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Abstract

Human populations are frequently screened for specific diseases with
the aim to detect the disease early when it is easier to treat and cure.
However, only for those at risk (at risk being defined as having a positive
screening test result) it is meaningful to verify the disease status. As a
result a large portion of the screened population remains unverified in
their disease status. We investigate techniques to estimate the amount of
disease present in the unverified population. In particular, we consider a
situation in which a specific screening test (here for the presence of bowel
cancer) is applied several times and we focus on the count of times the test
has been positive for each subject. A method is suggested to estimate the
number of individuals with cancer but having a negative screening test
result at all times. The suggested technique is based upon a simple log-
linear model for the ratios of neighboring probabilities of the number of
times the test has been positive. The technique is applied to publicly
available data of a screening study on bowel cancer in Sydney and it is
demonstrated that the method provides realistic estimates of the number
of missed cancer cases and performs superior to other available techniques.

Some key words: capture-recapture, screening with partial verification
of disease status, ratio estimator, zero–truncated model
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1 The problem

Human populations are frequently screened for specific diseases with the aim
to detect the disease early when it is easier to treat and cure. An example
is screening for bowel cancer. Bowel cancer can develop without any early
warning signs and can grow on the inside wall of the bowel for several years
before spreading to other parts of the body. Often very small amounts of blood
leak from these growths and pass into the bowel motion before any symptoms
are noticed. A test called Faecal Occult Blood Test (FOBT) can detect these
small amounts of blood in the bowel motion. The FOBT looks for blood in the
bowel motion, but not for bowel cancer itself. Screening for bowel cancer using
a FOBT is a simple non-invasive process that can be done in the privacy of your
own home. No screening test is 100% accurate, in fact, a single application of
the kit test might have low sensitivity. However, it is thought that a repeated
replication of the diagnostic test over a number of days will help to identify
most cases of cancer.

Over several years, from 1984 onwards about 50000 subjects were screened
for bowel cancer at the St Vincent’s Hospital in Sydney (Australia). The rele-
vant references are Lloyd and Frommer (2004a, 2004b, 2008). The screening test
comprises a sequence of 6 binary diagnostic tests which all are self-administered
on 6 successive days. Each records the absence or presence of blood in faeces.
If participants in the screening programme have their true disease status deter-
mined it is said the have been verified. In the case of this screening study it was
done by physical examination, sigmoidoscopy and colonoscopy. Out of exactly
49927 participants, 46553 tested negatively on all six tests and were not further
assessed with the implicit diagnosis that they were cancer-free. In other words,
these 46553 participants remained unverified. Out of the other 3374 subjects
who tested positively at least once, 3106 were examined and their true disease
status determined with one of the following outcomes: healthy, polyps, cancer.
268 subjects who tested positively were lost to the study (Lloyd and Frommer
2008). The results are publicly available and presented here as Table 1.

Table 1: Screening of 49927 subjects in Sydney for bowel cancer with partial
verification of disease status (Lloyd and Frommer 2008)

status 0 1 2 3 4 5 6
healthy ? 1123 264 103 35 25 17
polyps ? 772 245 108 72 45 69
cancer ? 46 27 26 33 39 57
total 46553 1941 536 237 140 109 143
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2 Conventional binomial model, diagnosing and
modelling binomial heterogeneity

We are interested in determining the distribution of number of positive tests per
subject. Assuming that there is a homogeneous probability θ that a single of the
applied diagnostic tests is positive and that the 6 tests are applied independently,
then number of positive tests X per subject follows the binomial distribution

px = P (X = x) =
(

n

x

)
θx(1− θ)n−x (1)

where n = 6 is the number of tests per subject. Let us consider ratios

px+1

px
=

(
n

x+1

)
θx+1(1− θ)n−x−1(

n
x

)
θx(1− θ)n−x

=
n− x

x + 1
θ

1− θ
,

leading to

rx = ax
px+1

px
=

x + 1
n− x

px+1

px
=

θ

1− θ
, (2)

where ax = (x + 1)/(n− x), showing that the ratio rx is constant with varying
count x. It is straightforward to estimate rx = ax

px+1
px

by

r̂x = ax
fx+1/N

fx/N
= ax

fx+1

fx

where fx is the frequency of count x and N = f0 + f1 + ... + fn. The graph
x → r̂x = ax

fx+1
fx

can be used as a diagnostic device for the binomial and is
called the ratio plot. If the ratio plot shows a pattern of a horizontal line, it
can be taken as indicative for the presence of a binomial distribution. This
is demonstrated in Figure 1 for simulated data from a binomial with trial size
parameter n = 6. The ratio plot shows clear evidence for a binomial distribution.
If we apply the concept of the ratio plot to the Sydney screening data of Table 1,
we see that there is no evidence of a horizontal line (see Figure 2). Instead, we
observe in the ratio plot a monotone pattern arising. Indeed, if θ is distributed
with arbitrary density g(θ) , then

px =
∫ 1

0

(
n

x

)
θx(1− θ)n−xg(θ)dθ (3)

has the monotonicity property (Böhning, Baksh, Lerdsruwansri, Gallagher 2011)

a0
p1

p0
≤ a1

p2

p1
≤ a2

p3

p2
≤ ...,

and, hence, the ratio plot is must be monotone increasing.
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Figure 1: Ratio plot for 50000 simulated binomial counts with event parameter
θ = 0.4 and trials size paramet n = 6
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a) b)

c) d)

Figure 2: Ratio plot for Sydney screening study: a) unclassified, b)healthy only
(red squares), c) polyps only (red squares), d) cancer only (red squares)
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The form of the monotonicity in the pattern of the ratio plot in Figure 2 suggests
to consider a more explicit modelling of log r̂x in its dependence from x. As it
turns out, the model

log r̂x = α + β log(x + 1) + εx (4)

arises as a simple, quite reasonable model with only two parameters involved,
namely α and β. We can find estimates of α and β using weighted regression
estimates where the weights are found as the inverses of 1/fx+1+1/fx (Böhning
2008). Figure 3 shows that the log-linear model (4) not only fits well for the
unclassified data, but also for the partially classified data. Note that it is one of
the advantages of the approach that the model can be fitted for the unclassified
data as well as for the zero-truncated classified data (see Figure 3 a) – d).

To provide a more formal assessment of the model we consider the fitted
values

log r̂′x = α̂ + β̂ log(x + 1),

for x = 0, 1, ..., n − 1. Given r̂′0, ..., r̂
′
n−1, we need to determine p̂0, ..., p̂n. This

can be accomplished as follows. By definition, the fitted probabilities have to
satisfy the recursion p̂x+1 = (r̂′x/ax)p̂x for x = 0, ..., n−1 as well as

∑n
x=0 p̂x = 1,

so that

1 = p̂0 + ... + p̂n = p0[1 + r̂′0/a0 + (r̂′0/a0)(r̂′1/a1) + ... +
n−1∏
x=1

r̂′x/ax],

which leads to
p̂0 =

1

1 +
∑n−1

i=0

∏i
x=0 r̂′x/ax

. (5)

Table 2: Observed and fitted frequencies of the unclassified Sydney screening
data with various models fitted: log-linear (4), binomial model (1), and beta-
binomial

model 0 1 2 3 4 5 6 χ2

binomial 44236.6 5164.6 251.2 6.5 0.1 0.0 0.0 > 109

beta-bin. 46842.8 1403.9 633.2 363.0 221.5 131.1 63.6 398.93
log-linear 46418.7 1968.5 443.1 235.7 202.8 211.2 178.9 96.37
observed 46553 1941 536 237 140 109 143 -
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The remaining fitted probabilities can be determined using the recursion p̂x+1 =
(r̂′x/ax)p̂x for x = 0, ..., n− 1. The fitted frequencies for the unclassified Sydney
screening data, f̂x = p̂xN are found in row 4 of Table 2. The fit is good with
a χ2 =

∑n
x=0

(fx−f̂x)2

f̂x
= 96.37 by df = 7 − 1 − 2 = 4 degrees of freedom. For

comparison, we have also included the fitted frequencies under a binomial model
(1) which is evidently entirely unsatisfactory. An improved fit can be found by
applying the beta-binomial model with g(θ) in (3) provided as the beta-density

g(θ) =
Γ(α + β)
Γ(α)Γ(β)

θα−1(1− θ)β−1

where α and β are unknown parameters and Γ(t) =
∫∞
0

yt−1 exp(−y)dy is the
Gamma function. Note that the beta-binomial is frequently used since the
marginal can easily be worked out to be

px =
∫ 1

0

(
n

x

)
θx(1− θ)n−xg(θ)dθ =

(
n

x

)
Γ(α + β)
Γ(α)Γ(β)

Γ(x + α)Γ(n− x + β)
Γ(n + α + β)

.

The fit of the beta-binomial with χ2 = 398.93 is evidently a lot better than
the fit for the binomial, but clearly inferior to the fit of χ2 = 96.37 provided
by the log-linear model. Hence, we will focus in the following on the log-linear
model. The panels b), c) and d) in Figure 3 show that the log-linear model is
also suitable for the partially classified populations with cancer, with polyps,
and those that are healthy.

3 Predicting the number of cases missed

We are now considering fitting the log-linear model (4) to the partially classified
data as

• being healthy

• having polyps

• having cancer.

For each of the three populations we fit the log-linear model

log r̂x = α + β log(x + 1) + εx

for x = 1, ..., n−1. Note that model is suitable for both situations, untruncated
and zero-truncated count data – as we have here. Clearly, we are interested in
the predicted value r̂′0 = exp(α̂) which motivates the estimator

f̂0 = a0f1 exp(−α̂), (6)
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since r̂′0 = a0f̂1/f̂0, and replacing f̂1 by the observed frequency f1 provided
the estimate in (6). The specific estimates for the three populations is given in
Table 3. As a standard comparative estimator we provide Chao’s lower bound
estimate which is achieved as

f̂0,C =
n− 1

n

f2
1

2f2
,

which provides an asymptotic lower bound for E(f0). This lower bound is given
in brackets in column 2 of table 3. Typically, Chao’s lower bound provides only
10% of the size of the log-linear estimator. Still, also our estimates are lower
bounds since 15937+10638+332=26907 do not match the marginal frequency
46553. The shape of the graphs in Figure 3 suggest that we likely underestimate
the frequency of zero-counts in the healthy population and in the population
with polyps, not so much the in the population with cancer.

The estimate for the frequency of missed cancer cases seems realistic. Values
for the sensitivity of an individual application of a FOBT ranges between q =
0.1 − 0.3. This leads to a probability for the diagnostic procedure finding at
least one positive result in n successive applications of 1− (1− q)n. This would
mean to expect the frequency of missed subjects with cancer to range between
258−−487. We estimate it with 332 which is well in this range.

Table 3: screening of 49927 subjects in Sydney for bowel cancer with partial
verification of disease status: predicted frequencies of zero-count test results for
each of the three partially classified populations are in bold (second column)

status 0 1 2 3 4 5 6
healthy 15937 (1990) 1123 264 103 35 25 17
polyps 10638 (1014) 772 245 108 72 45 69
cancer 332 (33) 46 27 26 33 39 57
total 46553 1941 536 237 140 109 143

4 Prediction for a subset of fully classified data

Lloyd and Frommer (2004) present also a table of cancer patients with a repeated
application of the diagnostic procedure. In fact, a subset of 125 of the positive
patients with confirmed cancer agreed to repeat the procedure 4 to 10 days after
the primary test which we call the secondary data. Hence for all test results
including the test-negatives the disease status is known (Table 4). It might be
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a) b)

c) d)

Figure 3: Ratio plot with fitted log-linear model for Sydney screening study: a)
unclassified with fitted line, b)healthy only (red squares) with fitted model (solid
red line) , c) polyps only (red squares) with fitted model (solid red line) , d)
cancer only (red squares) with fitted model (solid red line); for b)-d) the black
dots indicate the unclassified data
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Figure 4: Ratio plot with fitted log-linear model for secondary Sydney screening
data with confirmed cancer

interesting to see how the log-linear estiamte (??) performs when the known
frequency f0 is ignored. A model fit ignoring f0 is presented in Figure 4 which
appears to be reasonable. The corresponding estimate from (6) is f̂0 = 21 which
compares favorably with the observed value of f0 = 25. Chao’s estimate is poor
with f̂0,C = 2.

Table 4: Distribution of count of test-positives for a repeated diagnostic testing
of 125 subjects with cancer

number of positive tests
x 0 1 2 3 4 5 6
fx 25 8 12 16 21 12 31
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