 0} regularity theory for the

Bernoulli free boundary problem (see [2] for regularity theory in the case f = 0

—which could effortlessly be perturbed to include the case of bounded f— and see

[5] for another regularity approach which already includes the perturbation).

Definition 3.2 (Weak Solution). We define u ∈ W 1,2
loc (Ω) to be a weak solution

of (3.1) if the following are satisfied: u is a variational solution of (3.1) and the

topological free boundary ∂{u > 0} ∩ Ω ∩ {xn > 0} is locally a C2,α-surface.

Remark 3.3. (i) It follows that in {xn > 0} the solution is a classical solution of

(3.1).

(ii) For any weak solution u of (3.1) such that

|∇u|2 ≤ Cx+
n locally in Ω,

u is a variational solution of (3.1), χ{u>0} is locally in {xn > 0} a function of

bounded variation, and the total variation measure |∇χ{u>0}| satisfies

r1/2−n
∫
Br(y)

√
xn d|∇χ{u>0}| ≤ C0

for all Br(y) ⊂⊂ Ω such that yn = 0 (see [23, Lemma 3.4]).

A first tool in our analysis is an extension of the monotonicity formula in [25],

[24, Theorem 3.1] to the boundary case. The roots of those monotonicity formulas

are harmonic mappings ([18], [16]) and blow-up ([14]).

Theorem 3.4 (Monotonicity Formula). Let u be a variational solution of (3.1),

let x0 ∈ Ω such that x0
n = 0, and let δ := dist(x0, ∂Ω)/2. Let, for any r ∈ (0, δ),

Ix0,u(r) = I(r) = r−n−1

∫
Br(x0)

(
|∇u|2 − uf(u) + xnχ{u>0}

)
dx, (3.2)

Jx0,u(r) = J(r) = r−n−2

∫
∂Br(x0)

u2 dHn−1, (3.3)
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Mx0,u(r) = M(r) = I(r)− 3

2
J(r) (3.4)

and

Kx0,u(r) = K(r) = r

∫
∂Br(x0)

(2F (u)− uf(u)) dHn−1

+

∫
Br(x0)

((n− 2)uf(u)− 2nF (u)) dx. (3.5)

Then, for a.e. r ∈ (0, δ),

I ′(r) = r−n−2

(
2r

∫
∂Br(x0)

(∇u · ν)2 dHn−1 − 3

∫
∂Br(x0)

u∇u · ν dHn−1

)
+r−n−2K(r), (3.6)

J ′(r) = r−n−3

(
2r

∫
∂Br(x0)

u∇u · ν dHn−1 − 3

∫
∂Br(x0)

u2 dHn−1

)
(3.7)

and

M ′(r) = 2r−n−1

∫
∂Br(x0)

(
∇u · ν − 3

2

u

r

)2

dHn−1 + r−n−2K(r). (3.8)

Proof. The identity (3.7) can be easily checked directly, being valid for any function

u ∈W 1,2
loc (Ω) (not necessarily a variational solution of (3.1)).

For small positive κ and ηκ(t) := max(0,min(1, r−tκ )), we take after approxima-

tion φκ(x) := ηκ(|x−x0|)(x−x0) as a test function in the definition of a variational

solution. We obtain

0 =

∫
Ω

(
|∇u|2 − 2F (u) + xnχ{u>0}

) (
nηκ(|x− x0|) + η′κ(|x− x0|)|x− x0|

)
dx

− 2

∫
Ω

(
|∇u|2ηκ(|x− x0|) +∇u · x− x

0

|x− x0|
∇u · x− x

0

|x− x0|
η′(|x− x0|)|x− x0|

)
dx

+

∫
Ω

ηκ(|x− x0|)xnχ{u>0} dx.

Passing to the limit as κ→ 0, we obtain, for a.e. r ∈ (0, δ),

0 =n

∫
Br(x0)

(
|∇u|2 − 2F (u) + xnχ{u>0}

)
dx (3.9)

− r
∫
∂Br(x0)

(
|∇u|2 − 2F (u) + xnχ{u>0}

)
dHn−1

+ 2r

∫
∂Br(x0)

(∇u · ν)2 dHn−1 − 2

∫
Br(x0)

|∇u|2 dx

+

∫
Br(x0)

xnχ{u>0} dx.
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Also observe that letting ε→ 0 in∫
Br(x0)

∇u · ∇max(u− ε, 0)1+ε dx =

∫
Br(x0)

f(u) max(u− ε, 0)1+ε dx

+

∫
∂Br(x0)

max(u− ε, 0)1+ε∇u · ν dHn−1

for a.e. r ∈ (0, δ), we obtain the integration by parts formula∫
Br(x0)

(
|∇u|2 − uf(u)

)
dx =

∫
∂Br(x0)

u∇u · ν dHn−1 (3.10)

for a.e. r ∈ (0, δ).

Note also that

I ′(r) = −(n+ 1)r−n−2

∫
Br(x0)

(|∇u|2 − uf(u) + xnχ{u>0}) dx

+ r−n−1

∫
∂Br(x0)

(|∇u|2 − uf(u) + xnχ{u>0}) dHn−1. (3.11)

Using (3.9) and (3.10) in (3.11), we obtain (3.6). Finally, (3.8) follows immediately

by combining (3.6) and (3.7). �

4. Densities

From now on we assume

Assumption 4.1. Let u satisfy

|∇u|2 ≤ Cx+
n locally in Ω.

Remark 4.2. Note that Assumption 4.1 implies that

u(x) ≤ C1x
3/2
n

and that in the case x0
n = 0,

r−n−2|K(r)| ≤ C2
1√
r
,

where C2 depends on x0 but is locally uniformly bounded.

Remark 4.3. Unfortunately the combination of vorticity and gravity makes it

hard to obtain the estimate

|∇u|2 + 2F (u)− x+
n ≤ 0 (4.1)

related to the Rayleigh-Taylor condition in the time-dependent problem, but the

weaker estimate Assumption 4.1 has been verified under certain assumptions in

[22].

We first show that the function Mx0,u has a right limit Mx0,u(0+), of which we

derive structural properties.
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Lemma 4.4. Let u be a variational solution of (3.1) satisfying Assumption 4.1.

Then:

(i) Let x0 ∈ Ω be such that x0
n = 0. Then the limit Mx0,u(0+) exists and is

finite. (Note that u = 0 in {xn = 0} by assumption.)

(ii) Let x0 ∈ Ω be such that x0
n = 0, and let 0 < rm → 0+ as m → ∞ be a

sequence such that the blow-up sequence

um(x) :=
u(x0 + rmx)

r
3/2
m

(4.2)

converges weakly in W 1,2
loc (Rn) to a blow-up limit u0. Then u0 is a homogeneous

function of degree 3/2, i.e.

u0(λx) = λ3/2u0(x) for any x ∈ Rn and λ > 0.

(iii) Let um be a converging sequence of (ii). Then um converges strongly in

W 1,2
loc (Rn).

(iv) Let x0 ∈ Ω be such that x0
n = 0. Then

Mx0,u(0+) = lim
r→0+

r−n−1

∫
Br(x0)

x+
nχ{u>0} dx,

and in particular Mx0,u(0+) ∈ [0,+∞). Moreover, Mx0,u(0+) = 0 implies that

u0 = 0 in Rn for each blow-up limit u0 of (ii).

(v) The function x 7→Mx,u(0+) is upper semicontinuous in {xn = 0}.
(vi) Let um be a sequence of variational solutions of (3.1) with nonlinearity fm

in a domain Ωm, where

Ω1 ⊂ Ω2 ⊂ ... ⊂ Ωm ⊂ Ωm+1 ⊂ ... and

∞⋃
m=1

Ωm = Rn,

such that um converges strongly to u0 in W 1,2
loc (Rn), χ{um>0} converges weakly in

L2
loc(Rn) to χ0, and fm(um) converges to 0 locally uniformly in Rn. Then u0

is a variational solution of (3.1) with nonlinearity f = 0 in Rn and satisfies the

Monotonicity Formula (with f = 0), but with χ{u0>0} replaced by χ0. Moreover,

for each x0 ∈ Rn such that x0
n = 0, and all instances of χ{u0>0} replaced by χ0,

Mx0,u0
(0+) ≥ lim sup

m→∞
Mx0,um(0+).

Proof. (i): By Remark 4.2,

u(x) ≤ C2x
3/2
n locally in Ω

and

|r−n−2K(r)| ≤ C3r
−1/2 for each x0 ∈ Ω satisfying x0

n = 0. (4.3)

Thus r 7→ r−n−2K(r) is integrable at such points x0, and from Theorem 3.4 we

infer that the function Mx0,u has a finite right limit Mx0,u(0+).
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(ii): For each 0 < σ <∞ the sequence um is by assumption bounded in C0,1(Bσ).

For any 0 < % < σ <∞, we write the identity (3.8) in integral form as

2

∫ σ

%

r−n−1

∫
∂Br(x0)

(
∇u · ν − 3

2

u

r

)2

dHn−1dr

= M(σ)−M(%)−
∫ σ

%

r−n−2K(r) dr. (4.4)

It follows by rescaling in (4.4) that

2

∫
Bσ(0)\B%(0)

|x|−n−3

(
∇um(x) · x− 3

2
um(x)

)2

dx

≤M(rmσ)−M(rm%) +

∫ rmσ

rm%

r−n−2|K(r)| dr → 0 as m→∞,

which yields the desired homogeneity of u0.

(iii): In order to show strong convergence of um in W 1,2
loc (Rn), it is sufficient, in

view of the weak L2-convergence of ∇um, to show that

lim sup
m→∞

∫
Rn

|∇um|2η dx ≤
∫
Rn

|∇u0|2η dx

for each η ∈ C1
0 (Rn). Let δ := dist(x0, ∂Ω)/2. Then, for each m, um is a variational

solution of

∆um = −r1/2
m f(r3/2

m um) in Bδ/rm ∩ {um > 0}, (4.5)

|∇um|2 = xn on Bδ/rm ∩ ∂{um > 0}.

Since um converges to u0 locally uniformly, it follows from (4.5) that u0 is harmonic

in {u0 > 0}. Also, using the uniform convergence, the continuity of u0 and its

harmonicity in {u0 > 0} we obtain as in the proof of (3.10) that∫
Rn

|∇um|2η dx = −
∫
Rn

um

(
∇um · ∇η − r1/2

m f(r3/2
m um)η

)
dx

→ −
∫
Rn

u0∇u0 · ∇η dx =

∫
Rn

|∇u0|2η dx

as m → ∞. It therefore follows that um converges to u0 strongly in W 1,2
loc (Rn) as

m→∞.

(iv): Let us take a sequence rm → 0+ such that um defined in (4.2) converges

weakly in W 1,2
loc (Rn) to a function u0. Note that by the definition of a variational

solution, um and u0 are identically zero in xn ≤ 0. Using (iii) and the homogeneity
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of u0, we obtain that

lim
m→∞

Mx0,u(rm) =

∫
B1

|∇u0|2 dx−
3

2

∫
∂B1

u2
0 dHn−1

+ lim
r→0+

r−n−1

∫
Br(x0)

x+
nχ{u>0} dx

= lim
r→0+

r−n−1

∫
Br(x0)

x+
nχ{u>0} dx.

Thus Mx0,u(0+) ≥ 0, and equality implies that for each τ > 0, um converges to 0

in measure in the set {xn > τ} as m→∞, and consequently u0 = 0 in Rn.

(v): For each δ > 0 we obtain from the Monotonicity Formula (Theorem 3.4),

Remark 4.2 as well as the fact that limx→x0 Mx,u(r) = Mx0,u(r) for r > 0, that

Mx,u(0+) ≤Mx,u(r) + C
√
r ≤Mx0,u(r) +

δ

2
≤Mx0,u(0+) + δ,

if we choose for fixed x0 first r > 0 and then |x− x0| small enough.

(vi) The fact that u0 is a variational solution of (3.1) and satisfies the Monotonic-

ity Formula in the sense indicated follows directly from the convergence assumption.

The proof for the rest of the claim follows by the same argument as in (v).

�

In the two-dimensional case, we identify the possible values of Mx0,u(0+), and

classify the blow-up limits at x0 in terms of the value of Mx0,u(0+), which leads to

a proof of asymptotic homogeneity of the solution.

Theorem 4.5 (Two-dimensional Case). Let n = 2, let u be a variational solution

of (3.1) satisfying Assumption 4.1, let x0 ∈ Ω be such that x0
2 = 0, and suppose

that

r−3/2

∫
Br(x0)

√
x2 d|∇χ{u>0}| ≤ C0

for all r > 0 such that Br(x
0) ⊂⊂ Ω. Then the following hold:

(i)

M(0+) ∈
{

0,

∫
B1

x+
2 χ{x:π/6<θ<5π/6} dx,

∫
B1

x+
2 dx

}
.

(ii) If M(0+) =
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx, then

u(x0 + rx)

r3/2
→
√

2

3
ρ3/2 cos(

3

2
(min(max(θ,

π

6
),

5π

6
)− π

2
)) as r → 0+

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x = (ρ cos θ, ρ sin θ).

(iii) If M(0+) ∈ {0,
∫
B1
x+

2 dx}, then

u(x0 + rx)

r3/2
→ 0 as r → 0+,

strongly in W 1,2
loc (R2) and locally uniformly on R2.
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Proof. Consider a blow-up sequence um as in Lemma 4.4 (ii), where rm → 0+, with

blow-up limit u0. Because of the strong convergence of um to u0 in W 1,2
loc (R2) and

the compact embedding from BV into L1, u0 is a homogeneous solution of

0 =

∫
R2

(
|∇u0|2div φ− 2∇u0Dφ∇u0

)
dx+

∫
R2

(
x2χ0div φ+ χ0φ2

)
dx (4.6)

for any φ ∈ C1
0 (R2; R2), where χ0 is the strong L1

loc-limit of χ{um>0} along a

subsequence. The values of the function χ0 are almost everywhere in {0, 1}, and

the locally uniform convergence of um to u0 implies that χ0 = 1 in {u0 > 0}.
The homogeneity of u0 and its harmonicity in {u0 > 0} show that each connected

component of {u0 > 0} is a cone with vertex at the origin and of opening angle

120◦. Since u = 0 in {x2 ≤ 0}, this shows that {u0 > 0} has at most one connected

component. Note also that (4.6) implies that χ0 is constant in each open connected

set G ⊂ {u0 = 0}◦ that does not intersect {x2 = 0}.
Consider first the case when {u0 > 0} is non-empty, and is therefore a cone as

described above. Let z be an arbitrary point in ∂{u0 > 0} \ {0}. Note that the

normal to ∂{u0 > 0} has the constant value ν(z) in Bδ(z) ∩ ∂{u0 > 0} for some

δ > 0. Plugging in φ(x) := η(x)ν(z) into (4.6), where η ∈ C1
0 (Bδ(z)) is arbitrary,

and integrating by parts, it follows that

0 =

∫
∂{u0>0}

(
−|∇u0|2 + x2(1− χ̄0)

)
η dH1. (4.7)

Here χ̄0 denotes the constant value of χ0 in the respective connected component of

{u0 = 0}◦∩{x2 6= 0}. Note that by Hopf’s principle, ∇u0 ·ν 6= 0 on Bδ(z)∩∂{u0 >

0}. It follows therefore that χ̄0 6= 1, and hence necessarily χ̄0 = 0. We deduce

from (4.7) that |∇u0|2 = x2 on ∂{u0 > 0}. Computing the solution u0 of the

corresponding ordinary differential equation on ∂B1 yields that

u0(x) =

√
2

3
ρ3/2 cos(

3

2
(min(max(θ,

π

6
),

5π

6
)− π

2
)), where x = (ρ cos θ, ρ sin θ),

and that M(0+) =
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx in the case under consideration.

Consider now the case u0 = 0. It follows from (4.6) that χ0 is constant in

{x2 > 0}. Its value may be either 0 in which case M(0+) = 0, or 1 in which case

M(0+) =
∫
B1
x+

2 dx.

Since the limit M(0+) exists, the above proof shows that it can only take one

of the three distinct values
{

0,
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx,
∫
B1
x+

2 dx
}

. The above

proof also yields, for each possible value of M(0+), the existence of a unique blow-

up limit, as claimed in the statement of the Theorem. �

Under the assumption that the free boundary is locally an injective curve, we

now derive its asymptotic behavior as it approaches a stagnation point.

Theorem 4.6 (Curve Case). Let n = 2, let u be a weak solution of (3.1) satisfying

Assumption 4.1, and let x0 ∈ Ω be such that x0
2 = 0. Suppose in addition that
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∂{u > 0} is in a neighborhood of x0 a continuous injective curve σ : (−t0, t0)→ R2

such that σ = (σ1, σ2) and σ(0) = x0. Then the following hold:

(i) If M(0+) =
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx, then (cf. Figure 4) σ1(t) 6= x0
1 in

(−t1, t1) \ {0} and, depending on the parametrization, either

lim
t→0+

σ2(t)

σ1(t)− x0
1

=
1√
3

and lim
t→0−

σ2(t)

σ1(t)− x0
1

= − 1√
3
,

or

lim
t→0+

σ2(t)

σ1(t)− x0
1

= − 1√
3

and lim
t→0−

σ2(t)

σ1(t)− x0
1

=
1√
3
.

u > 0

u = 0

Figure 4. Stokes corner

(ii) If M(0+) =
∫
B1
x+

2 dx, then (cf. Figure 5) σ1(t) 6= x0
1 in (−t1, t1) \ {0},

σ1 − x0
1 changes sign at t = 0 and

lim
t→0

σ2(t)

σ1(t)− x0
1

= 0.



THE STOKES CONJECTURE FOR WAVES WITH VORTICITY 17

u > 0

u = 0

Figure 5. Full density singularity

(iii) If M(0+) = 0, then (cf. Figure 6 and Figure 7) σ1(t) 6= x0
1 in (−t1, t1)\{0},

σ1 − x0
1 does not change its sign at t = 0, and

lim
t→0

σ2(t)

σ1(t)− x0
1

= 0.
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u = 0

u = 0

Figure 6. Left cusp

u = 0

u = 0

Figure 7. Right cusp

Proof. We may assume that x0
1 = 0. Moreover, for each y ∈ R2 we define arg y as

the complex argument of y, and we define the sets

L± := {θ0 ∈ [0, π] : there is tm → 0± such that arg σ(tm)→ θ0 as m→∞}.
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Step 1: Both L+ and L− are subsets of {0, π/6, 5π/6, π}.

Indeed, suppose towards a contradiction that a sequence 0 6= tm → 0,m → ∞
exists such that arg σ(tm) → θ0 ∈ (L+ ∪ L−) \ {0, π/6, 5π/6, π}, let rm := |σ(tm)|
and let

um(x) :=
u(rmx)

r
3/2
m

.

For each ρ > 0 such that B̃ := Bρ(cos θ0, sin θ0) satisfies

∅ = B̃ ∩
(
{(x, 0) : x ∈ R} ∪ {(x, |x|/

√
3) : x ∈ R}

)
,

we infer from the formula for the unique blow-up limit u0 (see Theorem 4.5) that

the signed measure

∆um(B̃)→ ∆u0(B̃) = 0 as m→∞.

On the other hand,

∆um = −r1/2
m f(r3/2

m um) +
√
x2H1b∂{um>0},

which implies, since B̃ ∩ ∂{um > 0} contains a curve of length at least 2ρ − o(1),

that

0← ∆um(B̃) ≥ c(θ0, ρ)− C1r
1/2
m as m→∞,

where c(θ0, ρ) > 0, a contradiction. Thus the property claimed in Step 1 holds.

Step 2: It follows that σ1(t) 6= 0 for all sufficiently small t 6= 0. Now a continuity

argument yields that both L+ and L− are connected sets. Consequently

`+ := lim
t→0+

arg σ(t)

exists and is contained in the set {0, π/6, 5π/6, π}, and

`− := lim
t→0−

arg σ(t)

exists and is contained in the set {0, π/6, 5π/6, π}.
Step 3: In the case M(0+) =

∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx, we know now from the for-

mula for u0 that ∆u0(B1/10(
√

3/2, 1/2)) > 0 and that ∆u0(B1/10(−
√

3/2, 1/2)) >

0. It follows that the set {`+, `−} contains both π/6 and 5π/6. But then the sets

{`+, `−} and {π/6, 5π/6} must be equal, and the fact that u = 0 on x2 = 0 implies

case (i) of the Theorem.

Step 4: In the caseM(0+) ∈ {0,
∫
B1
x+

2 dx}, we have that ∆u0(B1/10(
√

3/2, 1/2)) =

0, which implies that `+, `− 6∈ {π/6, 5π/6}. Thus `+, `− ∈ {0, π}. Using the fact

that u = 0 on x2 = 0, we obtain in the case `+ 6= `− that M(0+) =
∫
B1
x+

2 dx and

in the case `+ = `− that M(0+) = 0. Together, the last two properties prove case

(ii) and case (iii) of the Theorem. �
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Remark 4.7. In [23] we used a strong version of the Rayleigh-Taylor condition

(which is always valid in the case of zero vorticity) in order to prove that the cusps

of case (iii) are not possible. Unfortunately we do not have the Rayleigh-Taylor

condition (4.1) in the case with nonzero vorticity, and the method of [23] breaks

down here. Still we conjecture that the cusps in case (iii) are not possible when

assuming the Rayleigh-Taylor condition.

5. Partial regularity at non-degenerate points

Definition 5.1 (Stagnation Points). Let u be a variational solution of (3.1). We

call Su := {x ∈ Ω : xn = 0 and x ∈ ∂{u > 0}} the set of stagnation points.

Throughout the rest of this section we assume that n = 2.

Definition 5.2 (Non-degeneracy). Let u be a variational solution of (3.1).

We say that a point x0 ∈ Ω ∩ ∂{u > 0} ∩ {x2 = 0} is degenerate if

u(x0 + rx)

r3/2
→ 0 as r → 0+,

strongly in W 1,2
loc (R2). Otherwise we call x0 ∈ Ω ∩ ∂{u > 0} ∩ {x2 = 0} non-

degenerate.

Remark 5.3. Note that Theorem 4.5 gives alternative characterizations of de-

generacy/non-degeneracy in terms of the blow-up limit or the density.

Proposition 5.4 (Partial regularity in two dimensions). Let n = 2, let u be a

variational solution of (3.1) satisfying Assumption 4.1 and suppose that

r−3/2

∫
Br(y)

√
x2 d|∇χ{u>0}| ≤ C0

for all Br(y) ⊂⊂ Ω such that y2 = 0. Let x0 ∈ Su be a non-degenerate point. Then

in some open neighborhood, x0 is the only non-degenerate stagnation point.

Proof. Suppose towards a contradiction that there exists a sequence xm of non-

degenerate stagnation points converging to x0, with xm 6= x0 for all m. Choosing

rm := |xm − x0|, there is no loss of generality in assuming that the sequence

(xm − x0)/rm is constant, with value z ∈ {(−1, 0), (1, 0)}. Consider the blow-up

sequence

um(x) =
u(x0 + rmx)

r
3/2
m

.

Since xm is a non-degenerate point for u, it follows that z is a non-degenerate point

for um, and therefore Theorem 4.5 shows that

Mz,um(0+) =

∫
B1

x+
2 χ{x:π/6<θ<5π/6} dx.
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By the proof of Theorem 4.5(ii), the sequence um converges strongly in W 1,2
loc (R2)

to the homogeneous solution

u0(ρ, θ) =

√
2

3
ρ3/2 cos(

3

2
(min(max(θ,

π

6
),

5π

6
)− π

2
)),

while χ{um>0} converges strongly in L1
loc(R2) to χ{u0>0}. It follows from Lemma

4.4 (vi) that

Mz,u0(0+) ≥ lim sup
m→∞

Mz,um(0+) =

∫
B1

x+
2 χ{x:π/6<θ<5π/6} dx,

contradicting the fact that Mz,u0(0+) = 0. �

Remark 5.5. It follows that in two dimensions Su can be decomposed into a

countable set of “Stokes points” with the asymptotics as in Theorem 4.5 (ii), ac-

cumulating (if at all) only at degenerate stagnation points, and a set of degenerate

stagnation points which will be analyzed in the following sections.

6. Degenerate points and frequency formula

Definition 6.1. Let u be a variational solution of (3.1). We define

Σu := {x0 ∈ Su : Mx0,u(0+) =

∫
B1

x+
n dx}.

Remark 6.2. The set Σu is closed, as a consequence of the upper semicontinuity

Lemma 4.4 (v) as well as the characterization of the set of values of Mx0,u(0+) in

Theorem 4.5.

Remark 6.3. In the case of two dimensions and {u > 0} being a supergraph or

a Lipschitz set (each of the latter assumptions excluding the case Mx0,u(0+) = 0),

we infer from Theorem 4.5 that the set Su \ Σu equals the set of non-degenerate

stagnation points and is according to Proposition 5.4 a finite or countable set.

Remark 6.4. (i) In the case −f ≡ c > 0, the function u(x) = c
2x

2
n is a weak

solution of (3.1). In this example, Σu = {xn = 0}. Similarly, one may prove that

for any f such that f(0) < 0, there exists an explicit solution u(x) = u(xn) such

that Σu = {xn = 0}. Thus degenerate points may exist in the case f(0) < 0.

(ii) The following Proposition shows that Σu = ∅ in the case when n = 2 and

f ≥ 0 in a right neighborhood of 0 (in particular this is satisfied when f(0) > 0).

Proposition 6.5. Let n = 2, let u be a weak solution of (3.1) satisfying Assumption

4.1, and let x0 ∈ Su. Suppose in addition that ∂{u > 0} is an injective curve in a

neighborhood of x0, and the nonlinearity f satisfies f ≥ 0 in a right neighborhood

of 0. Then M(0+) 6=
∫
B1
x+

2 dx.

Proof. For the sake of completeness we repeat the proof of [22, Proposition 5.12]

which in turn is based on the following particular case of a result of Oddson [13],

which we quote for easy reference.
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Lemma 6.6. Let r0 > 0 and µ > 1. Let

G := {(ρ cos θ, ρ sin θ) : 0 < ρ < r0, |θ| < π/(2µ)}.

Let w ∈ C2(G) ∩ C(G) be a superharmonic function in G, such that w(0, 0) = 0

and w > 0 in G \ {(0, 0)}. Then there exists κ > 0 such that

w(ρ cos θ, ρ sin θ) ≥ κρµ cosµθ in G,

and in particular

w(ρ, 0) ≥ κρµ for all ρ ∈ (0, r0).

Suppose for a contradiction that M(0+) =
∫
B1
x+

2 dx. Then, the assumption

on f and Theorem 4.6 yield the existence of r0 > 0 and α ∈ (0, π/6), such that

u is superharmonic in {u > 0} ∩ Br0 and G \ {(0, 0)} ⊂ {u > 0} ∩ Br0 , where

G := {(ρ cos θ, ρ sin θ) : 0 < ρ < r0, α < θ < π − α}. After a suitable rotation, we

may apply Lemma 6.6, obtaining the existence κ > 0 such that

u(0, x2) ≥ κxµ2 for all x2 ∈ (0, r0),

where µ := π/(π − 2α), so that µ < 3/2. But this contradicts the estimate

u(0, x2) ≤ Cx3/2
2 ,

which is a consequence of the Bernstein estimate assumption 4.1. �

Motivated by Remark 6.4, we will focus in the present paper on the case f(0) = 0.

Theorem 6.7 (Frequency Formula). Let u be a variational solution of (3.1) sat-

isfying Assumption 4.1, let x0 be a stagnation point, and let δ := dist(x0, ∂Ω)/2.

Let

Dx0,u(r) = D(r) =
r
∫
Br(x0)

(|∇u|2 − uf(u)) dx∫
∂Br(x0)

u2 dHn−1

and

Vx0,u(r) = V (r) =
r
∫
Br(x0)

x+
n (1− χ{u>0}) dx∫

∂Br(x0)
u2 dHn−1

.

Then the “frequency”

Hx0,u(r) = H(r) = D(r)− V (r)

=
r
∫
Br(x0)

(
|∇u|2 − uf(u) + x+

n (χ{u>0} − 1)
)
dx∫

∂Br(x0)
u2 dHn−1
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satisfies for a.e. r ∈ (0, δ) the identities

H ′(r)

=
2

r

∫
∂Br(x0)

 r(∇u · ν)(∫
∂Br(x0)

u2 dHn−1
)1/2

−D(r)
u(∫

∂Br(x0)
u2 dHn−1

)1/2


2

dHn−1

+
2

r
V 2(r) +

2

r
V (r)

(
H(r)− 3

2

)
+

K(r)∫
∂Br(x0)

u2 dHn−1
(6.1)

and

H ′(r)

=
2

r

∫
∂Br(x0)

 r(∇u · ν)(∫
∂Br(x0)

u2 dHn−1
)1/2

−H(r)
u(∫

∂Br(x0)
u2 dHn−1

)1/2


2

dHn−1

+
2

r
V (r)

(
H(r)− 3

2

)
+

K(r)∫
∂Br(x0)

u2 dHn−1
; (6.2)

here

K(r) = r

∫
∂Br(x0)

(2F (u)− uf(u)) dHn−1

+

∫
Br(x0)

((n− 2)uf(u)− 2nF (u)) dx

is the function defined in Theorem 3.4.

Remark 6.8. The root of this formula is the classical frequency formula of F.

Almgren for Q-valued harmonic functions [1]. Almgren’s formula has subsequently

been extended to various perturbations. Note however that while our formula may

look like a perturbation of the “linear” formula for Q-valued harmonic functions,

it is in fact a truly nonlinear formula.

Proof. Note that, for all r ∈ (0, δ),

H(r) =
I(r)−

∫
B1
x+
n dx

J(r)
.

Hence, for a.e. r ∈ (0, δ),

H ′(r) =
I ′(r)

J(r)
−

(I(r)−
∫
B1
x+
n dx)

J(r)

J ′(r)

J(r)
,
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Using the identities (3.6) and (3.7), we therefore obtain that, for a.e. r ∈ (0, δ),

H ′(r) =

(
2r
∫
∂Br(x0)

(∇u · ν)2 dHn−1 − 3
∫
∂Br(x0)

u∇u · ν dHn−1
)

+K(r)∫
∂Br(x0)

u2 dHn−1

− (D(r)− V (r))
1

r

(
2r
∫
∂Br(x0)

u∇u · ν dHn−1 − 3
∫
∂Br(x0)

u2 dHn−1
)

∫
∂Br(x0)

u2 dHn−1

=
2

r

(
r2
∫
∂Br(x0)

(∇u · ν)2 dHn−1∫
∂Br(x0)

u2 dHn−1
− 3

2
D(r)

)

− 2

r
(D(r)− V (r))

(
D(r)− 3

2

)
+

K(r)∫
∂Br(x0)

u2 dHn−1
, (6.3)

where we have also used the fact, which follows from (3.10), that

D(r) =
r
∫
∂Br(x0)

u∇u · ν dHn−1∫
∂Br(x0)

u2 dHn−1
. (6.4)

Identity (6.1) now follows by merely rearranging (6.3), making use again of (6.4)

and the fact that D(r) = V (r) +H(r).

Since (6.1) holds, it follows by inspection that (6.2) holds if and only if∫
∂Br(x0)

[r(∇u · ν)−D(r)u]
2
dHn−1 + V 2(r)

∫
∂Br(x0)

u2 dHn−1

=

∫
∂Br(x0)

[r(∇u · ν)−H(r)u]
2
dHn−1. (6.5)

However, (6.5) is easily verified as a consequence of (6.4) and the fact that D(r) =

H(r) + V (r). In conclusion, identity (6.2) also holds. �

The following lemma is motivated by [9, (4.11)].

Lemma 6.9. Let u be a variational solution of (3.1). Then

r

∫
∂Br(x0)

u2 dHn−1 =

∫
Br(x0)

(
nu2 + (|∇u|2 − uf(u))(r2 − |x|2)

)
dx. (6.6)

Proof. As ∫
Br(x0)

2nu2 dx = −
∫
Br(x0)

u2∆(r2 − |x|2) dx,

a proof can be obtained integrating by parts twice. �

From now on we make the following assumption concerning the growth of f :

Assumption 6.10. There exists a constant C < +∞ such that

|f(z)| ≤ Cz for all z ∈ (0, z0). (6.7)
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Note that when f is a C1 function, the above is a consequence of f(0) = 0.

Assumption 6.10 also implies that

|F (z)| ≤ Cz2/2 for all z ∈ (0, z0).

As a corollary of Lemma 6.9 we obtain thus:

Corollary 6.11. Let u be a variational solution of (3.1) such that Assumption 4.1

and Assumption 6.10 hold. Then there exists r0 > 0 such that

r

∫
∂Br(x0)

u2 dHn−1 ≥
∫
Br(x0)

u2 for all r ∈ (0, r0)

and

|K(r)| ≤ C0r

∫
∂Br(x0)

u2 for all r ∈ (0, r0). (6.8)

Theorem 6.12. Let u be a variational solution of (3.1) such that Assumption 4.1

and Assumption 6.10 hold, let x0 ∈ Σu, and let δ := dist(x0, ∂Ω)/2. Then the

following hold, for some r0 ∈ (0, δ) sufficiently small:

(i) There exists a positive constant C1 such that

H(r)− 3

2
≥ −C1r

2 for all r ∈ (0, r0).

(ii) There exists a positive constant β such that

r 7→ eβr
2

J(r) is nondecreasing on (0, r0).

(iii) r 7→ 1
rV

2(r) ∈ L1(0, r0).

(iv) The function H has a right limit H(0+), where H(0+) ≥ 3/2.

(v) The function

H ′(r)−2

r

∫
∂Br(x0)

[
r(∇u · ν)(∫

∂Br(x0)
u2 dHn−1

)1/2
−H(r)

u(∫
∂Br(x0)

u2 dHn−1
)1/2

]2

dHn−1

is bounded from below by a function in L1(0, r0).

Proof. Since assumption (6.7) holds, we deduce from (3.8) using (6.8) that, for all

r sufficiently small,

I(r)− 3

2
J(r)−

∫
B1

x+
n dx ≥ −C0

∫ r

0

t−n−1

∫
∂Bt(x0)

u2 dHn−1dt. (6.9)

This implies that, for all r ∈ (0, r0),

r−n−1

∫
Br

(|∇u|2 − uf(u)) dx− 3

2
r−n−2

∫
∂Br(x0)

u2 dHn−1

≥ −C0

∫ r

0

t−n−1

∫
∂Bt(x0)

u2 dHn−1dt. (6.10)
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Let Y : (0, r0)→ R be given by

Y (r) =

∫ r

0

t−n−1

∫
∂Bt(x0)

u2 dHn−1dt.

We deduce from (3.7) and (6.10) that

d

dr

(
Y ′(r)

r

)
≥ −αY (r)

r
, (6.11)

for some positive constant α < +∞. Observe now that, as a consequence of the

Bessel type differential inequality (6.11),

d2

dr2

(
Y (r)

r1/2

)
≥

3
4 − αr

2

r5/2
Y (r) ≥ 0 for all r ∈ (0, r0), (6.12)

for some r0 sufficiently small. Thus r 7→ Y (r)/r1/2 is a convex function on (0, r0),

and since

lim
r→0+

Y (r)

r1/2
= 0,

it follows that

Y (r)

r1/2
− 0 ≤ (r − 0)

d

dr

(
Y (r)

r1/2

)
for all r ∈ (0, r0),

and therefore
3

2

Y (r)

r
≤ Y ′(r) for all r ∈ (0, r0).

This implies, together with (6.9), that

r−n−1

∫
Br

(|∇u|2 − uf(u))− x+
n (1− χ{u>0}) dx−

3

2
r−n−2

∫
∂Br

u2 dHn−1

≥ −2

3
C0r

−n
∫
∂Br(x0)

u2 dHn−1, (6.13)

which is equivalent to (i).

Taking also into account (3.7), (6.13) also implies that, for a.e. r sufficiently

small,

J ′(r) ≥ −2βrJ(r),

for some constant β > 0, which is equivalent to (ii).

Now, using (6.8) and part (i) in (6.1), we obtain that, for a.e. r ∈ (0, r0),

H ′(r) ≥ 2

r
V 2(r)− 2C1rV (r)− C0r. (6.14)

As

2C1rV (r) ≤ 1

r
V 2(r) + C2

1r
3, (6.15)

we obtain from (6.14) that, for a.e. r ∈ (0, r0),

H ′(r) ≥ 1

r
V 2(r)− C2

1r
3 − C0r. (6.16)
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Since, by part (ii), r 7→ H(r) is bounded below as r → 0, we obtain (iii). We

also deduce from (6.16) and part (i) that H(r) has a limit as r → 0+, and that

H(0+) ≥ 3/2, thus proving (iv).

We now consider (6.2), and deduce from part (i) using (6.15) that, for a.e.

r ∈ (0, r0),

H ′(r)− 2

r

∫
∂Br(x0)

[
r(∇u · ν)(∫

∂Br(x0)
u2 dHn−1

)1/2
(6.17)

−H(r)
u(∫

∂Br(x0)
u2 dHn−1

)1/2

]2

dHn−1

≥ −2C0rV (r)− C2r

≥ −1

r
V 2(r)− C2

1r
3 − C0r, (6.18)

which, together with part (iii), proves (v). �

7. Blow-up limits

The Frequency Formula allows passing to blow-up limits.

Proposition 7.1. Let u be a variational solution of (3.1), and let x0 ∈ Σu. Then:

(i)There exist limr→0+ V (r) = 0 and limr→0+D(r) = Hx0,u(0+).

(ii) For any sequence rm → 0+ as m→∞, the sequence

vm(x) :=
u(x0 + rmx)√

r1−n
m

∫
∂Brm (x0)

u2 dHn−1
(7.1)

is bounded in W 1,2(B1).

(iii) For any sequence rm → 0+ as m → ∞ such that the sequence vm in (7.1)

converges weakly in W 1,2(B1) to a blow-up limit v0, the function v0 is homogeneous

of degree Hx0,u(0+) in B1, and satisfies

v0 ≥ 0 in B1, v0 ≡ 0 in B1 ∩ {xn ≤ 0} and

∫
∂B1

v2
0 dHn−1 = 1.

Proof. We first prove that, for any sequence rm → 0+, the sequence vm defined in

(7.1) satisfies, for every 0 < % < σ < 1,∫
Bσ\B%

|x|−n−3
[
∇vm(x) · x−Hx0,u(0+)vm(x)

]2
dx→ 0 as m→∞. (7.2)
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Indeed, for any such % and σ, it follows by scaling from (6.18) that, for every m

such that rm < δ,

∫ σ

%

2

r

∫
∂Br

 r(∇vm · ν)(∫
∂Br

v2
m dHn−1

)1/2
−H(rmr)

vm(∫
∂Br

v2
m dHn−1

)1/2


2

dHn−1 dr

≤ H(rmσ)−H(rm%) +

∫ rmσ

rm%

1

r
V 2(r) + C2

1r
3 + C0rdr → 0 as m→∞,

as a consequence of Theorem 6.12 (iv)-(v). The above implies that

∫ σ

%

2

r

∫
∂Br

 r(∇vm · ν)(∫
∂Br

v2
m dHn−1

)1/2
−H(0+)

vm(∫
∂Br

v2
m dHn−1

)1/2


2

dHn−1 dr

→ 0 as m→∞. (7.3)

Now note that, for every r ∈ (%, σ) ⊂ (0, 1) and all m as before, it follows by using

Theorem 6.12 (ii), that∫
∂Br

v2
m dHn−1 =

∫
∂Brmr(x0)

u2 dHn−1∫
∂Brm (x0)

u2 dHn−1
≤ eβr

2
m(1−r2)rn+2 → rn+2,m→∞.

Therefore (7.2) follows from (7.3), which proves our claim.

Let us also note that, as a consequence of Corollary 6.11, for each r sufficiently

small ∣∣∣∣∣D(r)−
r
∫
Br(x0)

|∇u|2 dx∫
∂Br(x0)

u2 dHn−1

∣∣∣∣∣ ≤ Cr2. (7.4)

This implies that, for any sequence rm → 0+, the sequence vm defined in (7.1)

satisfies

|D(rm)−
∫
B1

|∇vm|2 dx| ≤ Cr2
m. (7.5)

We can now prove all parts of the Proposition.

(i) Suppose towards a contradiction that (i) is not true. Let sm → 0 be such that

the sequence V (sm) is bounded away from 0. From the integrability of r 7→ 2
rV

2(r)

we obtain that

min
r∈[sm,2sm]

V (r)→ 0 as m→∞.

Let tm ∈ [sm, 2sm] be such that V (tm)→ 0 as m→∞. For the choice rm := tm for

every m, the sequence vm given by (7.1) satisfies (7.2). The fact that V (rm) → 0

implies that D(rm) is bounded, and hence, using (7.5), that vm is bounded in

W 1,2(B1). Let v0 be any weak limit of vm along a subsequence. Note that by the

compact embedding W 1,2(B1) ↪→ L2(∂B1), v0 has norm 1 on L2(∂B1), since this
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is true for vm for all m. It follows from (7.2) that v0 is homogeneous of degree

Hx0,u(0+). Note that, by using Theorem 6.12 (ii),

V (sm) =
s−n−1
m

∫
Bsm (x0)

x+
n (1− χ{u>0}) dx

s−n−2
m

∫
∂Bsm (x0)

u2 dHn−1

≤
s−n−1
m

∫
Brm (x0)

x+
n (1− χ{u>0}) dx

eβ[(r2m/4)−s2m](rm/2)−n−2
∫
∂Brm/2(x0)

u2 dHn−1

≤ e3βr2m/4

2

∫
∂Brm (x0)

u2 dHn−1∫
∂Brm/2(x0)

u2 dHn−1
V (rm)

=
e3βr2m/4

2
∫
∂B1/2

v2
m dHn−1

V (rm). (7.6)

Since, at least along a subsequence,∫
∂B1/2

v2
m dHn−1 →

∫
∂B1/2

v2
0 dHn−1 > 0,

(7.6) leads to a contradiction. It follows that indeed V (r) → 0 as r → 0+. This

implies that D(r)→ Hx0,u(0+).

(ii) Let rm be an arbitrary sequence with rm → 0+. In view of (7.5), the

boundedness of the sequence vm in W 1,2(B1) is equivalent to the boundedness of

D(rm), which is true by (i).

(iii) Let rm → 0+ be an arbitrary sequence such that vm converges weakly to

v0. The homogeneity degree Hx0,u(0+) of v0 follows directly from (7.2). The fact

that
∫
∂B1

v2
0 dHn−1 = 1 is a consequence of

∫
∂B1

v2
m dHn−1 = 1 for all m, and the

remaining claims of the Proposition are obvious. �

8. Concentration compactness in two dimensions

In the two-dimensional case we prove concentration compactness which allows us

to preserve variational solutions in the blow-up limit at degenerate points and ex-

cludes concentration. In order to do so we combine the concentration compactness

result of Evans and Müller [7] with information gained by our Frequency Formula.

In addition, we obtain strong convergence of our blow-up sequence which is nec-

essary in order to prove our main theorems. The question whether the following

Theorem holds in any dimension seems to be a hard one.

Theorem 8.1. Let n = 2, let the nonlinearity satisfy Assumption 6.10 and let u

be a variational solution of (3.1), and let x0 ∈ Σu. Let rm → 0+ be such that the

sequence vm given by (7.1) converges weakly to v0 in W 1,2(B1). Then vm converges

to v0 strongly in W 1,2
loc (B1 \ {0}), v0 is continuous on B1 and ∆v0 is a nonnegative

Radon measure satisfying v0∆v0 = 0 in the sense of Radon measures in B1.
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Proof. The proof is similar to that in [23, Theorem 9.1], but there are some subtle

changes so that we will supply the whole proof for the sake of completeness.

Note first that the homogeneity of v0 given by Proposition 7.1, together with the

fact that v0 belongs to W 1,2(B1), imply that v0 is continuous. As

∆vm(x) =
r2
m∆u(x0 + rmx)√

r−1
m

∫
∂Brm (x0)

u2 dHn−1
=

−r2
mf(u(x0 + rmx))√

r−1
m

∫
∂Brm (x0)

u2 dHn−1
(8.1)

≥ −C1
−r2

mu(x0 + rmx)√
r−1
m

∫
∂Brm (x0)

u2 dHn−1
= −C1r

2
mvm(x) for vm(x) > 0,

we obtain from the sign of the singular part of ∆vm with respect to the Lebesgue

measure that ∆vm ≥ −C1r
2
mvm in B1 in the sense of measures. From [11, Theorem

8.17] we infer therefore that

sup
Bσ

vm ≤ C2(σ)

∫
B1

vm dx

for each σ ∈ (0, 1). Consequently

∆vm ≥ −C3(σ)r2
m in Bσ (8.2)

in the sense of measures. It follows that for each nonnegative η ∈ C∞0 (B1) such

that η = 1 in B(σ+1)/2∫
B(σ+1)/2

d∆vm =

∫
B(σ+1)/2

η d∆vm ≤
∫
B1

η d∆vm + C1r
2
m

∫
B1\B(σ+1)/2

vm

=

∫
B1

vm∆η + C1r
2
m

∫
B1\B(σ+1)/2

vm ≤ C4 for all m ∈ N. (8.3)

From (8.1) and the fact that vm is bounded in L1(B1), we obtain also that ∆v0

is a nonnegative Radon measure on B1. The continuity of v0 implies therefore that

v0∆v0 is well defined as a nonnegative Radon measure on B1.

In order to apply the concentrated compactness result [7], we modify each vm to

ṽm := (vm + C3(σ)r2
m|x|2) ∗ φm ∈ C∞(B1),

where φm is a standard mollifier such that

∆ṽm ≥ 0,

∫
Bσ

d∆ṽm ≤ C2 < +∞ for all m,

and

‖vm − ṽm‖W 1,2(Bσ) → 0 as m→∞.

From [8, Chapter 4, Theorem 3] we know that ∇ṽm converges a.e. to the weak limit

∇v0, and the only possible problem is concentration of |∇ṽm|2. By [7, Theorem

1.1] and [7, Theorem 3.1] we obtain that

∂1ṽm∂2ṽm → ∂1v0∂2v0
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and

(∂1ṽm)2 − (∂2ṽm)2 → (∂1v0)2 − (∂2v0)2

in the sense of distributions on Bσ as m→∞. It follows that

∂1vm∂2vm → ∂1v0∂2v0 (8.4)

and

(∂1vm)2 − (∂2vm)2 → (∂1v0)2 − (∂2v0)2

in the sense of distributions on Bσ as m → ∞. Let us remark that this alone

would allow us to pass to the limit in the domain variation formula for vm in the

set {x2 > 0}.
Observe now that (7.2) shows that for each 0 < % < σ

∇vm(x) · x−Hx0,u(0+)vm(x)→ 0

strongly in L2(Bσ \B%) as m→∞. It follows that

∂1vmx1 + ∂2vmx2 → ∂1v0x1 + ∂2v0x2

strongly in L2(Bσ \B%) as m→∞. But then∫
Bσ\B%

(∂1vm∂1vmx1 + ∂1vm∂2vmx2)η dx

→
∫
Bσ\B%

(∂1v0∂1v0x1 + ∂1v0∂2v0x2)η dx

for each η ∈ C0
0 (Bσ \B%) as m→∞. Using (8.4), we obtain that∫

Bσ\B%
(∂1vm)2x1η dx→

∫
Bσ\B%

(∂1v0)2x1η dx

for each 0 ≤ η ∈ C0
0 ((Bσ\B%)∩{x1 > 0}) and for each 0 ≥ η ∈ C0

0 ((Bσ\B%)∩{x1 <

0}) as m → ∞. Repeating the above procedure three times for rotated sequences

of solutions (by 45 degrees) yields that ∇vm converges strongly in L2
loc(Bσ \ B%).

Since σ and % with 0 < % < σ < 1 were arbitrary, it follows that ∇vm converges to

∇v0 strongly in L2
loc(B1 \ {0}).

As a consequence of the strong convergence and Assumption 6.10, we obtain

now, using the fact that the singular part of ∆vm lives on a subset of {vm = 0},
that ∣∣∣∣∫

B1

∇(ηv0) · ∇v0 dx

∣∣∣∣← ∣∣∣∣∫
B1

∇(ηvm) · ∇vm dx
∣∣∣∣

≤ C1r
2
m

∫
B1

ηv2
m dx→ 0,m→∞ for all η ∈ C1

0 (B1 \ {0}).

Combined with the fact that v0 = 0 in B1∩{x2 ≤ 0} and the fact that the singular

part of ∆v0 lives on a subset of {v0 = 0} ∪ {x2 = 0}, this proves that v0∆v0 = 0 in

the sense of Radon measures on B1. �
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9. Degenerate points in two dimensions

Theorem 9.1. Let n = 2, let the nonlinearity satisfy Assumption 6.10 and let u

be a variational solution of (3.1). Then at each point x0 of the set Σu there exists

an integer N(x0) ≥ 2 such that

Hx0,u(0+) = N(x0)

and

u(x0 + rx)√
r−1

∫
∂Br(x0)

u2 dH1
→ ρN(x0)| sin(N(x0) min(max(θ, 0), π))|√∫ π

0
sin2(N(x0)θ)dθ

as r → 0+,

strongly in W 1,2
loc (B1 \ {0}) and weakly in W 1,2(B1), where x = (ρ cos θ, ρ sin θ).

Proof. Let rm → 0+ be an arbitrary sequence such that the sequence vm given

by (7.1) converges weakly in W 1,2(B1) to a limit v0. By Proposition 7.1 (iii)

and Theorem 8.1, v0 6≡ 0, v0 is homogeneous of degree Hx0,u(0+) ≥ 3/2, v0 is

continuous, v0 ≥ 0 and v0 ≡ 0 in {x2 ≤ 0}, v0∆v0 = 0 in B1 as a Radon measure,

and the convergence of vm to v0 is strong in W 1,2
loc (B1 \ {0}). Moreover, the strong

convergence of vm and the fact proved in Proposition 7.1 (i) that V (rm) → 0 as

m→∞ imply that

0 =

∫
B1

(
|∇v0|2div φ− 2∇v0Dφ∇v0

)
dx

for every φ ∈ C1
0 (B1 ∩{x2 > 0}; R2). It follows that at each polar coordinate point

(1, θ) ∈ ∂B1 ∩ ∂{v0 > 0},

lim
τ→θ+

∂θv0(1, τ) = − lim
τ→θ−

∂θv0(1, τ).

Computing the solution of the ODE on ∂B1, using the homogeneity of degree

Hx0,u(0+) of v0 and the fact that
∫
∂B1

v2
0 dH1 = 1 , yields that Hx0,u(0+) must be

an integer N(x0) ≥ 2 and that

v0(ρ, θ) =
ρN(x0)| sin(N(x0) min(max(θ, 0), π))|√∫ π

0
sin2(N(x0)θ)dθ

. (9.1)

The desired conclusion follows from Proposition 7.1 (ii). �

Theorem 9.2. Let n = 2, let the nonlinearity satisfy Assumption 6.10 and let u

be a variational solution of (3.1). Then the set Σu is locally in Ω a finite set.

Proof. Suppose towards a contradiction that there is a sequence of points xm ∈ Σu

converging to x0 ∈ Ω, with xm 6= x0 for all m. From the upper semicontinuity

Lemma 4.4 (v) we infer that x0 ∈ Σu. Choosing rm := 2|xm − x0|, there is no loss

of generality in assuming that the sequence (xm − x0)/rm is constant, with value
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z ∈ {(−1/2, 0), (1/2, 0)}. Consider the blow-up sequence vm given by (7.1), and

also the sequence

um(x) =
u(x0 + rmx)

r
3/2
m

.

Note that each um is a variational solution of (4.5), and vm is a scalar multiple of

um. Since xm ∈ Σu, it follows that z ∈ Σum . Therefore, Theorem 6.12 (i) shows

that, for each m,

r

∫
Br(z)

|∇vm|2 dx ≥
(

3

2
− C1r

2

)∫
∂Br(z)

v2
m dH1 for all r ∈ (0, 1/2).

It is a consequence of Theorem 9.1 that the sequence vm converges strongly in

W 1,2(B1/4(z)) to v0 given by (9.1), hence

r

∫
Br(z)

|∇v0|2 dx ≥
(

3

2
− C1r

2

)∫
∂Br(z)

v2
0 dH1 for all r ∈ (0, 1/4).

But this contradicts the fact (which can be checked directly) that

lim
r→0+

r
∫
Br(z)

|∇v0|2 dx∫
∂Br(z)

v2
0 dH1

= 1.

�

10. Conclusion

Theorem 10.1. Let n = 2, let u be a weak solution of (3.1) satisfying Assumption

4.1, let the free boundary ∂{u > 0} be a continuous injective curve σ = (σ1, σ2)

such that σ(0) = x0 = (x0
1, 0), and assume that the nonlinearity f satisfies either

Assumption 6.10, or f ≥ 0 in a right neighborhood of 0.

(i) If Mx0,u(0+) =
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx, then the free boundary is in a

neighborhood of x0 the union of two C1-graphs of functions η1 : (x0
1 − δ, x0

1] → R

and η2 : [x0
1, x

0
1 + δ) → R which are both continuously differentiable up to x0

1 and

satisfy η′1(x0
1) = −1/

√
3 and η′2(x0

1) = 1/
√

3.

(ii) Else Mx0,u(0+) = 0, and σ1(t) 6= x0
1 in (−t1, t1) \ {0}, and σ1 − x0

1 does not

change its sign at t = 0, and

lim
t→0

σ2(t)

σ1(t)− x0
1

= 0.

If we assume in addition that either {u > 0} is a supergraph of a function in

the x2-direction or that {u > 0} is a Lipschitz set, then the set Su of stagnation

points is locally in Ω a finite set, and at each stagnation point x0 the statement in

(i) holds.

Proof. We first show that the set Σu is empty. Suppose towards a contradiction

that there exists x0 ∈ Σu. From Theorem 9.1 we infer that there exists an integer
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N(x0) ≥ 2 such that

vr(x) :=
u(x0 + rx)√

r−1
∫
∂Br(x0)

u2 dH1
(10.1)

→ ρN(x0)| sin(N(x0) min(max(θ, 0), π))|√∫ π
0

sin2(N(x0)θ)dθ
as r → 0+,

strongly in W 1,2
loc (B1 \{0}) and weakly in W 1,2(B1), where x = (ρ cos θ, ρ sin θ). On

the other hand, Theorem 4.6 (ii) implies that for any ball B̃ ⊂⊂ B1 ∩ {x2 > 0},
vr > 0 in B̃. Consequently (see (8.1))

|∆vr| ≤ C1r
2vr in B̃

for sufficiently small r. It follows that v0 is harmonic in B̃, contradicting (10.1) in

view of N(x0) ≥ 2. Hence Σu is indeed empty.

Let us consider the case Mx0,u(0+) =
∫
B1
x+

2 χ{x:π/6<θ<5π/6} dx. From Theorem

4.6 and Proposition 5.4 we infer that

u(x0 + rx)

r3/2
→
√

2

3
ρ3/2 cos(

3

2
(min(max(θ,

π

6
),

5π

6
)− π

2
)) as r → 0+, (10.2)

strongly in W 1,2
loc (R2) and locally uniformly on R2, where x = (ρ cos θ, ρ sin θ).

We assume for simplicity that x0 = 0. We will show that in a neighborhood of 0

the free boundary is the union of two C1-graphs η1 : (−δ, 0]→ R and η2 : [0, δ)→ R

which are both continuously differentiable up to 0 and satisfy η′1(0) = −1/
√

3 and

η′2(0) = 1/
√

3: as the proofs for x1 > 0 and x1 < 0 are similar, we will give only

the proof for x1 > 0.

For

v(x) :=
u(ρx)

ρ3/2

we have that

∆v(x) = −√ρf(u(ρx)) for v(x) > 0,

|∇v(x)|2 = x2 for x ∈ ∂{v > 0}.

Scaling once more for ξ ∈ ∂B1 ∩ ∂{v > 0}, which implies that for ρ small enough,

ξ2 ≥ 1
10 , we obtain for

w(x) :=
v(ξ + rx)

ξ2r

that

∆w(x) = −
√
ρr

ξ2
f(ρξ + rρx) for w(x) > 0,

|∇w(x)|2 = 1 +
rx2

ξ2
for x ∈ ∂{w > 0}.
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We are going to use a flatness-implies-regularity result of [5]. Note that although

not stated in [5], [5, Lemma 4.1] yields as in the proof of [5, Theorem 1.1] that for

each ε ∈ (0, ε0)

max(x · ν̄ − ε, 0) ≤ w ≤ max(x · ν̄ + ε, 0) in B1 (10.3)

implies that the outward unit normal νw on the free boundary ∂{w > 0} satisfies

|νw(0)− ν̄| ≤ Cε2.

Note that νw(0) = ν(ρξ). Since (10.3) is by (10.2) satisfied for ν̄ = (1/2,−
√

3/2),

r = r(ε) and every sufficiently small ρ > 0, we obtain that the outward unit normal

ν(x) on ∂{u > 0} converges to ν̄ as x→ 0, x1 > 0. It follows that the present curve

component is the graph of a C1-function (up to x1 = x0
1) in the x2-direction.

The remaining statements of the Theorem follow from Theorem 4.6. �
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