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Abstract. There is often a desire to determine if the dynamics of interest are chaotic or not. Since positive Lyapunov
exponents are a signature for chaos, they are often used to determine this. Reliable estimates of Lyapunov exponents
should demonstrate evidence of convergence; but literature abounds in which this evidence lacks. This paper presents two
maps through which it highlights the importance of providing evidence of convergence of Lyapunov exponent estimates.
Worldwide ipod interest is then used as a practical example and the results bear semblance to both maps.

INTRODUCTION

The average rate of separation of initially nearby trajectories of a dynamical system is measured by Lyapunov expo-
nents. In forecasting, Lyapunov exponents are used to quantify how predictable the underlying system is (e. g. [1]).
They can also be used to merely characterise the system as hasbeen done in diagnostic studies (e. g. [2, 3]). For these
reasons, literature abounds in which numerical computations of Lyapunov exponents are sought with diverse appli-
cations. Nonetheless, finite data only affords finite time Lyapunov exponents. By Oseledec’s theorem [4, 5], finite
time Lyapunov exponents can converge to global Lyapunov exponents. It is therefore necessary to establish conver-
gence before reporting any estimates; but there are many examples where convergence is, at the best, not adequately
established (e.g. [1, 2, 3, 6, 7, 8, 9]).

With the aid of two nonlinear maps, the aim of this paper is to highlight the importance of establishing convergence
of Lyapunov exponent estimates. We emphasise a distributional approach to this end and suggest a way to deal with
finite real data. Worldwide interest on ipod is taken as a realworld example for illustrative purposes. The two maps
have contrasting dynamics, but they both bear semblance to the ipod interest.

LYAPUNOV EXPONENTS

Lyapunov exponents measure the average rate of separation of two trajectories that are initially infinitely close to each
other. Consider a map

xt+1 = F(xt),

wherext ∈Rm. For an initial statex0, the dynamics of its small perturbation,δx0, are governed by the linear propagator,
M (x0,N), which is a product of Jacobians so thatM (x0,N) = DF(xN−1) · · ·DF(x1)DF(x0). The finite time average
separation/growth rate of two initially nearby trajectories is then given by

λN =
1
N

log||M δx0||.

Oseledec [4] provides a theorem that guarantees that the limit lim N→∞ λN is unique. Denote this limit byΛ. If δx0 is
a member of the right singular vectors ofM , thenλN is a finite time Lyapunov exponent andΛ is a global Lyapunov
exponent.

Since, for a givenN, finite time Lyapunov exponents are functions of the initialstates, it is useful to report val-
ues corresponding to a distribution of initial states to determine convergence. For an assessment of convergence of
finite time Lyapunov exponents, one can sample the initial states from the invariant distribution,ρ(x). In numerical
computations, the invariant distribution is often not accessible in closed form. Nonetheless one can iterate forward an
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initial distributionρ0(x) so that afterN iterationsρN(x) is an estimate of the invariant distribution. One would then
sample initial states fromρN(x) to estimateλN ’s. The aim here is to sample the initial states according to the invariant
measure, if it exists. As a consequence of Oseledec’s theorem [4], the distribution of theλN ’s will converge to a delta
distribution centred atΛ asN → ∞. The aforementioned approach is used in the numerical computations of the two
maps in the next section.

It is ill-advised to use a single initial state to estimateΛ, even if the graph ofλN versusN appears to approach a
horizontal line. When one is faced with real data, the approach of the previous paragraph cannot be used unless there
is a reliable mathematical model of the system. Nonetheless, one may use bootstrap approaches suggested in [10] for
various values ofN to assess convergence in the distribution of theλN ’s. In the ipod example, we consider only the
maximal Lyapunov exponent and compute eachλN as discuessed in [11].

THE TWO MAPS

Two maps and numerical computations of their Lyapunov exponents are discussed in this section. There is clear
convergence of distributions of finite time Lyapunov exponents in the first map, but no convergence in the second.

Infinitely Piecewise Linear Map

Let us first consider the infinitely piece-wise linear map

φk(x) =







2
2k (x−

1
2), x ∈ [1

2,1],

2i(x− 1
2i ), x ∈ [2−i,21−i), i = 2,3, . . .

(1)

defined for fixedk ∈ {0,1, . . .}. The invariant distribution of this map is the standard uniform distribution whenk = 0
and can indeed be expressed in closed form for allk. Moreover, for anyk ∈ {0,1, . . .}, it can be shown that the global
Lyapunov exponent of the map isΛ(k) = 2.

Numerical computations were performed for the casek = 4. We considered trajectories of lengthN = 2n starting
from 210 initial conditions, withn = 0, . . . ,20. The resulting distributions of finite time Lyapunov exponents are shown
in Fig 1 on the left. Evidently, with every doubling of the length of trajectories, the distribution of finite time Lyapunov
exponents converges to a delta distribution centred at 2.

Paradoxical Map

The other map considered here is

ϕ(x) =







x
1−x , x ∈ (0,1/2),

2(1− x), x ∈ (1/2,1).

It has an unstable fixed point at the origin. The stability of the origin is determined usingϕ ′
(x) = (1− x)−2. Clearly,

ϕ ′
(x) > 1 for anyx > 0. However, whenx is close to zero thenϕ ′

(x) is close to 1. Hence the origin is a weak
repeller as pointed out in [12]. Indeed it is this property that makes the dynamics of this map paradoxical as was found
in [12, 13] on a similar map that differs only by the linear part. If ϕ j(x) ∈ (0,1/2) for all j = 0,1, . . . ,n− 1, then
ϕn(x) = x/(1−nx), whereϕ0(x) = x. On the hand, ifϕ j(x) ∈ (1/2,1) for all j = 0,1, . . . ,n−1, then

ϕn(x) = 2

[

1− (−2)n

3
− (−2)n−1x

]

.

It is, therefore, evident that with probability one trajectories with initial conditions sampled according to the Lebesgue
measure on[0,1] do not converge to the origin. However, it can be shown that iterates of distributions that are initially
uniform converge to a delta distribution centred at the origin. These two contrasting behaviours of trajectories and
densities are paradoxical and are due to the weak repeller atthe origin.

Distributions of finite time Lyapunov exponents for varyingN are shown in Fig 1 on the right. The initial conditions
of trajectories used to estimate eachλN were sampled fromU [0,1]. Notice that even whenN = 225, the distribution
still has not converged to a delta distribution. Those only familiar with behaviour reminiscent to the previous example
could mistakenly attribute the bell shape here to uncertainty.
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FIGURE 1. Distributions of finite time Lyapunov exponents for the infinitely piecewise map (left) and paradoxical map (right)
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FIGURE 2. (Left) Time series of interest on ipod. (Right) Distributions of maximal finite time Lyapunov exponents.

WORLDWIDE IPOD INTEREST

As a practical example, we considered worldwide interest onipod as captured by Google Insights. Google Insights is a
search tool that provides insights on the searches that people enter on the Google search engine. Ipod is a media player
by Apple that was launched in 2001. We entered the wordipod into Google Insights to obtain a time series of counts per
week of the searches that people made since 2004. The counts provide a proxy of people’s interest on the ipod. We will
refer to the people who make searches on Google, thedigital society. Therefore, Google Insights may be considered
to track the interest of the digital society on a particular theme. Its url is http://www.google.com/insights/search/#. On
Google Insights, one can search by country, or worldwide. For this study, we performed a worldwide search.

The time series of ipod interest is shown in Fig 2 on the left panel. Notice that from 2004, interest on ipod increased
almost steadily until it assumed oscillatory behaviour. Itwas because of this oscillatory nature that ipod was chosen for
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this study. For further analyses, we discarded the time series prior to 2005 as transient behaviour. In order to compute
distributions of finite time Lyapunov exponents, there are two parameters that have to be determined first. One of the
parameters to determine is an appropriate dimension for embedding the scalar time series into higher dimensions. In
order to determine the dimension, we first need the time delay. We selected the time delay as discussed in [14] and the
dimension by the method of false nearest neighbours discussed in [15]. Suitable time delay and embedding dimension
were found to be 9 weeks and 6 respectively.

To determine if the dynamics are chaotic or not, it suffices toestimate the maximal Lyapunov exponent. To this
end, we appealed to the algorithm of Sato et al. [11], which can also be found in [16]. To obtain a distribution of
finite time Lyapunov exponents, we performed block resampling as suggested in [10], each block being a quarter of
the time series in length. The corresponding distributionsof finite time Lyapunov exponents are shown in Fig 2 on the
right panel. Like in the infinitely piecewise linear map, thedistributions seem to converge to a delta distribution with
the mode atλ = 0.0141 asN increases, after which they to diverge slightly. Such a value of the maximal Lyapunov
exponent would mean that initial condition perturbations would, on the average, double after 48 weeks. At the same
time, the distributions seem to be shifting to the left as wasthe case with the paradoxical map. If the dynamics do not
change, more data could shed more light on the convergence properties of these distributions.

DISCUSSION

We have highlighted the importance of establishing convergence of finite time Lyapunov exponents to global Lyapunov
exponents. In particular, we argued for a distributional approach to establishing convergence. Numerical computations
were performed on two maps to illustrate the points. While there is clear convergence on one map, there is no
convergence on the other: the reasons may be traced to the presence and absence of invariant distributions respectively.

Lessons learnt from the two maps may be applied to the dynamics of worldwide interest of the digital society on the
ipod. For these dynamics, distributions of estimates of themaximal Lyapunov exponents appear to converge to a delta
distribution. The estimated value suggests that the dynamics are very predictable. In terms of sales and marketing, this
is very useful information. It affords forward planning with some assurance of stability in market behaviour. However,
the time series is short and a lot more could be learnt when more data is accrued. In fact, semblance of the distributions
to those of the map whose estimates showed no convergence suggests a cautious approach.

In previous studies, Gencay [17] performed a distributional study that was concerned with assessing statistical
significance of the estimates but not convergence. Hence thedistributional approach presented here is novel.
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