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Abstract

Given a nonlinear deterministic model, a density forecast is obtained by evolv-

ing forward an ensemble of starting values and doing density estimation with the

final ensemble. The density forecasts will inevitably be downgraded by model mis-

specification. To mitigate model misspecification and enhance the quality of the

predictive densities, one can mix them with the system’s climatology. This paper

examines the effect of including the climatology on the sharpness and calibration

of density forecasts at various time horizons. The density forecasts are estimated

using a non-parametric approach. The findings have positive implications for is-

suing early warnings in different disciplines including economic applications and

weather forecasting, but a non-linear electronic circuit is used as a test bed.
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1 Introduction

Brier [1950] was one of the first to highlight the importance of consistency between
forecast probabilities and observed relative frequencies. This forecast attribute was
later termed validity by Bross [1953] and reliability by Saunders [1958]. Currently it is
commonly known as calibration (e.g. in Gneiting [2008], Lawrence et al. [2006]), although
the weather community also uses the term reliability. While much of the discussion on
calibration of probabilistic forecasts has centred on categorical events, Dawid [1984]
is notable for proposing the use of probability integral transforms (PITs) to assess the
calibration of density forecasts. A PIT is obtained by plugging an observation into the
cumulative predictive distribution function. His proposed test included the additional
condition that the PITs should be independent and identically distributed. Diebold
et al. [1998] then showed that if density forecasts coincide with the ideal forecasts, then
the PITs are independent and identically uniformly distributed (iid U [0, 1]). Indeed iid
U [0, 1] of PITs is a necessary and sufficient condition for the density forecasts to coincide
with the ideal forecasts.

Unfortunately, ideal forecasts may be unattainable in practice (e. g. weather fore-
casting). It is, therefore, understandable that Gneiting et al. [2007] broke down calibra-
tion into three categories or modes: probabilistic calibration, exceedance calibration and
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marginal calibration, which need not all hold at the same time. Density forecasts are
said to be probabilistically calibrated if and only if the PITs are uniformly distributed.
Marginal calibration refers to the case when the time average of all density forecasts
is equal to that of ideal forecasts. There is no empirical way of assessing exceedance
calibration.

Gneiting et al. [2007] then conjectured that when a subset of these modes of cali-
bration holds, then the predictive distributions are at least as spread out as the ideal
forecasts, which conjecture they termed a sharpness principle. The term sharpness
seems to have been coined by Bross [1953], and it is a measure of how concentrated
probabilistic forecasts are and a property of the forecasts only (Gneiting [2008], Gneit-
ing et al. [2007], Wilks [2006]). Sharpness of predictive distributions has traditionally
been measured by variance (e. g. Gneiting [2008], Gneiting et al. [2007]) and confidence
intervals (e. g. in Gneiting et al. [2007]), even though Hirschman [1957] argued for the
use of entropy. It has further been argued that the goal of probabilistic forecasting is to
maximise sharpness subject to calibration (Gneiting [2008], Gneiting et al. [2007]). This
so called paradigm (Gneiting [2008]) depends on the aforementioned conjecture, which
we shall revisit later and present (with proof) a relevant theorem (or proposition).

When forecasting complex nonlinear systems like weather, model misspecification is
inevitable due to simplifications and approximations involved. Even though the under-
lying system might be deterministic, a point forecast would be pointless. There may
also be noise on the observations, increasing uncertainty in the forecasts. To account for
model misspecification and observational uncertainty, a distribution of point forecasts is
often issued at a given forecast lead time. To treat this ensemble of point forecasts as a
probabilistic forecast would be naive. Each ensemble forecast can then be converted into
a density forecast by assimilating some data to estimate kernel parameters as discussed
in Broecker & Smith [2008], minimising a logarithmic scoring rule (Gneiting & Raftery
[2007]). The scoring rule used is essentially the Kullback-Leibler divergence (Kullback
& Leibler [1951]) and is discussed in § 2. Broecker & Smith [2008] pointed out that
the density forecasts obtained as explained above can be improved by using what they
called affine functions and mixing the densities with the unconditioned distribution of
the data or climatology (Also called time series density in Hall & Mitchell [2007]). Their
main aim was to circumvent the problem of large variance of parameters. The resulting
density forecasts may be considered an example of mixture models common in Statistics.

As a dynamical system evolves in a bounded domain, it induces a probability density
function according to relative frequencies with which it visits the different regions of state
space. With no breaks nor drift in the dynamics, the arising probability distribution is
called climatology. Thus the unconditioned distribution of time series from a stationary
system provides an estimate of the system’s climatology.

From the results of Broecker & Smith [2008], it is evident that mixing with climatol-
ogy circumvents the problem of large variance of parameters. Including the climatology
was also found by Hall & Mitchell [2007] to improve performance in terms of the loga-
rithmic scoring rule. Except for mixing with climatology, Hall & Mitchell [2007] used a
parametric density estimation approach. The approach here is non-parametric. It would
be interesting to determine if improvement was due to an increase in sharpness at the
expense of calibration. As a test bed, we use an electronic circuit to assess what happens
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to these attributes when climatology is included. The modes of calibration assessed are
probabilistic and marginal calibration, while it is emphasised that entropy should be
used to measure sharpness. The new proposition that addresses Gneiting et al. [2007]’s
conjecture helps explain the findings. Whereas Broecker & Smith [2008]’s criticism to
not including affine functions in the density estimation was its guaranteed increase in
variance of the predictive distribution compared to the raw ensemble, we demonstrate
that the use of variance to measure sharpness could be misleading.

This paper is organised as follows: The next section discusses forecast qualities that
are cumulatively measured by the logarithmic scoring rule. In particular, a decomposi-
tion of this scoring rule is presented. The sharpness principle conjectured by Gneiting
et al. [2007] is discussed and a relevant proposition presented in § 3. In § 4, the method-
ology employed to produce density forecasts is outlined. Results concerning density
forecasts obtained via the logarithmic scoring rule with respect to a nonlinear electronic
circuit are discussed in § 5. Section 6 gives concluding remarks. Appendices A and B
contain the proof of the proposition concerning the sharpness principle and appendix C
contains proofs for the rest of the propositions.

2 Probabilistic-Forecast Quality

Model misspecification places limitations on the value of probabilistic forecasts. On
the other hand, consumers of forecasts may demand predictive distributions that are
both calibrated and sharp. If such forecasts are issued at long time horizons, then early
warning is afforded. We suggest that these qualities can be cumulatively quantified by
the logarithmic scoring rule proposed by Good [1952]. There are other scoring rules
available for selection (see Gneiting & Raftery [2007]). For instance, there is the Brier
score (Brier [1950]). This, however, decomposes into many terms (Murphy [1993]), some
of which are not relevant to our discussion and it is suitable for categorical events. A
generalisation of the Brier score to density forecasts is the continuous rank probability
score Gneiting & Raftery [2007], but it lacks a clear interpretation. Indeed traditional
decompositions of scoring rules do not contain a sharpness term. There is also the
mean square error loss function (Corradi & Swanson [2006]), which is also irrelevant
to the qualities of interest. Suffice it to say, the logarithmic scoring rule is preferred
over others for its appeal to information theory concepts (see Roulston & Smith [2002]),
which can be traced back to Shannon [1948, 1949]. Information theory has a strong
hold on uncertainty, a concept equivalent to sharpness.

2.1 Logarithmic Scoring Rule

Consider a density forecast f(x) and a target probability density function g(x). If
we think of X as a random variable, then the foregoing notation says that the true
distribution of X is g(x). With this notation, the information based scoring rule used
in this paper is

E[IGN(f, X)] = −
∫ ∞

−∞

g(x) log f(x)dx, (1)
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where IGN(f, X) = − log f(X), proposed by Good [1952] and termed Ignorance in Roul-
ston & Smith [2002] and predictive deviance in Knorr-Held & Rainer [2001]. Hence, (1)
is the expected Ignorance. It is related to the Kullback-Leibler divergence (Kullback &
Leibler [1951]),

DKL(g||f) =

∫ ∞

−∞

g(x) log

(

g(x)

f(x)

)

dx

by

DKL(g||f) = E[IGN(f, X)] +

∫ ∞

−∞

g(x) log g(x)dx.

It follows that the f that minimises DKL(g||f) also minimises E[IGN(f, X)]. The ex-
pected Ignorance is the infamous cross entropy H(g, f). The Ignorance score is especially
relevant when one evaluates the performance of density forecasts given time series only,
with no access to g(x). An important property of the Ignorance score is that it attains
the minimum if and only if f(x) = g(x) (Broecker & Smith [2008], Gneiting & Raftery
[2007]), meaning it is strictly proper.

Traditionally, the only score that has been decomposed into constituent terms is the
Brier score: the infamous reliability-resolution decomposition (Murphy [1993], Wilks
[2006]), after removing the uncertainty term. Broecker [2009] extended the decompo-
sition to general scores, but in the context of categorical forecasts. Unlike sharpness,
resolution is not a property of the forecasts only. Therefore, we introduce a decomposi-
tion of (1) as

E[IGN(f, X)] = −
∫ ∞

−∞

f(x) log f(x)dx −
∫ ∞

−∞

[g(x) − f(x)] log f(x)dx.

In this decomposition of expected Ignorance, the first term is sharpness and the second
is calibration. Notice that the sharpness term is simply the density entropy H(f), a
property of the density forecast only. It is desirable for this term to be as negative
as possible, effectively expressing more certainty about what is likely to happen. Since
calibration is a statistical property of the forecasting system, it cannot be assessed based
on one forecast only. For a time series of forecasts, we want each f(x) to be close to
g(x) in some way. One is never furnished with g(x) to aid assessment of calibration in
an operational setup, but there are time series approaches to address this.

2.2 Sharpness

One way to quantify sharpness is to use the variance (e.g. Gneiting et al. [2007]).
We emphasise that sharpness should be quantified by entropy, which “is a measure of
concentration” of the distribution “on a set of small measure”, a small value of entropy
corresponding to a “high degree of concentration” (Hirschman [1957]). The entropy of
a distribution f(x) of variance σ2 satisfies the inequality (Shannon [1948, 1949])

−
∫ ∞

−∞

f(x) log f(x)dx ≤ 1

2
log

(

2πeσ2
)

.

Hence, a smaller variance guarantees lower entropy but not vice versa. Indeed two dis-
tributions with the same variances can have unequal entropies. For instance, a mixture
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of two Gaussians will have lower entropy than a single Gaussian distribution of the same
variance. Much more, a distribution of a higher variance can have a lower entropy than
that of lower variance.

Sharpness has also been quantified by confidence intervals (Raftery et al. [2005],
Gneiting et al. [2007]). Confidence intervals share a similar weakness to variance in the
sense that a bimodal distribution that is fairly concentrated on the two modes can have
larger confidence intervals than a unimodal distribution that is fairly spread out. Also,
given two non-symmetric distributions, which of them is deemed sharper could depend
on what the confidence level is.

2.3 Calibration

The calibration of density forecasts is a well trodden subject. Much of the literature
takes the stand that a calibrated forecasting system is tantamount to a correctly specified
model. Corradi & Swanson [2006] provide a comprehensive survey of formal statistical
techniques for assessing calibration of density forecasts to determine if the underlying
model is correctly specified. The work of Gneiting et al. [2007] strikes a discord by
providing a calibration framework that accommodates model misspecification. They
broke down calibration into three modes, each of which could be assessed separately.

Suppose a probability forecasting system issues predictive distributions {Ft(x)}T
t=1,

while the data-generating process issues ideal forecasts {Gt(x)}T
t=1. Gneiting et al. [2007]

then defined the following modes of calibration:

• The sequence {Ft(x)}T
t=1 is probabilistically calibrated relative to {Gt(x)}T

t=1 if

1

T

T
∑

t=1

Gt{F−1
t (p)} = p, p ∈ (0, 1). (2)

• The sequence {Ft(x)}T
t=1 is exceedance calibrated relative to {Gt(x)}T

t=1 if

1

T

T
∑

t=1

G−1
t {Ft(x)} = x, x ∈ ℜ.

• The forecaster is marginally calibrated if

lim
T→∞

1

T

T
∑

t=1

Ft(x) = lim
T→∞

1

T

T
∑

t=1

Gt(x).

If we have a time series of observations xt, then zt = Ft(xt) is a probability integral trans-
form (PIT) (Corradi & Swanson [2006], Diebold et al. [1998]). Uniformity of the PITs
is equivalent to probabilistic calibration (Gneiting et al. [2007]). A visual inspection
of PIT histograms would reveal obvious departures from uniformity. The underlying
model is correctly specified if and only if zt ∼ iid U [0, 1].
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Suppose we have a time series of density forecasts, {ft(x)}t≥1. Then define the
forecaster’s climatology as

ρ̃T (x) =
1

T

T
∑

t=1

ft(x).

We define a forecaster who issues

Ft(x) = GT (x) =
1

T

T
∑

t=1

Gt(x)

for all t ∈ {1 . . . , T} to be the finite climatological forecaster. If Ft(x) = limT→∞ GT (x),
then we have the climatological forecaster. A forecaster is finite marginally calibrated if
ρ̃T (x) = G

′

T (x).
For all practical purposes, T is finite and we have no access to the Gt(x)’s. Hence

it is difficult to assess finite marginal calibration. If d(ρ̃T , ρ̃2T ) ≈ 0, where d is some
metric, then we can take T to be large enough to evaluate marginal calibration. To this
end, we can use the Hellinger distance (Pollard [2002]) and compute

h(ρ̃T , ρc) =
1

2

∫

[

√

ρ̃T (x) −
√

ρc(x)
]2

dx,

where ρc(x) = limT→∞ G
′

T (x) is the system’s climatology. It is useful to note that
0 ≤ h(·, ·) ≤ 1, assuming the value of 0 when the two distributions are identical and
1 when they do not overlap. This procedure for assessing marginal calibration is an
alternative to the graphical tests performed in Gneiting et al. [2007]. It is expected to
be more robust to finite sample effects.

3 The Sharpness Principle and Early Warning

Murphy & Wilks [1998] highlighted that forecasts need to be calibrated before one
worries about sharpness. Much earlier, Bross [1953] argued that a forecaster with a
sharper, but less calibrated probability forecasting system (PFS) could make a lot of
money over one with a more calibrated but less sharp PFS. Recently, Gneiting et al.
[2007] adopted a paradigm of maximising sharpness subject to calibration. They then
conjectured that the goal to obtain ideal forecasts and of maximising sharpness subject
to calibration are equivalent, which is the sharpness principle. A weaker alternative
states that any sufficiently calibrated forecaster is at least as spread out as the ideal
forecaster (Gneiting et al. [2007]). It has been demonstrated by counter examples that
none of the individual modes of calibration alone is sufficient for the weaker conjecture to
hold (Gneiting et al. [2007]). Since Pal [2009] admittedly did not satisfactorily address
this conjecture, it is revisited.

It is noteworthy that Gneiting et al. [2007] could not find a counter example to
disprove that a forecaster who is both probabilistically and marginally calibrated is at
least as spread out as the ideal forecaster. The following proposition addresses this in
the case of finite marginal calibration, which means:

1

T

T
∑

t=1

Ft(x) =
1

T

T
∑

t=1

Gt(x). (3)
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PROPOSITION 1. Suppose {Gt}T
t=1 is a sequence of continuous and strictly increas-

ing distribution functions (ideal forecasts). Then a forecaster who is both probabilistically
and finite marginally calibrated has either issued ideal forecasts {Gt}T

t=1 or is the finite
climatological forecaster.

Including exceedance calibration in the hypotheses of the above proposition would
rule out the finite climatological forecaster. The proof for the above proposition is split
into two parts and is given in appendix A and B. Even though this proposition does
not deal with the case when T approaches infinity, it is operationally useful. Indeed the
graphical tests for marginal calibration discussed in Gneiting et al. [2007] deal with finite
marginal calibration. The implications (of the proposition) to the sharpness principle
are that the level of expectation with regard to the two modes of calibration needs to be
scaled down when the underlying model is misspecified. Without a correctly specified
model, one cannot have both perfect probabilistic and finite marginal calibration unless
he is the finite climatological forecaster. While marginal calibration might be easier
to satisfy, probabilistic calibration may be harder to achieve. From this proposition,
we note that when the underlying model is misspecified there will be no bound on the
sharpness of predictive distributions. The forecaster should merely aim to maximise
sharpness subject to some level of calibration. A forecaster who is both probabilistically
and finite marginally calibrated affords early warning if he is sharper than climatology
at long time horizons.

4 Density-Forecast Estimation

Suppose we have some data point st, at time t, and we want to know the future state
at time t + τ . We call τ the forecast lead time. If we acknowledge both model mis-
specification and noise in the data, then it makes no sense to issue a point forecast.
To express uncertainty in the forecasts, we issue a density forecast. The first step to
obtaining a density forecast is to generate many points in the neighbourhood of st and
iterate each of the points forward with the model to obtain an ensemble of forecasts

X
(t+τ) =

{

X
(t+τ)
i

}N

i=1
. If the model is stochastic, it may suffice to iterate it forward

several times to generate the ensemble. This section is concerned with converting the
ensemble into a density forecast. In all our computations, we used the Gaussian kernel
function,

K(ξ) =
1√
2π

exp
(

−ξ2/2
)

.

4.1 Single Model

One way to convert a forecast ensemble into a density forecast would be to perform
density estimation according to Parzen [1962] and Silverman [1986]. The fundamental
weakness of this approach is that it inherently assumes that the ensemble is a draw from
the true distribution. In view of this, Roulston & Smith [2002] suggested taking into
account how the model has performed in the past. A similar approach is followed by Hall
& Mitchell [2007], who use past forecast errors to obtain density forecasts. Therefore,
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we can form density forecast estimates of the form:

ρ(t)(x) =
1

σN

N
∑

i=1

K
{(

x − X
(t)
i − µ

)

/σ
}

, (4)

where σ and µ are respective bandwidth and offset parameters chosen according to
past performance and K(·) is the kernel function. The density forecast in (4) differs
from the traditional Parzen [1962] estimates by the offset parameter. It is similar to
the Bayesian Model Average proposed by Raftery et al. [2005] with a uniform bias
correction, µ and equal weights. Here, the ensemble members are exchangeable and do
not represent distinct models. Selecting σ using Silverman [1986] does not account for
model misspecification.

To account for model misspecification, let us first denote a record of past time se-
ries and corresponding ensemble forecasts by VT = {( st, X

(t))}T
t=1. Then the density

forecasts whose parameters, µ and σ, are selected by taking into account past perfor-
mance may be denoted by ρ(t)(x|VT ). While ρ(t)(x|VT ) has the same form as in (4), its
parameters are selected by doing the minimisation

min
σ>0,µ

{

− 1

T

T
∑

t=1

log ρ(t)(st|VT )

}

. (5)

Under certain assumptions, doing the minimisation in (5) is tantamount to minimising
either the average cross entropy or the average Kullback-Leibler divergence. Without
making any assumptions, the term in (5) should be called average Ignorance, 〈IGN〉.
Minimising (5) is equivalent to maximum likelihood under the assumption of indepen-
dence of forecast errors (Raftery et al. [2005]). Moreover, it is equivalent to quasi
maximum likelihood (QML) under model misspecification with independent conditional
forecasts as discussed by White [1994]. Interestingly, White [1982] called the QML es-
timator the ‘minimum ignorance’ estimator, arguing that it minimises our ignorance
about the correct model structure.

4.2 Mixture Model

Broecker & Smith [2008] noted that, when doing the minimisation in (5), some of the
X

(t) may be far from the corresponding st, which could result in choices of σ that were
too big. Hence, the parameter estimates would not be robust. These short comings
could largely be due to model misspecification. To circumvent these, they proposed a
mixture model of the climatology, ρc(x), and ρ(t)(x|VT ):

f (t)(x|VT ) = αρ(t)(x|VT ) + (1 − α)ρc(x), (6)

where the mixture parameter, α ∈ [0, 1]. All the three parameters are fitted simultane-
ously by minimising average Ignorance. The system’s climatology, ρc(x), is estimated
from data via

ρc(x) =
1

σcT

T
∑

t=1

K {(x − st − µc) /σc} ,
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and the parameters σc and µc are then selected as proposed in Broecker & Smith [2008].
If we let rt = ρ(t)(st)/ρc(st), then we can state the following proposition,

PROPOSITION 2. For a given set of parameters µ and σ, the necessary and sufficient
conditions for improvement from including the climatology in the sense of the logarithmic
scoring rule are that

1

T

T
∑

t=1

rt > 1 and
1

T

T
∑

t=1

1

rt

> 1.

The proof for this proposition is given in appendix C. The ratio rt may be interpreted
as the return ratio on some invested capital in a Kelly betting scenario (Kelly [1956]) with
no track take. The proposition states how the model and climatology are to outperform
each other in order for the mixture model to provide additional value.

In order to capture the effect of including the climatology on the kernel width, we
consider the case when N = 1 with µ = 0. When there is no climatology included,
minimising the logarithmic score yields,

σ2
o =

1

T

T
∑

t=1

{

st − X
(t)
1

}2

. (7)

Let us write a time series version of the logarithmic scoring rule as

〈IGN〉 = − 1

T

T
∑

t=1

log f (t)(st|VT ). (8)

PROPOSITION 3. Suppose the score given by equation (8) assumes a minimum at
parameter values (σ∗, α∗), then the following equation holds:

σ2
∗ =

1

T

T
∑

t=1

{

st − X
(t)
1

}2 ρ(t)(st|VT )

f (t)(st|VT )
. (9)

See appendix C for the proof. For illustrative purposes, suppose that the kth forecast
is far from the corresponding observation in the sense that

∣

∣

∣
sk − X

(k)
1

∣

∣

∣
≫ max

{
∣

∣

∣
st − X

(t)
1

∣

∣

∣

}

t6=k
.

As a result, the kernel width in (7) would be inflated. Equation (9) provides a way
to discount the contributions of a few bad forecasts on the kernel width. In this case,
(σ∗, α∗) would be chosen such that

ρ(k)(sk|VT )

f (k)(sk|VT )
≪ 1.

This is especially valuable when T is small, which is the case in typical time series.
The idea is that a reduction in kernel width is necessary for the entropy of f (t)(x|VT )
to decrease even when N > 1, but it is easier to explain how the reduction is achieved
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when N = 1. Despite this reduction, some mixture forecasts may still be less sharp than
climatology in the sense of entropy. A straight forward application of the Kullback-
Leibler and Jensen’s inequalities leads to the relations

αH
{

ρ(t)
}

+ (1 − α)H(ρc) ≤ H
{

f (t)
}

≤ α2H
{

ρ(t)
}

+ α(1 − α)H
{

ρ(t), ρc

}

+ . . .

(1 − α)αH
{

ρc, ρ
(t)

}

+ (1 − α)2H(ρc),

where H(f) = −
∫

f(x) log f(x)dx and H(f, g) = −
∫

f(x) log g(x)dx are the entropy
and cross entropy respectively. Therefore, the necessary and sufficient conditions for
H

{

f (t)
}

≥ H(ρc) to hold are that H(ρc) < H
{

ρ(t), ρc

}

and H(ρc) < H
{

ρ(t)
}

respec-
tively. Whenever the climatology is sharper than the mixture forecast, it should be
issued as the forecast instead of the mixture.

It is not obvious what the effect of the mixture is on calibration, except that including
climatology improves the KL distance from the ideal forecasts. Nevertheless, the mixture
parameter that minimises the logarithmic score yields the equation

1

T

T
∑

t=1

ρc(st)

f (t)(st|VT )
= 1.

On the other hand, we note that equation (2) is equivalent to

1

T

T
∑

t=1

gt(st)

ft(st)
= 1 (10)

The two preceding equations are similar with the ρc replacing gt in (10). What happens
to calibration due the mixture will be explored by way of example in the next section.

5 Results and Discussion

This section presents the results that highlight the effects, on sharpness, calibration and
the time horizon over which density forecasts are useful, of introducing the climatology
to form the density forecasts. The system considered is a non-linear, chaotic, electronic
circuit constructed in a Physics laboratory at the University of Oxford. The signal
recorded consisted of voltages at some points on the circuit. The circuit was forecast
using a data based, deterministic, non-linear model. A portion of 210 data points was
used to select the density forecast parameters as discussed in § 4. An out of sample
evaluation of density forecasts was then performed.

The first quality considered was sharpness. A sample of density forecasts from two
ensemble forecasts at a forecast lead time of 6.4 ms is shown in figure 1. On the left are
density forecasts resulting from estimation without the climatology and those on the
right were obtained by mixing with the climatology. It is evident, by visual inspection,
that including climatology resulted in predictive distributions that were sharper (nar-
rower). Note that all the predictive distributions shown in figure 1 are clearly sharper
than the climatology, which is shown in figure 2.

Sharpness was assessed further by computing the corresponding variances and den-
sity entropies (see figures 3). The graph on the left shows a scatter plot of the variances
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Figure 1: Graphs of density forecasts for the circuit at a forecast time of 6.4 ms. Figures on
the same row correspond to the same ensemble. The density forecasts on the left were obtained
by estimation without the climatology and those on the right were obtained by including the
climatology. Notice that including the climatology resulted in narrower distributions. Clearly,
the lower entropies for the graphs on the right are a reflection of the noticeable increase in
sharpness.

of the predictive distributions containing the climatology against those without it. Only
6% of the predictive distributions mixed with the climatology resulted in variance reduc-
tion. Based on this graph, one could conclude that including the climatology resulted in
predictive distributions that were more spread out. We contend that it is better to use
entropy to measure sharpness. On the scatter plot of density entropies on the right hand
side of figure 3, 77% of the points lie below the line y = x, implying that including the
climatology generally yielded sharper predictive distributions. This example illustrates
that one’s conclusions can vary depending on whether they use entropy or variance to
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Figure 2: Graph of the climatology of the circuit estimated from data. Its entropy is 2.15,
which is greater than the entropies shown in figure 1.
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Figure 3: Scatter plots of the variances (left) and entropies (right) of density forecasts con-
taining climatology versus those without. On the left picture, only 6% of the points are below
the line y = x, indicating that including the climatology resulted in bigger variances. On the
contrary, the picture on the right indicates that 77% of the points are above the line y = x,
hence including the climatology resulted in lower entropy.

measure sharpness. At forecast time of 12.8 ms, 61% of predictive distributions contain-
ing the climatology had smaller variance whilst 71% of them had lower entropy. In that
instance, both measures concurred that including the climatology tended to sharpen the
predictive distributions.

We would also like to draw attention to the fact that reduction in the kernel band-
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Figure 4: Graphs of the Hellinger distance of forecast climatologies from the system’s
climatology versus lead time.

width does not necessarily lead to reduction in variance. At a forecast lead time of
6.4 ms, we noted that including the climatology generally resulted in variance increase.
However, the bandwidth was found to be 0.386 when the climatology was not included
and 0.220 when it was. The graphs of bandwidth versus forecast time are shown in
figure 5. The mixture distribution does indeed turn out to have smaller bandwidth, in
agreement with analytic considerations of the previous section.

To assess marginal calibration, we compare forecast climatology with the system’s
climatology. At the forecast lead time of 6.4 ms, the average of density forecasts contain-
ing no climatology differed with the climatology by a Hellinger distance of 0.0056 while
including the climatology resulted in a Hellinger distance of 0.0013. In both cases we
can conclude that the density forecasts are marginally calibrated. Obviously, including
the climatology should tend to improve marginal calibration. Graphs of the Hellinger
distance of forecast climatologies from the system’s climatology versus forecast lead time
shown in figure 4 support this claim.

A sample of PITs is shown in figure 6. A visual inspection of the PITs indicates that
including the climatology did not degrade probabilistic calibration. At a lead time of 5.6
ms, PITs for both versions of density forecasts appear uniformly distributed, a signature
of probabilistic calibration. Actually, climatology appeared to improve probabilistic
calibration at some higher lead times. For lead times up to about 5.6 ms, there was
no noticeable difference between the PITs, yet density forecasts containing climatology
scored better as shown in figure 7. Improvement in the score must be due to improvement
in sharpness without compromise on probabilistic and marginal calibration.

Given that a PFS is sufficiently calibrated, a given density forecast is of value if it is
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Figure 5: Graphs of kernel bandwidth versus forecast lead time for density forecasts. The dotted
vertical line corresponds to the forecast time of 6.4 ms. Evidently, including the climatology
resulted in smaller kernel bandwidth.

sharper than climatology. Entropy distributions for density forecasts at lead times of 6.4
ms, 9.6 ms and 12.8 ms are shown in figure 8. It is evident from the graphs that most
of the predictive distributions are sharper than climatology at each of the lead times.
At the forecast lead times of 12.8 ms, 89.8% of predictive distributions are sharper than
climatology. Similarly, 95% and 98% of predictive distributions at lead times of 9.6 ms
and 6.4 ms are respectively sharper than climatology. On this evidence, predictability is
retained at least up to lead times of 12.8 ms. Whenever a predictive distribution is less
sharp than climatology, climatology should be issued in its stead. That our forecasts
are calibrated and yet generally sharper than climatology implies that early warning
is afforded. The fact that climatology is sharper than some predictive distributions at
each of the lead times is testimony to model misspecification. Bearing in mind the main
proposition (Proposition 1) of this paper, it is not unexpected when we do not have
perfect probabilistic and marginal calibration.

6 Conclusions

This paper discussed a way toward achieving the goal of probabilistic forecasting, which
is to maximise sharpness subject to calibration. To this end, it considered the effect of
including the climatology on sharpness and calibration when forming density forecasts
from a discrete ensemble of model runs. The conjecture of Gneiting et al. [2007] was
also revisited and a proposition concerning the sharpness principle proven. It turned
out that one cannot have both probabilistic and marginal calibration hold when the
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Figure 6: Top: Graphs of probability integral transforms for predictive distributions at various
lead times. A visual inspection suggests that including climatology via the logarithmic scoring
rule tends to improve probabilistic calibration.
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Figure 7: Left: Graphs of out-of-sample average Ignorance, with the associated 95% confidence
intervals, versus forecast time for density forecasts with and without the climatology. The
average Ignorance is given relative to the entropy of the climatology. Right: Graph of the
mixture weight versus forecast time. Notice from the left graph that if we do not include
the climatology, we lose predictability after about 13 ms. On the other hand, including the
climatology affords better performance up to 20 ms.

underlying model is misspecified unless they settle for the climatological forecaster. In
light of this fact, it has been suggested that one should scale down their calibration
expectations when facing model misspecification.

It was found that including the climatology via the logarithmic scoring rule tended
to improve marginal and probabilistic calibration. This was accompanied by a cor-
responding increase in sharpness as measured by entropy. Improvement in marginal
calibration increased with lead time with no compromise to probabilistic calibration.
It has also been argued that sharpness is better captured by entropy as opposed to
variance. Fairly calibrated predictive distributions at higher lead times were found to
be generally sharper than climatology, thus affording early warning. Crucially, though,
some of the density forecasts may have larger entropy than the climatology. Such fore-
casts have to be rejected in favour of the climatology, which is sharper. Even though
these observations were made on a nonlinear system, they may be useful in linear time
series analysis as well, and/or when the model is stochastic. An open problem is to
determine analytically why including the climatology via the logarithmic scoring rule
tends to maintain or improve probabilistic calibration.
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A Generalised Construction of Probabilistically Cal-

ibrated Forecasts

PROPOSITION 4. Suppose that Gt is a continuous strictly increasing distribution
function on an interval It. Let I be any interval and choose for each t a strictly increasing
continuous map ht : I → It. A probabilistically calibrated forecast distribution function
precisely takes the form1

Fs(xs) =
1

T

T
∑

t=1

Gt

[

ht

{

h−1
s (xs)

}]

. (11)

Equation (11) is just Gneiting et al. [2007]’s construction in § 2.4 except that T is
general rather than 2 and the linear maps x and x/a that Gneiting et al. [2007] use are
replaced by the nonlinear maps ht. Note that each Fs is a strictly increasing continuous
distribution on Is and they are probabilistically calibrated forecasts of the Gt’s, because
given 0 < p < 1 there is some x in I with

p =
1

T

T
∑

t=1

Gt {ht(x)} = Fs {hs(x)} ,

whence F−1
t (p) = ht(x) and

1

T

T
∑

t=1

Gt

{

F−1
t (p)

}

=
1

T

T
∑

t=1

Gt {ht(x)} = p.

Moreover, any probabilistically calibrated forecast of Gt takes exactly this form. To
see this, let I be any interval and h1 be any suitable map from I onto I1 and then define

1This proposition and its proof were kindly worked out and privately communicated to me by

David Allwright who is at the Oxford Centre for Industrial and Applied Mathematics.
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ht(x) = F−1
t [F1{h1(x)}]. It then follows that

1

T

T
∑

t=1

Gt

[

ht

{

h−1
s (xs)

}]

=
1

T

T
∑

t=1

Gt

[

F−1
t {Fs(xs)}

]

= Fs(xs).

The first equality follows by definition of the ht functions and the next by the proba-
bilistic calibration property. Hence the Ft’s have exactly the form of the construction.

B Proof of Proposition 1

Using proposition 4, probabilistic calibration implies that Ft takes precisely the form
given in (11). If the sequence {Ft} is also finite marginally calibrated, we can substi-
tute (11) into (3) to obtain

1

T (T − 1)

T
∑

t=1

T
∑

s=1,s 6=t

Gt

[

ht

{

h−1
s (x)

}]

=
1

T

T
∑

t=1

Gt(x), T ≥ 2.

It is, therefore, required that Gt [ht {h−1
s (x)}] = Gi(x), where i ∈ {1, .., T}. If Gt[ht{h−1

s (x)}] =
Gs(x) for any s, then the forecasts {Ft} are ideal. On the other hand, if Gt[ht{h−1

s (x)}] =
Gt(x), then we have the finite climatological forecaster.

We now wish to show that a non-climatological forecaster who is both probabilis-
tically and marginally calibrated is precisely the ideal forecaster. Consider Fs(x) as
defined by equation (11) for a given s. Suppose there exists q such that

Gt[ht{h−1
s (x)}] = Gs(x), for all t ≤ q (12)

and
Gt[ht{h−1

s (x)] = Gt(x) for all t > q. (13)

Equation (12) implies that Gs[hs{h−1
t (x)}] = Gt(x) for all t ≤ q while (13) implies that

ht(x) = hs(x) for all t > q. Fs(x) contains q counts of Gs(x). Each

Fi(x) =
1

T

T
∑

t=1

Gt

[

ht

{

h−1
i (x)

}]

,

i 6= s, contains 0 counts of Gs(x) if i ≤ q. If i > q, we get

Gt[ht{h−1
i (x)}] = Gt[ht{h−1

s (x)}] = Gs(x),

for all t ≤ q. The first equality follows from noting that hi(x) = hs(x) and the second
from applying (12). Hence each Fi(x) contains q counts of Gs(x). Therefore, all the
summations on the right hand side of the forecasters contain q + (T − q)q counts of
Gs(x). Finite marginal calibration imposes the requirement that q + (T − q)q = T ,
which holds if and only if q = T . But q = T implies that we have ideal forecasts.

More generally, the sequence {Gt[ht{h−1
s (x)}]}t>q may contain multiplicities of the

Gt(x) terms. This means that, for a given t = r > q for which Gr[hr{h−1
s (x)}] = Gr(x),
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there may be at least another p 6= r and p > q such that Gp[hp{h−1
s (x)}] = Gr(x). Let

j be the number of all p’s for all r’s as defined above. Then the total number of Gs(x)
terms over the right hand sides of all Fi(x) and Fs(x) is q + (T − q − j)q. Marginal
calibration imposes the condition that

q + (T − q − j)q = T ⇒ q2 − q(T − j + 1) + T = 0.

For the above quadratic equation to have an integer solution in q, the discriminant must
be a perfect square, which happens if and only if j = 0. Hence a non-climatological
forecaster who is both finite marginally and probabilistically calibrated must have issued
ideal forecasts.

C Proofs of Propositions 2 and 3

Proof of proposition 2: The second partial derivative of equation (8) with respect to
the mixture parameter α yields

∂2〈IGN〉
∂α2

=
1

T

T
∑

t=1

{

ρ(t)(st|VT ) − ρc(st)

f (t)(st|VT )

}2

.

Hence the first derivative of 〈IGN〉 with respect to α is an increasing function of α. It
follows that the first derivative will have a zero at some α = α∗ ∈ (0, 1) if and only if

∂〈IGN〉
∂α

∣

∣

∣

∣

α=0

< 0 and
∂〈IGN〉

∂α

∣

∣

∣

∣

α=1

> 0.

These are essentially the inequalities in the proposition. The second derivative implies
that α∗ is a global minimiser of the score.

Proof of proposition 3: ∂〈IGN〉/∂σ = 0 implies that

σ2
∗

1

T

T
∑

t=1

ρ(t)(st|VT )

f (t)(st|VT )
=

1

T

T
∑

t=1

{

st − X
(t)
1

}2 ρ(t)(st|VT )

f (t)(st|VT )
.

But ∂〈IGN〉/∂α = 0 implies that

1

T

T
∑

t=1

ρ(t)(st|VT )

f (t)(st|VT )
= 1,

which may be plugged into the left hand side of the previous equation to complete the
proof.
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