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Abstract

A key step in many numerical schemes for time-dependeniapaiitferential equations with
moving boundaries is to rescale the problem to a fixed nurlariesh. An alternative approach
is to use a moving mesh which can be adapted to focus on spixfieres of the model. In
this paper we present and discuss thretedint velocity-based moving mesh methods applied
to a two-phase model of avascular tumour growth formulateBreward et al. (2002). Math.
Biol. 45(2), 125-152. An obvious advantage of moving mesh mettatter velocity-based or
transformation-based, is their ability to track moving bdaries. Each method has one moving
node which tracks the moving boundary. To move the interades: our first method moves the
nodes proportional to the boundary movement such that neesin equidistant at each time
step; our second method assumes the nodes move propottidhallocal spatial cell velocity;
whilst our third method uses local conservation of mass. ¥veahstrate that when the nodes are
moved according to the velocity of the outer boundary, ormlbeal mass fractions are invoked,
similar results are obtained to when the governing equatioa scaled to a fixed numerical mesh.
However, when the mesh nodes move according to the locatitelarofile there are diiculties

in obtaining accurate stable solutions. Our results detmatesthat a moving mesh approach can
produce accurate results without fundamentally alterhrg form of the governing equations,
whilst offering greater flexibility and higher resolution where degir
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1. Introduction

Systems of time-dependent partiaffdiential equations (PDEs) occur in many branches of
applied mathematics. In certain cases such systems mayeberiped in a region in which the
outer boundary moves with time as a result of the internahdyins of the problem. A common
approach to solving such models numerically involves dasgaf the domain with respect to
the outer boundary position to a fixed region. However, suptoaedure alters the structure of
the governing equations, in particular the conservati@perty of the spatial derivative. Alter-
natively, a moving mesh approach has the flexibility to pres¢he structure whilst tracking the
outer boundary. In this paper we utilise a recent model obwmgrowth [1] to test a number of
moving mesh methods, the solutions of which are compared thidse obtained on a rescaled
mesh.

Moving mesh methods can be location based or velocity b&ded\p overview is given in
[3]. In this paper we use velocity based methods to draw oorpasisons. Such methods are
Preprint submitted to Mathematical and Computer Modelling April 6, 2011



familiar from Lagrangian fluid dynamics, and their numelrigjaplication to PDEs can be found
for example in the Moving Finite Element method [4], the Drefation method [5], the GCL
method [6], and the Conservation method [7]. An obvious athge of moving mesh methods,
either velocity based or location based, is their abilityréak moving boundaries.

Each moving mesh method we consider has a fixed number of nbdesove with the
solution itself, with the precise nature of their movemeitfeding for each scheme. The first
method moves the nodes uniformly with respect to the movéwfaghe boundary so that nodes
remain equidistant at each time step. We find that this agprpeoduces results that are akin to
results from a scaled mesh approach. However, moving thesiadhis geometric manner does
not take full advantage of the flexibility of a moving mesh.r@ther moving mesh methods use
specific features of the model to determine the mesh moveriéetsecond method moves the
nodes according to the local cell velocity; the third methaoales the nodes using conservation
of normalised cell volumes, which is a finitefidirence version of the finite element approach
described in [7]. A similar finite dference approach was used in [8]. The second and third
methods conserve local mass, which is not the case when théepr is rescaled to a fixed
numerical mesh. Furthermore, we show that for the third oathe meshfiers better resolution
where the solution is growing, which in the avascular tunrgrowth model is near the boundary.

Mathematical models of tumour growth cafiey efective and icient ways to advance our
understanding of cancer research; see, for example, theyspapers [9, 10]. In recent years
there has been a large increase in the number of PDE modeishileg solid tumour growth.

Whilst differences between such models exist, many exhibit the follpfgaatures:

e Equations describing theflision of nutrients or growth factors in and around the tumour
region (generally parabolic in type);

e Mass transfer equations describing the dynamic variatidamour tissue (generally hy-
perbolic);

e Mass balance equations describing the growth of the tungamerally elliptic).

All of these equations are generally coupled via nonlinesractions. For instance the
growth dynamics of a specific cell type may depend in a noalimeay on a specific nutrient or
growth factor. Examples include Ward and King [11] who depeld a two phase model of a
growing multicellular tumour spheroid (MCTS) in which celere considered to exist in either
a live or dead state, whilst Pleastal. [12, 13] considered the two phases to be live cells and
water, respectively. In contrast Tindall and Please [14katered a three phase model to account
for proliferating and quiescent cells and dead cell matefiae complexity of such nonlinear
mathematical models means they are most often solved aastigated numerically. Given the
coupling between the various equation types (parabolipetholic and elliptic) it is important
that such methods are robust and accurate.

In this work we consider a recent two phase model of tumountiraeveloped by Breward
et al. [1], which is a specific form of the two-phase model in [15]. eTtwo phases, cell and
water, each have an associated velocity, pressure and gdhaction-averaged stress tensor. We
utilise the model to compare a number of moving mesh stragegith the commonly employed
fixed numerical mesh approach. Although three phase modefsmsorporate more detail our
aim here is to demonstrate that moving mesh methods aréfeatiee tool for the numerical
solution of problems such as tumour growth models, and figrghrpose a two phase model
sufices. The extension to three phase models is technical bigtsfiorward in principle. We
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focus on a two-phase model to clearly demonstrate the \rgibeised moving mesh schemes,
which can be adapted to numerically solve more sophisticaitedels.

In the next section we present the normalised one-dimeakiandel proposed in [1], fol-
lowed by §3 where we surmise the fixed numerical mesh method used is¢13s to compare
results with the three moving mesh strategies. The dethilsese strategies are given §d,
where we solve the tumour growth model numerically usindheae in turn. The results from
the fixed mesh method and the three moving mesh methods atssiésl irg5. Finally, in§6 we
conclude that a moving mesh method can prove to be an elegdataurate numerical approach
that updates the mesh smoothly with the solution of the atgimodel, whilst preserving cho-
sen features of the model such as local mass balance, dveglattial masses, (for self-similar
problems, similarity can be preserved). However, sinceritesh depends upon the model, care
must be taken when choosing a feature of the model to preserve

2. A mathematical model of tumour growth

The model assumes the tumour consists of two phases, watévagells, which are treated
as incompressible fluids whose densities are equal, torlgastder. The model is derived by
applying mass balance to the cell and water phases. Fudbamgtions made are that inertial
effects are negligible, no external forces act on the systed),@anthe timescale of interest, the
cell and water phases can be treated as viscous and invisidd fespectively. The model is
applied to a tumour whose growth is parallel to thaxis, and is symmetric about its midpoint.

From [1] the non-dimensional model, in Cartesian form, fog tolume fraction of cells
a(x, 1) € (0,1), witht > 0 andx € [0, £()], where{(t) is the tumour radius, comprises

da 0 _ (A+sp)ae(l-a)C S +5C

E + a—x(uc(l’) 1+ 51C 1+ S4C a = S(a/v C)’ (1)
0 OUc a-a kaug
o |[MVax T M@ @ amn)| = g @
d%C aC
ge . € (3)
ox 1+ Q1C

whereug(x, t) is the cell velocity,C(x,t) is the nutrient concentration and H is the Heaviside
function. The volume fraction of water is-1a. The first term ofS(e, C) in (1) represents cell
growth due to mitosis (cell division), and the second terpresents cell death. The parameters
u (a combination of the shear and bulk viscositiésfthe drag cofficient), ands;, s, S3, 4, Q

and Q; are all positive constants. In additiomyi, ande* (a natural cell packing density) are
constants such that9 anmin < o* < 1. We remark that equation (1) arises from the global mass
balance equation,

d o £(t)
o jo‘ a(xt) dx = | S(a,C) dx. 4)
The normalised model has initial and boundary conditions
=1 a=a2x) at t=0, (5)
ocC
uczazo at x=0,t>0, (6)
o, a-a or

H(a - a'mm) = 0, C = 1,
3

u. at x=¢1t>0. )

Hox ~ (1= a)2 at



In the next three sections we show that moving the mesh tepregeatures of the model can
produce results in line with [1]. We also present resultsclvldemonstrate that the local feature
of the model used to track the nodes needs to be carefullyeohos

3. Rescaling to a fixed numerical mesh

In [1] the moving domairk € [0, £(t)] is mapped to a fixed numerical domaire [0, 1] by
the transformatiog = x/¢(t), T = t. Using the chain rule to ffierentiatex(&, 7) with respect to
time 7, the transformed problem is

o Edtoa 10

E - za% + za—g(uca’) = S(oz, C), (8)
0 OUc a—a* _ _ kf2aug
% uaa—g - fa’mH(a - a’mm) = Ta, (9)
2 2
I = o (10
(9{,: 1+ Q1C
with initial and boundary conditions
t=1 a=2x) at 7=0, (11)
U = @ =0 a ¢=0,7>0 (12)
c - aé. - =U T ]
OUc a—a* d¢
- H — H = = 1 —_= t = 1 . 1
,Ll a§ g(l_a)z (a amm) O, C 5 dT Uc al E 5 T> 0 ( 3)

We note that in this approach the spatial derivatives in #gu#8), unlike in the original equa-
tion (1), are not in divergence form, i.e. there is an addalderm on the left-hand side that is
not a total derivative with respect £ This changes the structure of the equation which can lead
to inaccurate numerical approximation.

Although details of the numerical method are not given in [d]order to compare our re-
sults to those in [1] we surmise their numerical method talpoe similar results. Many authors
utilise the National Algorithms Group (NAG) routine DO2RARhich uses a finite dlierence
approach [11]. Using the above equations we postulate amitdon in which we choose a time
stepAr > 0 and divide the region (@) into N equal cells of siz&¢ = 1/N. We definetj = jA,
j=0,1,...,N,and™ = mAr, m=0,1,..., and approximation&rj” ~ a(g), ™), M = ((7),
uG” ~ U(éj, ™), Cl ~ C(j, ™, andsgn ~ S(a(&j, ™), C(¢j, ™). Givene', we computeC',
uG” and ultimatelyo/j“*1 by a series of steps (labelled Steps F1-F4 below):

Step F1: Find:}n by applying central finite dierences to (10),

ClMy - 2CM+CNy QUE™)%aCy

(A£)? Co1+ QlCEn

; (14)

forj=0,1,...,N-1, where from (12) and (13), we tak¥} = CI'andC}" = 1. Newton’s
method is used to solve the subsequent system of nonlineatiens wherQ; # 0.
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Step F2: FindJ’j“ by applying central finite dierences to (9),

1 m ugn+1 B UT m aj*% - m
A—g{““% e T asayten e
H
um—um, o'y —a’ k(e™)Za™
_ M = _pm 2 m _ ) -~ Jym
@y K AE 14 (l—a'jn_l)2H(aJ'*% @min - ui’, (15)

for j =1,2...,N-1, whereaf), = 3@ +afl) ande, = 3(@], + o), leading
2 2
to a linear system of equations. At the inner boundafy= 0, as given by (12). To
determinauy, we discretise the boundary condition (13) by taking vafu&s , and [] 7, ,
2 2

(the average abou{[]) to obtain

m *
1 ur'\r‘1+1 - Urrlf m a/N'*'% — ¢ m
2 H AE - (1-ao" 1)ZH((IN%_Qmin)
N+3
m *
1 W-W I3
I = _ H(a™ , — ; =0. 1
2 H AE 4 (l—ar,\? )2 ((IN_% amin)| = 0 (16)
-2
We then adapt (15) for = N, using (16) to replace the first term in square bracketsjrgad
to
m m m o
A AE 1- 0/"3_%)2 N-3 o 1-af ™

whereaRLl +a:|‘ . = 2ay], which yields a complete set of linear equations for thecigjo
2 T2

urj“,jzl,...,N.

Step F3: Discretise (8) using an explicit Euler time-stagpgcheme and a centralffidirence ap-
proximation in space, giving
of T —ef NGO -y URaoTa - Uhel
At B 2(m 20MAE I’

forj=1,2,...,N-1. One-sided approximations are used at the boundaries.

Step F4: Since the tumour radius moves with the cell veloaitthe boundary, we calculate the
tumour radius at the new time level using

™ = (M 4 AR,

We then return to Step F1 to complete the next time step. Tinsenical scheme produces
results in line with those in [1] (se§5). Although this is a perfectly reasonable scheme, in
the next section we solve the same problem numerically usinglocity-based moving mesh
approach in which the velocities are defined by thrékedint strategies.
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4. Moving mesh methods

The key component of a velocity-based moving mesh methdukisriterion used to define
the mesh velocity. We investigate threééient choices here, in which we move the mesh in the
following ways:

Method A - proportional to the boundary positidit). This construction is geometrical in nature and
is very similar to the method described above;

Method B - proportional to the local cell velocity, i.e. based on a feature which is observed over the
whole tumour;

Method C - in such a way as to conserve local mass fractions of the ealutin time. Like Method
B, this is based on a prevalent feature of the model.

For all of these moving mesh methods (and in contrast to sorad fnesh methods), the final
mesh node tracks the tumour radius.

In the model given by equations (1)—(®,is an independent variable. We introduce the
dependent variable;(t), j = 0,...,N, to represent thé + 1 nodes of the mesh, which are
dependent oh The mesh is initially equally-spaced; however, unlikefiked mesh, re-scaling
the grid points leads to them becoming, in general, irrafuteparated. We define the velocity
of the j-th node to be

%0 = 17
V(% 1) = (17)
We choose a time stefit > 0 and defing™ = mAt, m = 0,1,.... We denotex(t™) by x™,
and use the approximatioa$1 ~ a(X;,tM), uT‘ ~ Ug(X;, t), CE" ~ C(X;,t™), andv'].“ ~ v(>”<j,t”4).
For a givean” andaj", j =0,...,N, we computeC™, ufj“, V'J“ er'n+1 anda?"*1 by the following
algorithm:
Step 1: FindZE“ by approximating (3) (with boundary conditions given by é)d (7)) using cen-
tral finite differences on the non-uniform mesdf’, - - -, x{{}. The resulting set of equations
is similar to (14), of the form

QaCY

T'cM. + TdC™+TUC, = — L j=0,1,...,N-1,
i1 ] e 1+QCP ’
where
| 2 d -2 u 2

b T =
= X" = xy) (1 = X))

9 T =
- X[jTll) (x, j+1 j+1

(XT - XTll)(Xm j+1

i+1 -x)
and wherex™, = —x{", C™ = C" andC{} = 1, from the boundary conditions (6) and (7).

Step 2: Finngn by applying central finite dierences to (2) on the non-uniform mesg, ..., X}
with boundary conditions given by (6) and (7). The resultseg of equations is similar
to (15) and takes the form

1
m
———— (.
X x| Y |H
2
m

.
y L H(@™, - )|} = u"(18)

uml ai+l -
I+ 2 m
- H(QH% — min)

m m 2
X - X (- a’?l%)

Y
uJ

L e N () S 1-am

=3
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Wherex?l; - XT”_% = %(x’jﬁl - x’j*ll), j=1212...,N-1,anduy’ = 0 (from (6)). As with

the fixed 2numerical mesh method, to determine the bounddune w® we discretise the
boundary condition (7) in a similar way to (16) by taking the@age at‘m,; and []™
2

N+3’
giving
m Ak
1— urlz}+l_url3_ QN"'% ¢ H(am —a )
1 min
217 X0, — XN (1—01:\?%)2 N+3
m *
1w, N
- = |u - H@! , — amin)| = 0. (19)
2[ My @-ag PN
We then adapt (18) fof = N using (19) to replace the first term in square brackets, headi
to
m m m %
B e P SN B P
1 min) | = NG
XRL% - x:l’_% X=Xy, (1- “::-%)2 N-3 1-aoy

whereaf,lrl +a/:|‘ . = 2ay], which yields a complete set of linear equations for thecigjo
2 T2

urj“,jzl,...,N.

Step 3: Calculate the mesh velocitp. This step will difer for each of Methods A, B and C, and
is detailed below.

Step 4: Update the mesh points by the explicit Euler schemkegito (17)

XML = XM AN, j=0,1,....N, (20)

with V" obtained from Step 3.

Step 5: Calculatarj“”. The details of this step will again fiér for each method used, and are
given in§4.1, 4.2 and 4.3 respectively.

When comparing this scheme to the fixed numerical mesh ahgoiiit §3, we see that the first

two steps are essentially the same, except with a non-umifieesh. However, whereas the third
step of the algorithm i§3 calculates the solutiom immediately from (8) on the transformed
mesh, the moving mesh methods calculate the nodal posftishand then recover the solution
a. Another distinction between the fixed numerical mesh nebibfo§3 and the moving mesh

methods is that the latter methods preserve a local massdeethrough being written in diver-

gence form (since the chain rule was not applied to the aalgirodel).

We now give details of each moving mesh method.

4.1. Method A

For Method A we move the nodes in Step 3 with a velocity prapodl to the velocity of the
boundary, i.e.



This velocity-based strategy is similar to the numericappiag in §3, see Remark 1 below.
It is geometrical in nature and draws only on informatiomrthe boundary of the tumour to
determine how to move the nodes. Once the mesh velocity isadkfihe new mesh is determined
as in Step 4 above.

Now consider Step 5. To recovaron the new mesh we take an integral-based approach.
First define the partial mass@sg(t) by

(1)

Oot) = f o a(x, 1) dx, (21)
X0
5“(]+1(t)

0t) = f . axt)dx, j=1...,N-1 (22)
J>~<N(t)

on() = f (t)a(x,t) dx, . (23)
XN-1

The valuesd;(0) are known from the initial data. To calcula®g(t), we begin by construct-
ing ®(t). For ease of explanation we give the explicit formulaejfer1,...,N -1 only, but we
note that similar formulae hold for = 0, N. We differentiate (22) using Leibnitz’ integral rule
to give

. d %0 %410 9 i1(0)
0t = — f a(xt)dx = f — dx+ [a/(-,t)v(-,t)] _
dt %j-1(t) g Ot %i-1(t)

Substitutingda /ot from (1) gives

. Rj+1(t) Kj+1(t)
o) = f S(e,C) dx+[a(~,t)(v(-,t)—uc(~,t))] . (24)

i-1() Xj-1(t)
We use a mid-point approximation of the integral to obtainsamte form of (24) at timé= t™,
Of = (- xS+l (v, - ully) - e, (v, - uly), j=1,...,N-1(25)

Where'®gn ~ ®j(tm). This equation allows us to determi@'Hl ~ ©;(t™1) in the same manner
thatx™* is calculated in Step 4, by the explicit Euler sche@fé* = O + At@T.
Once an approximation to the updated partial ma@ﬁ@é has been determined, the final

step for Method A is to recover the solutim‘]fHl using a mid-point approximation of (22) at
time levelm+ 1, i.e.

@M1
P E— j=1,...,N-1
] Xr_n+l _ Xr_ml
j+1 -1

As noted above, similar formulae hold fpe 0, N.

Remark 1. The velocity of Method A corresponds to the transformatiased method &3 in
the sense that the transformation j#eeted exactly by the boundary velocity. However, wihen
is calculated in§3 using a velocity derived from the transformation, a quaajrangian form of
the mass balance equation is used in which the velocity @rjpurated using a chain rule. The
result is an extra term which cannot be written in divergefaren. By contrast, in Method A we
have preferred to use an integral approach which alreadpiporates local conservation.
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4.2. Method B

Under this strategy, in Step 3 the velocity of each node isrd@hed by the cell velocity at
that node, i.e.

Vo= j=0,1,....N. (26)

This way of moving the nodes relates to the tumour model mwae Method A as it uses local
cell information rather than just information from the tumdooundary. Once the mesh velocity
has been determined, the new mesh is computed as in Step 4.

In Step 5, as with Method A, we define the partial mass frast@ytt) as in (22), and follow
Method A to completion, noting that= u. at the nodes. In particular, (25) reduces to

O = (XN, -x")s’ j=1,...,N-1 (27)

Note that this method corresponds with the mass balanceien@4) over arbitrary subintervals,
d )~(J+1(t) iﬁ-l(t)
— f a(x,t) dx = f S(a, C) dx.
dt Js, .0 %i-1(0)

4.3. Method C

Method C moves the nodes so as to conserve local mass fractlake Method B, this
method also uses a feature of the model to move the nodeshrasuay that information about
the distribution of cells within the tumour is carried in #m

Let the total mass be

o) = fo © a(x, 1) dx. (28)

We definey; to be the mass fraction, so that

1 R0
Y = @j; a(x,t) dx, (29)

and calculatet) such thaty; remains constant with respect to time. The total ntasdl be
required in order to approximate so we first determine by differentiating (28) using Leibnitz’
integral rule,

. d [ M Ho o
o(t) = 3 fo a(x,t)dx = fo = dx + [a(-,t)v(-,t)]o )
Substitutingda/ot from (1), and using the boundary conditions (6)—(7), gives

0
o(t) = fo “ S(a,C) dx. (30)

It is worth noting that equation (30) corresponds exactlhtoglobal mass balance result (4).
Equation (30) can be approximated directly once Step 1 hais &@rried out. We define the
approximatiord™ ~ 6(t™) and apply a trapezoidal rule approximation to (30),

N-1
. 1
"= Y SO0 = XS + S &
j=0
9



The updated total magg™! ~ g(t™?!) is then found using (31) and the same time-stepping
approach used in Step 4, i@"*! = oM + Ate™.

To derive an expression for the mesh velocity, we again ugmite’ integral rule on (29) to
calculate

_ d %0 50 §o % ()
Yi60) = 5 fo (X 1) dx = fo = dxr [a(~,t)v(~,t)]o
Substitutingda/dt from (1), and using the boundary conditiofi = vg' = 0 (from (6)), gives

. X (t)
yio® = [ S@C)dx— ue(Rj, Dar(Xi. ) + (%, OU(K;. D).
0

Thus, fora(X;, t) # 0, the mesh velocity is given by

N L0 1[N0 .
V(XJ,t) = m - m j(; S(a/, C) dX+ UC(X],t). (32)

We use the composite trapezoidal rule on the integral toimlataliscrete form of (32) at time
t=1tm,
ylém 1 j-1

m
J

( i+1 m)(SH—l + Slm) + urjn' (33)

I\)II—\

@ o
Using (33), the new mesidjer is computed as in Step 4. To approximate the updated solution
cxfj*‘*l in Step 5, we consider (29) fog, 7 and Xj_1, and subtract them from each other to give a
partial mass. Equating this partial mass definition at time$™* andt = 0 gives
1 fx'j'l*f 1 1 X?+1
— a(x,t™Hdx = = a(x, 0) dx.
g+l x?‘jll 90 30

-1
Using a mid-point approximation for the integrals we obtéi@ numerical approximation

0 0 )
m+1 -
m1_ 0 (XJ+1 Xj-1 o0

I 7 g0 m+1 mel)
(XJ+1 X' )

Note that at any given time the relative discrete mass

1 1 1 1
a5

is preserved, and is equal to
0
(XJ+1 j—1)aj .

1
4(0)
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5. Numerical Results

In this section we solve the tumour growth model numericafling the methods df3 and
§4, and compare the outcomes from each approach. In our exges we used two sets of
parameters from [1], which were chosen so as to focus to oguhéitative nature of the model
equations. A purpose of [1] was to examine tffeet of altering the tension constant (by altering
k andu). To compare our moving mesh methods to the commonly used firessh method, we
choose only the parameters from [1] that correspond to pfatsv and¢ over time. Both sets of
parameters take

Q=05 0,=0, s;=2=10, $=5=05 a°X) =c" =08, (34)
with
k=1, u=1  amn=038, (35)
in the first case, and
k=025 u=025  amn=0.6, (36)

in the second case. The first case does not includefibetg of cellular attraction, whilst the
second case does. Furthermore, the second case has daaaitbn than the first case, which

corresponds to a larger tension constant. Figures 1-8 sbsmits obtained with the method
described in§3, with N = 80, At = 7.5 x 1073 and final timet = 75, i.e. 10,000 time steps.
Figures 1-4 use parameters (34)—(35) and display a tnagelave solution. Figures 5-8 use
the second set of parameters, (34) and (36), and show theuturadius settling to a steady
state. Figures 1-3 and 5-7 closely resemble the resultsrshofi] (results for the nutrient

concentration were not included in [1]).

Next we examine the convergence of the moving mesh methogd &r the parameter
set (34) and (35), aNl increases andt decreases. We solve for [0, 4] and compute results
for N =10x 21, n=1,...,6. In order to compare results forfilirent values oh, we denote
the points of the mesh for a particular valueroby X;n(t), j = 0,...,(10x 2"1). We then
compute bothkon-1j , = Xon-1j n(4) andagn-1j n, = a (X1, 4) for eachi = 0,..., 10 asnincreases.
To balance the spatial and temporal errors, and recalliagwie have used explicit Euler time-
stepping, we choos&t = O(1/N?), preciselyAt = 0.02/(4"). We take the results computed with
n =6 (i.e.N = 320) as our reference mesh and solution. We anticipatehitbadintwise ‘errors’
lavazi 6 — @von-1j n| @Nd|X32,6 — Xon-1i n| Will decrease as increases, for eadh= 0, ..., 10.

As a measure of the errors, we calculate

o(@sa.6 — azin)? 10 (Xazi.6 — Xor1i )2
EN(CZ) — JZI:O(Q3Z,6 CYZ 1|,ﬂ) , EN(),.(,) — JZ|=O( 32,6 2! ll,ﬂ) ’

10 (@32.6)2 1 (Xa2.6)?
forn=1,...,4 (i.e.N = 10, 20,40, 80). We investigate the hypothesis that

1 - 1
En(a) ~ NP and En(X) ~ Na

for largeN, wherep andq are the estimated orders of convergenceggfa) andEy(X) approx-
imated respectively by

pon = —log, ( EZN(a)) Oon = — |092(E2N()~())-
11
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Since each step of our scheme is second order in space aratdiestin time, and recalling that

At = O(%) we might expect to sep,q =~ 2, although since our meshes are generally non-

uniform and varying in time, this is only an approximate hiyyasis. Convergence results are

Method | N En(e) Pan En(X) On
A 10 | 2034x10% - 1275x10° -
20 | 8.346x10° 1.3 3306x10°% 1.9
40 | 3547x 105 1.2 8478x107 2.0
80| 1.471x10° 1.3 2050x107 2.0

B 10 | 2299x10% - 6207x10% -

20| 9.293x10° 1.3 1109x10* 2.5
40 | 3.891x10° 1.3 3043x10° 1.9
80 | 1.600x 10 1.3 7224x10°% 2.1
C 10 | 1.448x10° - 1819x10° -

20 | 3.645x10°% 2.0 1944x10°% 3.2
40 | 8807x 107 2.0 7148x107 1.5
80 | 2.090x 107 2.1 1880x107 1.9

Table 1: Relative errors far andX'with rates of convergence using the explicit Euler time-sieg scheme.

shown in Table 1. We see thit(«) andEn(X) decrease aNl increases for each of the moving
mesh methods. This strongly suggests that as the numbedestiacreases, both the solutien
and the position of the nodes are converging. For Methods A and B, thesalues presented in
this table indicate superlinear convergencerpéind theg-values suggest second-order conver-
gence ofx For Method C, thep andq values suggest second-order convergence of daitid X.

Having established convergence of our moving mesh scheme®w compare the numeri-
cal results from the methods &% with those of the method describedsi8.

We generate results using the parameters detailed in (84{3&). All three methods were
investigated wittN = 80, At = 7.5 x 103, and final timet = 75, i.e. 10,000 time-steps. Each of
Methods A and C produce very similar results, so only theltestom Method C and Method B
are plotted below. Figures 9-11 are due to Method C and dispéasame travelling wave char-
acteristics as the results in [1] for the same parameteosébl resembling Figures 1-3). The
value ofa near the free boundary remains fairly constant, arad the centre of the tumour de-
creases at a steady rate as time increases. The velocity peakthe boundary, but the velocity
at the boundary appears to stay constant with respect toftinte> 37.5. This coincides with
the tumour radius growing steadily, Figure 11. The minima subtly diferent to that of [1];
the troughs in Figure 2, which resemble those in [1], aréndlljgess rounded than those shown
in Figure 10. Interestingly, Method A (a locally conservativersion of the method i§3) also
presented rounder minima, identical to those in Figure 10.

Figures 12—-14 show that Method B appears to behave like Methend C (and [1]) at early
times. However, after approximatdly= 45, o appears to grow at the boundary, and no longer
decreases at a regular rate at the centre of the tumour.drontine, the velocity at the boundary
decreases considerably, with the tumour radius nearlyhieg@ steady state &t= 75. This
behaviour is not apparent in [1], nor from Methods A and C. plues from Method B are less
smooth, despite the same number of nodes being used for estbbdn There is a considerable
kink in @ andu, for t = 45 which appears to dampen at later times. The solutiolves not

14
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drop below 0.4 at the centre of the tumour, eventfes 100 (not shown here). This erratic
behaviour remains with a smallat, and when using an adaptive second and third order Runge-
Kutta method for the time-stepping (see Remark 2 below)gssiing that this behaviour is due
to the choice of the velocity in the numerical method. Thepsses of Method A and Method B
are very similar, and because Method A behaves as in FigetEk @ is reasonable to conclude
that tracking the cell velocity with the mesh nodes, as infiddtB, results in the mesh becoming
too coarse in some areas, and too fine in others. This is agmnothlat could be compounded
over time, especially in the area where the cell velocitiag/ \between positive and negative;
resulting in nodes moving in opposite directions, leavirgpasiderable gap in between. Indeed
if we look at Figure 13 fot = 75, we see that the velocity is mostly negative, so that masteo
nodes are moving to the left.

As a further example, we use the parameter set (34) and (@bpagain present results for the
method of§2 and the moving mesh methodsg§id. Once the steady state is reachet~ati0, all
cells within the region have negative velocity, i.e. thdsate moving inwards. The comparisons
between the methods had similar outcomes: the results féhdde A and C (Figures 15-17)
resembled the results in [1] (as shown in Figures 5-7); MfBanoves the nodes evenly for
early times, but once negative spatial velocities occug,rtbdes become clustered to the left,
as shown in Figures 18-20. When the tumour radius settlestendysstate, the internal cells
continue moving. This feature means that the mesh for MeBhodver settles to a steady state,
whereas the meshes for Methods A and C do.

Finally, we examine exactly how the mesh moves for each ofdifferent moving mesh
methods. We take the parameters that produce a steadylitrguehve profile, (34) and (35).
By definition, the nodes with Method A remain equally spaceerdime, and move to the right
uniformly with the tumour growth, as shown in Figure 21. Thesimfor Method B, Figure 22,
begins by spreading out fairly equally. However, at laterets when negative velocities are in-
troduced, the nodes cluster nearer the centre of the tunindeed, it can be seen that most
nodes will initially move out with the tumour growth, but theeturn to the tumour centre. The
node at the boundary is then significantly separated fronothers, causing an unsatisfactory
coarseness at the edge. When the nodes are moved by Methogu@ B8, the nodes behave
similar to the nodes of Method A fdr< 30. For larger times, the nodes near the tumour centre
spread. We would expect the spread to be more prominent dsrtiwur grows, i.e. the nodes
naturally spread where is low, and cluster where is larger. Moreover, each node only moves
to the right as the tumour grows. When comparing Figures 2128rittbecomes apparent why
they produce nearly the same results, especially f080.

Remark 2. For the moving mesh methods we also considered using a tepeisg scheme
based on an adaptive second and third order predictor-adme Runge-Kutta method, which
chooses the time step automatically to minimise the erpedgically, we used ODE23 in Mat-
lab). When using this scheme, we took a maximiine= O(1/N) to balance the spatial and
temporal errors, preciselynaxAt = 0.02/(2"). The results from the Runge-Kutta method were
very similar to results from the explicit Euler time-stepgpscheme, indicating that our approach
is robust to dfferent time-stepping approaches, and is not particularig.st
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Figure 17: Tumour radiu§t) using Method C and parameter set (34) and (36).
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Figure 21: The position of nodes for Method W,= 40, parameter set (34) and (35)
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Figure 22: The position of nodes for Method B,= 40, parameter set (34) and (35)
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Figure 23: The position of nodes for Method I€ = 40, parameter set (34) and (35)
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6. Conclusions

We have numerically solved the non-dimensionalised formarofvascular tumour growth
model given in [1] using three fierent moving mesh methods. Working with the original non-
dimensionalised form of the model, we have replicated tlsalte of [1] and presented three
different velocity-based approaches to move the mesh. Tferatit approaches to define the
mesh velocity are: (A) proportional to the boundary movetn@) following the cell velocity;
(C) conserving local mass fractions. To advance in timeh @dfi¢he three methods used either
explicit Euler time-stepping or adaptive second and thirdeo Runge-Kutta formulas. Each
method, with explicit Euler time-stepping, appears to beveogent for small times. Methods
A and C continue to work well for larger times and replicateutes in [1], but Method C has
the added advantage that the nodes move in a manner thatvessefeature of the model,
specifically local mass fractions. However, care is reglivben choosing a feature of the model
to determine the mesh velocity, as evidenced by the poolutisoapparent when using Method
B over longer times. Method C is an especialfjeetive method when solving problems with
self-similar solutions as it preserves similarity.

An obvious advantage of moving mesh methods, either veidesed or transformation-
based, is their ability to track moving boundaries. In the-fthase model studied here the outer
boundary is accurately followed. Moreover, the resultswshizat by moving the nodes in a
manner that conserves local mass fractions (Method C), warobery similar results to when
the mesh is moved geometrically, with the advantage thaténgh movement is controlled by a
specific feature of the model which preserves local massibaland fers higher resolution at
the boundary. More recent three-phase models that takadetmunt proliferating, quiescent and
necrotic cells can be treated in a similar way, even thougkdimodels cannot be reduced to the
study of a single component such@asHowever, in a two-phase situation the necrotic core can
alternately be modelled as a separate inner region betweaen and outer moving boundaries.
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