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Abstract

The migration of liquids driven by the capillary forces in a network of particulate

porous medium, such as sand, usually occurs through the voids between the particles

at high saturation levels. In this letter we study a special regime, at low and very low

saturation levels, when the transport of liquids can only take place over the rough surface

elements of the constituent particles connected by the capillary bridges formed between

them. We demonstrate, both experimentally and theoretically, that this migration or

spreading is actually a complex interplay between capillary bridges and the liquid film

situated on the rough surface area of the particles, which manifests itself macroscopically

as a rather special case of diffusion, a superfast nonlinear diffusion process, which has been

previously found only in a few applications in plasma physics. We propose a simple, but

universal, model of this phenomenon and compare predictions with our experiments.

Non-volatile persistent liquids can spread significantly in porous substrates and cover large

areas for long periods of time before they are removed by evaporation. For example, we found in

experiments that a single 0.01 ml drop of trioctyl-phosphate (TEHP) with a saturated vapour

pressure at room temperature of Ps ≃ 10−5 Pa (such low pressure guarantees the absence of

evaporation effects and persistence over a period of tens of days) may spread over Vs ≃ 6 ml

volume in ordinary sand. These numbers suggest that the saturation level s = Vl/Vv, defined as

the ratio of the total specific liquid volume Vl to the specific volume of voids in sand Vv, should

have been about 0.6 % when the wet volume reached Vs. It is intuitively obvious, assuming the

liquid partially wets the sand, that this amount may be totally accommodated on the rough

surface of the particles. But what happens before such low levels are reached, how quickly may

this happen, how far may this spreading process go, and in general how different is this regime

in comparison to the well-studied process of penetration at high saturation levels? To answer

those questions, we propose a macroscopic model describing transport at low levels of saturation

s and compare it with some of our experiments.

To understand the distinctive features of this low saturation level regime, we first consider

the morphology of the liquid domains accommodated in a porous matrix consisting of spherical

beads, the case which has been investigated in detail previously [1–3] in the context of the

mechanical properties of wet granular materials. It has been found that, depending on the
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saturation level, the liquid domains may either take the form of isolated pendular rings, or

simply liquid bridges, formed between the spherical particles at the points of contact at smin <

s < 7 − 8%, or they may coalescence into more complex structures like trimers, pentamers

and heptamers at higher saturation levels (8% < s < 24%) [1–2], Fig. 1. If the saturation

level increases any further, larger clusters are formed, such that finally at s ≈ 33% one can

find that the largest cluster comprises of about 90% of the entire volume of the liquid in the

porous matrix. The minimal value of the saturation, smin, at the onset of the capillary bridge

network, is found to be about smin ≃ 0.2%, [3], and is conditioned, to preserve connectivity of

the network, by the minimum volume of the pendular ring, which is defined by the roughness

of the particle surface.

Therefore it may be anticipated that we have at least two regimes of spreading in particulate

materials. This is along the lines of similar classifications, which may be found in the studies of

the moisture saturation levels in natural ice and industrial powders [3–4]. The first regime (also

called the pendular regime), which we are mostly interested in here, lies in the range smin < s <

24%, when the transport of liquids may only occur over the surfaces of the constituent particles.

In the second regime (also known as the funicular regime) above the critical value of s ≃ 24%,

the liquid domain is almost continuous everywhere and the penetration process has a character

of multiphase flow, which has been previously studied in soil sciences [6].

The surface of the particles is never perfect and part of the liquid accommodated in the

porous matrix is found inside the grooves of the surface roughness. So the liquid content or

saturation s should actually be split into two contributions, s = sp + sr, where sp is the liquid

inside the bridges and sr is the liquid in the film covering the rough surface of the particles.

As such, the process of migration of liquids in particulate porous media is actually an interplay

between those two components, and the surface roughness plays a crucial role.

The structure of porous systems is usually very complex and, even in the case of identical

spherical particles, rather difficult to model in detail. So we follow Darcy’s macroscopic ap-

proach, which is formulated in terms of the dynamics of approximated continuous distributions

of macroscopic pressure p, velocity v and the saturation, s, which are interrelated via Darcy’s

Law relating liquid flux q = φsv and the gradient of capillary pressure pc(s), i.e.

q = −
k(s)

µ
(∇pc − ρg0ez) . (1)

together with the equation of continuity

∂φ s

∂t
+ ∇(φ sv) = 0, (2)

where µ and ρ are the viscosity and density of the liquid, k(s) and φ(s) are the permeability

and porosity of the porous network and g0 is the acceleration due to gravity acting in the z-

direction, [6]. All the specific information about the particular porous system and associated
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complex non-linear behaviour is contained in the functional parameters of the Darcy law, that

is the coefficient of permeability k(s), which is the measure of resistance to the flow, and the

gradient of capillary pressure pc(s), which is the driving force. On this basis several different

models have been developed over the years for the needs of petroleum engineering and soil

science [6]. For simplicity, we further neglect the contribution from gravity, assuming effectively

that the Bond number ρg0L
2/σ << 1, where σ is the coefficient of surface tension and L is the

length scale of the system.

For any macroscopic elementary volume in the porous matrix, one can in principle relate the

average pressure with the average amount of liquid contained in the capillary bridges, and thus

with the saturation s. In the case of identical spheres (though not only) a relationship between

the volume of the bridge (the pendular ring) and the mean curvature of the free surface of the

bridge is available in an analytical although rather complex form [7]. Some typical dependencies

obtained numerically from the formulae derived in [7] in the gravity free case and negative

mean curvature range are illustrated in Fig. 2b for the geometry shown in Fig. 2a, as functional

dependences of the normalised mean curvature of the free surface HR0 on the normalised bridge

volume VpR
−3

0
, where R0 is the mean particle radius. Note that the case of two smooth identical

spheres in contact is equivalent to D = 0 and θ2 = π/2, Fig. 2a. In the case of almost complete

wetting liquid - solid combinations, that is when the apparent contact angle θ1 ≈ 0, the best fit

to that dependence is given by

HR0 = C0 − C1(VpR
−3

0
)γ (3)

with γ ≈ −0.5, C1 ≈ 1.3, C0 ≈ 4, which is consistent with the estimates obtained in [3].

In developing the model, we concentrate on the case of θ1 ≈ 0 and take the fit given

by (3) as the typical example, although, we note that it is still assumed that θ1 > 0. The

regime of complete wetting at θ1 = 0 is a special one, which is controlled by the gradient of

disjoining pressure. Some aspects of this special regime have been studied in [8], where it has

been established that dispersion in porous media at low complete wetting phase saturations is

actually a hyperdispersion, which may lead to anomalously fast spreading.

Now, the saturation s can be linked with the capillary pressure pc = 2σH. Indeed, sp =

α−1
p VpR

−3

0
, where αp = 4π

3Nc

φ

1−φ
, Nc being the coordination number of the liquid bridges, which

lies between 4 and 8 according to the results obtained in [3] and our experimental observations

using X-ray microtomography in sands. So, s = α−1
p VpR

−3

0 + sr, and thus

pc(s) =
2σ

R0

{

C0 − C1 αγ
p(s − sr)

γ
}

. (4)

It is obvious, in general, that the coefficient of permeability, which appears in (1), is es-

sentially defined by the properties of the surface roughness, since the liquid flux in the low
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saturation regime only occurs over the surface elements of the grains. While general theoret-

ical analysis of wetting flows over rough surfaces is essentially incomplete, one can obtain an

estimate of the permeability coefficient on the basis of results for a special case of capillary

flows in open V-shape channels. It has been found [9–10] that in this case the liquid content

is almost independent of the capillary pressure provided that |pc| < 2σ
h0

, where h0 is the height

of the groove. If we now associate the size of the capillary channel h0 with the characteristic

value, ∆R0, of the local surface departure from the mean spherical shape of the grain particle of

radius R0, then at |pc| < 2σ
∆R0

the liquid content on the rough surface of the particles in porous

matrix may be considered approximately as constant, and so are the coefficients k(s) ≈ const,

sr(s) ≈ const. Then their upper bound can be estimated as follows. The number of closely

packed capillary channels of size ∆R0 and cross sectional surface area Sc = ∆R2
0
/2 on the

perimeter of a spherical particle is NR = 2πR0/∆R0. The flux through those capillaries is on

average passing through a surface area of S0 = 4R2
0

in the porous matrix, while the flux in each

capillary qc
∼=

S2
c

8πµ
∆P , ∆P is the pressure difference, [9–10]. Then the average permeability

coefficient would be of the order of k(s) = const = k0 ≈ NRS2
c

8πS0

=
∆R3

0

256R0

. In principle, this value

should also include a correction for tortuosity, 0 < cT < 1, so that k0 ≈ cT
∆R3

0

256R0

. At the same

time sr(s) = s0
r ≈

1−φ

φ
3∆R0

2R0

. These are the main assumptions in our model. More accurate esti-

mation of the permeability and the film content as a function of s would need further analysis

of the flows over rough, and essentially curved surfaces, in the connected porous matrix.

Now, using (4) and assuming uniform porosity φ, one can cast (1) and (2) into a single

non-linear diffusion equation,
∂s

∂t
= D0∇

(

∇s

(s − s0
r)

1−γ

)

, (5)

where

D0 =
2σ

R0

k0

µ

C1|γ|α
γ
p

φ
.

Equation (5) should be complemented with the boundary condition s = sF > s0
r at the front

moving with the Darcy velocity

v = −D0

∇s

s(s − s0
r)

1−γ
.

Changing to a new variable s̃ = s − s0
r, one can transform (5) into

∂s̃

∂t
= D0∇

(

∇s̃

s̃1−γ

)

. (6)

Equation (6) for γ < 0 belongs to the so called superfast class of non-linear diffusion equa-

tions, which has been previously found only in a few applications in plasma physics [11]. The

principal difference in the behaviour of solutions between the standard porous medium equation

(PME) (for γ > 1) and the superfast diffusion equation (SFDE) (for γ < 0) is the motion of the
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front. In the case of PME, the small values of s̃ ≈ 0 at the front lead to the so called stagnation,

for which v ≈ 0 and waiting times occur before the front effectively starts moving [12]. This

is clearly not the case in SFDE problems, where, on the contrary, the front speed increases

as the boundary value s̃ decreases. This may be illustrated if we consider a one-dimensional

initial value problem for (6) on x ∈ [0,∞) with two boundary values s̃(1, 0) = s̃F = 10−2 and

s̃F = 5 × 10−3, D0 = 1, compactly support initial conditions s̃(x, 0) = s̃F + (1 − s̃F ) cos(πx/2)

on x ∈ [0, 1] and two different values of γ1 = −0.5, γ2 = 2. The problem has been solved nu-

merically by a semi-implicit moving-mesh method, [12]. Motion of the front and corresponding

profiles of s̃(x, t) for PME are shown in Figs. 3a,b, where one can see the delay time before the

front starts moving faster. The SFDE case is illustrated in Figs. 3c, d. One can observe that

the front propagation speed ẋ(t) is much larger in the case of SFDE for the same parameter

values as for PME and is growing with the s̃F decreasing.

Now, consider how this SFDE model agrees with experimental observations. As an example,

we compare numerical solutions with the results of our experiments on the spreading of persistent

liquids (with extremely low vapour pressure), such as trioctyl-phosphate (TEHP) and tricresyl-

phosphate (TCP), in standard Ottawa (Illinois) F sand with an average grain size of 250µm,

porosity of 30% and surface roughness in the range 0.5 < ∆R0 < 3 µm [13]. The TEHP liquid

has saturated vapour pressure at room temperatures pvs ≃ 1.1 × 10−5 Pa, [14], coefficient of

surface tension σ = 29 ±1 mN/m, measured in our laboratory at 25◦ C, viscosity µ ≃ 15 mPa · s

at 20◦ C, [15], and contact angles on a sufficiently smooth flat glass surface close to θs
1
≈ 10◦

and on a rough flat glass surface close to θr
1
≈ 0◦; both angles have been measured from the

image of a liquid TEHP drop placed on the surfaces. In the experiment, the microliter drops

of TEHP were deposited on naturally-packed sand beds, and the footprint of spreading on the

surface of sand has been traced by ultraviolet (UV) fluorescence by adding Coumarin dye into

the liquid. The experimental setup also included an embedded grid and a support-lowering

mechanism, so as to capture and take measurements of the shape of the wetted portion of

sand. We have found that the shape of the wetted portion of sand is close to a hemisphere, so

that its volume can be easily calculated from the footprint radius with sufficient accuracy. The

typical image of the footprint, obtained by a 10.7 MP digital camera with a macrolense being

able to resolve single sand particles, is shown in Fig. 4. The camera has been fitted with a

longpass coloured glass filter to suppress scattered UV light, such that no essential background

signal has been detected in the absence of the dye in the range of camera gains used in the

experiments. We have taken images at different values of the camera gain to ensure confident

capture of the wetted front position. The typical evolution of the wetted volume V (t), and the

averaged over the volume saturation (calculated in the absence of evaporation from the mass

conservation) are shown in Fig. 5 for an 11 microliter drop. One can clearly see the transition

from the high saturation regime of spreading to the low saturation pendular regime at s ≃ 30%
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(at t ≈ 100 min). The typical rate exponent of the second regime qp, before the front reaches

a ”stagnation point”, is found to be V (t) ∝ tqp , qTEHP
p = 0.80 ± 0.02, Fig. 5. A similar value

of qTCP
p = 0.785 ± 0.015 has been found in the case of spreading of another persistent liquid,

TCP, with somewhat different physical properties, noticeably the coefficient of surface tension

and the contact angles, pvs ≃ 8 × 10−5 Pa, σ = 42.5 ± 1 mN/m, µ ≃ 20 mPa · s, θs
1
≈ 30◦,

θr
1
≈ 20◦. As we will see further in the comparison, these values of qp agree very well with

the ones found in our numerical simulations of (5) in a three-dimensional case with parameters

s0
r, sF relevant to our experimental conditions (parameter D0 does not affect the rate exponent

and can only rescale time t). One needs to emphasise that in general the rate exponent is a

function of s0
r, sF in the model (5), that is a functional of the surface roughness and wettability

properties. Although the results for the TCP case show that the parameters s0
r, sF may not

be very sensitive to wettability as long as the contact angle is not too large. More detailed

parametric study of the superfast model (5) will be reported elsewhere.

In making the comparison between experimental data and numerical solutions of the model,

we use the symmetry of the wet region and solve equation (5) assuming that saturation s = s(r)

is a function of the radius of the domain only. The mathematical model has three independent

parameters: D0, sF and s0
r. The parameter sF can be found from experiment at the ”stagnation

point” of the front, sF ≃ 0.6%, see Fig. 5. This value is smaller than sF ≃ 1.4%, which is

what one would expect from the minimum min(∆R0) = 0.5 µm, and corresponds to an effective

(∆R0)e = 0.2 µm. The ratio (sF − s0
r)/sF << 1, which is a measure of the capillary pressure

at the front driving the spreading, can be obtained from the distribution of the amplitude of

surface roughness, that is from max(∆R0) = 3 µm. The minimum volume of the bridge before

its rupture at the separation distance D = max(∆R0) can be estimated from min(VpR
−3

0
) ≃

(2DR−1

0
)3, [16]. This yelds min(sp) = α−1

p min(VpR
−3

0
), which is in our case min(sp)/sF =

(sF −s0
r)/sF ≃ 0.1. As a result we set s0

r ≃ 0.9sF , leaving D0 as the only fitted parameter in the

model. Note, that the value of D0 can only scale time t in (5) but can not affect the rate exponent

qp. The unknown initial conditions are taken in the form s(r, 0) = sF + (1 − sF ) cos(πr/2)λ on

r ∈ [0, 1] with 1 < λ < 3, the parameter, which is used for fine tuning only. In making the

comparison we always start our simulations at low levels of averaged saturation, typically at
∫

1

0
s(r) r2dr ≃ 3 − 4%, which is usually reached after 20 hours of spreading. Note that at the

same time the peak value of s could be three times higher. The results of simulations are shown

in Fig. 6 for 11, 4.4 and 2.2 microliter drops. The parameter D0 = 10−14 has been determined

to fit an 11 microliter drop volume spreading curve first, and then the set of parameters has

been fixed to produce simulations for the two other cases with essentially smaller volumes of

liquid. The value of the diffusion coefficient so obtained corresponds to the estimate for effective

surface roughness amplitude (∆R0)e ≈ 0.2 µm at cT = 0.3 and Nc = 8. Note that the parameter

sF has been fixed for all the cases, though it has shown some variations.
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In conclusion, we have demonstrated that the process of liquid spreading at low and very

low levels of saturation in granulated porous media is essentially a superfast diffusion process

controlled by the surface roughness of the particles, which has very specific features separating

it from other nonlinear diffusion processes. The mathematical model that we have derived has

been verified on experiments with persistent liquids spreading without substantial evaporation

effect and has shown very good potential to be a universal tool for evaluations of liquid spreading

at low saturation levels. The model can be easily scaled down or up to describe transport in

fine nanoparticle assembly or in coarse granular materials.
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Figure 1: Illustration of the pendular ring regime at low levels of saturation.
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Figure 2: (a) Definition sketch for the pendular ring problem. (b) Typical dependences of the

mean curvature H on the pendular ring volume Vp at D = 0, θ2 = π/2 and different values of

parameter θ1. (1) θ1 = 0, (2) θ1 = π/6, (3) θ1 = π/4.
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Figure 3: Numerical solutions of (6) at D0 = 1. (a) Propagation front x(t) for PME, γ = 2,

at sF = 10−2, (b) Distributions s̃(x, t) at different times t > 0 for PME at sF = 10−2, (c)

Propagation front x(t) for SFDE, γ = −0.5, at (1) sF = 10−2 and (2) sF = 5 × 10−3, (d)

Distributions s̃(x, t) at different times t > 0 for SFDE at sF = 10−2.
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Figure 4: Illustration of the experimental setup and a typical wetted area image
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