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Abstract

This report describes several velocity-based moving mesh numer-
ical methods for multidimensional nonlinear time-dependent partial
differential equations (PDEs). It consists of a short historical review
followed by a detailed description of a recently developed multidimen-
sional moving mesh finite element method based on conservation.

Finite element algorithms are derived for both mass-conserving
and non mass-conserving problems, and results shown for a number of
multidimensional nonlinear test problems, including the second order
porous medium equation and the fourth order thin film equation as
well as a two-phase problem. Further applications and extensions are
referenced.

2



Contents

1 Introduction 5

2 Time-dependent PDEs 6
2.1 PDEs and balance laws in a fixed frame . . . . . . . . . . . . 6
2.2 Scale-invariance and similarity . . . . . . . . . . . . . . . . . . 8

2.2.1 The porous medium equation . . . . . . . . . . . . . . 9
2.3 PDEs and integral forms in a moving frame . . . . . . . . . . 10
2.4 Weak forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Velocity-based moving mesh methods 12
3.1 Fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 ALE (Arbitrary Lagrangian Eulerian) methods . . . . . . . . . 14
3.3 Moving finite elements . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The Deformation method . . . . . . . . . . . . . . . . . . . . . 18
3.5 The GCL method . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 The conservation method . . . . . . . . . . . . . . . . . . . . . 22

4 The conservation method for mass-conserving problems 23
4.1 A local conservation principle . . . . . . . . . . . . . . . . . . 23

4.1.1 Solving for the velocity . . . . . . . . . . . . . . . . . . 24
4.1.2 Recovering the solution . . . . . . . . . . . . . . . . . . 25
4.1.3 Some exact solutions for the velocity . . . . . . . . . . 26

4.2 Distributed mass-conserving velocities . . . . . . . . . . . . . . 28
4.2.1 Weak form of the velocity and recovery of the solution 29

4.3 A moving mesh finite element method . . . . . . . . . . . . . 30
4.3.1 Matrix forms . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Solving for the velocity . . . . . . . . . . . . . . . . . . 33
4.3.3 Recovering the solution . . . . . . . . . . . . . . . . . . 34
4.3.4 Mass-conserving test functions . . . . . . . . . . . . . . 35
4.3.5 Algorithm for mass-conserving problems . . . . . . . . 36

4.4 Time-stepping for the ODE system . . . . . . . . . . . . . . . 37
4.4.1 Scale-invariant time-stepping . . . . . . . . . . . . . . . 38

4.5 The one-dimensional finite element method . . . . . . . . . . . 38
4.6 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.1 Initial data in one dimension . . . . . . . . . . . . . . . 39
4.6.2 Initial data in higher dimensions . . . . . . . . . . . . . 40

4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.1 The porous medium equation . . . . . . . . . . . . . . 41
4.7.2 Fourth order nonlinear diffusion . . . . . . . . . . . . . 47

3



4.7.3 Waiting times for the porous medium equation . . . . . 48
4.7.4 Richards’ equation . . . . . . . . . . . . . . . . . . . . 49

5 The conservation method for non mass-conserving problems 53
5.1 Velocity and solution . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Distributed forms . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 The moving mesh finite element method . . . . . . . . . . . . 56

5.3.1 Algorithm for non mass-conserving problems . . . . . . 57
5.3.2 Numerical example: the Crank-Gupta problem . . . . . 58

6 Extensions and Further Applications 61
6.1 Internal boundaries . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1 Velocity and Solution . . . . . . . . . . . . . . . . . . . 61
6.1.2 Example: A Two-Phase Stefan Problem . . . . . . . . 62

6.2 Monitor integrals . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 A finite difference method . . . . . . . . . . . . . . . . . . . . 67
6.4 Further applications . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Other nonlinear diffusion problems . . . . . . . . . . . 68
6.4.2 One-dimensional applications using finite differences . . 69
6.4.3 Applications to systems of equations . . . . . . . . . . 69

7 Summary 70

8 Appendices 71

A Propagation of self-similar solutions 71

B Propagation of L2 projections of self-similar solutions 74

4



1 Introduction

This report reviews some velocity-based moving mesh numerical methods for
nonlinear time-dependent partial differential equations (PDEs). Numerous
physical and biological applications of mathematics are governed by these
PDEs which often exhibit complex behaviour difficult to predict in advance.
For example, problems may be posed on moving domains which are deter-
mined implicitly by the solution of the equations.

Many PDE problems possess analytic properties, for example the invari-
ance of certain integrals or the existence of solutions with a specific structure.
The construction of numerical approximations which preserve such proper-
ties is one of the aims of geometric integration [28, 29]. Where such a priori
knowledge concerning the qualitative nature of the solution is available this
may be used to guide effective computational schemes.

We shall be concerned with moving mesh numerical methods, which have
the ability to adjust to the evolution of the solution, (in order to track im-
plicit moving boundaries and singularities for example), as well as to resolve
sharp features and respect global properties. Such methods are therefore an
attractive choice for problems of this type. The argument is reinforced in the
case of scale-invariant problems for which both dependent and independent
variables are strongly coupled. Fixed meshes are unable to replicate scale-
invariance because they are time-independent. The coupling of independent
and dependent variables is a recurrent theme in this report and is used later
on to motivate the development of a solution-adaptive moving mesh finite
element method based on conservation.

Velocity-based moving mesh methods (also known as Lagrangian methods
or in a wider context Arbitrary Lagrangian Eulerian (ALE) methods) rely
on the construction of suitable velocities at points of the moving domain
at each instant of time, as opposed to the construction of time-dependent
mappings from a fixed computational domain to the moving domain [29, 34,
133]. The latter construction can be rather cumbersome in more than one
dimension, and in any case the mappings need to be converted into velocities
for incorporation into a time-dependent PDE. A velocity-based description,
on the other hand, requires no formal reference to the computational domain
and has the advantage that the velocity is available directly for incorporation
into the time-dependent PDE. The evolution of the Lagrangian coordinate
x̂(t) at time t follows from the velocity v(t,x) by integrating the ODE

dx̂(t)

dt
= v(t, x̂(t)) (1)

where x̂(t) coincides instantaneously with the Eulerian coordinate x at the
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initial time.
The layout of the report is as follows. In the next section (section 2) we

review time-dependent PDEs stated in both differential and integral form.
Initially a fixed frame of reference is considered which allows a simple dis-
cussion of some structural aspects of time-dependent PDEs, including scale
invariance and similarity. We then generalize these aspects to PDEs in a
moving framework. Although the report is primarily concerned with differ-
ential equations the emphasis here is on integral forms which are closer to
the physics and lead naturally to finite element formulations. The discussion
includes weak formulations of the equations, of direct relevance to the finite
element methods that are considered later.

Section 3 focuses on the history of the construction of mesh velocities
that have been incorporated into these moving forms. A short survey is given
which starts by considering Lagrangian methods in fluid dynamics, and then
moves on to ALE techniques and other more mathematically (rather than
physically) based drivers for the mesh velocities. This section includes a
discussion of the geometric conservation law, which is a source for the moving
mesh conservation method considered later in the report.

Subsequent sections give details of a local, or distributed, conservation
method which has been shown to be highly effective in obtaining approximate
solutions of time-dependent PDE problems in multidimensions, particularly
those with implicit moving boundaries. The first of these sections (section
4) describes the basis of the conservation method for mass-conserving prob-
lems and includes details of the multidimensional moving mesh finite element
method for such problems with examples. Section 5 generalizes the technique
to non mass-conserving problems, whilst section 6 presents a number of ex-
tensions and applications of the method. The paper concludes with a brief
summary.

2 Time-dependent PDEs

This introduction contains background material on the structure of PDEs
relevant to later sections of the report.

2.1 PDEs and balance laws in a fixed frame

In a fixed frame of reference a generic form of scalar time-dependent PDE
for the dependent variable u(t,x) is

ut = Lu , (2)
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where t is time, x is the space variable, and L is a purely spatial operator,
nonlinear in general. Problems governed by the PDE (2) may be posed
on either fixed or moving domains with appropriate initial and boundary
conditions. The number and character of the boundary conditions relate
to the order and type of the operators involved and the behaviour (fixed
or moving) of the boundary. In a moving boundary problem an additional
boundary condition is normally required.

We shall also be concerned with integral forms of (2), which are closer
to the physics through their direct expression of conservation properties, as
well as leading naturally to finite element formulations. Equation (2) has the
integral form

d

dt

∫

Ω

udx =

∫

Ω

Ludx (3)

over any region Ω.
In particular, many partial differential equations governing applications

are derived from integral balance laws. A typical balance law expresses the
balance between the rate of increase of the integral of the function u over an
arbitrary volume Ω, ∫

Ω

udx, (4)

henceforth known as the mass (by analogy with the case where u is a density),
and the flux F(u,Dαu) across the boundary ∂Ω of Ω (where Dα denotes
derivatives of u up to some order α). and is given by

d

dt

∫

Ω

udx = −
∮

∂Ω

F · n̂dΓ (5)

where n̂ is the the unit outward normal to the boundary. By the Divergence
Theorem equation (5) can be written as

d

dt

∫

Ω

udx = −
∫

Ω

∇ · Fdx, (6)

For fixed Ω this leads to the integral form
∫

Ω

{ut + ∇ · F} dx = 0. (7)

and, since Ω is arbitrary, u satisfies the PDE

ut + ∇ · F = 0 (8)

pointwise. The physical origin of the PDE (8) is nevertheless the balance law
(5).

Before putting PDEs into a moving framework we consider the application
of scale-invariance and similarity to PDEs in a fixed frame.
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2.2 Scale-invariance and similarity

Information about the structure of PDEs and their solutions is reflected in
their scale-invariance and similarity properties. Because scale-invariance de-
pends on the simultaneous variation of independent and dependent variables
the numerical simulation of the PDEs demands (and motivates) the use of
solution-adaptive moving meshes [30].

Recall that a time-dependent PDE problem in d dimensions with spa-
tial coordinates xν (ν = 1, 2, ..., d) is scale-invariant if there exists a scaling
parameter λ and scaling indices βν , γ such that the scalings

t → λt, xν → λβνxν , u → λγu (9)

leave the problem invariant.
For such problems there exist (scale-invariant) similarity variables,

ξν = xν/t
βν η = u/tγ (10)

which specify a time-dependent similarity transformation between a fixed
domain with coordinates ξν and a moving domain with coordinates xν(t).
The velocity effecting the transformation has components

vν =
dxν

dt
= βνt

βν−1ξν =
βνxν

t
. (11)

A relationship between the similarity variables (10) of the form

η = f(ξ), i.e. u(t,x) = tγf (ξ) , (12)

where ξ = {ξν}, plays a special role for which u is said to be self-similar.
Substituting (12) into (2) the function f must satisfy the reduced-order dif-
ferential equation,

γf(ξ) −
∑

ν

βνξν
∂f

∂ξν

(ξ) = t1−γL{tγf(ξ)} (13)

(which is time-independent owing to the scaling properties). Self-similar
scaling solutions of the form (12) exhibit a scaling symmetry because the
number of independent variables is reduced by one.

In particular, for mass-conserving problems,

γ +
∑

ν

βν = 0 (14)

as a result of the integral (4) being independent of time.
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In one space dimension the self-similar solution (12) takes the form

u(t, x) = tγf (ξ) (15)

where ξ = x/tβ and f satisfies the ODE

γf(ξ) − βξf ′(ξ) = t1−γL{tγf(ξ)} . (16)

A particular property of self-similar solutions for mass-conserving prob-
lems (for which (14) holds) is the invariance of the integral (12) via

∫

Ω(t)

u dx = tγ
∫

Ω(t)

f(ξ)dx, (17)

in which Ω(t) moves with the self-similar velocity with components (11). This
follows from substituting xν = tβνξν into (17), noting that Ω(t) is mapped
onto a fixed region, and using (14).

Barenblatt [14, 15] has pointed out that self-similar solutions of PDEs of-
ten describe the intermediate asymptotics of a solution, that is the behaviour
of the solution, away from the boundaries, after the transient effects of initial
conditions have died away. They may also characterize singular behaviour
such as the occurrence of blow-up, as well as the motion of interfaces. These
features motivate numerical methods which are able to accurately follow such
solutions, such as the conservation method described later in section 4.

2.2.1 The porous medium equation

An example of a scale-invariant problem is the porous medium equation
(PME),

ut = ∇ · (un∇u) (18)

(n ≥ 1) in d dimensions, with the boundary condition u = 0 on the moving
boundary (for which the total mass (4) is preserved - see below). For this
problem it is readily verified that the scaling indices in (9) are given by

βν = β =
1

(2 + dn)
∀ ν,

∑

ν

β = −γ =
d

(2 + dn)
, (19)

from (18) and (14). The similarity variables (10) are

ξν =
xν

t1/(2+dn)
, η =

u

t−d/(2+dn)
(20)

and a self-similar source solution exists of the form

u(t,x) = At−d/(2+dn)
{

1 −
∑

ξ2
ν

}1/n

+
(21)
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[3, 141], where A is a constant, the suffix + in (21) indicating the positive
part. The moving boundary corresponds to |ξ| = 1 (where u = 0). The
velocity effecting similarity, from (11), has components

vν = βtβ−1ξν . (22)

Such solutions are globally attracting [3, 30, 29, 141].

2.3 PDEs and integral forms in a moving frame

We now consider forms of time-dependent partial differential equations in a
moving frame of reference.

When the boundary ∂Ω(t) of a region Ω(t) moves with a normal velocity
v · n̂, say, where n̂ is the outward unit normal, an additional flux is induced
across the boundary. To see this analytically, differentiate the integral (4)
with respect to t in the moving frame of reference using the Reynolds Trans-
port Theorem (see e.g. [149]) which gives

d

dt

∫

Ω(t)

udx =

∫

Ω(t)

utdx +

∮

∂Ω(t)

uv · n̂dΓ, (23)

where the final term is the additional flux. Using the Divergence Theorem

d

dt

∫

Ω(t)

udx −
∫

Ω(t)

∇ · (uv)dx =

∫

Ω(t)

utdx (24)

where v is any sufficiently smooth velocity field that is consistent with the
normal boundary velocity (cf . (3)). Substituting for ut from the PDE (2),
equation (23) can be written

d

dt

∫

Ω(t)

udx −
∮

∂Ω(t)

uv · n̂dΓ =

∫

Ω(t)

Ludx (25)

(cf . (3)), and (24) as

d

dt

∫

Ω(t)

udx −
∫

Ω(t)

∇ · (uv)dx =

∫

Ω(t)

Ludx (26)

In the case of the PME (18) where Lu = ∇(un∇u), in a domain R(t)
with zero Dirichlet boundary conditions, equation (25) leads to

d

dt

∫

R(t)

udx =

∮

∂R(t)

{un∇u + uv} · n̂dΓ = 0 (27)
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from which it follows that the total mass
∫

R(t)

udx (28)

is conserved in time.
A separate way of introducing the velocity v into the PDE (2) is to use

the chain rule for differentiation in the form

du

dt
= ut + v · ∇u, (29)

where du/dt is the rate of change of u in the moving frame. This leads to
the so-called quasi-Lagrangian form of the PDE (2),

du

dt
− v · ∇u = Lu, (30)

which is widely used to modify the PDE in conjunction with time-dependent
mappings [29, 73, 104]. However, equation (30) is not consistent with the
integral form (24) in general and lacks local mass conservation.

In the same way as in section 2.2 it can be shown that these PDEs and
integral forms in the moving framework are scale-invariant whenever those
in the corresponding fixed frame are scale-invariant.

2.4 Weak forms

We now consider weak forms of (24) and (30) which form the basis of finite
element numerical methods. A weak form of equation (24) can be obtained
by considering a weighted form of the mass integral (4). Given a domain
R(t) and a test function w, define the weighted integral

∫

R(t)

wudx, (31)

where it is assumed that w, u are square-integrable functions. Applying the
Reynolds Transport Theorem (23) to the function wu we obtain

d

dt

∫

R(t)

wudx =

∫

R(t)

(wu)tdx +

∮

∂R(t)

wuv.n̂dΓ (32)

where the boundary ∂R(t) moves with a velocity v. Then, using the Diver-
gence Theorem equation (32) becomes

d

dt

∫

R(t)

wudx =

∫

R(t)

{(wu)t + ∇ · (wuv)}dx (33)
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where v is again any sufficiently smooth velocity field that is consistent with
the normal velocity of the boundary.

Now suppose that the points of R(t) move with the velocity v and that
the test function w is frozen in R(t), so that w is convected with the velocity
v in the sense that

wt + v · ∇w = 0 . (34)

Equation (33) then reduces to

d

dt

∫

R(t)

wudx =

∫

R(t)

w {ut + ∇ · (uv)} dx (35)

for all square-integrable functions w that are convected with the velocity v,
giving a weak form of the Reynolds Transport Theorem (23). Using the PDE
(2), equation (35) yields the integral weak form

d

dt

∫

R(t)

wudx =

∫

R(t)

w {Lu + ∇ · (uv)} dx (36)

of the PDE (cf. (24)).
A separate weak differential form of the PDE in a frame moving in the

velocity field v may be derived directly from (30) via the chain rule as

∫

R(t)

w

{
du

dt
− v · ∇u

}
dx =

∫

R(t)

wLudx, (37)

where du/dt is the derivative of u in the moving frame. Note once again that
this form is not elementwise mass-conserving nor consistent with (36).

It can be shown that as long as the test functions w are scale-invariant
these weak forms in the moving framework are scale-invariant whenever those
in the corresponding fixed frame are scale-invariant.

3 Velocity-based moving mesh methods

Each of the moving PDE forms described above requires a definition of the
velocity field v(t,x). We now give a short review of some of the ways of
constructing this velocity that have appeared in the literature, and how they
have been incorporated into moving mesh numerical methods.

In velocity-based moving mesh methods each node is assigned a velocity
by which it moves. This velocity may be defined in a variety of ways, and
many constructions have appeared in the literature, some mathematically
based and some based on physical analogies. The mathematical approaches
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often use residual minimization, error estimates, or geometric considerations,
whereas physical approaches usually rely on Lagrangian fluid dynamics or
mechanical analogies. Mesh movement may also be induced entirely by the
normal velocities of the boundaries.

In this section a number of velocity-based methods are described, begin-
ning with schemes related to fluid dynamics (section 3.1) and continuing with
those relying on the so-called ALE (Arbitrary Lagrangian-Eulerian) formu-
lation. Many ALE schemes use velocities generated by mechanical analogies
and these are discussed in section 3.2.

Turning to mathematically motivated constructions we describe in sec-
tion 3.3 the Moving Finite Element Method, which was the first method to
determine the mesh and the solution simultaneously. Next the Deformation
Method, based on differential geometry, is described in section 3.4. Then
the role of the Geometric Conservation Law is discussed in section 3.5, and
finally the Conservation Method is introduced in section 3.6 prior to its de-
tailed exposition in later sections.

3.1 Fluid dynamics

In classical theoretical fluid dynamics the motion of fluids may be described
by taking either the Lagrangian or Eulerian point of view. In the Lagrangian
description, each moving fluid particle (with its attributes) is followed in-
dividually and is identified by its initial position, whereas in the Eulerian
description variables such as density and velocity are evaluated at fixed lo-
cations.

A link between the two is provided by the Reynolds Transport Theorem
(23) in the form

d

dt

∫

Ω(t)

ρdx =

∫

Ω(t)

ρtdx +

∮

∂Ω(t)

ρu · n̂dΓ =

∫

Ω(t)

{ρt + ∇ · (ρu)} dΩ (38)

for a general moving region Ω(t), where ρ is the fluid density and u is the fluid
velocity. In the Lagrangian description, conservation of mass is expressed as

∫

Ω(t)

ρdx = constant in time , (39)

whilst in the Eulerian description the mass conservation equation is

ρt + ∇ · (ρu) = 0 . (40)

The equivalence of the two is inherent in (38), remembering that this equation
holds for all Ω(t).
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In more recent times, computational fluid dynamics (CFD) has sought
to describe the motion of fluids numerically by both approaches. The most
common approach has been through discretizations of the Eulerian descrip-
tion where the equations of motion are discretized on a fixed mesh. Use of
the Lagrangian description has been rarer and largely confined to problems
where surfaces and interfaces are of primary importance, e.g. [107, 117, 146].
The natural discretization in the Lagrangian approach is to follow the ve-
locities of the fluid particles using a moving mesh but compromises have
usually had to be made, the main difficulty being the tendency of the mesh
to tangle and lose its character. For example, Harlen et al. [2, 69] apply a
Lagrangian approach to the solution of convection equations arising in the
simulation of viscoelastic flows. Although the nodes of the finite element
mesh are transported with the fluid particles, the mesh itself is reconnected
after each time-step in order to maintain the Delaunay property [27]. These
and other considerations have prompted the use of the so-called ALE (Ar-
bitrary Lagrangian Eulerian) methods (see section 3.2 below), where local
modifications of the Lagrangian velocities are made as the computation de-
velops [17, 35]. This framework can be used with any imposed velocity and
is of central relevance to velocity-based approaches.

For first order scalar PDEs, the Lagrangian approach is evident in char-
acteristic methods ([58, 63]) and their discretizations. Indeed, wide classes of
fixed mesh methods (e.g. Godunov methods [135, 136] and Semi-Lagrangian
methods [43, 44, 129]) use the ideas of characteristics, accompanied by pro-
jections.

The success of CFD has largely been achieved on fixed meshes, and in-
deed the same can be said for the numerical solutions of PDEs in general.
Nevertheless, Lagrangian moving mesh methods have a substantial role to
play in obtaining high resolution solutions of problems with implicit moving
boundaries or singularities, and in mimicking scale-invariance properties.

3.2 ALE (Arbitrary Lagrangian Eulerian) methods

The ALE equation in the form (24) allows the solution u of a PDE to be
obtained in a frame moving with any given velocity. This equation is widely
used in the computation of fluid-structure interaction problems, for exam-
ple in [70, 82, 96, 121]. The specific mechanism for constructing the mesh
velocities varies significantly from treating the mesh as though it is a physi-
cal material with its own constitutive law [82] through to defining the mesh
motion purely with the goal of optimizing geometric qualities of the mesh
[121].
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Another popular technique for imposing a mesh velocity, used for fluid-
structure interaction problems in [70], and for free-surface problems in [60,
94], for example, is based upon Scriven’s method of spines [81, 120]. Here
the mesh movement is constrained by a number of parameters (one for each
spine used), thus reducing the computational overhead in exchange for re-
stricting the generality of the approach. More general ALE forms have also
been widely used for free-surface problems, based upon maintaining mesh
quality [114, 115], Laplacian smoothing [128] or pseudo-solid deformation
[32, 143]. Other applications which have benefited from successful ALE al-
gorithms include phase-change problems [122], viscous sintering [83, 93, 150]
and the interaction of free surfaces with solid boundaries [4, 132, 144].

Note that not all ALE methods need to be applied to, or driven by, fluid
flow problems. Indeed, the latter part of this paper is devoted to a more
general family of methods. Before introducing this approach, however, we
discuss some other recent techniques that have been used for generating mesh
velocities.

3.3 Moving finite elements

Where there is no specific physical motivation for assigning a velocity to
each node of the finite element mesh, (unlike Lagrangian-based methods for
equations of fluid flow, for example), some other mechanism for determining
an appropriate mesh velocity field is required. A well-known approach is the
moving finite element (MFE) method of Miller and Miller [103] and Miller
[99]. This technique is a natural extension of the classical method of lines
(MOL) scheme for the Galerkin finite element method on a fixed grid. On a
fixed mesh, for a piecewise trial solution of the form

U(x, t) =
∑

Uj(t)Wj(x), (41)

where the Wj(x) are test functions, the MOL seeks to minimize the L2 norm
of the residual

Ut − LU =
∑ dUj

dt
Wj(x) − LU (42)

of (2) with respect to each unknown, dUi/dt, resulting in a system of ordinary
differential equations (ODEs) for each Ui.

In the MFE method this idea is generalized using piecewise trial solutions
of the form

Û(t) = U(x̂(t), t) =
∑

Ûj(t)Wj(x̂(t)) , (43)

where x̂(t) is the piecewise linear interpolant of the mesh vertex locations,

{X̂i(t)}, say, and the Wj(x) are piecewise linear basis functions. The method
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then seeks to minimize the L2 norm of the residual (42), but this time with

respect to the velocity of each node of the mesh, dX̂i/dt = Vi say, as well as

dÛi/dt at that node. The term dÛ
dt

is obtained by differentiating (43) by the
chain rule to obtain

dÛ

dt
=

∑ dÛj

dt
Wj(x̂(t)) +

∑
Ûj(t)

dWj(x̂(t))

dt

=
∑ dÛj

dt
Wj(x̂(t)) +

∑
Ûj(t)

∑ dWj

dX̂i

· dX̂i

dt

=
∑ dÛj

dt
Wj(x̂(t)) +

∑ dÛ

dX̂j

· dX̂j

dt

=
∑ dÛj

dt
Wj(x̂(t)) −

∑
Vj · (∇U Wj(x̂(t))) (44)

(with the last equality easily proved for piecewise linear elements, and proved
for all Lagrange basis functions in [78]).

Minimization of the weighted L2 norm of the residual

Ut − LU =
∑ dÛj

dt
Wj(x̂(t)) −

∑
Vj · (∇U Wj(x̂(t))) − LU (45)

(weighted by the positive function w) over
dÛj

dt
and Vj results in a pair of

equations for each node which has a similar structure to (37) above:

∫

R(t)

Wi

{
dU

dt
− V · ∇U

}
wdx =

∫

R(t)

WiLUwdx (46)

and
∫

R(t)

(∇U Wi)

{
dU

dt
− V · ∇U

}
wdx =

∫

R(t)

(∇U Wi)LUwdx . (47)

The equations are scale-invariant when the original problem is scale-invariant.
As with the MOL approach, the resulting ODEs must be integrated for-

ward in time from the initial state, in this case including the initial mesh as
well as a representation of the initial data on this mesh. This reveals both
the mesh and the corresponding solution at each subsequent time. Note that
Equations (46) and (47) may be alternatively derived through a direct min-

imization of the L2 norm of the residual of (30) with respect to dÛi

dt
and Vi

for each node, i, of the mesh.
In principle the method is optimal in the sense that it concurrently min-

imizes the L2 residual with respect to both dUi/dt and dXi/dt (see also
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[75, 76, 77] for other optimality results). However, the formulation turns out
to be degenerate when a component of ∇U is continuous at any node of the
mesh. This phenomenon (referred to by Miller as “parallelism”), as well as
the possibility of mesh tangling (where the measure of one or more elements
of the mesh becomes, or passes through, zero), is controlled by adding penalty
functions to the minimization, as illustrated in [61, 99]. An unfortunate con-
sequence of this penalization approach is to cause the resulting semi-discrete
ODE system to become very stiff, so that suitable stiff integrators for such
systems need to be employed for computational efficiency.

As shown in [5], for first order nonlinear PDEs the MFE method is a
discretization of Charpit’s method of characteristics for nonlinear PDEs (see
e.g. [58]), while in the case of second order diffusion equations the MFE
velocities are driven by truncation errors.

In the original MFE formulation the weight function w in (46) and (47) is
equal to unity, i.e. w ≡ 1. An important alternative, relating to arclength, is
to take w = 1/(1+|∇u|2) and carry out the integration over arclength, which
is known as the gradient-weighted form of MFE (GWMFE) and is described
in [36, 37]. The further generalization of this approach to systems of PDEs
is considered in [100] and includes a so called “string gradient-weighted”
formulation (SGWMFE) which is discussed in more detail in [142]. Other
variants of the method include a Least Squares MFE method, [102], and
a stabilized MFE method, [101], which are both designed to control mesh
movement for steady-state convection-dominated problems, which can cause
significant difficulty for the standard MFE and GWMFE approaches.

In addition to the variants of the method proposed by Miller and co-
workers, other alternatives have also been developed. These include the use
of higher order Lagrange basis functions for both the trial and the test spaces,
e.g. [38, 124, 125], and the use of higher order C1 functions for the test space
in [71]. More recently, both C1 trial and test spaces have been considered
in [54]. Each of the above techniques addresses the degeneracy of the MFE
equations via a suitable penalization. An explicit approach has been studied
in [11, 12] and [80], for example, primarily demonstrated for problems in one
space dimension and using explicit integration in time.

There are numerous examples of the successful application of the MFE
method to challenging practical problems, and in one space dimension these
have typically yielded efficient and accurate numerical solutions. Examples
in subsurface flow include the wetting of unsaturated soil, [45, 64], solute
transport problems, [65, 79], and the simulation of sedimentation, e.g. [126].
Similarly, the range of successful chemical engineering applications include
front reaction, heat transfer and population balance problems (e.g. [53], [39]
and [54] respectively). The main difficulties with the method appear in two
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or more space dimensions, where the very high computational expense sug-
gest that it will not generally be cost-effective to solve for the mesh and
the solution in this fully coupled manner. It is for this reason that the Arbi-
trary Lagrangian Eulerian (ALE) and similar approaches are frequently more
efficient.

3.4 The Deformation method

This method derives from analytic results of Moser [106] and Dacorogna and
Moser [48] concerning the existence of a particular class of diffeomorphism
between two domains in ℜn. In particular, [48] is concerned with the exis-
tence of diffeomorphisms φ : Ω → Ω such that

det ∇φ(x) = f(x) x ∈ Ω

φ(x) = x x ∈ ∂Ω , (48)

where f has mean value one over Ω and, along with Ω, satisfies certain
regularity assumptions.

The significance of this work stems from the fact that the existence
proofs in [48] are constructive in nature, thus motivating associated numer-
ical methods such as [85, 87, 88], discussed below. Specifically, Dacorogna
and Moser linearize (48) by expanding φ as a perturbation from the identity:
φ(x) = x + ν(x). Neglecting higher order terms in v then leads to

∇ · ν(x) = f(x) − 1 x ∈ Ω

ν(x) = 0 x ∈ ∂Ω . (49)

The existence of a solution to (49) is proved constructively by setting ν(x) =
∇w(x) and finding w(x) from

∇2w(x) = f(x) − 1 x ∈ Ω

∇w(x) · n̂ = 0 x ∈ ∂Ω . (50)

The final stage of the proof is to demonstrate that the required mapping φ is
given by φ(x) = ϕ(x, 1) where ϕ satisfies the ordinary differential equation

d

dt
ϕ(x, t) =

ν(ϕ(x, t))

t + (1 − t)f(ϕ(x, t))

ϕ(x, 0) = x . (51)

This is proved by introducing the function

h(x, t) = det ∇ϕ[t + (1 − t)f(ϕ(x, t))] (52)
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and showing that ∂h
∂t

= 0, from which it follows that h(1,x) = h(0,x), as
required.

As indicated above, these concepts from [48] have been used to develop
an algorithm for mesh transformation by Liao and co-workers [85, 87, 88],
who noted that f(x) could be chosen to provide a transformation which
contracts elements where f is small and expands them where it is large,
forming the basis of an adaptive meshing algorithm. Liao and Su [89] then
extended the ideas to allow for the tracking of time-varying volume elements.
In this context, given a differentiable, strictly positive, function f(x, t) which
satisfies the normalisation property

∫

Ω

(
1

f(x, 0)
− 1

)
dx = 0 , (53)

the one-to-one mapping φ(x, t) which guarantees equidistribution of f(x, t),
becomes

det ∇φ(x, t) = f(φ(x, t)) x ∈ Ω , t > 0 . (54)

This diffeomorphism is found by first constructing the vector field ν(x, t)
satisfying

∇ · ν(x, t) = − ∂

∂t

(
1

f(x, t)

)
x ∈ Ω

∇× ν(x, t) = 0 x ∈ Ω

ν(x, t) · n̂ = 0 x ∈ ∂Ω (55)

and using it to update the system given by

∂

∂t
φ(x, t) = ν(φ, t) f(φ, t) t > 0 (56)

with φ(x, 0) = φ0(x). In the context of a moving mesh method, the rate

of change of the transformation
∂φ
∂t

simply represents the mesh velocity. A
condition on the curl of the vector field is imposed to ensure uniqueness and
imposes irrotationality, which will typically help to improve the shape of
the mesh cells (and is exploited below). Bochev, Liao and de la Pena [23]
show that this leads to the equidistribution of mesh points according to the
weight f(x, t) and prove that no tangling can occur in a domain where the
boundary is fixed and the movement of points along the boundary does not
tangle. They also present two-dimensional computational results showing
the adaptation of meshes to pre-specified, time-varying functions. Semper
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and Liao [123] combine this with an SUPG finite element method to solve
the one-dimensional time-dependent advection-diffusion equation on a fixed
domain, using discontinuities in time to allow for the mesh movement.

Since then Liu, Ji and Liao [91] have applied the steady-state algorithm to
solutions of the two-dimensional Euler equations, fitting to shocks in aero-
foil flows. Further, [31] combines the algorithm with a least-squares finite
element approach to solving the div-curl system (55) directly for ν(x, t),
and apply the resulting algorithm to problems where the boundary deforms.
The algorithm has also been applied in three space dimensions [90], to track
moving shock waves [86], and in image registration [40]. Delzanno et al.
[50] however note some situations where the quality of the grids obtained
compares unfavourably with a Monge-Kantorovich transformation approach.

The method has recently been generalised by Grajewski, Köster and
Turek [66] to provide a non-tangling mapping from a non-uniform initial
mesh which allows the transformation in time-dependent cases to be calcu-
lated directly from the mesh at the previous time level, rather than relative
to an initial uniform mesh. Wan and Turek [145] have used this approach
to model two-dimensional particulate flows in a viscous fluid using an ALE
formulation.

3.5 The GCL method

The Space Conservation Law (SCL) was originally formulated by Trulio and
Trigger [138] as an additional equation which should be approximated in the
simulation of fluid flow on moving meshes along with conservation of mass,
momentum and energy. It was later recognised by Thomas and Lombard
[134], who termed it the Geometric Conservation Law (GCL), as a constraint
which should be imposed on numerical approximations of conservation laws
on moving meshes. In particular, any numerical scheme applied on a moving
mesh should reduce to the GCL when the solution is constant: the movement
of the mesh should not create or destroy “space”.

Given a spatial region Ω with the closed boundary ∂Ω moving with ve-
locity v, the GCL takes the form

d

dt

∫

Ω(t)

dx =

∫

∂Ω

v · n̂ dΓ , (57)

(which is simply the Reynolds Transport Theorem (23) with constant u), or
the equivalent differential form

∂J

∂t
= ∇ · (J ẋ) , (58)
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in which J is the determinant of the Jacobian of the transformation between
the fixed reference domain and the physical domain. The GCL has been
widely used as a constraint to be satisfied by numerical schemes applied in a
moving frame of reference, and in particular influences the implementation
of the conservative ALE schemes described in section 3.2.

The desire to satisfy a GCL favours the finite volume framework [51, 52,
56, 68, 95], which provides the most natural formulation of the GCL due to
its inherent conservation properties. However, it has also been applied with
finite differences [134], conforming finite elements [24, 55, 57], discontinuous
Galerkin methods [113] (space-time FE and DG methods automatically sat-
isfy the GCL [140]), and residual distribution schemes [98]. The paper of
Étienne, Garon and Pelletier [55] includes a useful summary of the literature
in this area and highlights three increasingly challenging levels of compliance
with the GCL within a formulation of a moving mesh algorithm.

1. It must reproduce the exact solution to the constant, no-flow test case
on an arbitrary deforming mesh [51].

2. It must reproduce the exact solution of a uniform flow on moving grids:
Farhat, Geuzaine and Grandmont [56] referred to this as the Discrete
GCL (DGCL).

3. The time-stepping scheme must exhibit the same rate of convergence
on both fixed and moving meshes. Guillard and Farhat [68] show that
satisfying the DGCL is a sufficient condition for the scheme to be at
least first order accurate. No such condition has yet been proved for
higher orders of accuracy; in fact, even though Mavriplis and Yang
[95] and Geuzaine, Grandmont and Farhat [62] are both able to derive
schemes which satisfy the GCL and demonstrate high order temporal
accuracy, they suggest that satisfaction of the GCL is unrelated to the
retention of time-accuracy by the resulting numerical scheme.

Farhat, Geuzaine and Grandmont [56] suggest that satisfaction of the DGCL
is a necessary and sufficient condition for a numerical scheme to preserve non-
linear stability properties. This is, however, disputed by Boffi and Gastaldi
[24] and Formaggia and Nobile [57] who demonstrate that this is only the
case for backward Euler time-stepping.

Cao, Huang and Russell [33] noted that the GCL could also be used to
drive a mesh movement algorithm. They considered the situation with a
positive monitor function m(x, t) and required that

∇ · v = − 1

m

Dm

Dt
. (59)
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Combining this with the differential form of the GCL (58) gives

D

Dt
(mJ) = 0 ⇒ mJ = constant , (60)

a multidimensional generalisation of the one-dimensional equidistribution
principle. This leads to

∂m

∂t
+ ∇ · (mv) = 0 , (61)

a condition on the divergence of the velocity field which, as in the case of the
deformation map approach, can be supplemented by a condition on its curl,
given in [33] by

∇× ω(v − u) = 0 , (62)

for some choice of u(x, t) and ω > 0. They then choose to find the mesh
velocity field by minimisation of the functional

I =
1

2

∫

Ω

∣∣∣∣
∂m

∂t
+ ∇ · (mv)

∣∣∣∣
2

+
(m

ω

)2

|∇ × w(v − u)|2 dx , (63)

since the divergence and curl must be orthogonal in L2. This is combined
with the boundary condition v · n̂ = 0 on ∂Ω and computational results are
presented which adapt the mesh to pre-specified time-dependent functions
on domains with fixed boundaries. A smooth solution exists as long as the
data and boundary are smooth. The mapping is non-singular but the mesh
can become highly skewed.

Cao, Huang and Russell [33, 34] go on to note the relationship between
their method and the deformation map approach. Given that ν = mv with
m = 1

f
, equations (55) become

∇ · (mv) = −∂m

∂t
x ∈ Ω

∇× (mv) = 0 x ∈ Ω

ρv · n = 0 x ∈ ∂Ω (64)

which is simply a special case of the GCL method with u = 0 and w = m.

3.6 The conservation method

The conservation method of Baines, Hubbard and Jimack [7, 8, 9] is built
on the same foundations as the GCL method of Cao, Huang and Russell
[33]. Instead of recasting the GCL as the minimization problem (63) for the
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purpose of discretization, this method uses the conservative (integral) form
to find the discrete velocities directly.

The method can be summarized as follows. The PDE is used in conjunc-
tion with an Eulerian form of a conservation equation to generate a velocity,
which is then used to move the mesh in a Lagrangian manner. In simple
cases the solution of the PDE can be recovered a posteriori from the La-
grangian form of the same conservation law. As can be seen in the following
sections, this strategy forms a good basis for algorithmic development. The
fundamentals of the method and the details of the multidimensional finite
element implementation are set out in the following three sections. Section 4
deals with nonlinear PDE problems which conserve mass, section 5 extends
the idea to non mass-conserving problems, and section 6 contains a number
of further extensions and generalizations.

4 The conservation method for mass-conserving

problems

We now describe in detail the conservation method of the previous subsection
for constructing velocities, developed from [20, 21] and [33], which is based
on local or distributed mass conservation, and which exploits the equivalence
between the Eulerian and Lagrangian conservation laws described in section
3.1. In the remainder of this section we shall consider the consequences of
local conservation in the case of mass-conserving problems, and then use
the idea to motivate a moving-mesh finite element method driven by this
property.

4.1 A local conservation principle

Let u > 0 be a solution of the PDE (2) in the interior of a moving domain
R(t) and suppose that the boundary conditions are such that total mass,

θ =

∫

R(t)

udx, (65)

is conserved, i.e. independent of time. The PME of subsection 2.2.1 with a
zero Dirichlet boundary condition falls into this category.

The velocity is defined implicitly by the conservation principle

∫

Ω(t)

udx = c(Ω), independent of time, (66)
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for an arbitrary moving subregion Ω(t) of R(t). (Assuming that the subre-
gions Ω(t) form a non-overlapping covering of R(t) equation (66) is consistent
with the total mass θ in (65) being independent of time.)

One motivation for the choice of (66) as the mechanism for generating the
velocity is a converse of the invariance property of self-similar solutions (17)
mentioned in subsection 2.2. This converse, which is proved in Appendix
A, states that if (66) holds then under certain conditions initial data that
coincides with a self-similar solution is propagated as a self-similar solution
for all time.

Differentiating (66) with respect to t and using the Reynolds Transport
Theorem (23),

d

dt

∫

Ω(t)

udx = 0 =

∫

Ω(t)

utdx +

∮

∂Ω(t)

uv.n̂dΓ , (67)

where n̂ is the outward unit normal to the boundary ∂Ω(t) and v is the
velocity of points on the boundary. Then, using the Divergence Theorem,
(67) can be written as

∫

Ω(t)

{ut + ∇ · (uv)} dx = 0 (68)

where v is any sufficiently smooth velocity field consistent with the normal
component of the boundary velocity. Since Ω(t) is arbitrary it follows that u
and v satisfy the pointwise Eulerian conservation law

ut + ∇ · (uv) = 0 . (69)

We note the equivalence of the two conservation principles (66) and (69)
(Lagrangian and Eulerian) through the Reynolds Transport Theorem (23),
as noted previously in subsection 3.1.

Since u satisfies the PDE (2) in R(t), equation (69) can be written as the
purely spatial equation

Lu + ∇ · (uv) = 0 (70)

which, given u, can be regarded as an equation for the velocity v.

4.1.1 Solving for the velocity

In general there is no unique solution of (70) for v. But if, as suggested in
[33], there exists a velocity q such that curl v = curl q then there is also a
velocity potential φ such that

v = q + ∇φ (71)
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and equation (70) can be written

−∇ · (u∇φ) = Lu + ∇ · (uq) . (72)

Given u > 0 in the interior of R(t), by Helmholtz’ Theorem [67] there is a
unique solution of (72) for φ (at least to the extent of a constant) in the region
R(t), provided that either u∂φ/∂n or φ is given on the boundary ∂R(t). The
boundary conditions on u∂φ/∂n or φ correspond respectively to either the
normal component of the flux or the tangential component of the velocity
being prescribed on the boundary.

The velocity v is then determined by (71). The evolution of points x̂(t)
of the region R(t) may be found by integrating the ODE system (1) for the
Lagrangian coordinate x̂(t) which coincides instantaneously with the fixed
coordinate x at an initial time.

4.1.2 Recovering the solution

The solution u(t,x) in the moving frame can in principle be recovered a
posteriori from the local mass conservation equation (66). Writing (66) in
the form ∫

Ω(t)

u dx = c(Ω) = u(t) |Ω(t)| (73)

where |Ω(t)| > 0 is the measure of Ω(t) and u(t) is a mean value of u(t,x) in
Ω(t), we may divide by |Ω(t)| and obtain u as the limit

u = lim
|Ω(t)|→0

c(Ω)

|Ω(t)| (74)

provided that the limit exists and is unique. Since c(Ω) is independent of
time it is equal to its initial value c(Ω0), so that from (73)

c(Ω) = c(Ω0) = u(t0) |Ω(t0)|, (75)

and the solution u may be obtained formally from (74) and (75) as

u(t, x̂(t)) =

(
lim

|Ω(t)|→0

|Ω(t0)|
|Ω(t)|

)
u(t0, x̂(t0)) . (76)

To summarize the structure of the conservation method, the Eulerian
form (69) of the conservation law (66) is used in conjunction with the PDE
(2) to obtain the spatial equation (70) for the velocity v. Then, assuming
a prescribed vorticity of the form curl q (which may be zero), there exists a
velocity potential φ satisfying (72). The elliptic equation (72) is solved for φ,
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with either φ or u∂φ/∂n prescribed on the boundary. The velocity v is then
found from (71) and used to move the points of the domain by (1). Finally,
the solution u is recovered a posteriori from the Lagrangian conservation law
(66) in the form (76).

The method is scale-invariant when the original problem is scale-invariant
because it relies only the original PDE and the conservation principle (66),
both of which are scale-invariant.

4.1.3 Some exact solutions for the velocity

For a class of PDE problems the elliptic equation (72) has an exact solution
for the potential φ, and hence for the velocity v. Consider nonlinear PDEs
(2) of the form

ut = ∇ · (u∇p) (77)

in a moving domain R(t) for a general function p (which may depend on u
and/or its space derivatives), with the zero flux boundary condition

u

(
v · n̂ +

∂p

∂n

)
= 0 (78)

(the porous medium equation of subsection 2.2.1, for which p ≡ u, with u = 0
on the moving boundary, is such a problem). We note incidentally from (23)
that

d

dt

∫

R(t)

udx =

∫

R(t)

{ut + ∇ · (uv)} dx

=

∫

R(t)

{∇ · (u∇p + uv)} dx =

∮

∂R(t)

u

(
∂p

∂n
+ v · n̂

)
dΓ = 0 , (79)

by (78), showing that the total mass is conserved for these problems.
Suppose now that u is a positive solution u of (77) in the interior of R(t)

and that the velocity field v is generated by (72) and (71) with q = 0. Then
some exact solutions for φ and v may be derived. Since q = 0 in (71),
v = ∇φ (the velocity is irrotational), hence for equation (77) we may write
(72) in the form

∇ · {u∇(φ + p)} = 0 in R(t) , (80)

with the boundary condition (78) as

u

(
v · n̂ +

∂p

∂n

)
= u

∂

∂n
(φ + p) = 0 on ∂R(t) . (81)
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Since u > 0 in the interior of R(t), the elliptic equation (80) for φ+p with the
boundary condition (81) has the unique solution φ + p = constant. Hence
φ = −p is an exact solution for the velocity potential to within a constant
and the corresponding exact solution for v is

v = ∇φ = −∇p . (82)

As an example, if

p = (−1)k∆ku (k ≥ 0), (83)

for which equation (77) is the high order nonlinear diffusion equation

ut = (−1)k∇ · (u∇∆ku) (84)

with k positive, and if u,v satisfy the boundary condition

u

(
v · n̂ + (−1)k ∂

∂n
∆ku

)
= 0 (85)

(maybe if u = 0 there), then

v = (−1)k+1∇∆ku . (86)

Another choice of p is [116]

p(u) =

∫ u D(ū)

ū
dū (87)

for a general function D(u) (assuming that the integral exists), for which

u∇p(u) = D(u)∇u, (88)

and equation (77) is the second order nonlinear diffusion equation

ut = ∇ · (D(u)∇u) . (89)

Then, if u,v satisfy the boundary condition

uv · n̂ + D(u)
∂u

∂n
= 0 (90)

(perhaps if u = D(u) = 0), there exists the exact solution

v = −∇p = −D(u)

u
∇u (91)
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(provided that u 6= 0, by (88).
The porous medium equation of subsection 2.2.1,

ut = ∇ · (un∇u) (92)

(cf. (18)) with n ≥ 1, which is of the form (89) with D(u) = un, together
with the boundary condition

u
(
v + un−1∇u

)
· n̂ = 0 , (93)

(satisfied in particular by u = 0), has the exact solution

v = −un−1∇u = − 1

n
∇un . (94)

4.2 Distributed mass-conserving velocities

In preparation for the moving mesh finite element formulation described in
the next section we now construct a weak form of the conservation method
using a weighted conservation principle (cf. subsection 2.4).

Let wi, (i = 1, ..., N), be a set of positive square-integrable weight func-
tions forming a partition of unity and moving with the points of the domain
R(t). Define the distributed conservation principle to be

∫

R(t)

wiudx = ci, independent of time, (95)

(a partition of (65)) where u is a positive solution of the weak form
∫

R(t)

utdx =

∫

R(t)

Ludx (96)

of the PDE (2) in the interior of the domain R(t). By summing (95) over i
the ci satisfy

N∑

1

ci =

∫

R(t)

udx =

(∫

R(0)

udx

)∣∣∣∣
t=0

, (97)

since the wi’s form a partition of unity and mass is conserved. (We note
in passing that the local conservation principle (66) corresponds to choosing
the wi to be the characteristic function in Ω(t).)

One motivation for the choice of (95) to generate the velocity is that if
the initial data coincides with the L2 projection of a self-similar solution
into the space spanned by the wi then, as shown in Appendix B, under
the similarity velocity (11) the solution remains the L2 projection of the
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self-similar solution for all time. Although the velocity generated is only
approximately the similarity velocity this is an interesting property.

From (95) and (36), assuming that Lu exists and is square-integrable, the
velocity v satisfies

∫

R(t)

wi {Lu + ∇ · (uv)} dx = 0 (98)

(cf. (70)), since the wi move with velocity v. Furthermore, if wi ∈ H1{R(t)}
then after using Green’s Theorem on (98) we obtain the weak form

∫

R(t)

u∇wi · vdx =

∫

R(t)

wiLudx +

∮

∂R(t)

wiuv · n̂dΓ (99)

of (69).
There is no unique solution of equation (98) or (99) for v in general but if

there exists a square-integrable velocity q and velocity potential φ such that

∫

R(t)

u∇wi · vdx =

∫

R(t)

u∇wi · (q + ∇φ)dx (100)

(a weak form of (71)) then equation (99) can be written

∫

R(t)

u∇wi · ∇φdx =

∫

R(t)

(wiLu − u∇wi · q)dx +

∮

∂R(t)

wiuv · n̂dΓ. (101)

Since u > 0 in the interior of R(t), then if wiuv · n̂ is given on the boundary
∂R(t) the right-hand side of (101) is known and the equation possesses a
unique solution for φ ∈ span{wi} provided that φ is prescribed at at least
one point of the domain (or to within an additive constant if it is not).

4.2.1 Weak form of the velocity and recovery of the solution

Having obtained the velocity potential φ the next step is to derive the velocity.
From (100), if v,q ∈ span{∇wi} then v is given directly by (71), as before.
Otherwise, a weak form is required. The weak form (100) connecting φ and v
is insufficient by itself to determine v from φ, since it is just an orthogonality
condition. We therefore construct a best approximation ṽ to v obtained by
projecting v − q − ∇φ into the space spanned by the wi in an L2 sense,
thus minimizing ‖v−q−∇φ‖2 over each component of v and leading to the
normal equations ∫

R(t)

wi(ṽ − q −∇φ)dx = 0 . (102)
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for ṽ. Note that in the case of the velocity ṽ the rate of change of the integral
in (95) is

d

dt

∫

R(t)

wi u dx =

∫

R(t)

u∇wi · (ṽ−q−∇φ) dx =

∫

R(t)

u∇wi · (ṽ−v) dx

(103)
which is different from zero, so that (95) is no longer independent of time.
Nevertheless, the right-hand side of (103) is likely to be small, as can be seen
from the inequality
∥∥∥∥
∫

R(t)

u∇wi · (ṽ − q −∇φ)dx

∥∥∥∥
2

≤ ‖u‖2 . ‖ṽ − q −∇φ‖2 .

∥∥∥∥
∫

R(t)

∇widx

∥∥∥∥
2

,

(104)
provided that ‖u‖2 is bounded, since ‖ṽ − q −∇φ‖2 is least. Hence the ci

in (95) are expected to vary slowly with time.
The evolution of points of the domain can be obtained by integrating (1)

in time with v replaced by ṽ, and the solution u approximated by inverting
(95) on the new domain. The solution u may alternatively be found exactly
by evaluating the right-hand side of (103), integrating in time to give

∫

R(t)

wi u dx = µi (105)

say, and then inverting ∫

R(t)

wiudx = µi, (106)

for u, where µi (acting in lieu of the ci in (95)) is updated at each time-step.
An alternative is to use the conservative ALE equation (36) in the form

µ̇i =
d

dt

∫

R(t)

wiudx =

∫

R(t)

wi {Lu + ∇ · (uṽ)} dx , (107)

which also leads to a system of the form (106) after integration in time.
Using (98) it can be shown that (107) is equivalent to (103) under some
circumstances. However, in general (107) will produce a slightly different u
since the right-hand side of (106) will have been propagated differently in
time.

4.3 A moving mesh finite element method

We now use the distributed conservation principle (95) together with the
weak forms (101) and (102) to generate a multidimensional moving mesh
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finite element method. For the mesh we assume a moving polygonal or
polyhedral approximation ∂R(t) to ∂R(t) together with a moving tessellation
of simplices of R(t). At any instant t let S1{R(t)} ⊂ H1{R(t)} be the
space spanned by standard piecewise linear basis functions Wi(t,x) on the
tessellation, forming a partition of unity. Note that the Wi are scale-invariant.

Piecewise linear approximations U ≈ u, V ≈ ṽ, Φ ≈ φ and X̂ ≈ x̂ are
also assumed, lying in S1{R(t)} (in the case of the vectors X̂ and V for each
Cartesian component lying in this space). The total mass

∫

R(t)

U dx (108)

is partitioned and the partitions

∫

R(t)

Wi U dx (109)

maintained in time to generate the velocity, as in the previous subsection.
The partitions Ci ≈ ci are defined by

∫

R(t)

Wi U dx = Ci, independent of time (110)

(cf. (95)). Since the Wi form a partition of unity, equation (110) is consistent
with mass conservation, and

∑
i Ci is constant, as in (97). Assuming that

U > 0 lies in the domain of the operator L and that LU is square-integrable,
from (99) the velocity field V satisfies the weak form

∫

R(t)

U∇Wi · Vdx =

∫

R(t)

WiLUdx +

∮

∂R(t)

WiUV · n̂dΓ . (111)

There is no unique solution of (111) for V in general but if there exists a
square-integrable velocity Q and a velocity potential Φ satisfying the weak
form ∫

R(t)

U∇Wi · Vdx =

∫

R(t)

U∇Wi · (Q + ∇Φ)dx (112)

(cf. (100)), then equation (111) can be written

∫

R(t)

U∇Wi · ∇Φdx

=

∫

R(t)

{WiLU − U∇Wi · Q} dx +

∮

∂R(t)

WiUV · n̂dΓ . (113)
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Since U > 0, equation (113) has a unique solution for Φ ∈ S1{R(t)} provided
that WiUV · n̂ is given on the boundary ∂R(t) and that Φ is given at at least
one point in R(t) (which is no restriction since only ∇Φ is required).

We shall henceforth restrict the argument to problems for which WiUV·n̂
is given on the boundary. This includes all problems with zero Dirichlet
boundary conditions on U (and those with non-zero Dirichlet boundary con-
ditions too, as described in section 4.3.4 below) as well as those problems for
which the normal component of V is given on the boundary.

4.3.1 Matrix forms

Expanding Φ as

Φ =
∑

ΦjWj (114)

with coefficients Φj to be determined, equation (113) leads to the matrix
equation

K(U)Φ = f (115)

where K(U) is a weighted stiffness matrix with entries

Kij =

∫

R(t)

U∇Wi · ∇Wjdx . (116)

The vector Φ contains the unknown coefficients Φj and the vector f has
entries

fi =

∫

R(t)

(Wi LU − U ∇Wi · Q) dx +

∮

∂R(t)

Wi UV · n̂ dΓ . (117)

The system (115) is rank deficient as is standard (since the equations
sum to zero), which is why Φ needs to be specified at at least one node.
Without loss of generality we take Φ = 0 at any node since only the gradient
of Φ is required. Elimination of this variable from the system (115) gives the
reduced system

K′(U)Φ′ = f ′ (118)

where the prime refers to the matrix K(U) reduced by the row and column
(and the vector f reduced by the entry) corresponding to assigned node.
The system (118) is symmetric positive definite and can be solved using for
example a conjugate gradient algorithm.
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4.3.2 Solving for the velocity

A continuous piecewise linear velocity V is required to preserve the identity of
the mesh, and hence V does not lie in the span{∇Wi} which contains only
discontinuous functions. Therefore, in a similar way to that of subsection
4.2.1, we seek an approximation Ṽ ∈ S1{R(t)} satisfying the weak form
(102) in the form ∫

R(t)

Wi(Ṽ − Q −∇Φ)dx = 0 . (119)

Expanding Ṽ as

Ṽ =
∑

ṼjWj (120)

equation (119) yields the matrix equation

MdṼ = h (121)

where the matrix Md has d blocks, each of which is a standard mass matrix
with entries

Mij =

∫

R(t)

WiWjdx . (122)

The vector Ṽ in (121) contains the coefficients of the nodal velocities Ṽi,
and the vector h has entries

hi =

∫

R(t)

Wi(Q + ∇Φ)dx . (123)

Equation (121) may be solved for Ṽ with or without the application of bound-
ary conditions on V. If no boundary condition is applied the unique velocity
generated is the one that minimizes the L2 error norm ‖V − Q −∇Φ‖2.

An alternative to the approximation generated by (119) is a local av-
eraging approximation. Since the piecewise constant gradient ∇Φ is most
accurate at the centroids of the elements [130], a local element-weighted av-
erage can be used to advantage, giving the approximation

Vi =

∑
k |Ωk|(Q + ∇φ)k∑

k |Ωk|
(124)

where |Ωk| is the measure of element k of the patch of elements surrounding
node i. Boundary conditions on V can be applied as required.

A further alternative is to use this framework to take into account the flow
of information under the velocity by restricting the sum in (124) to upwind
elements, as in

Vi =

∑
k+ αk|Ωk|(Q + ∇φ)k∑

k+ αk|Ωk|
(125)
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where k+ denotes denotes upwind cells and the αk are consistent weights
(see below). This option allows a zero condition on the velocity at a point

to be applied naturally: Vi is set to zero when there are no contributions
to the sum. The upwinded velocity can be effected on a cell-by-cell basis by
distributing Q + ∇Φ to the vertices of the cell according to its orientation
relative to the velocity field. Thus, if Q+∇Φ has a positive component along
the inward normals to two of a triangle’s edges it is assigned to the unique
downwind vertex, otherwise it is distributed between the two downwind ver-
tices with appropriate weights. A simple approach considers (Q+∇Φ) ·nν , a
scaled normal component of Q+∇Φ along the inward normal to edge ν of a
cell. The weights αν are then defined to be the positive part of (Q+∇Φ) ·nν

normalized by their sum over the three cell edges, viz

αν =
[(Q + ∇Φ) · nν ]+∑

edges[(Q + ∇Φ) · nν ]+
. (126)

These coefficients correspond to those of the LDA fluctuation distribution
scheme for approximating hyperbolic conservation laws (see [1, 49] for de-
tails).

Whichever way the approximation to the velocity V is constructed, the
displacements X̂i(t) can be obtained via integraion of the ODE system

dX̂i

dt
= Vi(t, X̂) (127)

in time (cf. (1)) using any convenient time-stepping scheme.
In spite of targeting exact mass conservation in (110) and (111), Because

of the approximations used none of the above constructions for the velocity
is exactly consistent with mass conservation, so that the integrals

∫

R(t)

WiUdx = µi, (128)

say, in (110) typically vary slowly with time. We therefore consider an alter-
native way of recovering the solution U using an ALE equation, as described
in the next section.

4.3.3 Recovering the solution

As discussed in section 4.2 there are a number of possible ways in which the
solution may be recovered, each of which requires the solution of a similar
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linear system ((95) or (106)). We focus on the discrete ALE equation (107)
in the form

µ̇i =
d

dt

∫

R(t)

WiUdx =

∫

R(t)

Wi {LU + ∇ · (UV)} dx (129)

where µi(t) is defined by (128). Integrating the right-hand side with respect
to time we obtain values of µi in (128) which, after expanding U as

U =
∑

UjWj, (130)

leads to the matrix equation
MU = µ, (131)

where µ = {µi}. The matrix M is symmetric positive definite and can be
inverted using a conjugate gradient method, for example.

Boundary conditions do not need to be imposed on U in solving the sys-
tem (131). If no boundary conditions are imposed the solution approximates
the true solution weakly through its weak imposition in the boundary inte-
gral in (117). The application of strong Dirichlet boundary conditions on U
is inconsistent with the assumption of total mass conservation (as we shall
see below) and requires a separate investigation, summarized in the following
subsection.

4.3.4 Mass-conserving test functions

In applying strong Dirichlet boundary conditions to U in the system (131)
the test space is reduced in size and the set of Wi’s no longer form a partition
of unity. As a result the conservation principle (110) is inconsistent with mass
conservation.

To counter this inconsistency and allow strong Dirichlet conditions to be
applied to (131), modified test functions W̃i can be constructed [74] which
have the property that they vanish on the boundary as well as forming a
partition of unity. These test functions may be obtained by modifying the
original set of Wi’s by adding those Wi’s corresponding to nodes where strong
boundary conditions are applied to interior Wi’s, forming new test functions
W̃i. There are many ways to do this but the simplest takes the form

W̃i = Wi +
∑

j∈∪△i∩∂R(t)

1

Nj

Wj (132)

in which ∪△i ∩ ∂R(t) is the set of mesh nodes in the intersection of the
closure of the support of Wi and the boundary of the domain, and Nj is the
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number of interior nodes adjacent to the boundary node j. Details can be
found in [74].

The potential Φ and velocity V are obtained exactly as before, using the
standard Wi test functions, but now the solution Ũ (which satisfies the strong
Dirichlet conditions) is found from a modified form of equation (131),

M̃Ũ = µ̃, (133)

with the strong boundary conditions imposed, where the modified (unsym-

metric) mass matrix M̃ takes the form

M̃ij =

∫

R(t)

WiW̃j dx , (134)

and

µ̃i =

∫

R(t)

W̃iŨdx . (135)

The vector Ũ in (133) is a vector of the unknowns Ũi in the expansion of

Ũ in terms of the W̃i. The right-hand side of (133) can be found either
by keeping the µi of (135) constant or, more accurately, as in the previous
section, updating the µi using the modified ALE equation

˙̃µi =
d

dt

∫

R(t)

W̃iŨdx =

∫

R(t)

W̃i

{
LŨ + ∇ · (ŨV)

}
dx . (136)

Note that the mesh velocities V in (136) are calculated using the standard
linear test and trial functions. This means that the velocity potentials are
calculated from (113) based on the proportions of the total mass associated
with the test functions Wi (see (110)) and are different to those used in the
direct recovery of U via (135).

We can now state the algorithm for the moving mesh finite element con-
servation method.

4.3.5 Algorithm for mass-conserving problems

Given a mesh with nodes {X0
i } and nodal values {U0

i } representing the initial
conditions, at each time-step:

1. Find Φ from (118).

2. Find Ṽi from (121).

3. Advance X̂i(t) in time using any convenient time-stepping scheme ap-

plied to (127) with V = Ṽ.
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4. Recover Ui at the new time-step, either from (131) with µi given by
(129) and (128) (in the case of weak implementation of Dirichlet bound-
ary conditions on U), or from (133) with µ̃i given by integrating (136)
and (135) (for strong implementation of Dirichlet boundary conditions
on U).

Remarks:

• The algorithm differs from standard finite element approaches by pri-
marily targeting the mesh velocity.

• Due to the several approximations made the Lagrangian conservation
law (110) does not hold precisely. The Ci should therefore be recom-
puted at each time-step.

• Step 2 may be varied to obtain Vi from (124) or (125).

• There is no requirement in the algorithm for equidistribution. In prin-
ciple any initial distribution is propagated in time.

• Steps 1,2 and 4 of the algorithm are scale-invariant. This is because all
the equations used, as well as the Wi and W̃i, are individually scale-
invariant. However, step 3 is not necessarily scale-invariant (but see
below).

4.4 Time-stepping for the ODE system

The algorithm can be thought of as solving the ODE system

d

dt

(
X̂
µ

)
=

(
V
µ̇

)
, (137)

where µ = {µi}. The method is therefore in essence a method of lines which
can be approximately solved by any convenient time-stepping scheme.

The first order Euler explicit scheme is surprisingly successful in this
context although its accompanying stability condition sometimes demands
impractically small time-steps. The second order Heun scheme [74] has been
found to be sufficiently accurate for all the problems considered in this report
although it too is subject to inconveniently small time-steps on occasion due
to stability restrictions.
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4.4.1 Scale-invariant time-stepping

The time-stepping in the algorithm in section 4.3.5 can be made scale-
invariant by rescaling the time derivative in the ODE system (137) by using
τ = tβ instead of t (cf. [28]). Then dt = dτ 1/β = (1/β)τ 1/β−1dτ , yielding the
transformed ODE system

d

dτ

(
X̂
µ

)
= β−1τ 1/β−1

(
V
µ̇

)
. (138)

With constant time-steps ∆τ , standard time-stepping schemes are scale-
invariant and the entire algorithm in section 4.3.5 is scale-invariant.

4.5 The one-dimensional finite element method

In one space dimension the concept of vorticity does not exist and is not
required for the purpose of imposing uniqueness on the velocity field. There-
fore q ≡ Q ≡ 0 can be assumed in all of the previous analysis. In fact, it is
no longer necessary to use a velocity potential at all: a unique velocity field
can be found directly from the conservation principle (110).

Assume that the domain is the interval (a(t), b(t)) with nodes

a(t) = x0(t) < x1(t) < . . . < xN+1(t) = b(t) (139)

and let Wi(x) be the standard piecewise linear hat functions. From (111) the
velocity V satisfies the weak form

∫ b(t)

a(t)

U
dWi

dx
V dx =

∫ b(t)

a(t)

Wi LU dx + [WiUV ]
b(t)
a(t) . (140)

Using the expansion

V =
∑

VjWj , (141)

equation (140) leads to to the matrix equation

B(U)V = f (142)

where V is the vector of coefficients Vj and the entries of B(U) and f are
respectively

Bij =

∫ b(t)

a(t)

U
dWi

dx
Wj dx , fi =

∫ b(t)

a(t)

WiLU dx + [WiUV ]
b(t)
a(t) . (143)

For an even number of nodes the matrix B(U) is singular when U is
constant in space, leading to the kind of singularity akin to that in the MFE
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method of section 3.3. For an odd number of nodes the system (142) always
has a unique solution when WiUV in the last term of (143) is known at
x = a(t) and b(t) (as assumed in this work) and at least one value of V is
prescribed (to anchor the velocity). For geometrically symmetric problems
it is simple to choose this value of V because the node at the centre of the
domain is fixed. The system (142) can then be solved directly for V . The
procedure for updating the mesh node positions and recovering U on the
updated mesh remains unchanged.

This method of solving (142) for V (as opposed to solving for a velocity
potential first) replaces two symmetric systems with one unsymmetric system
of similar size. Mesh convergence studies suggest that the results are of
similar quality. However, the difficulty, in general, of picking a point at
which to apply a known velocity makes the use of a velocity potential, which
along with (119) calculates all values of V automatically, more attractive.

The one-dimensional method is readily extended to radially symmetric
problems.

4.6 Initial data

As pointed out earlier there is no requirement for the mesh to be equidis-
tributed, which raises the question of the distribution of the initial mesh.
Since the aim of the algorithms is to preserve local or distributed mass it is
important to set up an initial mesh with the properties that it is desired to
keep.

4.6.1 Initial data in one dimension

The simplest initial data consists of nodes equally spaced between the end-
points with initial values obtained by sampling the initial condition at these
points. This choice determines an initial distribution of mass which the al-
gorithm then attempts to mantain.

Notwithstanding the generality of the initial distribution an initial mesh
may also be obtained by the equidistribution technique [26]. Under this
technique mesh points are generated by equalizing the integral of the initial
function u0, so that the integral

∫ xi

xi−1

u0(t0, x)dx (144)

takes the same value in each interval. The mesh is only implicit in equation
(144) but can be extracted by an iterative inversion procedure, such as that
given in [6].
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From the point of view of equalizing the error between the initial function
and its discrete representation on a given mesh, a discrete form of u0(x) may
be obtained by minimizing the L2 error between the two. Supposing that
U(x) is the L2 projection of u0(x) into the span{Wi} the normal equations
are ∫ b

a

Wi(U(x) − u0(x))dx = 0 (145)

which lead, via the expansion U(x) =
∑

j UjWj, to the matrix form

MU = f
0
, (146)

where M is the standard mass matrix, U is a vector of coefficients Uj, and

the components of the vector f
0
are
∫ b

a
Wiu0(x)dx. This choice is appropriate

if we wish to pursue the propagation of the L2 best fit to self-similar solutions
property proved in Appendix B.

The L2 error can further be minimized over node positions as well as
nodal values to give an optimal initial mesh [5, 137].

4.6.2 Initial data in higher dimensions

Again, the simplest initial mesh in higher dimensions consists of roughly
equally spaced points (connected as a Delaunay triangulation [27], say) and
the simplest initial values are obtained by sampling the initial condition at
these points.

In multidimensions equidistribution is less intuitive and depends on a
variational approach (see e.g. [73]).

Alternatively, the initial values may be readily obtained from minimiza-
tion of the L2 error between the initial function and its discrete representa-
tion U(t0,x) in the space spanned by the basis functions Wi(t0,x) on a given
mesh, for which the normal equations are

∫

R(0)

Wi{U(t0,x) − u0(t0,x))}dx = 0 (147)

leading to (146) with

f
0

=

∫

R(0)

Wiu0(x)dx , (148)

which is again appropriate for the purpose of invoking the propagation of the
best L2 fit to self-similar solutions property proved in Appendix B.

The L2 error can again be minimized over node positions as well as nodal
values in multidimensions to give an optimal mesh [5, 137].
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4.7 Examples

We now illustrate the multidimensional finite element conservation method
for mass-conserving problems on a number of test problems using the algo-
rithm of subsection 4.3.5. In all the problems shown u = 0 on the boundary,
so the right hand side of (113) is known.

4.7.1 The porous medium equation

For the PME (18) with U = 0 imposed weakly on ∂R(t), the velocity poten-
tial Φ satisfies (115) with

fi =

∫

R(t)

Wi {∇ · (Un∇U + UQ)} dx . (149)

The velocity is then found from (121), the new mesh from an explicit time-
stepping of (127), and the solution from (131), using (129) in the form

µ̇i =
d

dt

∫

R(t)

WiUdx = −
∫

R(t)

∇Wi · (Un∇U + UV)dx , (150)

(after the use of Green’s Theorem and setting U = 0 on the boundary) to
obtain µ.

Mass is conserved for this problem and there exists an exact radially
symmetric solution in d dimensions [14, 112] given by

u(r, t) =





1
(λ(t))d

(
1 −

(
r

r0λ(t)

)2
) 1

n

|r| ≤ r0λ(t)

0 |r| > r0λ(t)

(151)

in which d is the number of space dimensions, r is the usual radial coordinate,
and

λ(t) =

(
t

t0

) 1

2+dn

, t0 =
r0

2n

2(2 + dn)
. (152)

Mesh convergence results for the method are shown in figure 1 for n = 1 and
n = 2. The errors shown are computed from

solution error =
1

N

N∑

i=1

|Ui − u(Xi)| ,

mesh boundary error =
1

NB

NB∑

i=1

|Ri − r| ,
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in which N is the number of mesh nodes, NB is the number of boundary
nodes, u and r are the analytic solution and domain radius and Ri is the
distance of boundary node i from the origin. The solutions differ qualitatively
for different values of n since from (151) for n ≤ 1 the similarity solution has
finite slope normal to the boundary whereas for n > 1 it has infinite slope.
This has the effect of lowering the order of convergence when n is increased
beyond 1. The convergence results have been obtained using a series of
unstructured meshes generated on a circle of radius 0.5 by an advancing front
method [92] in which the mesh size parameter has been repeatedly halved.
In fact, every two-dimensional experiment presented in this report has been
carried out on unstructured meshes of this type. Unless stated otherwise, all
subsequent experiments shown use the conservative ALE update (136) for the
U with strongly imposed Dirichlet boundary conditions (and take Q ≡ 0).
The time-step is always chosen to ensure that the error due to the temporal
discretization is negligible compared to that of the spatial discretization.
Numerical evidence suggests that this is the case for any stable time-step
when Heun’s scheme is used [74].
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Figure 1: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained using the standard scheme: solution error (left) and mesh
error (right) both in the L1 norm.

The results shown in figure 1 impose the Dirichlet boundary condition
U = 0 exactly (see section 4.3.4) and are exactly conservative (to machine
accuracy). Similar orders of convergence are seen for non-conservative and
weakly imposed boundary conditions (though occasionally they are slightly
lower, as with the mesh error in figure 2 for n = 1): results for this test case
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Figure 2: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained using the exactly conservative scheme but with weakly
imposed Dirichlet boundary conditions on u: solution error (left) and mesh
error (right) both in the L1 norm.
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both in the L1 norm.
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Figure 4: Snapshots of the solution and mesh (T = 0, 0.01, 0.025) showing
the evolution of a porous medium equation similarity solution (n = 1) on a
rotating mesh.
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are given in figure 2 and a full comparison can be found in [74].
Figure 3 shows that the results remain very similar when a non-zero

vorticity is added to the mesh velocity field. In this case q is chosen to be
(−200 y r, 200 x r)T, where r is the usual radial coordinate, which is divergence-
free and provides a rotation which increases in magnitude with distance from
the origin. Figure 4 shows three snapshots of the evolution of the mesh and
the solution on this rotating mesh.

Figure 5 shows the same mesh convergence study carried out for the up-
wind weighted velocity update (125) from the potential with coefficients as
in (126). There is very little difference between these results and those ob-
tained using a standard Galerkin recovery, though they are typically slightly
less accurate.
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Figure 5: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained with upwinded velocity recovery: solution error (left) and
mesh error (right) both in the L1 norm.

Figure 6 shows the convergence results corresponding to those shown in
figure 1, the only difference being that the numerical experiments have been
initiated with a best L2 fit to the analytical solution at T = 0 constrained
to satisfy the Dirichlet boundary conditions, instead of nodally exact values.
The main difference is that the least squares approximation appears to give
a higher order of accuracy in the approximation to the solution when n = 2.

The final set of convergence results in this section are for the one-dimensional
porous medium equation, obtained using a series of initially uniform meshes.
Figure 7 provides a direct comparison between the standard scheme from the
algorithm in subsection 4.3.5 and the modification in which the mesh veloc-
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Figure 6: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained with a best L2 fit to the initial data: solution error (left)
and mesh error (right) both in the L1 norm.
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T = 1.0 obtained by recovering the velocity directly and via a potential:
solution error (left) and mesh error (right) both in the L1 norm.
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ity is found directly from (140) instead of using a potential. There is very
little difference between the two sets of results except for the mesh accuracy
when n = 1. Here the convergence is more erratic (although the error is
smaller) when the potential is used, though the two approaches appear to be
converging towards each other as the mesh is refined.

4.7.2 Fourth order nonlinear diffusion

The second example is the fourth order nonlinear diffusion (or thin film)
equation [22, 127] given by

ut = ∇ · (un∇p) where p = −∆u in R(t) , (153)

with boundary conditions u = ∂u/∂n = ∂p/∂n = 0 on ∂R(t). The velocity
potential Φ is given by equation (115) with

fi =

∫

R(t)

Wi {∇ · (Un∇P + UQ)} dx , (154)

in which the piecewise linear P ≈ p must be recovered in an appropriate man-
ner. Here we choose a standard finite element projection, which generates
the normal equations

∫

R(t)

Wi P dx =

∫

R(t)

∇Wi · ∇U dx , (155)

using the boundary condition ∂u/∂n = 0 (see [7]). This problem also has an
explicitly defined radially symmetric similarity solution in d dimensions in
the special case n = 1, given by

u(r, t) =

{
AtβU0(1 − η2)2 |η| ≤ 1
0 |η| > 1

(156)

in which

η =
r

A
1

4 tδ
δ =

1

4 + d
β = 4δ − 1 A = U0

−4δ (157)

and U0 = 1
192

is chosen so that u(0, t0) = 1, where t0 is such that the initial
position of the moving front is at r = 1.

Figure 8 shows that the solution converges with order 2 as the mesh is
refined. Here, the term “ALE recovery” refers to the use of (131) with (129),
whilst “direct recovery” refers to (131) with (128). In [7] it was noted that in
some circumstances fourth order convergence could be observed in one space
dimension. Examples of the application of the finite element conservation
method to non-radial problems can also be found in [7].
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Figure 8: Accuracy of the approximate solutions to the two-dimensional
fourth order nonlinear diffusion equation (n = 1) on a sequence of meshes at
T = 0.01 obtained using the standard scheme: solution error (left) and mesh
error (right) both in the L1 norm.

4.7.3 Waiting times for the porous medium equation

The waiting time T ∗ is the time it takes for the boundary to begin to move
from a general initial condition and depends on the solution profile in the
vicinity of the boundary [84, 127]. For radially symmetric solutions of the
porous medium equation (18) it can be shown that

T ∗ > 0 if u(r, 0) ≤ C|r − r0|
2

n

T ∗ = 0 if u(r, 0) ≥ C|r − r0|γ for γ <
2

n
. (158)

The initial conditions used for the numerical tests which are now described
were taken to be

u(r, 0) =





[
1 −

(
r
r0

)2
]p

r ≤ r0

0 r > r0

(159)

so that the solution initially approximates (r − r0)
p at the moving boundary

(cf . (151))).
Figures 9 and 10 show the evolution of an initial profile with p = 2 in the

porous medium equation with n = 3 and illustrate the typical behaviour of a
waiting time solution and the evolution of the mesh as it attempts to sustain
locally conservation. These results have been obtained using the upwind
approach of (125) to recovering the mesh velocity from the potential because
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it is slightly more robust than the Galerkin approach. A steep front evolves
in the interior of the domain and the mesh clusters behind this front because
this is where the “mass” is accumulating. This front then moves towards the
stationary boundary, which only starts to move once the front arrives (see
also [111]). The result also illustrates one of the issues with velocity-based
moving mesh methods: if the ring of narrow cells becomes too thin then the
mesh edges are bound to cross over if they remain straight lines. When the
mesh is constructed via a transformation this can be avoided [29].

Figure 11 shows results obtained while varying p for a fixed mesh reso-
lution, which shows that non-zero waiting times are only observed when the
theory indicates that they should be (for n = 3 there should be non-zero
waiting times for p > 2

3
), and also while varying the mesh size for a fixed

value of p, which demonstrates that the results are converging to a particular
value for the waiting time.

4.7.4 Richards’ equation

The one-dimensional Richards’ equation [59] models unsaturated unsteady
flow in soils in the vertical x direction and is given by

ut = (D(u)ux + κ(u)ρg)x (160)

where u(t, x) is the saturation of the wetting phase, κ(u) is the relative
permeability of the wetting phase and D(u) the diffusion coefficient. This
equation is suggested as a good model for the diffusion of pollutant in soils
[97]. Stojsavljevic [131] has implemented the moving mesh finite element
conservation method for the case when D(u) = u and κ(u) = u3 with zero
Dirichlet boundary conditions and initial condition u(0, x) = (1 − x2)3

+.
There is an exact solution for the velocity v = −ux − u2 (see 4.1.3) and

with the above initial condition the solution also waits before moving, as seen
in the numerical results shown in figure 12 (reproduced from [131]).

We now generalize the conservation method to non mass-conserving prob-
lems, governed by the PDE (2) or its integral form, in a domain R(t) when
u > 0 in the interior of the domain.

49



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4
−0.2

0
0.2

0.4
0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4
−0.2

0
0.2

0.4
0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4
−0.2

0
0.2

0.4
0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.4
−0.2

0
0.2

0.4
0.6

−0.4
−0.2

0
0.2

0.4
0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Snapshots of the solution and mesh (T = 0, 0.1, 0.2, 0.3) showing
the evolution of a porous medium equation solution (n = 3) from an initial
profile which exhibits a non-zero waiting time.
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Figure 10: Snapshots of the solution and mesh (T = 0.4, 0.5, 1.0) showing
the evolution of a porous medium equation solution (n = 3) from an initial
profile which exhibits a non-zero waiting time.
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Figure 12: Evolution of the solution (left) and mesh velocity (right) for the
one-dimensional Richards equation, reproduced from [131].
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5 The conservation method for non mass-conserving

problems

If the total mass in the problem varies with time then neither the local
or distributed conservation principles (66) and (95) are consistent with a
constant value of θ in (65) (which should then be written as θ(t) as in (162)
below). However, a consistent conservation principle may be constructed
by normalizing the integral (66) at the expense of carrying θ(t) as an extra
variable.

Let u be a positive solution of (2) in the interior of the moving domain
Ω(t) and define the relative conservation principle,

1

θ(t)

∫

Ω(t)

u dx = c(Ω), independent of time, (161)

where the total (variable) mass

θ(t) =

∫

R(t)

u dx (162)

is the extra (normalizing) variable. Note that from (161) and (162) c(R) = 1.

5.1 Velocity and solution

The Reynolds Transport Theorem (24) is now applied to the function u/θ(t),
leading to the equation

∫

Ω(t)

utdx +

∮

∂Ω(t)

uv.n̂dΓ = c(Ω)θ̇ =
θ̇

θ

∫

Ω(t)

udx, (163)

where v · n̂ is the normal boundary velocity and we have used (161). By the
Divergence Theorem (163) can be written

∫

Ω(t)

{ut + ∇ · (uv)}dx =
θ̇

θ

∫

Ω(t)

udx (164)

where v is any sufficiently smooth velocity field which matches the normal
boundary velocity. Since Ω(t) is arbitrary, equation (164) yields the general-
ized pointwise Eulerian conservation equation (cf. (69))

ut + ∇ · (uv) =
θ̇

θ
u . (165)
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Substituting for ut from the PDE (2), equation (163) takes the purely
spatial integral form

∫

Ω(t)

Ludx +

∮

∂Ω(t)

uv · n̂dΓ = c(Ω)θ̇ =
θ̇

θ

∫

Ω(t)

udx (166)

while equation (165) becomes the differential equation

Lu + ∇ · (uv) =
θ̇

θ
u . (167)

Either equation (166) or (167) can be regarded as an equation for v and θ̇.
In some cases θ̇ can be obtained explicitly. Applying (166) to the whole

domain R(t) and using c(R) = 1,

∫

R(t)

Lu dx +

∮

∂R(t)

uv · n̂ dΓ = θ̇ , (168)

which gives θ̇ explicitly if either v · n̂ is given on the boundary ∂R(t) or if
u = 0 there. The discussion is restricted to these cases in the subsequent
argument.

Even if θ̇ is known there is no unique solution of equation (167) for v
but, as in section 4.1.1, if the vorticity curl v = curl q, where q is a given
velocity, then there exists a velocity potential φ satisfying (71) and equation
(167) can be written as (cf . (72))

−∇ · (u∇φ) = ∇ · (uq) + Lu − θ̇

θ
u (169)

Since u > 0 in the interior of R(t) there is a unique solution of (169) for φ
(at least to the extent of a constant) provided that φ or u∂φ/∂n is specified
on the boundary ∂R(t).

Once φ and θ̇ have been found the velocity follows from (71). The evo-
lution of points x̂(t) of the region R(t) can be determined by integrating
(1), and θ determined by integrating θ̇. Finally, the solution u(t,x) may be
recovered a posteriori from the Lagrangian conservation principle (161) in
the form

1

θ(t)

∫

R(t)

u(t,x)dx =
1

θ(t0)

∫

R(t0)

u(t0,x)dx (170)

using the technique described in subsection 4.1.2.
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5.2 Distributed forms

In the distributed case, with wi belonging to a set of square-integrable test
functions, fixed in R(t) and forming a partition of unity, the relative conser-
vation principle (161) is modified to read

1

θ(t)

∫

R(t)

wiudx = ci, independent of time, (171)

where u is a positive solution of (96) in the interior and θ(t) is given by (162).
Since the wi form a partition of unity, by summing equations (171) over i we
still obtain

∑
ci = 1. (We note in passing that (171) reduces to (161) when

wi is the characteristic function in Ω(t).)
Then, applying the Reynolds Transport Theorem to the function wiu/θ(t),

and assuming that the points of R(t) and therefore the wi move with the
velocity v, the unknowns v and θ̇ satisfy

∫

R(t)

wi {ut + ∇ · (uv)} dx = ciθ̇ (172)

(cf. (98)), which leads via the weak form (96) of the PDE (2) to the spatial
equation ∫

R(t)

wi {Lu + ∇ · (uv)} dx = ciθ̇ . (173)

Further assuming that wi ∈ H1{R(t)} for all t, we apply Green’s Theorem
to (173), giving

∫

R(t)

u∇wi · vdx =

∫

R(t)

wiLudx +

∮

∂R(t)

wiuv · n̂dΓ − ciθ̇. (174)

Summing equations (173) over i and using
∑

ci = 1 leads to
∫

R(t)

Lu +

∮

∂R(t)

uv · n̂dΓ = θ̇ (175)

which yields θ̇ explicitly if either v · n̂ is given on the boundary ∂R(t) or if
u = 0 there. We shall that assume that this holds in the following argument.

There is no unique solution of equation (174) for v but if there exists a
velocity potential φ satisfying the weak form (100) then (174) can be written

∫

R(t)

u∇wi · ∇φdx

=

∫

R(t)

{wiLu − u∇wi · q} dx +

∮

∂R(t)

wiuv · n̂dΓ − ciθ̇ . (176)
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Since uv · n̂ is given on the boundary ∂R(t), so that the penultimate term in
(176) is known, there is a unique solution of (176) for φ ∈ span{wi} provided
that φ is specified at at least one point of the domain (which is no restriction
since only ∇φ is required).

Once φ and θ̇ have been determined, if v,q ∈ span{∇wi} then v is given
by (71), as in subsection 4.2.1. Otherwise, an approximate velocity ṽ can
be obtained from the weak form (102). The evolution of the Lagrangian
coordinate x̂(t) is then determined by integrating (1) over time, and θ(t) by
integrating θ̇. In the case of the weak form (102) the velocity ṽ is not exactly
equal to q + ∇φ and the conservation principle (171) therefore holds only
approximately. Although we can still use (171) to recover an approximate
solution from the equation

1

θ(t)

∫

R(t)

wi u dx =
1

θ(t0)

∫

R(t0)

wi(t0) u(t0) dx . (177)

a more accurate recovery of u(t,x) is obtained, as in section 4.2.1, from the
weak form of the ALE equation (107) by integrating the right-hand side in
time prior to the inversion of (106). By using the approximate velocity ṽ
and the ALE equation the conservation principle (171) is bypassed and the
ci is expected to change slowly with time.

5.3 The moving mesh finite element method

For the finite element mesh and approximations we assume the same set-up
as in section 4.3.

In the finite-dimensional space the normalized conservation principle (171)
for non mass-conserving problems becomes

1

Θ(t)

∫

R(t)

WiUdx = Ci , where Θ(t) =

∫

R(t)

Udx (178)

and the Ci are assumed to be independent of time (at least for the purpose
of deriving the mesh velocity potential). Then, by (174), the unknowns V
and Θ̇ satisfy
∫

R(t)

U∇Wi · Vdx =

∫

R(t)

WiLUdx +

∮

∂R(t)

WiUV · n̂dΓ − CiΘ̇, (179)

while summation of (179) over i gives

Θ̇ =

∫

R(t)

LU dx +

∮

∂R(t)

U V · n̂ dΓ (180)
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so that, since it has been assumed that UV · n̂ is given on the boundary Θ̇
is known explicitly.

There is no unique solution of (179) for V in general but if there exists
a square-integrable velocity Q and velocity potential Φ satisfying the weak
form (112) then equation (179) can be written

∫

R(t)

U∇Wi · ∇Φdx

=

∫

R(t)

{WiLU − U∇Wi · Q} dx +

∮

∂R(t)

WiUV · n̂dΓ − CiΘ̇ . (181)

Since U > 0, equation (181) has a unique solution for Φ ∈ S1{R(t)} (since
UV · n̂ is known on the boundary) provided that Φ is given at at least one
point in R(t) (which is no restriction since only ∇Φ is required).

The matrix form for Φ is again (118) (one component having of Φ having
been specified) but with the f components given by

fi =

∫

R(t)

{Wi LU − U ∇Wi · Q} dx +

∮

∂R(t)

Wi U V · n̂ dΓ − CiΘ̇ . (182)

The velocity is derived as in subsection 4.2.1 and both X̂(t) and Θ(t) stepped
forward in time.

The solution U can be approximately recovered from the first of (178),
either directly via the finite element form of (177),

1

Θ(t)

∫

R(t)

Wi U dx =
1

Θ(t0)

∫

R(t0)

Wi(t0) U(t0) dx, (183)

or by evaluating the µi of (128) from the conservative ALE equation (129)
prior to inverting it for U via the technique of subsection 4.3.3. By using
the ALE equation the conservation principle (178) is bypassed: hence the Ci

may vary slowly in time and should be recalculated at each time step.
Thus for non mass-conserving problems in which V · n is given on the

boundary or U = 0 there, we have the following algorithm.

5.3.1 Algorithm for non mass-conserving problems

Given an initial mesh {X0} and nodal values {U0
i } on the mesh, representing

the initial condition, at each time step:

1. Find Θ̇ from (180).

2. Find Φ from (118) with f given by (182).
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3. Find Ṽ from (119) via (121).

4. Advance X̂(t) and Θ in time using any convenient time-stepping scheme

applied to Ṽ and Θ̇.

5. Recover Ui at the new time-step by integrating the ALE equation (129)
in time to obtain the µ̇i of (128), advancing µi in time, and using (131).
(Strong Dirichlet boundary conditions can also be imposed as described
in section 4.3.4.)

As in the case of the algorithm of section 4.3.5 the velocity potential is
computed from the Eulerian conservation law in the form (118). However,
the velocity and solution make use of the weak forms (119) and (129) for
which (178) does not hold precisely, so the constants Ci there need to be
recomputed at each time-step. Steps 1,2 and 4 of the algorithm are scale-
invariant because all the equations used, as well as the Wi and W̃i, are
individually scale-invariant.

The algorithm can be thought of as solving the ODE system

d

dt




X̂
Θ
µ


 =




V

Θ̇
µ̇


 (184)

where µ = {µi} may be replaced by the µ̃ = {µ̃i} of subsection 4.3.4 in the
case of strong Dirichlet conditions. The method is therefore again a method
of lines, and (184) can be integrated approximately by any convenient time-
stepping scheme.

5.3.2 Numerical example: the Crank-Gupta problem

We illustrate the conservation method for non mass-conserving problems by
a single example using the algorithm of subsection 5.3.1. The Crank-Gupta
problem [18, 47, 108] in multiple space dimensions is

ut = ∇2u − 1 in R(t) , (185)

with boundary conditions u = 0 and ∂u/∂n = 0 on ∂R(t). Mass is not
conserved for this problem but it is easily verified from (168), using the
boundary conditions, that the rate of change of mass is given by θ̇ = −|R|.

It has already been shown in [7] that the conservation method is second
order accurate for this equation when comparing with one-dimensional exact
solution with a different boundary condition. Here, we compare with the
original problem [47] in one dimension, which is solved on a half domain and
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therefore has a condition ux = 0 imposed at the symmetry boundary, where
v = 0 is also imposed. The initial condition is given by

u(r, 0) =

{
1
2
(1 − x)2 x ≤ 1

0 x > 1 .
(186)

There is no known exact solution to this problem but some asymptotic ex-
pansions have been derived [47]. Figure 13 shows the evolution of this initial
profile and compares it to the asymptotic expansion. Figure 13 also compares
the movement of the free boundary node for a series of meshes (although these
results are almost indistinguishable at this scale).

Figure 14 shows snapshots of the evolution of a radially symmetric profile
(computed as a two-dimensional problem) with x replaced by r in (186).
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Figure 13: Snapshots of the evolution of the Crank-Gupta problem (T =
0, 0.04, 0.08, 0.12, 0.16, 0.1974) compared with the asymptotic approximation
(left), and comparison of the rate of change of the position of the point on
the moving boundary for different initial meshes (right).
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Figure 14: Snapshots of the evolution of the two-dimensional Crank-Gupta
problem (T = 0, 0.024, 0.048, 0.072, 0.096, 0.12) on a 615 node moving mesh.
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6 Extensions and Further Applications

In this section a number of extensions and applications are described which
show the development and scope of the above moving mesh conservation
method. We begin with its application to two-phase problems in section
6.1 and then describe the generalization to monitor functions in section 6.2.
A corresponding finite difference method (in one dimension) is then briefly
mentioned in section 6.3. Finally references to some of the applications of
the method are given in section 6.4.

6.1 Internal boundaries

The conservation method is not restricted to predicting the evolution of prob-
lems for which the moving boundary is always the exterior of the computa-
tional domain. It is also possible to approximate the movement of sharp
interfaces lying in the interior of a domain [10].

In order to do this each subregion defined by the internal and external
boundaries must be considered separately. The main reason for this is that
the mesh movement aims to preserve the proportion of the total mass as-
sociated with each test function, However, since each test function remains
associated with the same subregion throughout the computation this is in-
consistent with the proportion of the total mass associated with a given
subregion changing with time. In general, for problems involving moving
internal boundaries there is a transfer of mass into or across the moving
boundary. Hence the algorithm used is based on that presented in section 5.

6.1.1 Velocity and Solution

A moving polygonal approximation R(t) to R(t) is set up, consisting of a
moving tessellation of simplices. This is then split up into non-overlapping
polygonal subregions Rk(t) where R(t) =

⋃
Rk(t) and the boundaries ∂Rk(t)

approximate the corresponding internal and external boundaries of the sub-
regions of R(t). For clarity, the boundary of each subregion will be divided

into fixed (F) and moving (M) components, i.e. ∂Rk(t) = ∂RF

k ∪ ∂RM

k (t).
Once this has been done, the equation for the velocity potential (181) can be
written as

∫

Rk(t)

U∇Wi · ∇Φ dx =

∫

Rk(t)

{Wi LU − U∇Wi · Q} dx

+

∮

∂R
M

k (t)

Wi U V · n̂ dΓ − CiΘ̇k , (187)
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since V = 0 on ∂RF

k . Assuming that U > 0 in the interior of R(t), equation
(187) has a unique solution for Φ ∈ S1{R(t)} in terms of Θ̇k provided that
the interface integral is known and that Φ is given at at least one point. In
problems of this type a condition on V at the moving interface is typically
provided as part of the well-posed initial-boundary value problem. It is this
condition that supplies the coupling between the subregions and ensures that
the right-hand side of (179) may be evaluated.

Once the velocity potentials have been found in each of the subregions,
the mesh velocities can be recovered using (112), solving over the whole do-
main at once in order to produce a velocity field which is continuous across

the internal boundaries, and imposing V = 0 on ∂RF

k . This recovery step
has been shown to be significantly more accurate if the equations involving
the test functions associated with mesh nodes on the moving internal bound-
aries are replaced by a weak form of the condition on V which governs the
movement of the interface [10].

Finally, after the nodal positions and each Θk have been updated using a
standard timestepping scheme, the solution U is recovered separately in each
of the subregions. This can be done using (131) or (133), either directly with
fixed Ci and updated Θk on the right-hand side, or after the right-hand side
has been updated using the ALE approach, (129) or (136).

6.1.2 Example: A Two-Phase Stefan Problem

We illustrate the method using a two-phase Stefan problem. This problem,
described in detail in [46] for example, models changes of phase between liquid
and solid phases. The interfaces between these phases move as the conversion
between them takes place and can be followed using the technique described
above. The diffusion of heat within each phase is modelled by the equations
[25]

KS ut = ∇ · (kS ∇u) in solid regions

KL ut = ∇ · (kL ∇u) in liquid regions , (188)

in which u is the temperature and KS,L, kS,L represent, respectively, the
volumetric heat capacity and the thermal conductivity of the phase. From
now on any subscript k, used to index the subregions, can be associated with
the phase in that region (solid or liquid) and the corresponding equation
taken from (188).

The conditions imposed on the moving interface ∂RM

k (t) in this system
are u = uM and, based upon an energy balance across the phase-change
boundary,

[kk ∇uk · n̂]solidliquid = λv · n̂ , (189)
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where n̂ = n̂(t) is a unit normal to the moving interface, λ is the heat
of phase-change per unit volume, and v · n̂ is the normal velocity of the
interface. Note that u is continuous but ∇u is discontinuous across the
moving boundary, so the jump between the two phases (indicated by [·] in
(189)) is generally non-zero.

In the finite element implementation where UM 6= 0 (which can always be
achieved since adding a constant to the solution still satisfies the remaining
conditions) the equations for the velocity potentials in subregion k become
(assuming for simplicity that Q = 0):

Ci Θ̇k +

∫

Rk(t)

U ∇Φ · ∇Wi dx

= κk

∮

∂R
M

k (t)

Wi ∇Uk · n̂k dΓ + κk

∮

∂R
F

k

Wi ∇Uk · n̂k dΓ (190)

− κk

∫

Rk(t)

∇Wi · ∇U dx +
UM

λ

∮

∂R
M

k (t)

Wi [kk ∇Uk · n̂k]
solid
liquid dΓ , (191)

in which n̂k is the outward pointing unit normal to subregion k and κk =
kk/Kk. Once these systems are solved for a piecewise linear Φ in each region,
the mesh velocity may be recovered at all of the internal nodes using (119)

with V = 0 on ∂RF

k and the equations associated with the mesh nodes on

∂RM

k (t) replaced by

λ

∮

∂R
M

k (t)

Wi V dΓ =

∮

∂R
M

k (t)

Wi [kk∇Uk]
solid
liquid dΓ . (192)

Finally, the ALE update is given by

˙̃µi =

∮

∂R
M

k (t)

W̃i (κk ∇Uk + UM V) · n̂k dΓ + κk

∮

∂R
F

k

W̃i ∇Uk · n̂k dΓ

−
∫

Rk(t)

∇W̃i · (κk∇U + U V) dx . (193)

When compared with analytical solutions the algorithm has demonstrated
second order accuracy for both one- and two-phase Stefan problems [10]. A
single, one-dimensional, example is given here to illustrate its capabilities:
two-dimensional implementations can be found in [10]. Figure 15 shows
the evolution of a one-dimensional solution profile (liquid in the centre, sur-
rounded by solid) where the outer boundaries are stationary and held at a
fixed temperature. The left-hand side of the figure shows the evolution of
the solution itself via snap-shots at discrete times. The right-hand side of
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the figure shows the smooth trajectories of the mesh nodes and the change of
direction of the phase-change interface as the gradient of the temperature of
the liquid phase at the interface drops below that of the solid phase. In the
absence of an exact solution to this problem, figure 16 illustrates the conver-
gence of the maximum value of the solution and the boundary position as
the mesh is refined.
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Figure 15: Evolution of the solutions to the one-dimensional two-phase Stefan
problem for a non-symmetric initial profile and an 81 node mesh: snapshots
of the solution profile (left) and node trajectories (right).
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Figure 16: Evolution of the maximum value of U in the domain (left) and
the position of the moving interfaces (right) for the one-dimensional two-
phase Stefan problem with non-symmetric initial profile using three different,
initially uniform, meshes.

6.2 Monitor integrals

We now discuss the generalization of the conservation method to incorporate
the use of monitor functions. Instead of using u as the integrand in the
conserved integral in (161) we may replace it by a general positive monitor
function m, any measure of the dependent and independent variables. The
integral corresponding to the conserved integral in (161) is then the monitor
integral ∫

Ω(t)

m dx. (194)

An example of a monitor function is

m =
√ (

1 + |∇u|2
)

(195)

for which (194) becomes

∫

Ω(t)

√ (
1 + |∇u|2

)
dx, (196)

i.e. the area of the part of the manifold of u whose projection is Ω(t). We
note that for this particular m,

dm

du
=

∇u√{1 + (∇u)2}∇ (197)
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is an operator.
Unlike the previous cases studied a general monitor will not necessarily

have an associated scale-invariant monitor integral and therefore will not lead
to a scale-invariant numerical method. However by replacing the variables in
the monitor integral by the similarity variables (see (12)) we can ensure scale
invariance [9]. For example, the radially symmetric scale-invariant monitor
integral corresponding to (196) is

t−dβ

∫

R(t)

√
(1 + t−2(γ−β)|∇u|2)dx , (198)

which is constructed from the area function in the space of similarity vari-
ables. Results obtained using this monitor are shown in Figure 17 for the
two-dimensional porous medium equation. Second order accuracy is gener-
ally achieved except, in this case, for the solution error when n = 2.
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Figure 17: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at T =
0.01 obtained using the scale-invariant arclength monitor integral: solution
error (left) and mesh error (right) both in the L1 norm.

Since the total monitor integral (194) is not independent of time in gen-
eral, a consistent conservation principle must be constructed, as in section
5, by normalizing the integral (194) at the expense of carrying the extra
variable

θ(t) =

∫

R(t)

m dx (199)

We therefore define the relative conservation principle to be

1

θ(t)

∫

Ω(t)

m dx = c(Ω), independent of time. (200)
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It follows from (200) and (199) that c(R) = 1.
By differentiating (200) with respect to time, in a similar way as in section

5 the velocity v satisfies

∫

R(t)

m∇wi · vdx =

∫

R(t)

wi
dm

du
utdx +

∮

∂R(t)

wimv · n̂dΓ − ciθ̇ (201)

where we have used

mt =
dm

du
ut, (202)

dm/du being the formal derivative of m with respect to u (see e.g. (197)). We
cannot use the weak form (96) to substitute directly for ut in (201) since the
test function (dm/du)wi does not lie in the span{wi} in general. However, we
may project Lu, into the span{(dm/du)wi} giving an approximation Put =
PLu to ut. leading to the approximate equation

∫

R(t)

m∇wi · vdx =

∫

R(t)

wi
dm

du
PLudx +

∮

∂R(t)

wimv · n̂dΓ − ciθ̇ (203)

for v and θ̇. The projection error means that the velocity computed from
(203) only approximately corresponds to the conservation of (200) in time.

The velocity potential, the velocity, and Lagrangian coordinate can be
calculated as before, and the solution obtained via the ALE equation. There
is a corresponding finite element method. For further details on the method
using monitor functions see [9, 20, 21, 147, 148].

6.3 A finite difference method

Although this report is primarily concerned with the finite element imple-
mentation of the conservation method we briefly describe a corresponding
finite difference scheme in one dimension [20, 21] which is equally effective.

When the total mass in the interval (a(t), b(t)) is constant in time the
conservation principle (66) can be written

∫ x̂(t)

a(t)

u(t, x)dx = c(a, x̂), independent of time, (204)

for any interval (a(t), x̂(t)). Differentiating (204) with respect to time using
Leibnitz’ Integral Rule (cf. (23)) and using the PDE (2) gives the spatial
equation for v(t, x), ∫ x̂(t)

a(t)

Ludx + [uv]
x̂(t)
a(t) = 0 (205)
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(cf. (68)), where v = dx̂/dt.
Equation (205) can be solved for v at any point x̂(t) provided that v is

given at x = a(t). The Lagrangian coordinate x̂(t) can then be found by
time integration of

dx̂

dt
= v (206)

(cf . (1)).
The solution may be recovered approximately from the conservation prin-

ciple (204) in its incremental form

∫ x̂i+1(t)

x̂i−1(t)

u(t, x)dx =

∫ x̂i+1(0)

x̂i−1(0)

u(0, x)dx (207)

by an application of the midpoint rule, leading to the approximation

ui(t) =
x̂i+1(t0) − x̂i−1(t0)

x̂i+1(t) − x̂i−1(t)
ui(t0) (208)

(cf . (76)).
As in the multidimensional case, scale-invariance is inherited for a scale-

invariant problem, since the scale-invariant conservation principle (204) has
been used to determine the mesh. The one-dimensional method is readily
extended to incorporate monitor functions [20, 21]. Results from several
applications of the one-dimensional method are cited in the subsection 6.4.2
below.

6.4 Further applications

In this section we briefly describe and reference several further applications
of the conservation method in both finite element and finite difference form.

6.4.1 Other nonlinear diffusion problems

The sixth order nonlinear diffusion problem [16, 72] is

ut = ∇ · (u∇ · ∆2u) , (209)

with boundary conditions u = ∂u/∂n = ∂3u/∂n3 = ∂5u/∂n5 = 0. The
moving mesh finite element approach to the solution of this problem is very
similar to that for fourth order diffusion in section 4.7.2. Letting q = −∆u
and p = −∆q, equation (209) can be written

ut = ∇ · (u∇p) (210)
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(which from section 4.1.3 has the exact solution v = −∇p for the velocity). .
In the moving mesh finite element method the finite element approximation
P ≈ p is recovered from Q ≈ q and Q is in turn recovered from U by a finite
element projection, as in section 4.7.2. Some results of the application of the
moving mesh finite element conservation method to the sixth order problem
can be found in [19].

Another application involving nonlinear diffusion is the modelling of water
uptake in rice. The problem is given by a nonlinear diffusion equation of the
form

ct = ∇ · (D(c)∇c) (211)

in R(t), where c = c̄ is held constant on the moving boundary ∂R(t). Results
for a particular choice of D(c), corresponding to a circularly symmetric rice
grain, are shown in [110].

6.4.2 One-dimensional applications using finite differences

A number of one-dimensional problems have been treated by the finite dif-
ference method of subsection 6.3 in the references cited below.

• The porous medium equation with n = 4 has been studied in [109].

• Blow-up in Fisher’s equation ut = uxx + up with p = 2 can be found in
[20, 42, 139], and in the Kassoy equation ut = uxx + eu in [139].

• A model volcano equation ht +Ux = ws(x), where h is the height of the
profile and the rheology term U is a function of h and ∂h/∂x derived
from the physics [13], can be found in [119].

• A model glacier equation [41], Ht = (H5H3
x)x + s, where H is the ice

depth and s is precipitation, with a zero Dirichlet condition at the
moving boundary, has been treated in [111, 118].

6.4.3 Applications to systems of equations

For systems of equations the conservation method has been applied, amongst
others, to the Shallow Water Equations [105], the Euler equations of com-
pressible flow [147, 148], and chemotaxis blow-up using the Keller-Segel sys-
tem

ut = uxx + χ(vux)x

vt = vxx + u − v,

implemented in [42].
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7 Summary

In this report we have considered velocity-based adaptive meshing strategies
based upon the movement of the nodes of a topologically-fixed finite element
grid. Unlike other adaptive techniques, such as h-refinement (mesh subdivi-
sion) or p-refinement (finite element order enrichment), this strategy does not
require nested finite element spaces and always has the same number of de-
grees of freedom. The adaptive element involves modifying the finite element
space as a result of the changing location of the node points, upon which the
underlying basis functions are defined. For the spatial semi-discretization of
time-dependent PDEs this works very naturally by making the finite element
space a continuous function of time: the goal being to ensure that the trial
space evolves in such a way that, at any instant in time, it is able to provide
an accurate and efficient representation of the PDE solution.

The approach used is to prescribe the evolution of the trial space by
imposing (time-varying) velocities on the nodes of the finite element mesh.
The positions of the nodes as functions of time (and therefore the finite
element trial space at any given time) are then determined by integration of
these nodal velocities. Our concern has been to describe possible techniques
for determining this nodal velocity field so as to ensure that the resulting
finite element spaces locate, and evolve, their degrees of freedom in such a
way as to permit the most accurate representations of the PDE solution.

Section 2 of the report introduces the class of problems that we consider
and discusses some of the properties of these PDEs that we may wish to be
reflected in our adaptive numerical methods. These include mass conserva-
tion, scale-invariance and self-similarity. Consequences of the velocity-based
approach are also discussed, in terms of the moving frame of reference that
this induces and the effects of considering the governing equations, and their
weak forms, in such moving frames. Section 3 then provides a short histori-
cal overview of some of the techniques for prescribing the velocity fields that
define the resulting mesh evolution. These include physically-based algo-
rithms derived from fluid flows and elastic deformations for example, as well
as mathematically-based algorithms which seek either to directly minimize
weighted residuals or to mimic certain mathematical properties of the equa-
tions of interest. In particular, methods based upon geometric conservation
principles are described as a means of motivating the techniques discussed in
the remainder of the report.

Sections 4 onwards focus primarily on reviewing this particular class
of method, initially for mass-conserving problems and then for non mass-
conserving equations. Numerous examples are presented and a large number
of applications are described, in varying levels of detail. The power of the
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approach is that it respects many of the physical properties of the PDEs
that are being solved, including local and global mass conservation, scale-
invariance and self-similarity when they are present. Furthermore the tech-
nique has been applied extensively to model problems in both one and two
space dimensions.

It should be noted that the techniques discussed in this review are still far
from mature and considerable further research is likely to be fruitful. In par-
ticular, implicit time-stepping strategies should increase significantly the size
of the time-steps that may be taken, especially in the solution of fourth order
(and higher) problems. Other developments that will be of potential signif-
icance include further extension of the techniques outlined in subsection 6.2
in order to permit a wider selection of monitor functions to be considered.
This will open up the possibility of selecting different criteria upon which to
base the evolution of the interior of the finite element mesh. Furthermore
it is likely that, for many applications, the most effective solution strategies
will involve the combination of mesh movement, such as those discussed here,
with more conventional adaptive strategies which allow the mesh topology to
be adjusted and permit the number of degrees of freedom to be adjusted at
discrete points in time. The most effective ways of combining these different
strategies is likely to be an important topic of future research.

8 Appendices

A Propagation of self-similar solutions

In appendix A we show that under the local mass conservation principle (66)
any function u(t,x) > 0 which coincides with a self-similar solution of a scale-
invariant mass conserving problem at an initial time t = t0 and vanishes on
the boundary is propagated as a self-similar solution for all time.

Theorem A:

Let

1. u(t,x) > 0 be the solution of a scale-invariant mass-conserving problem
in a domain R(t) such that u(t,x) vanishes on the boundary ∂R(t),

2. u(t,x) satisfy the local conservation principle

∫

Ω(t)

u(t,x)dx = constant in time (212)
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of (66) for all Ω(t) ∈ R(t),

3. the velocity v(t,x) induced by (212) be irrotational,

4. u(t0,x) coincide with a self-similar solution at an initial time t = t0.

Then u(t,x) remains self-similar for all t > t0.

Proof:

As a preliminary we show that at time t = t0 the induced velocity v(t0,x)
has components

vν(t0,x) =
βνxν

t0
(213)

for all x = {xν}.
Since u(t,x) satisfies the local Lagrangian conservation principle (4.1) for

all Ω(t), it also satisfies the corresponding Eulerian conservation law

ut + ∇ · (uv) = 0 (214)

where v(t,x) is the induced velocity. Let the self-similar solution be

uss(t,x) = tγf(ξ) (215)

where ξ = {ξν} = {xν/t
βν} and γ, βν are the scaling indices for u, xν respec-

tively. Then, since u(t,x) coincides with uss(t,x) at time t = t0, substituting
(215) into (214),

γtγ−1
0 f(ξ0) − tγ−1

0

∑

ν

βνξν
∂f(ξ0)

∂ξν
0 + tγ0∇x

·
{
f(ξ0)v

}
= 0 (216)

where ξ0 = {ξ0
ν} = {xν/t

βν

0 }. Also, since
∑

βν + γ = 0 for a mass conserving
problem, equation (216) reduces to

−t−1
0

∑

ν

βν
∂{ξ0

νf(ξ0)}
∂ξ0

ν

+
∑

ν

∂

∂xν

{f(ξ0)vν} = 0 (217)

which can be written

∑

ν

∂

∂xν

{
f(ξ0)

(
−βνxν

t0
+ vν

)}
= 0 (218)
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Moreover, since v is irrotational, introducing a velocity potential φ such that
v = ∇φ, equation (218) takes the form

∑

ν

∂

∂xν

{
f(ξ0)

∂

∂xν

(
−
∑

µ

1

2

βµx
2
µ

t0
+ φ

)}
= 0 (219)

Then, since u (and therefore f) is positive in the interior of the domain and
vanishes on the boundary, equation (219) has the unique solution

φ =
1

2

∑

µ

βµx
2
µ

t0
+ const ⇒ vν =

∂φ

∂xν

=
βνxν

t0
(220)

Next we show that for all t in the interval (t0, t0 + ∆t) the moving co-
ordinate x̂ν(t) varies as tβν to order O(∆t)2. Writing t = t0 + k∆t, where
0 < k ≤ 1, from a Taylor expansion of x̂(t) and (220),

x̂ν(t) = x̂ν(t0) + k∆t vν(t0, x) + O(∆t)2

= x̂ν(t0) + k∆t
βν x̂ν(t0)

t0
+ O(∆t)2

=

(
1 +

k∆t

t0

)βν

x̂ν(t0) + O(∆t)2

=

(
t

t0

)βν

x̂ν(t0) + O(∆t)2 (221)

It follows that
x̂ν(t)

tβν
=

x̂ν(t0)

tβν

0

+ O(∆t)2 (222)

for all t0 < t ≤ t0 + ∆t and hence that x̂ν(t) varies as tβν in the interval
(t0, t0 + ∆t) to order O(∆t)2.

Now consider the identity

∫

Ω(t)

u(t,x)dx −
∫

Ω(t)

tγf
( x1

tβ1
,
x2

tβ2
, ...,

xd

tβd

)
dx

≡
∫

Ω(t0)

u(t0,x)dx −
∫

Ω(t0)

t0
γf

(
x1

tβ1

0

,
x2

tβ2

0

, ...,
xd

tβd

0

)
dx + O(∆t)2 (223)

which holds because the first integrals on each side of (223) are equal by
local conservation, and the second integrals on each side are equal under the
substitution xν/t

β = yν/t
β
0 , to order O(∆t)2. Note that since the problem
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is mass-conserving
∑

βν + γ = 0, and that the points of R(t) coincide with
those of R(t0) to order O(∆t)2 under the above substitution.

Since at t = t0

u(t0,x) = t0
γf

(
x1

tβ1

0

,
x2

tβ2

0

, ...,
xd

tβd

0

)
(224)

and Ω(t0) is arbitrary, it follows from (223) that

u(t,x) − tγf
( x1

tβ1
,
x2

tβ2
, ...,

xd

tβd

)
= O(∆t)2 (225)

for all t such that t0 < t ≤ t1 + ∆t. Thus at t = t1 = t0 + ∆t

u(t1,x) − tγ1f

(
x1

tβ1

1

,
x2

tβ2

1

, ...,
xd

tβd

1

)
= O(∆t)2, (226)

so that u(t1,x) is the self-similar solution uss(t1,x) at time t1 = t0 + ∆t
to order O(∆t)2. Repeating the whole argument at time t = t1, with an
additional O(∆t) term in equations (216) to (220), we can deduce in the
same way that at time t2 = t1 + ∆t = t0 + 2∆t

u(t2,x) − tγ2f

(
x1

tβ1

2

,
x2

tβ2

2

, ...,
xd

tβ2

2

)
= O(∆t)2 (227)

After n such repetitions we find that at a fixed time tn = t0 + n∆t

u(tn,x) − tγnf

(
x1

tβ1
n

,
x2

tβ2
n

, ...,
xd

tβ2
n

)
= O(∆t) (228)

Finally, letting n → ∞, ∆t → 0 it follows that u(t,x) is the self-similar
solution for all time. This completes the proof.

As a corollary, the components of v(t,x) are

vν(t,x) =
βνxν

t
(229)

for all t and all xν .

B Propagation of L2 projections of self-similar

solutions

We now show that, under the self-similar velocity (11), initial data which
coincides with the L2 projection of a self-similar solution at time t = t0 is
propagated as the L2 projection of the self-similar solution for all time.
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Theorem B:

Let

1. u(t,x) be a positive solution of a mass-conserving scale-invariant prob-
lem governed by the PDE (2),

2. U(t,x) satisfy the conservation principle (110),

3. the velocity be the self-similar velocity (11) for all t,

4. U(t0,x) coincide with the L2 projection of the self-similar solution (12)
at time t = t0.

Then U(t,x) remains the L2 projection of the self-similar solution for all
t > t0.

Proof:

This proof is much simpler than that in Appendix A because we have
assumed that the velocity is the self-similar velocity (11) for all t. By as-
sumption ∫

R(t)

WiU(t,x)dx (230)

is constant in time, and by the substitution xν = tβνξν

∫

R(t)

Wit
γf(ξ)dx (231)

is also constant in time, since R(t) and Wi move with the self-similar velocity
(11) and for mass conserving problems

∑
βν + γ = 0. Therefore

∫

R(t)

Wi {U(t,x) − tγf(ξ)} dx (232)

is constant in time. Because U is the L2 projection of the self-similar solution
(12) at time t0 the integral (232) is zero at time t = t0. Hence it remains
zero for all time and U remains the L2 projection of (12) for all time. This
completes the proof.
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